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Preface to the Series 

Experimental life sciences have two basic foundations: concepts and tools. The Neuro-
methods series focuses on the tools and techniques unique to the investigation of the 
nervous system and excitable cells. It will not, however, shortchange the concept side of 
things as care has been taken to integrate these tools within the context of the concepts and 
questions under investigation. In this way, the series is unique in that it not only collects 
protocols but also includes theoretical background information and critiques which led to 
the methods and their development. Thus it gives the reader a better understanding of the 
origin of the techniques and their potential future development. The Neuromethods pub-
lishing program strikes a balance between recent and exciting developments like those 
concerning new animal models of disease, imaging, in vivo methods, and more established 
techniques, including, for example, immunocytochemistry and electrophysiological tech-
nologies. New trainees in neurosciences still need a sound footing in these older methods in 
order to apply a critical approach to their results. 

Under the guidance of its founders, Alan Boulton and Glen Baker, the Neuromethods 
series has been a success since its first volume published through Humana Press in 1985. The 
series continues to flourish through many changes over the years. It is now published under 
the umbrella of Springer Protocols. While methods involving brain research have changed a 
lot since the series started, the publishing environment and technology have changed even 
more radically. Neuromethods has the distinct layout and style of the Springer Protocols 
program, designed specifically for readability and ease of reference in a laboratory setting. 

The careful application of methods is potentially the most important step in the process 
of scientific inquiry. In the past, new methodologies led the way in developing new dis-
ciplines in the biological and medical sciences. For example, Physiology emerged out of 
Anatomy in the nineteenth century by harnessing new methods based on the newly discov-
ered phenomenon of electricity. Nowadays, the relationships between disciplines and meth-
ods are more complex. Methods are now widely shared between disciplines and research 
areas. New developments in electronic publishing make it possible for scientists that 
encounter new methods to quickly find sources of information electronically. The design 
of individual volumes and chapters in this series takes this new access technology into 
account. Springer Protocols makes it possible to download single protocols separately. In 
addition, Springer makes its print-on-demand technology available globally. A print copy 
can therefore be acquired quickly and for a competitive price anywhere in the world. 

Saskatoon, SK, Canada Wolfgang Walz
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Preface 

Machine learning (ML) is at the core of the tremendous progress in artificial intelligence in 
the past decade. ML offers exciting promises for medicine. In particular, research on ML for 
brain disorders is a very active field. Neurological and psychiatric disorders are particularly 
complex and can be characterized using various types of data. ML has the potential to exploit 
such rich and complex data for a wide range of benefits including a better understanding of 
disorders, the discovery of new biomarkers, assisting diagnosis, providing prognostic infor-
mation, predicting response to treatment and building more effective clinical trials. 

Machine learning for brain disorders is an interdisciplinary field, involving concepts 
from different disciplines such as mathematics, statistics and computer science on the one 
hand and neurology, psychiatry, neuroscience, pathology and medical imaging on the other 
hand. It is thus difficult to apprehend for students and researchers who are new to this area. 
The aim of this book is to provide an up-to-date and comprehensive guide to both 
methodological and applicative aspects of ML for brain disorders. This book aims to be 
useful to students and researchers with various backgrounds: engineers, computer scientists, 
neurologists, psychiatrists, radiologists, neuroscientists, etc. 

Part I presents the fundamentals of ML. The book starts with a non-technical introduc-
tion to the main concepts underlying ML (Chapter 1). The main classic ML techniques are 
then presented in Chapter 2. Even though not recent for most of them, these techniques are 
still useful for various tasks. Chapters 3–6 are devoted to deep learning, a family of 
techniques which have achieved impressive results in the past decade. Chapter 3 describes 
the basics of deep learning, starting with simple artificial neural networks and then covering 
convolutional neural networks (CNN) which are a standard family of approaches that are 
mainly (but not only) used for imaging data. Those architectures are feed-forward, meaning 
that information flows only in one direction. On the contrary, recurrent neural networks 
(RNN), presented in Chapter 4, involve loops. They are particularly adapted to sequential 
data, including longitudinal data (repeated measurements over time), time series and text. 
Chapter 5 is dedicated to generative models: models that can generate new data. A large part 
is devoted to generative adversarial networks (GANs), but other approaches such as diffu-
sion models are also described. Finally, Chapter 6 presents transformers, a recent approach 
which is now the state-of-the-art for natural language processing and has achieved impres-
sive results for other applications such as imaging. 

Part II is devoted to the main types of data used to characterize brain disorders. These 
include clinical assessments (Chapter 7), neuroimaging (including magnetic resonance 
imaging—MRI, positron emission tomography—PET, computed tomography—CT, 
single-photon emission computed tomography—SPECT, Chapter 8), electro- and magne-
toencephalography (EEG/MEG, Chapter 9), genetic and omics data (including genotyp-
ing, transcriptomics, proteomics, metabolomics, Chapter 10), electronic health records 
(EHR, Chapter 11), mobile devices, connected objects and sensor data (Chapter 12). The 
emphasis is put on practical aspects rather on an in-depth description of the underlying data 
acquisition techniques (which can be complex, for instance in the case of neuroimaging or 
omics data). The corresponding chapters describe which information do these data provide,
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how they should be handled and processed and which features can be extracted from 
such data.

viii Preface

Part III covers the core methodologies of ML for brain disorders. Each chapter is 
devoted to a specific medical task that can be addressed with ML, presenting the main 
state-of-the-art techniques. Chapter 13 deals with image segmentation, a crucial task for 
extracting information from images. Image segmentation techniques allow delineating 
anatomical structures and lesions (e.g. tumours, white matter lesions), which can in turn 
provide biomarkers (e.g. the volume of the structure/lesion or other more sophisticated 
derived measures). Image registration is presented in Chapter 14. It is also a fundamental 
image analysis task which allows aligning images from different modalities or different 
patients and which is a prerequisite for many other ML methods. Chapter 15 describes 
methods for computer-aided diagnosis and prediction. These include methods to automati-
cally classify patients (for instance to assist diagnosis) as well as to predict their future state. 
Chapter 16 presents ML methods to discover disease subtypes. Indeed, brain disorders are 
heterogeneous and patients with a given diagnosis may have different symptoms, a different 
underlying pathophysiology and a different evolution. Such heterogeneity is a major barrier 
to the development of new treatments. ML has the potential to help discover more 
homogeneous disease subtypes. Modelling disease progression is the focus of Chapter 17. 
The chapter describes a wide range of techniques that allow, in a data-driven manner, to 
build models of disease progression, which includes finding the ordering by which different 
biomarkers become abnormal, estimating trajectories of change and uncovering different 
evolution profiles within a given population. Chapter 18 is devoted to computational 
pathology which is the automated analysis of histological data (which may come from 
biopsies or post-mortem samples). Tremendous progresses have been made in this area in 
the past years. Chapter 19 describes methods for integrating multimodal data including 
medical imaging, clinical data and genetics (or other omics data). Indeed, characterizing the 
complexity of brain disorders requires to integrate multiple types of data, but such integra-
tion raises computational challenges. 

Part IV is dedicated to validation and datasets. These are fundamental issues that are 
sometimes overlooked by ML researchers. It is indeed crucial that ML models for medicine 
are thoroughly and rigorously validated. Chapter 20 covers model validation. It introduces 
the main performance metrics for classification and regression tasks, describes how to 
estimate these metrics in an unbiased manner and how to obtain confidence intervals. 
Chapter 21 deals with reproducibility, the ability to reproduce results and findings. It is 
widely recognized that many fields of science, including ML for medicine, are undergoing a 
reproducibility crisis. The chapter describes the main types of reproducibility, what they 
require and why they are important. The topic of Chapter 22 is interpretability of ML 
methods. In particular, it reviews the main approaches to get insight on how “black-box” 
models take their decisions and describes their application to brain imaging data. Chapter 23 
provides a regulatory science perspective on performance assessment of ML algorithms. It is 
indeed crucial to understand such perspective because regulation is critical to translate safe 
and effective technologies to the clinic. Finally, Chapter 24 provides an overview of the main 
existing datasets accessible to researchers. It can help scientists identify which datasets are 
most suited to a particular research question and provides hints on how to use them. 

Part V presents applications of ML to various neurological and psychiatric disorders. 
Each chapter is devoted to a specific disorder or family of disorders. It presents some 
information about the disorder that should, in particular, be useful to researchers who 
don’t have a medical background. It then describes some important applications of ML to



this disorder as well as future challenges. The following disorders are covered: Alzheimer’s 
disease and related dementia (including vascular dementia, frontotemporal dementia and 
dementia with Lewy bodies) in Chapter , Parkinson’s disease and related disorders 
(including multiple system atrophy, progressive supranuclear palsy and dementia with 
Lewy bodies) in Chapter , epilepsy in Chapter , multiple sclerosis in Chapter , 
cerebrovascular disorders (including stroke, microbleeds, vascular malformations, aneur-
ysms and small vessel disease) in Chapter , brain tumours in Chapter , neurodevelop-
mental disorders (including autism spectrum and attention deficit with hyperactivity 
disorders) in Chapter and psychiatric disorders (including depression, schizophrenia 
and bipolar disorder) in Chapter . 32

31 

3029

282726

25

Preface ix

We hope that this book will serve as a reference for researchers and graduate students 
who are new to this field of research as well as constitute a useful resource for all scientists 
working in this exciting scientific area. 

Paris, France Olivier Colliot
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CIFAR Canadian Institute For Advanced Research 
CIS Clinically Isolated Syndrome 
CLAIM Checklist for Artificial Intelligence in Medical imaging 
CLIP Contrastive Language-Image Pretraining 
C-LSTM Convolutional Long Short-Term Memory 
CMB Cerebral Microbleed 
CN Healthy Controls (or Cognitively Normal participants) 
CNN Convolutional Neural Network 
CNS Central Nervous System 
CNV Copy number variant 
CP Computational Pathology 
CPAB Continuous Piecewise Affine-Based 
CPM Computational Precision Medicine 
CPM-RadPath CPM Radiology-Pathology Challenge 
CPRD Clinical Practice Research Datalink 
CRAM Compressed Reference-oriented Alignment Map 
CSF Cerebrospinal Fluid 
cSVD Cerebral Small Vessel Disease 
CT Computed Tomography 
CTA Computed Tomography Angiography 
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DEBM Discriminative Event-Based Model 
DIAN Dominantly Inherited Alzheimer Network 
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DL Deep Learning 
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ID Intelligence Disabilities 
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LRP Layer-wise relevance 
LSTM Long Short-Term Memory 
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MAE Mean Absolute Error 
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MAGNIMS Magnetic Resonance Imaging in Multiple Sclerosis network 
MAP Maximum a Posteriori 
MAR Missing at Random 
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mcVAE Multi-Channel Variational Autoencoder 
MD Mean Diffusivity 
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MEM Micro Electro Mechanical system 
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MI Mutual Information 
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MLP Multi-Layer Perceptron 
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MNI Montreal Neurological Institute 
MNIST Modified National Institute of Standards and Technology dataset 
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MSA-C Cerebellar variant of Multiple System Atrophy 
MSA-P Parkinsonian variant of Multiple System Atrophy 
MSD Medical Segmentation Decathlon 
MSE Mean Squared Error 
mTOR Mammalian Target of Rapamycin 
MTR Magnetization Transfer Ratio 
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mzML Mass Spectrometry Markup Language 
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NB Naive Bayes 
NCBI National Center for Biotechnology Information 
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NeurIPS Neuronal Information Processing Systems conference 
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NIVEL Netherlands Institute for Health Services Research 
NIVEL-PCD NIVEL Primary Care Database 
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NMF Non-negative Matrix Factorization 
NMI Normalized Mutual Information 
NMOSD Neuromyelitis Optica Spectrum Disorder 
NMT Neural Machine Translation 
NN Neural Network 
NPV Negative Predictive Value 
OATS Older Adult Twin Study 
OCD Obsessive Compulsive Disorder 
OCT Optimal Cutting Temperature 
OSF Open Science Framework 
PACS Picture Archiving and Communication System 
PCA Posterior Cortical Atrophy 
PCA Principal Component Analysis 
PD Parkinson’s Disease 
PD Proton-Density MR sequence 
PDF Probability Density Function 
PE Positional Encoding 
PET Positron Emission Tomography 
PIB-PET [11C]-Pittsburgh Compound B Positron Emission Tomography 
PiD Pick’s Disease 
PLS Partial Least Squares 
PLSR Partial Least Square Regression 
PML Progressive Multifocal Leukoencephalopathy
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PNS Peripheral Nervous System 
PPA Primary Progressive Aphasia 
PPMI Parkinson’s Progression Markers Initiative 
PPMS Primary Progressive Multiple Sclerosis 
PPV Positive Predictive Value 
PRS Polygenic Risk Score 
PSI HUPO Proteomics Standards Initiative 
PSI Proteomics Standards Initiative 
PSP Progressive Supranuclear Palsy 
psPD pseudoprogression of disease 
PT Patient 
PTSD Post-Traumatic Stress Disorder 
PVS Perivascular Space 
PWI Perfusion Weighted Imaging 
QSM Quantitative Susceptibility Mapping 
QT Quantitative Traits 
QTAB Queensland Twin Adolescent Brain 
QTIM Queensland Twin IMaging 
rΔCBF relative CBF change 
RANO Response Assessment in Neuro-Oncology 
RAVEL Removal of Artificial Voxel Effect by Linear regression 
RBF Radial Basis Function 
RCNN Region Convolutional Neural Network 
RECIST Response Evaluation Criteria in Solid Tumours 
ReLU Rectified Linear Unit 
REM Rapid Eye Movement 
ResNet Residual Neural Network 
RF Random Forest 
RKHS Reproducing Kernel Hilbert Space 
RMSE Root Mean Square Error 
RMSProp Root Mean Squared Propagation 
RNA Ribonucleic Acid 
RNN Recurrent Neural Network 
ROC Receiver Operating Characteristic curve 
RRMS Relapsing Remitting Multiple Sclerosis 
RS-fMRI Resting State functional Magnetic Resonance Imaging 
RSNA Radiological Society of North America 
SA Self-Attention 
SAM Sequence Alignment Map 
SD Standard Deviation 
SDG Stochastic Gradient Descent 
SHAP SHapley Additive exPlanations 
Smile-GAN Semi-supervised cLustering via GANs 
SNOMED-CT Systematized NOmenclature of MEDicine - Clinical Terms 
SNP Single Nucleotide Polymorphism 
SPECT Single-Photon Emission Computed Tomography 
SPIE The Society for Photoelectrical Instrumentation Engineers - The Inter-

national Society for Optics and Photonics 
SPIRIT-AI Standard Protocol Items: Recommendations for Interventional Trials-

Artificial Intelligence
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SPMS Secondary Progressive Multiple Sclerosis 
SRA Sequence Read Archive 
SRH Stimulated Raman scattering Histology 
SS Sensitivity-Specificity loss 
SSD Sum of Square Differences 
SSL Semi-Supervised Learning 
STARD-AI Standards for Reporting Diagnostic Accuracy Studies - Artificial 

Intelligence 
STN Spatial Transformer Network 
STR Swedish Twin Registry 
STRIVE the STandards for ReportIng Vascular changes on nEuroimaging 
SUD Substance Use Disorder 
SuLign Subtyping Alignment 
SuStaIn Subtype and Stage Inference 
SVD Singular Value Decomposition 
SVM Support Vector Machine 
SWI Susceptibility-Weighted Images 
TC Tumour Core 
TEBM Temporal Event-Based Model 
TICI Thrombolysis in Cerebral Infarction 
TLE Temporal Lobe Epilepsy 
TMZ Temozolomide 
TN True Negative 
TNR True Negative Rate 
TOPMed Trans-omics Precision Medicine 
TP True Positive 
TPR True Positive Rate 
TRIPOD-ML Transparent Reporting of a Multivariable Prediction Model for Individ-

ual Prognosis or Diagnosis-Machine Learning 
tRNA Transfer RNA 
UAD Unsupervised Anomaly Detection 
UDA Unsupervised Data Augmentation 
UI User Interface 
UKB UK Biobank 
UMLS Unified Medical Language System 
UPDRS Unified Parkinson’s Disease Rating Scale 
UX User Experience 
VaD Vascular Dementia 
VAE Variational Autoencoder 
VA-GAN Visual Attribution Generative Adversarial Network 
VASARI Visually AcceSAble Rembrandt Images 
VCCA Deep Variational CCA 
VCI Vascular Cognitive Impairment 
VETSA Vietnam Era Twin Study of Aging 
ViT Vision Transformer 
ViViT Video Vision Transformer 
VQGAN Vector Quantization Generative Adversarial Network 
VQ-VAE Vector Quantization Variational Autoencoder 
WCE Weighted Cross Entropy loss
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WGAN Wasserstein Generative Adversarial Network 
WGS Whole Genome Sequence 
WHO World Health Organization 
WM White Matter 
WMH White Matter Hyperintensity 
WSI Whole Slide Image 
WT Whole Tumour 
WUSTL Washington University in Saint Louis 
xAI eXplainable AI 
XML eXtensible Markup Language 
XNAT eXtensible Neuroimaging Archive Toolkit
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MARIE DEPREZ • Université Côte d’Azur, Inria Sophia Antipolis, Epione Research Group, 
Nice, France 

CHRISTINE DERUELLE • Aix-Marseille Université, CNRS, Institut de Neurosciences de la 
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Institute—ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, 
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KARIM N’DIAYE • Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM, 
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Pitié-Salpêtrière , Paris, France 

NICHOLAS J. TUSTISON • University of Virginia, Department of Radiology and Medical 
Imaging, Charlottesville, VA, USA 
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Part I 

Machine Learning Fundamentals



Chapter 1 

A Non-technical Introduction to Machine Learning 

Olivier Colliot 

Abstract 

This chapter provides an introduction to machine learning for a non-technical readership. Machine learning 
is an approach to artificial intelligence. The chapter thus starts with a brief history of artificial intelligence in 
order to put machine learning into this broader scientific context. We then describe the main general 
concepts of machine learning. Readers with a background in computer science may skip this chapter. 

Key words Machine learning, Artificial intelligence, Supervised learning, Unsupervised learning 

1 Introduction 

Machine learning (ML) is a scientific domain which aims at allow-
ing computers to perform tasks without being explicitly pro-
grammed to do so [1]. To that purpose, the computer is trained 
using the examination of examples or experiences. It is part of a 
broader field of computer science called artificial intelligence 
(AI) which aims at creating computers with abilities that are char-
acteristic of human or animal intelligence. This includes tasks such 
as perception (the ability to recognize images or sounds), 
reasoning, decision-making, or creativity. Emblematic tasks which 
are easy to perform for a human and are inherently difficult for a 
computer are, for instance, recognizing objects, faces, or animals in 
photographs or recognizing words in speech. On the other hand, 
there are also tasks which are inherently easy for a computer and 
difficult for a human, such as computing with large numbers or 
memorizing exactly huge amounts of text. Machine learning is the 
AI technique that has achieved the most impressive successes over 
the past years. However, it is not the only approach to AI, and 
conceptually different approaches also exist. 

Machine learning also has close ties to other scientific fields. 
First, it has evident strong links to statistics. Indeed, most machine 
learning approaches exploit statistical properties of the data. More-
over, some classical approaches used in machine learning were
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actually invented in statistics (for instance, linear or logistic regres-
sion). Nowadays, there is a constant interplay between progress in 
statistics and machine learning. ML has also important ties to signal 
and image processing, ML techniques being efficient for many 
applications in these domains and signal/image processing con-
cepts being often key to the design or understanding of ML tech-
niques. There are also various links to different branches of 
mathematics, including optimization and differential geometry. 
Besides, some inspiration for the design of ML approaches comes 
from the observation of biological cognitive systems, hence the 
connections with cognitive science and neuroscience. Finally, the 
term data science has become commonplace to refer to the use of 
statistical and computational methods for extracting meaningful 
patterns from data. In practice, machine learning and data science 
share many concepts, techniques, and tools. Nevertheless, data 
science puts more emphasis on the discovery of knowledge from 
the data, while machine learning focuses on solving tasks.

4 Olivier Colliot

This chapter starts by providing a few historical landmarks 
regarding artificial intelligence and machine learning (Subheading 
2). It then proceeds with the main concepts of ML which are 
foundational to understand other chapters of this book. 

2 A Bit of History 

As a scientific endeavor, artificial intelligence is at least 80 years old. 
Here, we provide a very brief overview of this history. For more 
details, the reader may refer to [2]. A non-exhaustive timeline of AI 
is shown in Fig. 1. 

Fig. 1 A brief timeline of AI with some of the landmark advances



Introduction to Machine Learning 5

Even if this is debatable, one often considers AI to emerge in 
the 1940s–1950s with a series of important concepts and events. 
In 1943, the neurophysiologist Warren McCulloch and the logician 
Walter Pitts proposed an artificial neuron model, which is a mathe-
matical abstraction of a biological neuron [3], and showed that sets 
of neurons can compute logical operations. In 1948, the mathema-
tician and philosopher Norbert Wiener coined the term “cybernet-
ics” [4] to designate the scientific study of control and 
communication in humans, animals, and machines. This idea that 
such processes can be studied within the same framework in both 
humans/animals and machines is a conceptual revolution. In 1949, 
the psychologist Donald Hebb [5] described a theory of learning 
for biological neurons which was later influential in the modifica-
tion of the weights of artificial neurons. 

In 1950, Alan Turing, one of the founders of computer science, 
introduced a test (the famous “Turing test”) for deciding if a 
machine can think [6]. Actually, since the question can a machine 
think? is ill-posed and depends on the definition of thinking, Turing 
proposed to replace it with a practical test. The idea is that of a game 
in which an interrogator is given the task of determining which of 
two players A and B is a computer and which is a human (by using 
only responses to written questions). In 1956, the mathematician 
John McCarthy organized what remained as the famous Dart-
mouth workshop and which united ten prominent scientists for 
2 months (among which were Marvin Minsky, Claude Shannon, 
Arthur Samuel, and others). This workshop is more important by 
its scientific program than by its outputs. Let us reproduce here the 
first sentences of the proposal written by McCarthy et al. [7] as we  
believe that they are particularly enlightening on the prospects of 
artificial intelligence: 

We propose that a 2 month, 10 man study of artificial intelligence be carried 
out during the summer of 1956 at Dartmouth College in Hanover, New 
Hampshire. The study is to proceed on the basis of the conjecture that every 
aspect of learning or any other feature of intelligence can in principle be so 
precisely described that a machine can be made to simulate it. An attempt 
will be made to find how to make machines use language, form abstractions 
and concepts, solve kinds of problems now reserved for humans, and 
improve themselves. We think that a significant advance can be made in 
one or more of these problems if a carefully selected group of scientists work 
on it together for a summer. 

There was no major advance made at the workshop, although a 
reasoning program, able to prove theorems, was presented by Allen 
Newell and Herbert Simon [8] at this occasion. This can be con-
sidered as the start of symbolic AI (we will come back later on the 
two main families of AI: symbolic and connexionist). Let us end the 
1950s with the invention, in 1958, of the perceptron by Frank 
Rosenblatt [9], whose work was built upon the ideas of McCulloch, 
Pitts, and Hebb. The perceptron was the first actual artificial



neuron. It was able to recognize images. This is an important 
landmark for several reasons. The perceptron, with some modifica-
tions, is still the building block of modern deep learning algo-
rithms. To mimic an artificial neuron (Fig. 2), it is composed of a 
set of inputs (which correspond to the information entering the 
synapses) xi, which are linearly combined and then go through a 
non-linear function g to produce an output y. This was an impor-
tant advance at the time, but it had strong limitations, in particular 
its inability to discriminate patterns which are not linearly separable. 
More generally, in the field of AI as a whole, unreasonable promises 
had been made, and they were not delivered: newspapers were 
writing about upcoming machines that could talk, see, write, and 
think; the US government funded huge programs to design auto-
matic translation programs, etc. This led to a dramatic drop in 
research funding and, more generally, in interest in AI. This is 
often referred to as the first AI winter (Fig. 3). 

6 Olivier Colliot

Even though research in AI continued, it was not before the 
early 1980s that real-world applications were once again considered 
possible. This wave was that of expert systems [10], which are a type 
of symbolic AI approach but with domain-specific knowledge. 
Expert systems led to commercial applications and to a real boom 
in the industry. A specific programming language, called LISP [11], 
became dominant for the implementation of expert systems. Com-
panies started building LISP machines, which were dedicated com-
puters with specific architecture tailored to execute LISP efficiently. 
One cannot help thinking of a parallel with current hardware 
dedicated to deep learning. However, once again, expectations 
were not met. Expert systems were very large and complex sets of 
rules. They were difficult to maintain and update. They also had 
poor performances in perception tasks such as image and speech 
recognition. Academic and industrial funding subsequently 
dropped. This was the second AI winter. 

At this stage, it is probably useful to come back to the two main 
families of AI: symbolic and connexionist (Fig. 4). They had impor-
tant links at the beginning (see, e.g., the work of McCulloch and 
Pitt aiming to perform logical operations using artificial neurons), 
but they subsequently developed separately. In short, these two 
families can be described as follows. The first operates on symbols 
through sets of logical rules. It has strong ties to the domain of 
predicate logic. Connexionism aims at training networks of artificial 
neurons. This is done through the examination of training exam-
ples. More generally, it is acceptable to put most machine learning 
methods within the connexionist family, even though they don’t 
rely on artificial neuron models, because their underlying principle 
is also to exploit statistical similarities in the training data. For a 
more detailed perspective on the two families of AI, the reader can 
refer to the very interesting (and even entertaining!) paper of 
Cardon et al. [12].
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(a) 

(b) 

Fig. 2 (a) Biological neuron. The synapses form the input of the neuron. Their signals are combined, and if the 
result exceeds a given threshold, the neuron is activated and produces an output signal which is sent through 
the axon. (b) The perceptron: an artificial neuron which is inspired by biology. It is composed of the set of 
inputs (which correspond to the information entering the synapses) xi, which are linearly combined with 
weights wi and then go through a non-linear function g to produce an output y. Image in panel (a) is courtesy of 
Thibault Rolland
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Fig. 3 Summers and winters of AI 

Fig. 4 Two families of AI. The symbolic approach operates on symbols through 
logical rules. The connexionist family actually not only encompasses artificial 
neural networks but more generally machine learning approaches 

Let us come back to our historical timeline. The 1980s saw a 
rebirth of connexionism and, more generally, the start of the rise of 
machine learning. Interestingly, it is at that time that two of the 
main conferences on machine learning started: the International 
Conference on Machine Learning (ICML) in 1980 and Neural 
Information Processing Systems (NeurIPS, formerly NIPS) in 
1987. It had been known for a long time that neural networks 
with multiple layers (as opposed to the original perceptron with a 
single layer) (Fig. 5) could solve non-linearly separable problems, 
but their training remained difficult. The back-propagation algo-
rithm for training multilayer neural networks was described by 
David Rumelhart, Geoffrey Hinton, and Ronald Williams [13]  in  
1986, as well as by Yann LeCun in 1985 [14], who also refined the 
procedure in his PhD thesis published in 1987. This idea had 
actually been explored since the 1960s, but it was only in the 
1980s that it was efficiently used for training multilayer neural 
networks. Finally, in 1989, Yann LeCun proposed the convolu-
tional neural network [15], an architecture inspired by the organi-
zation of the visual cortex, whose principle is still at the core of



state-of-the-art algorithms for many image processing and recog-
nition tasks. Multilayer neural networks demonstrated their utility 
in several real-world applications such as digit recognition on 
checks and ZIP codes [16]. Nevertheless, they would not become 
the dominant machine learning approach until the 2010s. Indeed, 
at the time, they required considerable computing power for train-
ing, and there was often not enough training data. 
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Fig. 5 A multilayer perceptron model (here with only one hidden layer, but there 
can be many more) 

During the 1980s and 1990s, machine learning methods 
continued to develop. Interestingly, connections between machine 
learning and statistics increased. We are not going to provide an 
overview of the history of statistics, but one should note that many 
statistical methods such as linear regression [17], principal compo-
nent analysis [18], discriminant analysis [19], or decision trees [20] 
can actually be used to solve machine learning tasks such as auto-
matic categorization of objects or prediction. In the 1980s, deci-
sion trees witnessed important developments (see, e.g., the ID3 
[21] and CART [21] algorithms). In the 1990s, there were impor-
tant advances in the statistical theory of learning (in particular, the 
works of Vladimir Vapnik [22]). A landmark algorithm developed 
at that time was the support vector machine (SVM) [23] which 
worked well with small training datasets and could handle 
non-linearities through the use of kernels. The machine learning 
field continued to expand through the 2000s and 2010s, with new 
approaches but also more mature software packages such as scikit-
learn [24]. More generally, it is actually important to have in mind 
that what is currently called AI owes more to statistics (and other 
mathematical fields such as optimization in particular) than to 
modeling of brain circuitry and that even approaches that take 
inspiration from neurobiology can actually be viewed as complex 
statistical machineries.
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2012 saw the revival of neural networks and the beginning of 
the era of deep learning. It was undoubtedly propelled by the 
considerable improvement obtained on the ImageNet recognition 
challenge which contains 14 million natural images belonging to 
20,000 categories. The solution, proposed by Alex Krizhevsky, Ilya 
Sutskever, and Geoffrey Hinton [25], was a convolutional neural 
network with a large number of layers, hence the term deep 
learning. The building blocks of this solution were already present 
in the 1980s, but there was not enough computing power nor large 
training datasets for them to work properly. In the interval, things 
had changed. Computers had become exponentially more power-
ful, and, in particular, the use of graphical processing units (GPU) 
considerably sped up computations. The expansion of the Internet 
had provided massive amounts of data of various sorts such as texts 
and images. In the subsequent years, deep learning [26] approaches 
became increasingly sophisticated. In parallel, efficient and mature 
software packages including TensorFlow [27], PyTorch [28], or 
Keras [29], whose development is supported by major companies 
such as Google and Facebook, enable deep learning to be used 
more easily by scientists and engineers. 

Artificial intelligence in medicine as a research field is about 
50 years old. In 1975, an expert system, called MYCIN, was 
proposed to identify bacteria causing various infectious diseases 
[30]. More generally, there was a growing interest in expert systems 
for medical applications. Medical image processing also quickly 
became a growing field. The first conference on Information Pro-
cessing in Medical Imaging (IPMI) was held in 1977 (it existed 
under a different name since 1969). The first SPIE Medical Image 
Processing conference took place in 1986, and the Medical Image 
Computing and Computer-Assisted Intervention (MICCAI) con-
ference started in 1998. Image perception tasks, such as segmenta-
tion or classification, soon became among the key topics of this 
field, even though the methods came in majority from traditional 
image processing and not from machine learning. In the 2010s, 
machine learning approaches became dominant for medical image 
processing and more generally in artificial intelligence in medicine. 

To conclude this part, it is important to be clear about the 
different terms, in particular those of artificial intelligence, machine 
learning, and deep learning (Fig. 6). Machine learning is one 
approach to artificial intelligence, and other radically different 
approaches exist. Deep learning is a specific type of machine 
learning approach. It has recently obtained impressive results on 
some types of data (in particular, images and text), but this does not 
mean that it is the universal solution to all problems. As we will see 
in this book, there are tasks for which other types of approaches 
perform best.
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Fig. 6 Artificial intelligence, machine learning, and deep learning are not 
synonymous. Deep learning is a type of machine learning which involves 
neural networks with a large number of hidden layers. Machine learning is one 
approach to artificial intelligence, but other approaches exist 

3 Main Machine Learning Concepts 

As aforementioned, machine learning aims at making a computer 
capable of performing a task without explicitly being programmed 
for that task. More precisely, it means that one will not write a 
sequence of instructions that will directly perform the considered 
task. Instead, one will write a program that allows the computer to 
learn how to perform the task by examining examples or experi-
ences. The output of this learning process is a computer program 
itself that performs the desired task, but this program was not 
explicitly written. Instead, it has been learned automatically by the 
computer. 

In 1997, Tom Mitchell gave a more precise definition of a 
well-posed machine learning problem [31]: 

A computer program is said to learn from experience E with respect to some 
task T and some performance measure P, if its performance at task T, as 
measured by P, improves with experience E. 

He then provides the example of a computer that learns to play 
checkers: task T is playing checkers, performance measure P is the 
proportion of games won, and the training experience E is playing 
checker games against itself. Very often, the experience E will not 
be an actual action but the observation of a set of examples, for 
instance, a set of images belonging to different categories, such as 
photographs of cats and dogs, or medical images containing tumors 
or without lesions. Please refer to Box 1 for a summary. 

Box 1: Definition of machine learning 
Machine learning definition [31]: 

a computer program is said to learn from experience E with respect to 
some task T and some performance measure P, if its performance at 
task T, as measured by P, improves with experience E.
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Box 1 (continued)
Example: learning to detect tumors from medical images

• Task T: detect tumors from medical image

• Performance measure P: proportion of tumors correctly 
identified

• Experience E: examining a dataset of medical images where 
the presence of tumors has been annotated 

3.1 Types of 

Learning 

One usually considers three main types of learning: supervised 
learning, unsupervised learning, and reinforcement learning (Box 
2). In both supervised and unsupervised learning, the experience E 
is actually the inspection of a set of examples, which we will refer to 
as training examples or training set. 

Box 2: Supervised, Unsupervised, and Reinforcement 
learning
• Supervised learning. Learns from labeled examples, i.e., 

examples for which the output that we are trying to learn is 
known 

– Example 1. The task is computer-aided diagnosis 
(a classification problem), and the label can be the diagno-
sis of each patient, as defined by an expert physician. 

– Example 2. The task is the prediction of the age of a person 
from a set of biological variables (e.g., a brain MRI). This is 
a regression problem. The label is the true age of a given 
person in the training set.

• U 

– 

nsupervised learning. Learns from unlabeled examples 

Example 1. Given a large set of newspaper articles, auto-
matically cluster them into groups dealing with the same 
topic based only on the text of the article. The topics can, 
for example, be economics, politics, or international 
affairs. The topics are not known a priori. 

– Example 2. Given a set of patients with autism spectrum 
disorders, the aim is to discover a cluster of patients that 
share the same characteristics. The clusters are not known a 
priori. Examples 1 and 2 will be referred to as clustering 
tasks. 

– Example 3. Given a large set of medical characteristics 
(various biological measurements, clinical and cognitive 
tests, medical images), find a small set of variables that 
best explain the variability of the dataset. This is a 
dimensionality reduction problem.



–
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Box 2 (continued)
• Reinforcement learning. Learns by iteratively performing 

actions to maximize some reward 

– Classical approach used for learning to play games (chess, 
go, etc.) or in the domain of robotics 

Currently few applications in the domain of brain diseases 

3.1.1 Supervised 

Learning 

In supervised learning, the machine learns to perform a task by 
examining a set of examples for which the output is known (i.e., the 
examples have been labeled). The two most common tasks in 
supervised learning are classification and regression (Fig. 7). Classi-
fication aims at assigning a category for each sample. The examples 
can, for instance, be different patients, and the categories are the 
different possible diagnoses. The outputs are thus discrete. Exam-
ples of common classification algorithms include logistic regression 
(in spite of its name, it is a classification method), linear discrimi-
nant analysis, support vector machines, random forest classifiers, 
and deep learning models for classification. In regression, the out-
put is a continuous number. This can be, for example, the future 
clinical score of a patient that we are trying to predict. Examples of 
common regression methods include simple or multiple linear 
regression, penalized regression, and random forest regression. 
Finally, there are many other tasks that can be framed as a super-
vised learning problem, including, for example, data synthesis, 
image segmentation, and many others which will be described in 
other chapters of this book. 

3.1.2 Unsupervised 

Learning 

In unsupervised learning, the examples are not labeled. The two 
most common tasks in unsupervised learning are clustering and 
dimensionality reduction (Fig. 8). Clustering aims at discovering 
groups within the training set, but these groups are not known a 
priori. The objective is to find groups such that members of the 
same group are similar, while members of different groups are 
dissimilar. For example, one can aim to discover disease subtypes 
which are not known a priori. Some classical clustering methods 
are k-means or spectral clustering, for instance. Dimensionality 
reduction aims at finding a space of variables (of lower dimension 
than the input space) that best explain the variability of the 
training data, given a larger set of input variables. This produces a 
new set of variables that, in general, are not among the input 
variables but are combinations of them. Examples of such methods 
include principal component analysis, Laplacian eigenmaps, or 
variational autoencoders.
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Fig. 7 Two of the main supervised learning tasks: classification and regression. 
The upper panel presents a classification task which aims at linearly separating 
the orange and the blue class. Each sample is described by two variables. The 
lower panel presents a linear regression task in which the aim is to predict the 
body mass index from the age of a person. Figure courtesy of Johann Faouzi 

3.1.3 Reinforcement 

Learning 

In reinforcement learning, the machine will take a series of actions 
in order to maximize a reward. This can, for example, be the case of 
a machine learning to play chess, which will play games against itself 
in order to maximize the number of victories. These methods are 
widely used for learning to play games or in the domain of robotics. 
So far, they have had few applications to brain diseases and will not 
be covered in the rest of this book. 

3.1.4 Discussion Unsupervised learning is obviously attractive because it does not 
require labels. Indeed, acquiring labels for a training set is usually 
time-consuming and expensive because the labels need to be 
assigned by a human. This is even more problematic in medicine 
because the labels must be provided by experts in the field. It is thus 
in principle attractive to adopt unsupervised strategies, even for



tasks which could be framed as supervised learning problems. Nev-
ertheless, up to now, the performances of supervised approaches are 
often vastly superior in many applications. However, in the past 
years, an alternative strategy called self-supervised learning, where 
the machine itself provides its own supervision, has emerged. This is 
a promising approach which has already led to impressive results in 
different fields such as natural language processing in particular 
[32–34]. 
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Clustering 

Fig. 8 Clustering task. The algorithm automatically identifies three groups 
(corresponding to the red circles) from unlabeled examples (the blue dots). 
The groups are not known a priori. Figure courtesy of Johann Faouzi 

3.2 Overview of the 

Learning Process 

In this section, we aim at formalizing the main concepts underlying 
most supervised learning methods. Some of these concepts, with 
modifications, also extend to unsupervised cases. 

The task that we will consider will be to provide an output, 
denoted as y, from an input given to the computer, denoted as x. At  
this moment, the nature of x does not matter. It can, for example, 
be any possible photograph as in the example presented in Fig. 9. 
It could also be a single number, a series of numbers, a text, etc. For 
now, the nature of y can also be varied. Typically, in the case of 
regression, it can be a number. In the case of classification, it 
corresponds to a label (for instance, the label “cat” in our example). 
For now, you do not need to bother about how these data (images, 
labels, etc.) are represented in a computer. For those without a 
background in computer science, this will be briefly covered in 
Subheading 3.3. 

Learning will aim at finding a function f that can transform 
x into y, that is, such that y= f(x). For now, f can be of any type—



just imagine it as an operation that can associate a given x with a
given y. In Chap. the functions f will be artificial neural networks.
Learning aims at finding a function f which will provide the correct
output for each given input. Let us call the loss function and denote
ℓ a function that measures the error that is made by the function f.
The loss function takes two arguments: the true output y and the
predicted output f(x). The lower the loss function value, the closer
the predicted output is to the true output. An example of loss
function is the classical least squares loss ℓ(y, f(x))= (y - f(x))2,
but many others exist. Ideally, the best function f would be the one
that produces the minimal error for any possible input x and asso-
ciated output y, not only those which we have at our disposal, but
any other possible new data. Of course, we do not have any possible
data at our disposal. Thus, we are going to use a set of data called
the training set. In supervised learning, this set is labeled, i.e., for
each example in this set, we know the value of both x and y. Let us
denote as (x(1), y(1)), . . ., (x(n), y(n)) the n examples of the training

3,
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Fig. 9 Main concepts underlying supervised learning, here in the case of classification. The aim is to be able to 
recognize the content of a photograph (the input x) which amounts to assigning it a label (the output y). In other 
words, we would like to have a function f that transforms x into y. In order to find the function f, we will make 
use of a training set (x(1) , y(1) ), . . .,  (x(n) , y(n) ) (which in our case is a set of photographs which have been 
labeled). All images come from https://commons.wikimedia.org/ and have no usage restriction



set which are n pairs of inputs and outputs. We are now going to 
search for the function f that makes the minimum error over the 
n samples of the training set. In other words, we are looking for the 
function which minimizes the average error over the training set. 
Let us call this average error the cost function:
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J ðf Þ= 
1 
n 

n 

i =1 

ℓ yðiÞ, f ðxðiÞÞ 

Learning will then aim at finding the function f̂ which mini-
mizes the cost function: 

f̂ = argmin 
f ∈F 

1 
n 

n 

i =1 

ℓ yðiÞ, f ðxðiÞÞ 

In the above equation, argmin indicates that we are interested 
in the function f that minimizes the cost J( f ) and not in the value of 
the cost itself. F is the space that contains all admissible functions. 
F can, for instance, be the set of linear functions or the set of neural 
networks with a given architecture. 

The procedure that will aim at finding f that minimizes the cost 
is called an optimization procedure. Sometimes, the minimum can 
be find analytically (i.e., by directly solving an equation for f ), but 
this will rarely be the case. In other cases, one will resort to an 
iterative procedure (i.e., an algorithm): the function f is iteratively 
modified until we find the function which minimizes the cost. 
There are cases where we will have an algorithm that is guaranteed 
to find the global minimum and others where one will only find a 
local minimum. 

Minimizing the errors on the training set does not guarantee 
that the trained computer will perform well on new examples which 
were not part of the training set. A first reason may be that the 
training set is too different from the general population (for 
instance, we have trained a model on a dataset of young males, 
and we would like to apply it to patients of any gender and age). 
Another reason is that, even if the training set characteristics follow 
those of the general population, the learned function f may be too 
specific to the training set. In other words, it has learned the 
training set “by heart” but has not discovered a more general rule 
that would work for other examples. This phenomenon is called 
overfitting and often arises when the dimensionality of the data is 
too high (there are many variables to represent an input), when the 
training set is too small, or when the function f is too flexible. A way 
to prevent overfitting will be to modify the cost function so that it 
not only represents the average error across training samples but 
also constrains the function f to have some specific properties.
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Table 1 
Example where the input is a series of number. Here each patient is 
characterized by several variables 

Age (years) Height (cm) Weight (kg) 

Patient 1 52.5 172 52 

Patient 2 75.1 182 78 

Patient 3 32.7 161 47 

Patient 4 45 190 92 

3.3 Inputs and 

Features 

In the previous section, we made no assumption on the nature of 
the input x. It could be an image, a number, a text, etc. 

The simplest form of input that one can consider is when x is a 
single number. Examples include age, clinical scores, etc. However, 
for most problems, characterization of a patient cannot be done 
with a single number but requires a large set of measurements 
(Table 1). In such a case, the input can be a series of numbers 
x1, . . ., xp which can be arranged into a vector: 

x = 

x1 

⋮ 

xp 

However, there are cases where the input is not a vector of 
numbers. This is the case when the input is a medical image, a text, 
or a DNA sequence, for instance. Of course, in a computer, every-
thing is stored as numbers. An image is an array of values represent-
ing the grayscale intensity of each pixel (Fig. 10). A text is a 
sequence of characters which are each coded as a number. However, 
unlike in the example presented in Table 1, these numbers are not 
meaningful by themselves. For this reason, a common approach is 
to extract features, which will be series of numbers that meaning-
fully represent the input. For example, if the input is a brain 
magnetic resonance image (MRI), relevant features could be the 
volumes of different anatomical regions of the brain (this specific 
process is done using a technique called image segmentation which 
is covered in another chapter). This would result in a series of 
numbers that would form an input vector. The development of 
efficient methods for extracting meaningful features from raw data 
is important in machine learning. Such an approach is often called 
feature engineering. Deep learning methods allow for avoiding 
extracting features by providing an end-to-end approach from the 
raw data to the output. In some areas, this has made feature 
engineering less important, but there are still applications where 
the so-called handcrafted features are competitive with deep 
learning methods.
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Fig. 10 In a computer, an image is represented as an array of numbers. Each number corresponds to the gray 
level of a given pixel. Here the example is a slice of an anatomical MRI which has been severely undersampled 
so that the different pixels are clearly visible. Note that an anatomical MRI is actually a 3D image and would 
thus be represented by a 3D array rather than by a 2D array. Image courtesy of Ninon Burgos 

3.4 Illustration in a 

Simple Case 

We will now illustrate step by step the above concepts in a very 
simple case: univariate linear regression. Univariate means that the 
input is a single number as in the example shown in Fig. 7. Linear 
means that the model f will be a simple line. The input is a number 
x and the output is a number y. The loss will be the least 
squares loss: ℓ(y, f(x))= (y - f(x))2 . The model f will be a linear 
function of x that is f(x)=w1x+w0 and corresponds to the equa-
tion of a line, w1 being the slope of the line and w0 the intercept. To 
further simplify things, we will consider the case where there is no 
intercept, i.e., the line passes through the origin. Different values of 
w1 correspond to different lines (and thus to different functions f ) 
and to different values of the cost function J( f ), which can be in 
our case rewritten as J(w1) since f only depends on the parameter w1 

(Fig. 11). The best model is the one for which J(w1) is minimal. 
How can we find w1 such that J(w1) is minimal? We are going to 

use the derivative of J: dJ dw1 
. A minimum of J(w1) is necessarily such 

that dJ dw1 
=0 (in our specific case, the converse is also true). In our 

case, it is possible to directly solve dJ 
dw1 

=0. This will nevertheless 
not be the case in general. Very often, it will not be possible to solve 
this analytically. We will thus resort to an iterative algorithm. One 
classical iterative method is gradient descent. In the general case, 
f depends not on only one parameter w1 but on a set of parameters 
(w1, . . ., wp) which can be assembled into a vector w. Thus, instead 
of working with the derivative dJ dw1 

, we will work with the gradient 
∇wJ. The gradient is a vector that indicates the direction that one 
should follow to climb along J. We will thus follow the opposite of 
the gradient, hence the name gradient descent. This process is 
illustrated in Fig. 12, together with the corresponding algorithm.
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Fig. 11 We illustrate the concepts of supervised learning on a very simple case: univariate linear regression 
with no intercept. Training samples correspond to the black circles. The different models f(x)=w1x 
correspond to the different lines. Each model (and thus each value of the parameter w1) corresponds to a 
value of the cost J(w1). The best model (the blue line) is the one which minimizes J(w1); here it corresponds to 
the line with a slope w1= 1 

repeat 
w1 ← w1 − η dJ 

dw1 

until convergence; 

Fig. 12 Upper panel: Illustration of the concept of gradient descent in a simple case where the model f is 
defined using only one parameter w1. The value of w1 is iteratively updated by following the opposite of the 
gradient. Lower panel: Gradient descent algorithm where η is the learning rate, i.e., the speed at which w1 will 
be updated



ð Þ ð Þ

ð Þ

Introduction to Machine Learning 21

4 Conclusion 

This chapter provided an introduction to machine learning 
(ML) for a non-technical readership (e.g., physicians, neuroscien-
tists, etc.). ML is an approach to artificial intelligence and thus 
needs to be put into this larger context. We introduced the main 
concepts underlying ML that will be further expanded in 
Chaps. 2–6. The reader can find a summary of these main concepts, 
as well as notations, in Box 3. 

B
•
ox 3: Summary of main concepts 
The input x

• The output y

• The training samples (x(1) , y(1) ), . . ., (x(n) , y(n) )

• The model: transforms the input into the output 

f such that y= f(x)

• The set of possible models F

• The loss: measures the error between the predicted and the 
true output, for a given sample 

ℓ(y, f(x))

• The cost function: measures the average error across the 
training samples 

J f = 1 n 
n 
i =1ℓ y

ðiÞ, f xðiÞ

• Learning process: finding the model which minimizes the cost 
function 

f̂ = argmin f ∈F J f 

Acknowledgements 

The author would like to thank Johann Faouzi for his insightful 
comments. This work was supported by the French government 
under management of Agence Nationale de la Recherche as part of 
the “Investissements d’avenir” program, reference ANR-19-P3IA-
0001 (PRAIRIE 3IA Institute) and reference ANR-10-IAIHU-06 
(Institut Hospitalo-Universitaire ICM).



22 Olivier Colliot

References 

1. Samuel AL (1959) Some studies in machine 
learning using the game of checkers. IBM J 
Res Dev 3(3):210–229 

2. Russell S, Norvig P (2002) Artificial intelli-
gence: a modern approach. Pearson, London 

3. McCulloch WS, Pitts W (1943) A logical cal-
culus of the ideas immanent in nervous activity. 
Bull Math Biophys 5(4):115–133 

4. Wiener N (1948) Cybernetics or control and 
communication in the animal and the machine. 
MIT Press, Cambridge 

5. Hebb DO (1949) The organization of behav-
ior. Wiley, New York 

6. Turing AM (1950) Computing machinery and 
intelligence. Mind 59(236):433–360 

7. McCarthy J, Minsky ML, Rochester N, Shan-
non CE (1955) A proposal for the Dartmouth 
summer research project on artificial intelli-
g e n c e .  R e s e a r c h  R e p o r  t .  h t t p : //  
raysolomonof f.com/dar tmouth/boxa/  
dart564props.pdf 

8. Newell A, Simon H (1956) The logic theory 
machine–a complex information processing 
system. IRE Trans Inf Theory 2(3):61–79 

9. Rosenblatt F (1958) The perceptron: a proba-
bilistic model for information storage and 
organization in the brain. Psychol Rev 65(6): 
386 

10. Buchanan BG, Shortliffe EH (1984) Rule-
based expert systems: the MYCIN experiments 
of the Stanford Heuristic Programming Proj-
ect. Addison-Wesley, Boston 

11. McCarthy J (1960) Recursive functions of 
symbolic expressions and their computation 
by machine, part I. Commun ACM 3(4): 
184–195 

12. Cardon D, Cointet JP, Mazières A, Libbrecht E 
(2018) Neurons spike back. Reseaux 5:173– 
220. https://neurovenge.antonomase.fr/ 
RevengeNeurons_Reseaux.pdf 

13. Rumelhart DE, Hinton GE, Williams RJ 
(1986) Learning representations by back-
propagating errors. Nature 323(6088): 
533–536 

14. Le Cun Y (1985) Une procédure d’apprentis-
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Chapter 2 

Classic Machine Learning Methods 

Johann Faouzi and Olivier Colliot 

Abstract 

In this chapter, we present the main classic machine learning methods. A large part of the chapter is devoted 
to supervised learning techniques for classification and regression, including nearest neighbor methods, 
linear and logistic regressions, support vector machines, and tree-based algorithms. We also describe the 
problem of overfitting as well as strategies to overcome it. We finally provide a brief overview of unsuper-
vised learning methods, namely, for clustering and dimensionality reduction. The chapter does not cover 
neural networks and deep learning as these will be presented in Chaps. 3, 4, 5, and 6. 

Key words Machine learning, Classification, Regression, Clustering, Dimensionality reduction 

1 Introduction 

This chapter presents the main classic machine learning 
(ML) methods. There is a focus on supervised learning methods 
for classification and regression, but we also describe some unsu-
pervised approaches. The chapter is meant to be readable by some-
one with no background in machine learning. It is nevertheless 
necessary to have some basic notions of linear algebra, probabilities, 
and statistics. If this is not the case, we refer the reader to Chapters 
2 and 3 of [1]. 

The rest of this chapter is organized as follows. Rather than 
grouping methods by categories (for instance, classification or 
regression methods), we chose to present methods by increasing 
order of complexity. We first provide the notations in Subheading 
2. We then describe a very intuitive family of methods, that of 
nearest neighbors (Subheading 3). We continue with linear regres-
sion (Subheading 4) and logistic regression (Subheading 5), the 
latter being a classification technique. We subsequently introduce 
the problem of overfitting (Subheading 6) as well as strategies to 
mitigate it (Subheading 7). Subheading 8 describes support vector 
machines (SVM). Subheading 9 explains how binary classification 
methods can be extended to a multi-class setting. We then describe

Olivier Colliot (ed.), Machine Learning for Brain Disorders, Neuromethods, vol. 197, https://doi.org/10.1007/978-1-0716-3195-9_2, 
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methods which are specifically adapted to the case of normal dis-
tributions (Subheading 10). Decision trees and random forests are 
described in Subheading 11. We then briefly describe some unsu-
pervised learning techniques, namely, for clustering (Subheading 
12) and dimensionality reduction (Subheading 13). The chapter 
ends with a description of kernel methods which can be used to 
extend linear techniques to non-linear cases (Subheading 14). 
Box 1 summarizes the methods presented in this chapter, grouped 
by categories and then sorted in order of appearance.
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Box 1: Main Classic ML Methods

• Supervised learning 

– Classification: nearest neighbors, logistic regression, sup-
port vector machine (SVM), naive Bayes, linear discrimi-
nant analysis (LDA), quadratic discriminant analysis, tree-
based models (decision tree, random forest, extremely 
randomized trees) 

– Regression: nearest neighbors, linear regression, support 
vector machine regression, tree-based models (decision 
tree, random forest, extremely randomized trees), kernel 
ridge regression

• Unsupervised learning 

– Clustering: k-means, Gaussian mixture model 

– Dimensionality reduction: principal component analysis 
(PCA), linear discriminant analysis (LDA), kernel principal 
component analysis 

2 Notations 

Let n be the number of samples and p be the number of features. An 
input sample is thus a p-dimensional vector: 

x = 

x1 

⋮ 

xp 

An output sample is denoted by y. Thus, a sample is (x, y). The 
dataset of n samples can then be summarized as an n× p matrix X 
representing the input data and an n-dimensional vector y repre-
senting the target data:
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X = 

xð1Þ 

⋮ 

xðnÞ 
= 

x
ð1Þ 
1 . . .  x

ð1Þ 
p 

⋮ ⋱  ⋮  

x
ðnÞ 
1 . . .  x

ðnÞ 
p 

, y = 

y1 

⋮ 

yn 

The input space is denoted by I, and the set of training samples is 
denoted by X. 

In the case of regression, y is a real number. In the case of 
classification, y is a single label. More precisely, y can only take one 
of a finite set of values called labels. The set of possible classes (i.e., 
labels) is denoted by C = fC 1, . . ., C qg, with q being the number of 
classes. As the values of the classes are not meaningful, when there 
are only two classes, the classes are often called the positive and 
negative classes. In this case and also for mathematical reasons, 
without loss of generality, we assume the values of the classes to 
be + 1 and -1. 

3 Nearest Neighbor Methods 

One of the most intuitive approaches to machine learning is nearest 
neighbors. It is based on the following intuition: for a given input, 
its corresponding output is likely to be similar to the outputs of 
similar inputs. A real-life metaphor would be that if a subject has 
similar characteristics than other subjects who were diagnosed with 
a given disease, then this subject is likely to also be suffering from 
this disease. 

More formally, nearest neighbor methods use the training 
samples from the neighborhood of a given point x, denoted by 
N(x), to perform prediction [2]. 

For regression tasks, the prediction is computed as a weighted 
mean of the target values in N(x): 

ŷ = 
xðiÞ∈N ðxÞ 

w
ðxÞ 
i yðiÞ 

where w
ðxÞ 
i is the weight associated with x(i) to predict the output of 

x, with w
ðxÞ 
i ≥0 8i and iw

ðxÞ 
i =1. 

For classification tasks, the predicted label corresponds to the 
label with the largest weighted sum of occurrences of each label: 

ŷ = arg max 
C xðiÞ∈N ðxÞ 

w
ðxÞ 
i 1yðiÞ = C k 

A key parameter of nearest neighbor methods is the metric, 
denoted by d, that is, a mathematical function that defines dissimi-
larity. The metric is used to define the neighborhood of any point 
and can also be used to compute the weights.
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3.1 Metrics Many metrics have been defined for various types of input data such 
as vectors of real numbers, integers, or booleans. Among these 
different types, vectors of real numbers are one of the most com-
mon types of input data, for which the most commonly used metric 
is the Euclidean distance, defined as: 

8x, x ′∈ I , kx - x ′ k2 = 
p 

j =1 

ðxj - x 0 j Þ2 

The Euclidean distance is sometimes referred to as the “ordinary” 
distance since it is the one based on the Pythagorean theorem and 
that everyone uses in their everyday lives. 

3.2 Neighborhood The two most common definitions of the neighborhood rely on 
either the number of neighbors or the radius around the given 
point. Figure 1 illustrates the differences between both definitions. 

The k-nearest neighbor method defines the neighborhood of a 
given point x as the set of the k closest points to x: 

N ðxÞ= fxðiÞgk i =1 with dðx, xð1ÞÞ≤ . . .  ≤ dðx, xðnÞÞ 
The radius neighbor method defines the neighborhood of a 

given point x as the set of points whose dissimilarity to x is smaller 
than the given radius, denoted by r: 

N ðxÞ= fxðiÞ∈X j dðx, xðiÞÞ< rg 

0.0 0.5 1.0 

0.00 

0.25 

0.50 

0.75 

1.00 

k-nearest neighbors (k = 5)  

0.0 0.5 1.0 

Radius neighbors (r = 0.2) 

Fig. 1 Different definitions of the neighborhood. On the left, the neighborhood of 
a given point is the set of its five nearest neighbors. On the right, the neighbor-
hood of a given point is the set of points whose dissimilarity is lower than the 
radius. For a given input, its neighborhood may be different depending on the 
definition used. The Euclidean distance is used as the metric in both examples
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3.3 Weights The two most common approaches to compute the weights are 
to use:

• Uniform weights (all the weights are equal):

8i, wðxÞ 
i = 

1 
jN ðxÞj 

• Weights inversely proportional to the dissimilarity: 

8i, wðxÞ 
i = 

1 

dðxðiÞ, xÞ 
j 

1 

dðxðjÞ, xÞ 
= 

1 

dðxðiÞ, xÞ j 
1 

dðxðjÞ, xÞ 

With uniform weights, every point in the neighborhood equally 
contributes to the prediction. With weights inversely proportional 
to the dissimilarity, closer points contribute more to the prediction 
than further points. Figure 2 illustrates the different decision func-
tions obtained with uniform weights and weights inversely propor-
tional to the dissimilarity for a 3-nearest neighbor classification 
model. 

3.4 Neighbor Search The brute-force method to compute the neighborhood for 
n points with p features is to compute the metric for each pair of 
inputs, which has a Oðn2 pÞ algorithmic complexity (assuming that 
evaluating the metric for a pair of inputs has a complexity of OðpÞ, 
which is the case for most metrics). However, it is possible to 
decrease this algorithmic complexity if the metric is a distance, 

1. Non-negativity: 8a, b, d(a, b)≥0 

2. Identity: 8a, b, d(a, b)=0 if and only if a= b

Training samples Uniform weights 
Weights inversely proportional 

to the dissimilarity 

Fig. 2 Impact of the definition of the weights on the prediction function of a 
3-nearest neighbor classification model. When the weights are inversely propor-
tional to the dissimilarity, the classifier is more subject to outliers since the 
predictions in the close neighborhood of any input are mostly dedicated by the 
label of this input, independently of the number of neighbors used. With uniform 
weights, the prediction function tends to be smoother
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3. Symmetry: 8a, b, d(a, b)= d(b, a) 

4. Triangle inequality: 8a, b, c, d(a, b) + d(b, c)≥ d(a, c)

The key property is the triangle inequality, which has a simple 
interpretation: the shortest path between two points is a straight 
line. Mathematically, if a is far from c and c is close to b (i.e., d(a, c) 
is large and d(b, c) is small), then a is far from b (i.e., d(a, b) i  
large). This is obtained by rewriting the triangle inequality as 
follows: 

8a, b, c, dða, bÞ≥ dða, cÞ- dðb, cÞ 
This means that it is not necessary to compute d(a, b) in this case. 
Therefore, the computational cost of a nearest neighbor search can 
be reduced to OðnlogðnÞpÞ or better, which is a substantial 
improvement over the brute-force method for large n. Two popu-
lar methods that take advantage of this property are the K-dimen-
sional tree structure [3] and the ball tree structure [4]. 

4 Linear Regression 

Linear regression is a regression model that linearly combines the 
features. Each feature is associated with a coefficient that represents 
the relative weight of this feature compared to the other features. A 
real-life metaphor would be to see the coefficients as the ingredients 
of a recipe: the key is to find the best balance (i.e., proportions) 
between all the ingredients in order to make the best cake. 

Mathematically, a linear model is a model that linearly com-
bines the features [5]: 

f ðxÞ=w0 þ 
p 

j =1 

wjxj 

A common notation consists in including a 1 in x so that f(x) can be 
written as the dot product between the vector x and the vector w: 

f ðxÞ=w0 ×1þ 
p 

j =1 

wjxj = x⊤w 

where the vector w consists of:

• The intercept (also known as bias) w0

• The coefficients (w1, . . ., wp), where each coefficient wj is asso-
ciated with the corresponding feature xj 

In the case of linear regression, f(x) is the predicted output: 

ŷ = f ðxÞ= x⊤w
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−1.0 −0.5 0.0 0.5 1.0 1.5 2.0 

x 

0.0 

0.5 

1.0 

1.5 

2.0 

2.5 

y 

Simple linear regression 

Target data 
Prediction 
Error 

Fig. 3 Ordinary least squares regression. The coefficients (i.e., the intercept and 
the slope with a single predictor) are estimated by minimizing the sum of the 
squared errors 

There are several methods to estimate the w coefficients. In this 
section, we present the oldest one which is known as ordinary least 
squares regression. 

In the case of ordinary least squares regression, the cost func-
tion J is the sum of the squared errors on the training data (see 
Fig. 3): 

J ðwÞ= 
n 

i =1 

yðiÞ - ŷðiÞ 
2 
= 

n 

i =1 

yðiÞ - xðiÞ⊤w 
2 
= ky -Xwk2 2 

One wants to find the optimal parameters w⋆ that minimize the 
cost function: 

w⋆ = arg min 
w 

J ðwÞ 

This optimization problem is convex, implying that any local mini-
mum is a global minimum, and differentiable, implying that every 
local minimum has a null gradient. One therefore aims to find null 
gradients of the cost function: 

∇w⋆J =0 

) 2X⊤ Xw⋆ -2X⊤ y =0 

) X⊤ Xw⋆ =X⊤ y 

) w⋆ = X⊤ Xð Þ-1 
X⊤ y 

Ordinary least squares regression is one of the few machine 
learning optimization problems for which there exists a closed for-
mula, i.e., the optimal solution can be computed using a finite 
number of standard operations such as addition, multiplication,



and evaluations of well-known functions. A summary of linear 
regression can be found in Box 2. 
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Box 2: Linear Regression

• Main idea: best hyperplane (i.e., line when p= 1, plane when 
p= 2) mapping the inputs and to the outputs.

• Mathematical formulation: linear relationship between the 
predicted output ŷ and the input x that minimizes the sum of 
squared errors:

ŷ =w⋆ 
0 þ 

n 

j =1 

w⋆ 
j xj with w⋆ = arg min 

w 

n 

i =1 

yðiÞ - xðiÞ⊤w 
2 

• Regularization: can be penalized to avoid overfitting (ridge), 
to perform feature selection (lasso), or both (elastic-net). See 
Subheading 7. 

5 Logistic Regression 

Intuitively, linear regression consists in finding the line that best fits 
the data: the true output should be as close to the line as possible. 
For binary classification, one wants the line to separate both classes 
as well as possible: the samples from one class should all be in one 
subspace, and the samples from the other class should all be in the 
other subspace, with the inputs being as far as possible from 
the line. 

Mathematically, for binary classification tasks, a linear model is 
defined by a hyperplane splitting the input space into two subspaces 
such that each subspace is characteristic of one class. For instance, a 
line splits a plane into two subspaces in the two-dimensional case, 
while a plane splits a three-dimensional space into two subspaces. A 
hyperplane is defined by a vector w= (w0, w1, . . ., wp), and f(x)= 
x⊤ w corresponds to the signed distance between the input x and the 
hyperplane w: in one subspace, the distance with any input is always 
positive, whereas in the other subspace, the distance with any input 
is always negative. Figure 4 illustrates the decision function in the 
two-dimensional case where both classes are linearly separable. 

The sign of the signed distance corresponds to the decision 
function of a linear binary classification model: 

ŷ = signðf ðxÞÞ= 
þ1 if  f ðxÞ>0

-1 if  f ðxÞ<0
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Fig. 4 Decision function of a logistic regression model. A logistic regression is a 
linear model, that is, its decision function is linear. In the two-dimensional case, 
it separates a plane with a line 

The logistic regression model is a probabilistic linear model 
that transforms the signed distance to the hyperplane into a proba-
bility using the sigmoid function [6], denoted by σðuÞ= 1 

1þ exp -uð  . 
Consider the linear model: 

f ðxÞ= x⊤w =w0 þ 
p 

i = j 

wj xj 

Then the probability of belonging to the positive class is: 

P y= þ 1jx= xð Þ= σðf ðxÞÞ= 
1 

1þ exp - f ðxÞð Þ  
and that of belonging to the negative class is: 

P y= -1jx= xð Þ  =1-P y= þ 1jx= xð Þ  
= 

exp - f ðxÞð Þ  
1þ exp - f ðxÞð Þ  

= 
1 

1þ exp f ðxÞð  Þ  
P y= -1jx= xð Þ  = σð- f ðxÞÞ 

By applying the inverse of the sigmoid function, which is 
known as the logit function, one can see that the logarithm of the 
odds ratio is modeled as a linear combination of the features: 

log 
P y= þ 1jx= xð Þ  
P y= -1jx= xð Þ  = log 

P y= þ 1jx= xð Þ  
1-P y= þ 1jx= xð = f ðxÞ
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The w coefficients are estimated by maximizing the likelihood 
function, that is, the function measuring the goodness of fit of the 
model to the training data: 

LðwÞ= ∏ 
n 

i =1 
P y= yðiÞjx= xðiÞ;w 

For computational reasons, it is easier to maximize the log-likeli-
hood, which is simply the logarithm of the likelihood: 

logðLðwÞÞ = 
n 

i =1 

log P y= yðiÞjx= xðiÞ;w 

= 
n 

i =1 

log σ yðiÞf ðxðiÞ;wÞ 

= 
n 

i =1

- log 1þ exp yðiÞxðiÞ⊤w 

logðLðwÞÞ = -
n 

i =1 

log 1þ exp yðiÞxðiÞ⊤w 

Finally, we can rewrite this maximization problem as a minimiza-
tion problem by noticing that 
max w logðLðwÞÞ= - min w - log ðLðwÞÞ: 

max
w 

logðLðwÞÞ= - min
w 

n 

i =1 

log 1þ exp yðiÞxðiÞ⊤w 

We can see that the w coefficients that maximize the likelihood are 
also the coefficients that minimize the sum of the logistic loss values, 
with the logistic loss being defined as: 

ℓlogisticðy, f ðxÞÞ= log 1þ exp yf ðxÞð Þð Þ= log ð2Þ 
Unlike for linear regression, there is no closed formula for this 
minimization. One thus needs to use an optimization method 
such as gradient descent which was presented in Subheading 3 of 
Chap. 1. In practice, more sophisticated approaches such as quasi-
Newton methods and variants of stochastic gradient descent are 
often used. The main concepts underlying logistic regression can be 
found in Box 3. 

Box 3: Logistic Regression

• Main idea: best hyperplane (i.e., line) that separates two 
classes.

• Mathematical formulation: the signed distance to the 
hyperplane is mapped into the probability to belong to the 
positive class using the sigmoid function:
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f ðxÞ=w0 þ 
j =1 

wjxj 

Pðy= þ 1jx= xÞ= σðf ðxÞÞ= 
1 

1þ expð- f ðxÞÞ 

Box 3 (continued)
n 

• Estimation: likelihood maximization.

• Regularization: can be penalized to avoid overfitting (ℓ2 
penalty), to perform feature selection (ℓ1 penalty), or both 
(elastic-net penalty). 

6 Overfitting and Regularization 

The original formulations of ordinary least squares regression and 
logistic regression are unregularized models, that is, the model is 
trained to fit the training data as much as possible. Let us consider a 
real-life example as it is very similar to human learning. If a person 
learns by heart the content of a book, they are able to solve the 
exercises in the book, but unable to apply the theoretical concepts 
to new exercises or real-life situations. If a person only quickly reads 
through the book, they are probably unable to solve neither the 
exercises in the book nor new exercises. 

The corresponding concepts are known as overfitting and 
underfitting in machine learning. Overfitting occurs when a 
model fits too well the training data and generalizes poorly to 
new data. Oppositely, underfitting occurs when a model does not 
capture well enough the characteristics of the training data and thus 
also generalizes poorly to new data. 

Overfitting and underfitting are related to frequently used 
terms in machine learning: bias and variance. Bias is defined as 
the expected (i.e., mean) difference between the true output and 
the predicted output. Variance is defined as the variability of the 
predicted output. For instance, let us consider a model predicting 
the age of a person from a picture. If the model always under-
estimates or overestimates the age, then the model is biased. If 
the model makes both large and small errors, then the model has a 
high variance. 

Ideally, one would like to have a model with a small bias and a 
small variance. However, the bias of a model tends to increase when 
decreasing its variance, and the variance of the model tends to 
increase when decreasing its bias. This phenomenon is known as 
the bias-variance trade-off. Figure 5 illustrates this phenomenon. 
One can also notice it by computing the squared error between the 
true output y (fixed) and the predicted output ŷ (random variable): 
its expected value is the sum of the squared bias of ŷ and the 
variance of ŷ:
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Fig. 5 Illustration of underfitting and overfitting. Underfitting occurs when a 
model is too simple and does not capture well enough the characteristics of 
the training data, leading to high bias and low variance. Oppositely, overfitting 
occurs when a model is too complex and learns the noise in the training data, 
leading to low bias and high variance
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 ðy - ŷÞ2 = y2 -2y ŷ þ ŷ2 

= y2 -2y ŷ½ � þ   ŷ2 
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7 Penalized Models 

Depending on the class of methods, there exist different strategies 
to tackle overfitting. 

For neighbor methods, the number of neighbors used to define 
the neighborhood of any input and the strategy to compute the 
weights are the key hyperparameters to control the bias-variance 
trade-off. For models that are presented in the remaining sections 
of this chapter, we mention strategies to address the bias-variance 
trade-off in their respective sections. In this section, we present the 
most commonly used strategies for models whose parameters are 
optimized by minimizing a cost function defined as the mean loss 
values over all the training samples: 

min
w 

J ðwÞ with J ðwÞ= 
1 
n 

n 

i =1 

ℓ yðiÞ, f ðxðiÞ;wÞ 

This is, for instance, the case of the linear and logistic regression 
methods presented in the previous sections. 

7.1 Penalties The main idea is to introduce a penalty term Pen(w) that will 
constraint the parameters w to have some desired properties. The 
most common penalties are the ℓ2 penalty, the ℓ1 penalty, and the 
elastic-net penalty. 

7.1.1 ℓ2 Penalty The ℓ2 penalty is defined as the squared ℓ2 norm of the 
w coefficients:
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ℓ2ðwÞ= kwk2 2 = 
p 

j =1 

w2 
j 

The ℓ2 penalty forces each coefficient wi not to be too large and 
makes the coefficients more robust to collinearity (i.e., when some 
features are approximately linear combinations of the other 
features). 

7.1.2 ℓ1 Penalty The ℓ2 penalty forces the values of the parameters not to be too 
large, but does not incentivize to make small values tend to zero. 
Indeed, the square of a small value is even smaller. When the 
number of features is large, or when interpretability is important, 
it can be useful to make the model select the most important 
features. The corresponding metric is the ℓ0 “norm” (which is not 
a proper norm in the mathematical sense), defined as the number of 
nonzero elements: 

ℓ0ðwÞ= kwk0 = 
p 

j =1 

1wj ≠0 

However, the ℓ0 “norm” is neither differentiable nor convex (which 
are useful properties to solve an optimization problem, but this is 
not further detailed for the sake of conciseness). The best convex 
differentiable approximation of the ℓ0 “norm” is the ℓ1 norm (see 
Fig. 6), defined as the sum of the absolute values of each element: 

ℓ1ðwÞ= kwk1 = 
p 

j =1 

jwj j 

7.1.3 Elastic-Net Penalty Both the ℓ2 and ℓ1 penalties have their upsides and downsides. In 
order to try to obtain the best of penalties, one can add both 
penalties in the objective function. The combination of both penal-
ties is known as the elastic-net penalty: 

ENðw, αÞ= αkwk1 þ ð1- αÞkwk2 2 
where α∈ [0, 1] is a hyperparameter representing the proportion of 
the ℓ1 penalty compared to the ℓ2 penalty. 

7.2 New 

Optimization Problem 

A natural approach would be to add a constraint to the minimiza-
tion problem: 

min
w 

J ðwÞ subject to PenðwÞ< c ð1Þ 
which reads as “Find the optimal parameters that minimize the cost 
function J among all the parameters w that satisfy Pen(w)< c” for a 
positive real number c. Figure 7 illustrates the optimal solution of a 
simple linear regression task with different constraints. This figure
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�2 

Fig. 6 Unit balls of the ℓ0, ℓ1, and ℓ2 norms. For each norm, the set of points in 
2 whose norm is equal to 1 is plotted. The ℓ1 norm is the best convex 
approximation to the ℓ0 norm. Note that the lines for the ℓ0 norm extend to
-1 and +1 but are cut for plotting reasons 

also highlights the sparsity property of the ℓ1 penalty (the optimal 
parameter for the horizontal axis is set to zero) that the ℓ2 penalty 
does not have (the optimal parameter for the horizontal axis is small 
but different from zero). 

Although this approach is appealing due to its intuitiveness and 
the possibility to set the maximum possible penalty on the para-
meters w, it leads to a minimization problem that is not trivial to 
solve. A similar approach consists in adding the regularization term 
in the cost function: 

min
w 

J ðwÞ þ  λ×PenðwÞ ð2Þ 
where λ>0 is a hyperparameter that controls the weights of the 
penalty term compared to the mean loss values over all the training 
samples. This formulation is related to the Lagrangian function of 
the minimization problem with the penalty constraint. 

This formulation leads to a minimization problem with no 
constraint which is much easier to solve. One can actually show 
that Eqs. 1 and 2 are related: solving Eq. 2 for a given λ, whose 
optimal solution is denoted by w⋆ 

λ , is equivalent to solving Eq. 1 for 
c =Penðw⋆ 

λ Þ. In other words, solving Eq. 2 for a given λ is equiva-
lent to solving Eq. 1 for c whose value is only known after finding 
the optimal solution of Eq. 2. 

Figure 8 illustrates the impact of the regularization term λ×Pen 
(w) on the prediction function of a kernel ridge regression algo-
rithm (see Subheading 14 for more details) for different values of λ. 
For high values of λ, the regularization term is dominating the 
mean loss value, making the prediction function not fitting well 
enough the training data (underfitting). For small values of λ, the



mean loss value is dominating the regularization term, making the 
prediction function fitting too well the training data (overfitting). A 
good balance between the mean loss value and the regularization 
term is required to learn the best function. 
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Fig. 7 Illustration of the minimization problem with a constraint on the penalty 
term. The plot represents the value of the loss function for different values of the 
two coefficients for a linear regression task. The black star indicates the optimal 
solution with no constraint. The green and orange stars indicate the optimal 
solutions when imposing a constraint on the ℓ2 and ℓ1 norms of the parameters 
w, respectively 

Since linear regression is one of the oldest and best-known 
models, the aforementioned penalties were originally introduced 
for linear regression:

• Linear regression with the ℓ2 penalty is also known as ridge [7]:

min
w 

ky -Xwk2 2 þ λkwk2 2
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λ = 0.001 λ = 0.0001 

λ = 0.00001 λ = 0.000001 
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Fig. 8 Illustration of regularization. A kernel ridge regression algorithm is fitted 
on the training data (blue points) with different values of λ, which is the weight of 
the regularization in the cost function. The smaller the values of λ, the smaller 
the weight of the ℓ2 regularization. The algorithm underfits (respectively, overfits) 
the data when the value of λ is too large (respectively, low)
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As in ordinary least squares regression, there exists a closed formula 
for the optimal solution:

w⋆ = X⊤ X þ λIð Þ-1 
X⊤ y 

• Linear regression with the ℓ1 penalty is also known as lasso [8]:

min
w 

ky -Xwk2 2 þ λkwk1 
• Linear regression with the elastic-net penalty is also known as 

elastic-net [9]:

min
w 

ky -Xwk2 2 þ λαkwk1 þ λð1- αÞkwk2 2 

The penalties can also be added in other models such as logistic 
regression, support vector machines, artificial neural networks, etc. 

8 Support Vector Machine 

Linear and logistic regression take into account every training 
sample in order to find the best line, which is due to their 
corresponding loss functions: the squared error is zero only if the 
true and predicted outputs are equal, and the logistic loss is always 
positive. One could argue that the training samples whose outputs 
are “easily” well predicted are not relevant: only the training sam-
ples whose outputs are not “easily” well predicted or are wrongly 
predicted should be taken into account. The support vector 
machine (SVM) is based on this principle (please see Box 4 for an 
overview of the SVM). 

Box 4: Support Vector Machine

• Main idea: hyperplane (i.e., line) that maximizes the margin 
(i.e., the distance between the hyperplane and the closest 
inputs to the hyperplane).

• Support vectors: only the misclassified inputs and the inputs 
well classified but with low confidence are taken into account.

• Non-linearity: decision function can be non-linear with the 
use of non-linear kernels.

• Regularization: ℓ2 penalty. 

8.1 Original 

Formulation 

The original support vector machine was invented in 1963 and was 
a linear binary classification method [10]. Figure 9 illustrates the 
main concept of its original version. When both classes are linearly



separable, there exist an infinite number of hyperplanes that sepa-
rate both classes. The SVM finds the hyperplane that maximizes the 
margin, that is, the distance between the hyperplane and the closest 
points of both classes to the hyperplane, while linearly separating 
both classes. 
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Fig. 9 Support vector machine classifier with linearly separable classes. When 
two classes are linearly separable, there exist an infinite number of hyperplanes 
separating them (left). The decision function of the support vector machine 
classifier is the hyperplane that maximizes the margin, that is, the distance 
between the hyperplane and the closest points to the hyperplane (right). Support 
vectors are highlighted with a black circle surrounding them 

The SVM was later updated to non-separable classes [11]. Fig-
ure 10 illustrates the role of the margin in this case. The dashed 
lines correspond to the hyperplanes defined by the equations 
x⊤ w=+1 and x⊤ w=-1. The margin is the distance between 
both hyperplanes and is equal to 2=kwk2 2. It defines which samples 
are included in the decision function of the model: a sample is 
included if and only if it is inside the margin or outside the margin 
and misclassified. Such samples are called support vectors and are 
illustrated in Fig. 10 with a black circle surrounding them. In this 
case, the margin can be seen a regularization term: the larger the 
margin is, the more support vectors are included in the decision 
function, the more regularized the model is. 

The loss function for the SVM is called the hinge loss and is 
defined as: 

ℓhingeðy, f ðxÞÞ= max ð0, 1- yf ðxÞÞ 
Figure 11 illustrates the curves of the logistic and hinge losses. The 
logistic loss is always positive, even when the point is accurately 
classified with high confidence (i.e., when yf(x)≫0), whereas the 
hinge loss is equal to zero when the point is accurately classified 
with good confidence (i.e., when yf(x)≥1). One can see that a 
sample (x, y) is a support vector if and only if yf(x)≥1, that is, if 
and only if ℓhinge(y, f(x))=0.
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Fig. 10 Decision function of a support vector machine classifier with a linear 
kernel when both classes are not strictly linearly separable. The support vectors 
are the training points within the margin of the decision function and the 
misclassified training points. The support vectors are highlighted with a black 
circle surrounding them 
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Fig. 11 Binary classification losses. The logistic loss is always positive, even 
when the point is accurately classified with high confidence (i.e., when 
yf(x)≫ 0), whereas the hinge loss is equal to zero when the point is accurately 
classified with good confidence (i.e., when yf(x)≥ 1)
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The optimal w coefficients for the original version are estimated 
by minimizing an objective function consisting of the sum of the 
hinge loss values and a ℓ2 penalty term (which is inversely propor-
tional to the margin): 

min
w 

n 

i =1 

maxð0, 1- yðiÞxðiÞ⊤wÞ þ  1 
2C

kwk2 2 

8.2 General 

Formulation with 

Kernels 

The SVM was later updated to non-linear decision functions with 
the use of kernels [12]. 

In order to have a non-linear decision function, one could map 
the input space I into another space (often called the feature space), 
denoted by G, using a function denoted by ϕ: 

ϕ : I → G 

x ↦ϕðxÞ 
The decision function would still be linear (with a dot product), but 
in the feature space: 

f ðxÞ=ϕðxÞ⊤ w 

Unfortunately, solving the corresponding minimization problem is 
not trivial: 

min
w 

n 

i =1 

max 0, 1- yðiÞϕðxðiÞÞ⊤ 
w þ 1 

2C
kwk2 2 ð3Þ 

Nonetheless, two mathematical properties make the use of 
non-linear transformations in the feature space possible: the kernel 
trick and the representer theorem. 

The kernel trick asserts that the dot product in the feature space 
can be computed using only the points from the input space and a 
kernel function, denoted by K: 

8x, x ′∈ I , ϕðxÞ⊤ ϕðx ′ Þ=K ðx, x ′ Þ 
The representer theorem [13, 14] asserts that, under certain 

conditions on the kernel K and the feature space G associated with 
the function ϕ, any minimizer of Eq. 3 admits the following form: 

f = 
n 

i =1 

αiKð�, xðiÞÞ 

where α solves: 

min
α 

n 

i =1 

maxð0, 1- yðiÞ½Kα�iÞ þ  1 
2C 

α⊤ Kα
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where K is the n×n matrix consisting of the evaluations of the 
kernel on all the pairs of training samples: 8i, j∈{1, . . ., n}, 
Kij=K(x(i) , x( j) ). 

Because the hinge loss is equal to zero if and only if yf(x) i  
greater than or equal to 1, only the training samples (x(i) , y(i) ) such 
that y(i) f(x(i) )<1 have a nonzero αi coefficient. These points are the 
so-called support vectors, and this is why they are the only training 
samples contributing to the decision function of the model: 

SV = fi∈f1, . . . ,ng j  αi ≠0g 

f ðxÞ= 
n 

i =1 

αiK ðx, xðiÞÞ= 
i∈SV 

αiKðx, xðiÞÞ 

The kernel trick and the representer theorem show that it is 
more practical to work with the kernel K instead of the mapping 
function ϕ. Popular kernel functions include:

• The linear kernel:

K ðx, x ′ Þ= x⊤x ′ 

• The polynomial kernel:

Kðx, x 0Þ= ðγ x⊤ x 0 þ c0Þd with γ >0, c0 ≥0, d∈�

• The sigmoid kernel:

Kðx, x ′ Þ= tanh γ x⊤x ′ þ c0ð Þ  with γ >0, c0 ≥0 

• The radial basis function (RBF) kernel: 

Kðx, x ′ Þ= exp - γ kx - x ′ k2 2 with γ >0 

The linear kernel yields a linear decision function and is actually 
identical to the original formulation of the SVM (one can show that 
there is a mapping between the α and w coefficients). Non-linear 
kernels allow for non-linear, more complex, decision functions. 
This is particularly useful when the data is not linearly separable, 
which is the most common use case. Figure 12 illustrates the 
decision function and the margin of a SVM classification model 
for four different kernels. 

The SVM was also extended to regression tasks with the use of 
the ε-insensitive loss. Similar to the hinge loss, which is equal to zero 
for points that are correctly classified and outside the margin, the ε-
insensitive loss is equal to zero when the error between the true 
target value and the predicted value is not greater than ε: 

ℓε- insensitiveðy, f ðxÞÞ= max ð0, jy - f ðxÞj- εÞ
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RBF kernel Sigmoid kernel 

Fig. 12 Impact of the kernel on the decision function of a support vector machine 
classifier. A non-linear kernel allows for a non-linear decision function 

The objective function for the SVM regression method combines 
the values of ε-insensitive loss of the training points and the 
ℓ2 penalty: 

min
w 

n 

i =1 

max 0, yðiÞ -ϕðxðiÞÞ⊤ 
w - ε þ 1 

2C
kwk2 2 

Figure 13 illustrates the curves of three regression losses. The 
squared error loss takes very small values for small errors and very 
high values for high errors, whereas the absolute error loss takes 
small values for small errors and high values for high errors. Both 
losses take small but nonzero values when the error is small. On the 
contrary, the ε-insensitive loss is null when the error is small and 
otherwise equal to the absolute error loss minus ε.
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Fig. 13 Regression losses. The squared error loss takes very small values for 
small errors and very large values for large errors, whereas the absolute error 
loss takes small values for small errors and large values for large errors. Both 
losses take small but nonzero values when the error is small. On the contrary, 
the ε-insensitive loss is null when the error is small and otherwise equal the 
absolute error loss minus ε. When computed over several samples, the squared 
and absolute error losses are often referred to as mean squared error (MSE) and 
mean absolute error (MAE), respectively 

9 Multiclass Classification 

The classification methods that we presented so far, logistic regres-
sion and support vector machines, are binary classifiers: they can 
only be used when there are only two possible outcomes. However, 
in practice, it is common to have more than two possible outcomes. 
For instance, differential diagnosis of brain disorders is often 
between several, and not only two, diseases. 

Several strategies have been proposed to extend any binary 
classification method to multiclass classification tasks. They all rely 
on transforming the multiclass classification task into several binary 
classification tasks. In this section, we present the most commonly 
used strategies: one-vs-rest, one-vs-one, and error correcting output 
code [15]. Figure 14 illustrates the main ideas of these approaches. 
But first, we present a natural extension of logistic regression to 
multiclass classification tasks which is often referred to as multino-
mial logistic regression [5].
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One-vs-rest 

{1} vs. {2, 3, 4, 5} 

{2} vs. {1, 3, 4, 5} 

{3} vs. {1, 2, 4, 5} 

{4} vs. {1, 2, 3, 5} 

{5} vs. {1, 2, 3, 4} 

One-vs-one 

{1} vs. {2} 

{1} vs. {3} 

{1} vs. {4} 

{1} vs. {5} 

{2} vs. {3} 

{2} vs. {4} 

{2} vs. {5} 

{3} vs. {4} 

{3} vs. {5} 

{4} vs. {5} 

Output code 

{1, 3} vs. {2, 4, 5} 

{1, 4, 5} vs. {2, 3} 

{2} vs. {1, 3, 4, 5} 

{1, 2, 3} vs. {4, 5} 

{2, 5} vs. {1, 3, 4} 

{2, 3, 4} vs. {1, 5} 

{4} vs. {1, 2, 3, 5} 
... 

... 
... 

Fig. 14 Main approaches to convert a multiclass classification task into several 
binary classification tasks. In the one-vs-rest approach, each class is associated 
with a binary classification model that is trained to separate this class from all 
the other classes. In the one-vs-one approach, a binary classifier is trained on 
each pair of classes. In the error correcting output code approach, the classes 
are (randomly) split into two groups, and a binary classifier is trained for each 
split 

9.1 Multinomial 

Logistic Regression 

For binary classification, logistic regression is characterized by a 
hyperplane: the signed distance to the hyperplane is mapped into 
the probability of belonging to the positive class using the sigmoid 
function. However, for multiclass classification, a single hyperplane 
is not enough to characterize all the classes. Instead, each class C k is 
characterized by a hyperplane wk, and, for any input x, one can 
compute the signed distance x⊤ wk between the input x and the 
hyperplane wk. The signed distances are mapped into probabilities 
using the softmax function, defined as 

softmax x1, . . ., xq =
exp x1ð Þ
q 

j = 1 
exp xjð Þ , . . ., 

exp xqð Þ
q 

j =1 
exp xjð Þ  , as follows: 

8k∈f1, . . ., qg, Pðy= C kjx= xÞ= 
exp x⊤wkð Þ

q 
j =1 exp x

⊤wj 

The coefficients (wk)1≤k≤q are still estimated by maximizing the 
likelihood function: 

Lðw1, . . .,wqÞ= ∏ 
n 

i =1 
∏ 
q 

k=1 
P y= C kjx= xðiÞ 1yðiÞ = Ck 

which is equivalent to minimizing the negative log-likelihood:
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- log ðLðw1, . . .,wqÞÞ 

= -
n 

i =1 

q 

k=1 

1yðiÞ = C k 
log P y= C kjx= xðiÞ 

= 
n 

i =1

-
q 

k=1 

1yðiÞ = C k 
log 

exp xðiÞ⊤ wk 
q 

j =1 
exp xðiÞ⊤wjð Þ  

= 
n 

i =1 

ℓcross�entropy y
ðiÞ, softmax xðiÞ⊤w1, . . ., x

ðiÞ⊤wq 

where ℓcross entropy is known as the cross-entropy loss and is defined, 
for any label y and any vector of probabilities (π1, . . ., πq), as: 

ℓcross- entropyðy, ðπ1, . . . , πqÞÞ= -
q 

k=1 

1y = C k 
logπk 

This loss is commonly used to train artificial neural networks on 
classification tasks and is equivalent to the logistic loss in the 
binary case. 

Figure 15 illustrates the impact of the strategy used to handle a 
multiclass classification task on the decision function. 

9.2 One-vs-Rest A strategy to transform a multiclass classification task into several 
binary classification tasks is to fit a binary classifier for each class: the 
positive class is the given class, and the negative class consists of all 
the other classes merged into a single class. This strategy is known 
as one-vs-rest. The advantage of this strategy is that each class is 
characterized by a single model, so that it is possible to gain deeper 
knowledge about the class by inspecting its corresponding model. 
A consequence is that the predictions for new samples take into 
account the confidence of the models: the predicted class for a new 
input is the class for which the corresponding model is the most 
confident that this input belongs to its class. The one-vs-rest strat-
egy is the most commonly used strategy and usually a good default 
choice. 

9.3 One-vs-One Another strategy is to fit a binary classifier for each pair of classes: 
this strategy is known as one-vs-one. The advantage of this strategy is 
that the classes in each binary classification task are “pure”, in the 
sense that different classes are never merged into a single class. 
However, the number of binary classifiers that needs to be trained 
is larger for the one-vs-one strategy (1 2 qðq-1Þ) than for the one-
vs-rest strategy (q). Nonetheless, for the one-vs-one strategy, the 
number of training samples in each binary classification task is 
smaller than the total number of samples, which makes training 
each binary classifier usually faster. Another drawback is that this 
strategy is less interpretable compared to the one-vs-rest strategy, as 
the predicted class corresponds to the class obtaining the most



votes (i.e., winning the most one-vs-one matchups), which does 
not take into account the confidence in winning each matchup.1 

For instance, winning a one-vs-one matchup with 0.99 probability 
gives the same result as winning the same matchup with 0.51 
probability, i.e., one vote. 
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Multinomial One-vs.-rest 

One-vs.-one Output code 

Fig. 15 Illustration of the impact of the strategy used to handle a multiclass 
classification task on the decision function of a logistic regression model 

9.4 Error Correcting 

Output Code 

A substantially different strategy, inspired by the theory of error 
correction code, consists in merging a subset of classes into one 
class and the other subset into the other class, for each binary 
classification task. This data is often called the code book and can 
be represented as a matrix whose rows correspond to the classes and 
whose columns correspond to the binary classification tasks. The 
matrix consists only of -1 and + 1 values that represent the 
corresponding label for each class and for each binary task.2 For

1 The confidences are actually taken into account but only in the event of a tie. 
2 The values are 0 and 1 when the classifier does not return scores but only probabilities. 



any input, each binary classifier returns the score (or probability) 
associated with the positive class. The predicted class for this input 
is the class whose corresponding vector is the most similar to the 
vector of scores, with similarity being assessed with the Euclidean 
distance (the lower, the more similar). There exist advanced strate-
gies to define the code book, but it has been argued than a random 
code book usually gives as good results as a sophisticated one [16]. 
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10 Decision Functions with Normal Distributions 

Normal distributions are popular distributions because they are 
commonly found in nature. For instance, the distribution of 
heights and birth weights of human beings can be approximated 
using normal distributions. Moreover, normal distributions are 
particularly easy to work with from a mathematical point of view. 
For these reasons, a common model consists in assuming that the 
training input vectors are independently sampled from normal 
distributions. 

A possible classification model consists in assuming that, for 
each class, all the corresponding inputs are sampled from a normal 
distribution with mean vector μk and covariance matrix Σk: 

8i such that yðiÞ = C k, x
ðiÞ � N ðμk,ΣkÞ 

Using the probability density function of a normal distribution, one 
can compute the probability density of any input x associated with 
the distribution N ðμk,ΣkÞ of class C k: 

pxjy= C k
ðxÞ= 

1 

ð2πÞpjΣkj 
exp -

1 
2
½x - μk�⊤ Σ-1 

k ½x - μk�

With such a probabilistic model, it is easy to compute the 
probability that a sample belongs to class C k using Bayes rule: 

Pðy= C kjx= xÞ= 
pxjy= C k

ðxÞPðy= C kÞ 
pxðxÞ 

With normal distributions, it is mathematically easier to work with 
log-probabilities:



Þ
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logPðy= C kjx= xÞ 
= log pxjy= C k

ðxÞþ logPðy= C kÞ- log pxðxÞ 
= -

1 
2
½x - μk�⊤ Σ-1 

k ½x - μk�- 1 
2 
logjΣkjþ logPðy= C kÞ

-
p 
2 
logð2πÞ- log pxðxÞ 

= -
1 
2 
x⊤Σ-1 

k x þ x⊤Σ-1 
k μk

-
1 
2 
μ⊤ 
k Σ

-1 
k μk -

1 
2 
logjΣkjþ logPðy= C kÞ

-
p 
2 
logð2πÞ- log pxðxÞ 

ð4Þ 
It is also possible to make further assumptions on the covari-

ance matrices that lead to different models. In this section, we 
present the most commonly used ones: naive Bayes, linear discrimi-
nant analysis, and quadratic discriminant analysis. Figure 16 illus-
trates the covariance matrices and the decision functions for these 
models in the two-dimensional case. 

10.1 Naive Bayes The naive Bayes model assumes that, conditionally to each class C k, 
the features are independent and have the same variance σ2 k : 

8k, Σk = σ2 kI p 

Equation 4 can thus be further simplified: 

logPðy= C kjx= xÞ 
= -

1 

2σ2 k 
x⊤ x þ 1 

σ2 k 
x⊤ μk -

1 

2σ2 k 
μ⊤ 
k μk - log σk þ logPðy= C kÞ

-
p 
2 
logð2πÞ- log pxðxÞ 

= x⊤W kx þ x⊤wk þ w0k þ s 
w

•

here: 

W k = - 1 
2σ2 

I p is the matrix of the quadratic term for class C k.

•
k 

wk = 1 
σ2 
μk is the vector of the linear term for class C k.

•
k 

w0k = - 1 
2σ2 

k 

μ⊤ 
k μk - log σk þ logPðy= C kÞ is the intercept for 

class C k.

• s = - p 
2 logð2πÞ- log pxðxÞ is a term that does not depend on 

class C k. 

Therefore, naive Bayes is a quadratic model. The probabilities for 
input x to belong to each class C k can then easily be computed: 

Pðy= C kjx= xÞ= 
exp x⊤W kx þ x⊤wk þ w0kð  

k 
j =1 exp x

⊤W jx þ x⊤wj þ w0j
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Naive Bayes 
(different conditional variances) 

Naive Bayes 
(identical conditional variances) 

Linear discriminant analysis Quadratic discriminant analysis 

Fig. 16 Illustration of decision functions with normal distributions. A 
two-dimensional covariance matrix can be represented as an ellipse. In the 
naive Bayes model, the features are assumed to be independent and to have the 
same variance conditionally to the class, leading to covariance matrices being 
represented as circles. When the covariance matrices are assumed to be 
identical, the decision functions are linear instead of quadratic 

With the naive Bayes model, it is relatively common to have the 
conditional variances σ2 k to all be equal: 

8k,Σk = σ2 kI p = σ2 I p 

In this case, Eq. 4 can be even further simplified: 

logPðy= C kjx= xÞ 
= -

1 

2σ2 
x⊤ x þ 1 

σ2 
x⊤ μk -

1 

2σ2 
μ⊤ 
k μk - log σk þ logPðy= C kÞ

-
p 
2 
logð2πÞ- log pxðxÞ 

= x⊤wk þ w0k þ s
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w

•

here: 

wk = 1 σ2 μk is the vector of the linear term for class C k.

• w0k = - 1 
2σ2 μ

⊤ 
k μk þ logPðy= C kÞ is the intercept for class C k.

• s = - 1 
2σ2 x

⊤x - log σ- p 
2 logð2πÞ- log pxðxÞ is a term that 

does not depend on class C k. 

In this case, naive Bayes becomes a linear model. 

10.2 Linear 

Discriminant Analysis 

Linear discriminant analysis (LDA) makes the assumption that all 
the covariance matrices are identical but otherwise arbitrary: 

8k, Σk =Σ 

Therefore, Eq. 4 can be further simplified: 

logPðy= C kjx= xÞ 
= -

1 
2
½x - μk�⊤ Σ-1½x - μk�- 1 

2 
logjΣjþ logPðy= C kÞ

-
p 
2 
logð2πÞ- log pxðxÞ 

= -
1 
2 

x⊤Σ-1 x - x⊤Σ-1 μk - μ⊤ 
k Σ

-1 x þ μ⊤ 
k Σ

-1 μk

-
1 
2 
logjΣjþ logPðy= C kÞ- p 

2 
logð2πÞ- log pxðxÞ 

= - x⊤Σ-1 μk -
1 
2 
x⊤Σ-1 x -

1 
2 
μ⊤ 
k Σ

-1 μk þ logPðy= C kÞ- 1 
2 
logjΣj

-
p 
2 
logð2πÞ- log pxðxÞ 

= x⊤wk þ w0k þ s 
w

•

here: 

wk= Σ-1 μk is the vector of coefficients for class C k.

• w0k = - 1 
2 μ

⊤ 
k Σ

-1 μk þ logPðy= C kÞ is the intercept for class C k.

• s = - 1 
2 x

⊤Σ-1 x - - 1 
2 logjΣj- p 

2 logð2πÞ- log pxðxÞ is a term 
that does not depend on class C k. 

Therefore, linear discriminant analysis is a linear model. When Σ is 
diagonal, linear discriminant analysis is identical to naive Bayes with 
identical conditional variances. 

The probabilities for input x to belong to each class C k can then 
easily be computed: 

Pðy= C kjx= xÞ= 
exp x⊤wk þ w0kð Þ  

k 
j =1 exp x

⊤wj þ w0j 

10.3 Quadratic 

Discriminant Analysis 

Quadratic discriminant analysis makes no assumption on the covari-
ance matrices Σk that can all be arbitrary. Equation 4 can be 
written as:



Þ
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logPðy= C kjx= xÞ 
= -

1 
2 
x⊤Σ-1 

k x þ x⊤Σ-1 
k μk -

1 
2 
μ⊤ 
k Σ

-1 
k μk -

1 
2 
logjΣkj 

þ logPðy= C kÞ- p 
2 
logð2πÞ- log pxðxÞ 

= x⊤W kx þ x⊤wk þ w0k þ s 
w

•

here: 

W k = - 1 
2Σ

-1 
k is the matrix of the quadratic term for class C k.

• wk =Σ-1 
k μk is the vector of the linear term for class C k.

• w0k = - 1 
2 μ

⊤ 
k Σ

-1 
k μk -

1 
2 logjΣkjþ logPðy= C kÞ is the intercept 

for class C k.

• s = - p 
2 logð2πÞ- log pxðxÞ is a term that does not depend on 

class C k. 

Therefore, quadratic discriminant analysis is a quadratic model. 
The probabilities for input x to belong to each class C k can then 

easily be computed: 

Pðy= C kjx= xÞ= 
exp x⊤W kx þ x⊤wk þ w0kð  

k 
j =1 exp x

⊤W jx þ x⊤wj þ w0j 

11 Tree-Based Methods 

11.1 Decision Tree Binary decisions based on conditional statements are frequently 
used in everyday life because they are intuitive and easy to under-
stand. Figure 17 illustrates a general approach when someone is ill. 
Depending on conditional statements (severity of symptoms, abil-
ity to quickly consult a specialist), the decision (consult your gen-
eral practitioner or a specialist, or call for emergency services) is 
different. Models with such an architecture are often used in 
machine learning and are called decision trees. 

A decision tree is an algorithm containing only conditional 
statements and can be represented with a tree [17]. This graph 
consists of:

• Decision nodes for all the conditional statements

• Branches for the potential outcomes of each decision node

• Leaf nodes for the final decision 

Figure 18 illustrates a decision tree and its corresponding decision 
function. For a given sample, the final decision is obtained by 
following its corresponding path, starting at the root node. 

A decision tree recursively partitions the feature space in order 
to group samples with the same labels or similar target values. At 
each node, the objective is to find the best (feature, threshold) pair 
so that both subsets obtained with this split are the most pure, that



is, homogeneous. To do so, the best (feature, threshold) pair is 
defined as the pair that minimizes an impurity criterion. 
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Severity of symptoms 

Consult your 
general practitioner 

M
ild
 

Can you quickly 
consult a specialist? 

Consult a specialist 

Ye
s 

Call for 
emergency services 

No

Severe 

Fig. 17 A general thought process when being ill. Depending on conditional 
statements (severity of symptoms, ability to quickly consult a specialist), the 
decision (consult your general practitioner or a specialist, or call for emergency 
services) is different 
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ŷ = −1 

No

No 

−15 −10 −5 0 5 
x1 

−10 

−5 

0 

5 

10 
x
2 
−6.26 −4.23 

3.34 

Fig. 18 A decision tree: (left) the rules learned by the decision tree and (right) the 
corresponding decision function 

Let S ⊆ X be a subset of training samples. For classification 
tasks, the distribution of the classes, that is, the proportion of 
each class, is used to measure the purity of the subset. Let pk be 
the proportion of samples from class C k in a given partition: 

pk = 
1 
jSj 

y∈S 

1y = C k 

Po

•

pular impurity criteria for classification tasks include: 

Gini index: ∑ kpk(1- pk)

• Entropy: - pk logðpkÞ
•

k 
Misclassification: 1-maxkpk



y∈S
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Fig. 19 Illustration of Gini index and entropy. The entropy function takes larger 
values than the Gini index, especially for pk< 0.8, which thus is more discrimi-
native against heterogeneous subsets (when most classes only represent only a 
small proportion of the samples) than Gini index 

Figure 19 illustrates the values of the Gini index and the entropy 
for a single class C k and for different proportions of samples pk. One 
can see that the entropy function takes larger values than the Gini 
index, especially for pk<0.8. Since the sum of the proportions is 
equal to 1, most classes only represent a small proportion of the 
samples. Therefore, a simple interpretation is that entropy is more 
discriminative against heterogeneous subsets than the Gini index. 
Misclassification only takes into account the proportion of the most 
common class and tends to be even less discriminative against 
heterogeneous subsets than both entropy and Gini index. 

For regression tasks, the mean error from a reference value 
(such as the mean or the median) is often used as the impurity 
criterion:

• Mean squared error: 1 jSj ðy - yÞ2 with y = 1 jSj y

•
y∈S y∈S 

Mean absolute error: 1 jSj jy -medianSðyÞj 
Theoretically, a tree can grow until every leaf node is perfectly 

pure. However, such a tree would have a lot of branches and would 
be very complex, making it prone to overfitting. Several strategies 
are commonly used to limit the size of the tree. One approach 
consists in growing the tree with no restriction and then pruning 
the tree, that is, replacing subtrees with nodes [17]. Other popular 
strategies to limit the complexity of the tree are usually applied 
while the tree is grown and include setting:

• A maximum depth for the tree

• A minimum number of samples required to be at an internal 
node



•
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• A minimum number of samples required to split a given 
partition

• A maximum number of leaf nodes

• A maximum number of features considered (instead of all the 
features) to find the best split

• A minimum impurity decrease to split an internal node 

11.2 Random Forest One limitation of decision trees is their simplicity. Decision trees 
tend to use a small fraction of the features in their decision function. 
In order to use more features in the decision tree, growing a larger 
tree is required, but large trees tend to suffer from overfitting, that 
is, having a low bias but a high variance. One solution to decrease 
the variance without much increasing the bias is to build an ensem-
ble of trees with randomness, hence the name random forest 
[18]. An overview of random forests can be found in Box 5. 

In a bid to have trees that are not perfectly correlated (thus 
building actually different trees), each tree is built using only a 
subset of the training samples obtained with random sampling. 
Moreover, for each decision node of each tree, only a subset of 
the features are considered to find the best split. 

The final prediction is obtained by averaging the predictions of 
each tree. For classification tasks, the predicted class is either the 
most commonly predicted class (hard-voting) or the one with the 
highest mean probability estimate (soft-voting) across the trees. 
For regression tasks, the predicted value is usually the mean of the 
predicted values across the trees. 

Box 5: Random Forest

• Random forest: ensemble of decision trees with randomness 
introduced to build different trees

• Decision tree: algorithm containing only conditional state-
ments and represented with a tree 

Regularization: maximum depth for each tree, minimum 
number of samples required to split a given partition, etc. 

11.3 Extremely 

Randomized Trees 

Even though random forests involve randomness in sampling 
both the samples and the features, trees inside a random forest 
tend to be correlated, thus limiting the variance decrease. In order 
to decrease even more the variance of the model (while possibly 
increasing its bias) by growing less correlated trees, extremely 
randomized trees introduce more randomness [19]. Instead of 
looking for the best split among all the candidate (feature,



threshold) pairs, one threshold is drawn at random for each 
candidate feature, and the best of these randomly generated 
thresholds is chosen as the splitting rule. 
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12 Clustering 

So far, we have presented classic machine learning methods for 
classification and regression, which are the main components of 
supervised learning. Each input x(i) had an associated output y(i) . In  
this section, we present clustering, which is an unsupervised 
machine learning task. In unsupervised learning, only the inputs 
x(i) are available, with no associated outputs. As the ground truth is 
not available, the objective is to extract information from the input 
data without supervising the learning process with the output data. 

Clustering consists in finding groups of samples such that:

• Samples from the same group are similar.

• Samples from different groups are different. 

For instance, clustering can be used to identify disease subtypes for 
heterogeneous diseases such as Alzheimer’s disease and Parkinson’s 
disease. 

In this section, we present two of the most common clustering 
methods: the k-means algorithm and the Gaussian mixture model. 

12.1 k-means The k-means algorithm divides a set of n samples, denoted by X, 
into a set of k disjoint clusters, each denoted by X j, such that 
X = fX1, . . ., X kg. 

Figure 20 illustrates the concept of this algorithm. Each cluster 
X j is characterized by its centroid, denoted by μj, that is, the mean of 

the samples in this cluster: 

−10 −5 0 5 10 
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k-means 

Cluster 1 
Centroid of cluster 1 
Cluster 2 
Centroid of cluster 2 
Cluster 3 
Centroid of cluster 3 

Fig. 20 Illustration of the k-means algorithm. The objective of the algorithm is to 
find the centroids that minimize the within-cluster sum-of-squares criterion. In 
this example, the inertia is approximately equal to 184.80 and is the lowest 
possible inertia, meaning that the represented centroids are optimal
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μj = 
1 
jX j j

xðiÞ∈X j 

xðiÞ 

The centroids fully define the set of clusters because each sample is 
assigned to the cluster whose centroid is the closest. 

The k-means algorithm aims at finding centroids that minimize 
the inertia, also known as within-cluster sum-of-squares criterion: 

min
fμ1, ..., μkg 

k 

j =1 xðiÞ∈X j 

kxðiÞ - μjk2 2 

The original algorithm used to find the centroids is often referred 
to as Lloyd’s algorithm [20] and is presented in Algorithm 1. After 
initializing the centroids, a two-step loop is repeated until conver-
gence (when the centroids are identical for two consecutive itera-
tions) consisting of: 

1. The assignment step, where the clusters are updated based on 
the current centroids 

2. The update step, where the centroids are updated based on the 
current clusters 

When clusters are well-defined, a point from a given cluster is likely 
to stay in this cluster. Therefore, the assignment step can be sped up 
thanks to the triangle inequality by keeping track of lower and 
upper bounds for distances between points and centers, at the 
cost of higher memory usage [21]. 

Algorithm 1 Lloyd’s algorithm (aka naive k-means algorithm) 

esult: Centroids {μ1, . . . ,μk} 
nitialize the centroids {μ1, . . . ,μk} ; 
hile not converged do 

Assignment step: Compute the clusters (i.e., assign each 
sample to its nearest centroid): 

∀j ∈ {1, . . . , k}, Xj = {x(i) ∈ X  | ‖x(i)−μj‖2 
2 =  min  

l
‖x(i)−μl‖2 

2} 

Update step: Compute the centroids of the updated clusters: 

∀j ∈ {1, . . . , k}, μj = 
1 
j

∑

(i) 

x(i)
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Even though the k-means algorithm is one of the simplest and 
most used clustering methods, it has several downsides that should 
be kept in mind. 

First, the number of clusters k is a hyperparameter. Setting a 
value much different from the actual number of clusters may yield 
poor clusters. 

Second, the inertia is not a convex function. Although Lloyd’s 
algorithm is guaranteed to converge, it may converge to a local 
minimum that is not a global minimum. Figure 21 illustrates the 
convergence to such centroids. Several strategies are often applied 
to address this issue, including sophisticated centroid initialization 
[22] and running the algorithm numerous times and keeping the 
best run (i.e., the one yielding the lowest inertia). 

Inertia = 184.80 

Inertia = 623.67 Inertia = 953.91 

Inertia = 952.08 Inertia = 613.62 

Fig. 21 Illustration of the convergence of the k-means algorithm to bad local 
minima. In the upper figure, the algorithm converged to a global minimum 
because the inertia is equal to the minimum possible value (184.80); thus, the 
obtained clusters are optimal. In the four other figures, the algorithm converged 
to a local minima that are not global minima because the inertias are higher than 
the minimum possible value; thus, the obtained clusters are suboptimal
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Third, inertia makes the assumption that the clusters are convex 
and isotropic. The k-means algorithm may yield poor results when 
this assumption does not hold, such as with elongated clusters or 
manifolds with irregular shapes. 

Fourth, the Euclidean distance tends to be inflated (i.e., the 
ratio of the distances of the nearest and farthest neighbors to a 
given target is close to 1) in high-dimensional spaces, making 
inertia a poor criterion in such spaces [23]. One can alleviate this 
issue by running a dimensionality reduction method such as princi-
pal component analysis prior to the k-means algorithm. 

12.2 Gaussian 

Mixture Model 

A mixture model makes the assumption that each sample is gener-
ated from a mixture of several independent distributions. 

Let k be the number of distributions. Each distribution Fj is 
characterized by its probability of being picked, denoted by πj, and 
its density pj with parameters θj, denoted by pj(�; θj). Let Δ= (Δ1, 
. . ., Δk) be a vector-valued random variable such that: 

k 

j =1 

Δj =1 and 8j∈f1, . . ., kg, PðΔj =1Þ=1-PðΔj =0Þ= πj 

and (x1, . . ., xk) be independent random variables such that xj�Fj. 
The samples are assumed to be generated from a random variable x 
with density px such that: 

x= 
k 

j =1 

Δjxj 

8x∈X, pxðx, θÞ= 
k 

j =1 

πj pj ðx; θj Þ 

A Gaussian mixture model is a particular case of a mixture 
model in which each distribution Fj is a Gaussian distribution 
with mean vector μj and covariance matrix Σj: 

8j∈f1, . . ., kg, F j = N ðμj ,Σj Þ 
Figure 22 illustrates the learned distributions from a Gaussian 
mixture model. 

The objective is to find the parameters θ that maximize the 
likelihood, with θ= fμjgk j =1 

, fΣjgk j =1 
, fπjgk j =1 

: 

LðθÞ= ∏ 
n 

i =1 
pX ðxðiÞ; θÞ 

For computational reasons, it is easier to maximize the 
log-likelihood:
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Fig. 22 Gaussian mixture model. For each estimated distribution, the mean 
vector and the ellipsis consisting of all the points within one standard deviation 
of the mean are plotted 

logðLðθÞÞ= 
n 

i =1 

logðpX ðxðiÞ; θÞÞ= 
n 

i =1 

log 
k 

j =1 

πj pj ðx; θj Þ 

Because the density pX(�; θ) is a weighted sum of Gaussian densities, 
the expression cannot be further simplified. 

In order to solve this maximization problem, an algorithm 
called expectation-maximization (EM) is often applied [24]. Algo-
rithm 2 describes the main concepts of this algorithm. After initi-
alizing the parameters of each distribution, a two-step loop is 
repeated until convergence (when the parameters are stable over 
consecutive loops):

• The expectation step, in which the probability for each sample x(i) 

to have been generated from distribution Fj is computed

• The maximization step, in which the probability and the para-
meters of each distribution are updated 

Because it is impossible to know which samples have been gener-
ated by each distribution, it is also impossible to directly maximize 
the log-likelihood, which is why we compute its expected value 
using the posterior probabilities, hence the name expectation step. 
The second step simply consists in maximizing the expected 
log-likelihood, hence the name maximization step.
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Algorithm 2 Expectation-maximization algorithm for Gauss-
ian mixture models 

esult: Mean vectors {μj}k 
j=1, covariance matrices {Σj}k 

j=1 and 
probabilities {πj}k 

j=1 

nitialize the mean vectors {μj}k 
j=1, covariance matrices {Σj}k 

j=1 

and probabilities {πj}k 
j=1 ; 

hile not converged do 

E-step: Compute the posterior probability γi(j) for each sample 
x(i) to have been generated from distribution Fj: 

∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . , k}, γi(j) =  
πjpj(x(i);θj,Σj)∑k 
l=1 πlpj(x(i);θl,Σl) 

M-step: Update the parameters of each distribution Fj: 

∀j ∈ {1, . . . , k}, μj =
∑n 

i=1 γi(j)x(i)
∑n 

i=1 γi(j) 

∀j ∈ {1, . . . , k}, Σj =
∑n 

i=1 γi(j)[x(i) − μj][x(i) − μj]�∑n 
i=1 γi(j) 

j 1, . . . , k  , πj = 
1 n∑

γi(j) 

Lloyd’s and EM algorithms have a lot of similarities. In the first 
step, the assignment step assigns each sample to its closest cluster, 
whereas the expectation step computes the probability for each 
sample to have been generated from each distribution. In the 
second step, the update step computes the centroid of each cluster 
as the mean of the samples in a given cluster, while the maximiza-
tion step updates the probability and the parameters of each distri-
bution as a weighted average over all the samples. For these reasons, 
the k-means algorithm is often referred to as a hard-voting cluster-
ing method, as opposed to the Gaussian mixture model which is 
referred to as a soft-voting clustering method. 

The Gaussian mixture model has several advantages over the k-
means algorithm. 

First, the use of normal distribution densities instead of Euclid-
ean distances dwindles the inflation issue in high-dimensional 
spaces. Second, the Gaussian mixture model includes covariance 
matrices, allowing for clusters with elliptical shapes, while the k-
means algorithm only includes centroids, forcing clusters to have 
circular shapes.
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Nonetheless, the Gaussian mixture model also has several draw-
backs, sharing a few with the k-means algorithm. 

First, the number of distributions k is a hyperparameter. Setting 
a value much different from the actual number of clusters may yield 
poor clusters. Second, the log-likelihood is not a concave function. 
Like Lloyd’s algorithm, the EM algorithm is guaranteed to con-
verge, but it may converge to a local maximum that is not a global 
maximum. Several strategies are often applied to address this issue, 
including sophisticated centroid initialization [22] and running the 
algorithm numerous times and keeping the best run (i.e., the one 
yielding the highest log-likelihood). Third, the Gaussian mixture 
model has more parameters than the k-means algorithm. Therefore, 
it usually requires more samples to accurately estimate its para-
meters (in particular the covariance matrices) than the k-means 
algorithm. 

13 Dimensionality Reduction 

Dimensionality reduction consists in finding a good mapping from 
the input space into a space of lower dimension. Dimensionality 
reduction can either be unsupervised or supervised. 

13.1 Principal 

Component Analysis 

For exploratory data analysis, it may be interesting to investigate 
the variances of the p features and the 1 2 pðp-1Þ covariances or 
correlations. However, as the value of p increases, this process 
becomes growingly tedious. Moreover, each feature may explain a 
small proportion of the total variance. It may be more desirable to 
have another representation of the data where a small number of 
features explain most of the total variance, in other words to have a 
coordinate system adapted to the input data. 

Principal component analysis (PCA) consists in finding a repre-
sentation of the data through principal components [25]. The prin-
cipal components are a sequence of unit vectors such that the ith 
vector is the best approximation of the data (i.e., maximizing the 
explained variance) while being orthogonal to the first i-1 vectors. 

Figure 23 illustrates principal component analysis when the 
input space is two-dimensional. On the upper figure, the training 
data in the original space is plotted. Both features explain about the 
same amount of the total variance, although one can clearly see that 
both features are strongly correlated. Principal component analysis 
identifies a new Cartesian coordinate system based on the input 
data. On the lower figure, the training data in the new coordinate 
system is plotted. The first dimension explains much more variance 
than the second dimension.
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Fig. 23 Illustration of principal component analysis. On the upper figure, the training data in the original space 
(blue points with black axes) is plotted. Both features explain about the same amount of the total variance, 
although one can clearly see a linear pattern. Principal component analysis learns a new Cartesian coordinate 
system based on the input data (red axes). On the lower figure, the training data in the new coordinate system 
is plotted (green points with red axes). The first dimension explains much more variance than the second 
dimension 

13.1.1 Full 

Decomposition 

Mathematically, given an input matrix X∈n × p that is centered 
(i.e., the mean value of each column X:,j is equal to zero), the 
objective is to find a matrix W∈p × p such that:

• W is an orthogonal matrix, i.e., its columns are unit vectors and 
orthogonal to each other.

• The new representation of the input data, denoted by T, consists 
of the coordinates in the Cartesian coordinate system induced by 
W (whose columns form an orthogonal basis of p with the 
Euclidean dot product):

T =XW

• Each column of W maximizes the explained variance. 
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Each column wi= W:,i is a principal component. Each input vector 
x is transformed into another vector t using a linear combination of 
each feature with the weights from the W matrix: 

t = x⊤W 

The first principal component w(1) is the unit vector that max-
imizes the explained variance: 

w1 = arg max 
kwk=1 

f 
n 

i =1 

xðiÞ⊤ wk 
= arg max 

kwk=1 

fkXwkg 
= arg max 

kwk=1 

fw⊤ X⊤ Xwkg 

w1 = arg max 
w∈p 

w⊤X⊤ Xw  

w⊤w 

As X⊤ X is a positive semi-definite matrix, a well-known result from 
linear algebra is that w(1) is the eigenvector associated with the 
largest eigenvalue of X⊤ X. 

The kth component is found by subtracting the first k-1 
principal components from X: 

X̂ k =X -
k-1 

s =1 

XwðsÞwðsÞ⊤ 

and then finding the unit vector that explains the maximum vari-
ance from this new data matrix: 

wk = arg max 
kwk=1 

fk X̂ kwkg= arg max 
w∈p 

w⊤ X̂ 
⊤ 
k X̂ kw 

w⊤w 

One can show that the eigenvector associated with the kth largest 
eigenvalue of the X⊤ X matrix maximizes the quantity to be 
maximized. 

Therefore, the matrix W is the matrix whose columns are the 
eigenvectors of the X⊤ X matrix, sorted by descending order of 
their associated eigenvalues. 

13.1.2 Truncated 

Decomposition 

Since each principal component iteratively maximizes the remain-
ing variance, the first principal components explain most of the 
total variance, while the last ones explain a tiny proportion of the 
total variance. Therefore, keeping only a subset of the ordered 
principal components usually gives a good representation of the 
input data. 

Mathematically, given a number of dimensions l, the new rep-
resentation is obtained by truncating the matrix of principal com-
ponents W to only keep the first l columns, resulting in the 
submatrix W:,:l:
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Fig. 24 Illustration of principal component analysis as a dimensionality reduction 
technique. The Iris flower dataset consists of 50 samples for each of 3 iris 
species (setosa, versicolor, and virginica) for which 4 features were measured, 
the length and the width of the sepals and petals, in centimeters. The projection 
of each sample on the first two principal components is shown in this figure. The 
first dimension explains most of the variance (92.46%) 

T 
~ 

=XW :,:l 

Figure 24 illustrates the use of principal component analysis as 
dimensionality reduction. The Iris flower dataset consists of 50 sam-
ples for each of 3 iris species (setosa, versicolor, and virginica) for 
which 4 features were measured, the length and the width of the 
sepals and petals, in centimeters. The projection of each sample on 
the first two principal components is shown in this figure. 

13.2 Linear 

Discriminant Analysis 

In Subheading 10, we introduced linear discriminant analysis 
(LDA) as a classification method. However, it can also be used as 
a supervised dimensionality reduction method. LDA fits a multi-
variate normal distribution for each class C k, so that each class is 
characterized by its mean vector μk∈p and has the same covariance 
matrix Σ∈p × p . However, a set of k points lies in a space of 
dimension at most k-1. For instance, a set of 2 points lies on a 
line, while a set of 3 points lies on a plane. Therefore, the subspace 
induced by the k mean vectors μk can be used as dimensionality 
reduction. 

There exists another formulation of linear discriminant analysis 
which is equivalent and more intuitive for dimensionality reduc-
tion. Linear discriminant analysis aims to find a linear projection so 
that the classes are separated as much as possible (i.e., projections of



samples from a same class are close to each other, while projections 
of samples from different classes are far from each other). 
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Mathematically, the objective is to find the matrix W∈p × l 

(with l≤ k-1) that maximizes the between-class scatter while also 
minimizing the within-class scatter: 

max 
W 

tr W⊤ SwWð Þ-1 
W⊤ SbWð Þ  

The within-class scatter matrix Sw summarizes the diffusion 
between the mean vector μk of class C k and all the inputs x(i) 

belonging to class C k, over all the classes: 

Sw = 
q 

k=1 yðiÞ = C k 

½xðiÞ - μk�½xðiÞ - μk�⊤ 

The between-class scatter matrix Sb summarizes the diffusion 
between all the mean vectors: 

Sb = 
q 

k=1 

nk½μk - μ�½μk - μ�⊤ 

where nk is the proportion of samples belonging to class C k and 

μ= q 
k=1nkμk = 1 n 

n 
i =1x

ðiÞ is the mean vector over all the input 

vectors. 
One can show that the W matrix consists of the first 

l eigenvectors of the matrix S -1 
w Sb with the corresponding eigen-

values being sorted in descending order. Just as in principal com-
ponent analysis, the corresponding eigenvalues can be used to 
determine the contribution of each dimension. However, the crite-
rion for linear discriminant analysis is different from the one from 
principal component analysis: it is to maximizing the separability of 
the classes instead of maximizing the explained variance. 

Figure 25 illustrates the use of linear discriminant analysis as a 
dimensionality reduction technique. We use the same Iris flower 
dataset as in Fig. 24 illustrating principal component analysis. The 
projection of each sample on the learned two-dimensional space is 
shown, and one can see that the first (horizontal) axis is more 
discriminative of the three classes with linear discriminant analysis 
than with principal component analysis. 

14 Kernel Methods 

Kernel methods allow for generalizing linear models to non-linear 
models with the use of kernel functions. 

As mentioned in Subheading 8, the main idea of kernel meth-
ods is to first map the input data from the original input space to a 
feature space and then perform dot products in this feature space.



Under certain assumptions, an optimal solution of the minimiza-
tion problem of the cost function admits the following form: 
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Fig. 25 Illustration of linear discriminant analysis as a dimensionality reduction 
technique. The Iris flower dataset consists of 50 samples for each of 3 iris 
species (setosa, versicolor, and virginica) for which 4 features were measured, 
the length and the width of the sepals and petals, in centimeters. The projection 
of each sample on the learned two-dimensional space is shown in this figure 

f = 
n 

i =1 

αiKð�, xðiÞÞ 

where K is the kernel function which is equal to the dot product in 
the feature space: 

8x, x ′∈ I , Kðx, x ′ Þ=ϕðxÞ⊤ ϕðx ′ Þ 
As this term frequently appears, we denote by K the n ×n symmet-
ric matrix consisting of the evaluations of the kernel on all the pairs 
of training samples: 

8i, j∈f1, . . .,ng, Kij =KðxðiÞ, xðjÞÞ 
In this section, we present the extension of two models previ-

ously introduced in this chapter, ridge regression and principal 
component analysis, with kernel functions. 

14.1 Kernel Ridge 

Regression 

Kernel ridge regression combines ridge regression with the kernel 
trick and thus learns a linear function in the space induced by the 
respective kernel and the training data [2]. For non-linear kernels, 
this corresponds to a non-linear function in the original input 
space.
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Mathematically, the objective is to find the function f with the 
following form: 

f = 
n 

i =1 

αiKð�, xðiÞÞ 

that minimizes the sum of squared errors with a 
ℓ2 penalization term: 

min 
f 

n 

i =1 

yðiÞ - f ðxðiÞ 2 þ λkf k2 

The cost function can be simplified using the specific form of the 
possible functions: 

n 

i =1 

ðyðiÞ - f ðxðiÞÞ2 þ λkf k2 

= 
n 

i =1 

yðiÞ -
n 

j =1 

αj kðxðjÞ, xðiÞÞ 
2 

þ λ 
n 

i =1 

αiK ð�, xðiÞÞ 
2 

= 
n 

i =1 

yðiÞ -α⊤K :,i 
2 þ λα⊤Kα 

= ky -Kαk2 2 þ λα⊤Kα 

Therefore, the minimization problem is: 

min
α 

ky -Kαk2 2 þ λα⊤Kα 

for which a solution is given by: 

α⋆ = K þ λIð Þ-1 y 

Figure 8 illustrates the prediction function of a kernel ridge 
regression method with a radial basis function kernel. The predic-
tion function is non-linear as the kernel is non-linear. 

14.2 Kernel Principal 

Component Analysis 

As mentioned in Subheading 13, principal component analysis 
consists in finding the linear orthogonal subspace in the original 
input space such that each principal component explains the most 
variance. The optimal solution is given by the first eigenvectors of 
X⊤ X with the corresponding eigenvalues being sorted in descend-
ing order. 

With kernel principal component analysis, the objective is to 
find the linear orthogonal subspace in the feature space such that 
each principal component in the feature space explains the most 
variance [26]. The solution is given by the first l eigenvectors 
(αk)1≤k≤l of the K matrix with the corresponding eigenvalues 
being sorted in descending order. The eigenvectors are normalized 
in order to be unit vectors in the feature space.



Classic Machine Learning Methods 73

Training data 

Projection with principal component analysis 
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Fig. 26 Illustration of kernel principal component analysis. Some non-linearly 
separable training data is plotted (top). The projected training data using 
principal component analysis remains non-linearly separable (middle). The 
projected training data using kernel principal component analysis (with a 
non-linear kernel) becomes linearly separable (bottom) 

Finally, the projection of any input x in the original space on the 
kth component can be computed as: 

ϕðxÞ⊤ αk = 
n 

i =1 

αkiKðx, xðiÞÞ 

Figure 26 illustrates the projection of some non-linearly separable 
classification data with principal component analysis and with ker-
nel principal component analysis with a non-linear kernel. The 
projected input data becomes linearly separable using kernel prin-
cipal component analysis, whereas the projected input data using 
(linear) principal component analysis remains non-linearly 
separable.
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15 Conclusion 

In this chapter, we described the main classic machine learning 
methods. Due to space constraints, the description of some of 
them was brief. The reader who seeks more details can refer to 
[5, 6]. All these approaches are implemented in the scikit-learn 
Python library [27]. A common point of the approaches presented 
in this chapter is that they use as input a set of given or pre-extracted 
features. On the contrary, deep learning approaches often provide 
an end-to-end learning setup within which the features are learned. 
These techniques are covered in Chaps. 3–6. 
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Chapter 3 

Deep Learning: Basics and Convolutional Neural Networks 
(CNNs) 
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Olivier Colliot, and Vincent Lepetit 

Abstract 

Deep learning belongs to the broader family of machine learning methods and currently provides state-of-
the-art performance in a variety of fields, including medical applications. Deep learning architectures can be 
categorized into different groups depending on their components. However, most of them share similar 
modules and mathematical formulations. In this chapter, the basic concepts of deep learning will be 
presented to provide a better understanding of these powerful and broadly used algorithms. The analysis 
is structured around the main components of deep learning architectures, focusing on convolutional neural 
networks and autoencoders. 

Key words Perceptrons, Backpropagation, Convolutional neural networks, Deep learning, Medical 
imaging 

1 Introduction 

Recently, deep learning frameworks have become very popular, 
attracting a lot of attention from the research community. These 
frameworks provide machine learning schemes without the need 
for feature engineering, while at the same time they remain quite 
flexible. Initially developed for supervised tasks, they are nowadays 
extended to many other settings. Deep learning, in the strict sense, 
involves the use of multiple layers of artificial neurons. The first 
artificial neural networks were developed in the late 1950s with the 
presentation of the perceptron [1] algorithms. However, limita-
tions related to the computational costs of these algorithms during 
that period, as well as the often-miscited claim of Minsky and 
Papert [2] that perceptrons are not capable of learning non-linear 
functions such as the XOR, caused a significant decline of interest 
for further research on these algorithms and contributed to the 
so-called artificial intelligence winter. In particular, in their book 
[2], Minsky and Papert discussed that single-layer perceptrons are

Olivier Colliot (ed.), Machine Learning for Brain Disorders, Neuromethods, vol. 197, https://doi.org/10.1007/978-1-0716-3195-9_3, 
© The Author(s) 2023

77



only capable of learning linearly separable patterns. It was often 
incorrectly believed that they also presumed this is the case for 
multilayer perceptron networks. It took more than 10 years for 
research on neural networks to recover, and in [3], some of these 
issues were clarified and further discussed. Even if during this 
period there was not a lot of research interest for perceptrons, 
very important algorithms such as the backpropagation algorithm 
[4–7] and recurrent neural networks [8] were introduced.
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After this period, and in the early 2000s, publications by Hin-
ton, Osindero, and Teh [9] indicated efficient ways to train multi-
layer perceptrons layer by layer, treating each layer as an 
unsupervised restricted Boltzmann machine and then using super-
vised backpropagation for the fine-tuning [10]. Such advances in 
the optimization algorithms and in hardware, in particular graphics 
processing units (GPUs), increased the computational speed of 
deep learning systems and made their training easier and faster. 
Moreover, around 2010, the first large-scale datasets, with Ima-
geNet [11] being one of the most popular, were made available, 
contributing to the success of deep learning algorithms, allowing 
the experimental demonstration of their superior performance on 
several tasks in comparison with other commonly used machine 
learning algorithms. Finally, another very important factor that 
contributed to the current popularity of deep learning techniques 
is their support by publicly available and easy-to-use libraries such 
as Theano [12], Caffe [13], TensorFlow [14], Keras [15], and 
PyTorch [16]. Indeed, currently, due to all these publicly available 
libraries that facilitate collaborative and reproducible research and 
access to resources from large corporations such as Kaggle, Google 
Colab, and Amazon Web Services, teaching and research about 
these algorithms have become much easier. 

This chapter will focus on the presentation and discussion of 
the main components of deep learning algorithms, giving the 
reader a better understanding of these powerful models. The chap-
ter is meant to be readable by someone with no background in deep 
learning. The basic notions of machine learning will not be 
included here; however, the reader should refer to Chap. 2 (reader 
without a background in engineering or computer science can also 
refer to Chap. 1 for a lay audience-oriented presentation of these 
concepts). The rest of this chapter is organized as follows. We will 
first present the deep feedforward networks focusing on percep-
trons, multilayer perceptrons, and the main functions that they are 
composed of (Subheading 2). Then, we will focus on the optimiza-
tion of deep neural networks, and in particular, we will formally 
present the topics of gradient descent, backpropagation, as well as 
the notions of generalization and overfitting (Subheading 3). Sub-
heading 4 will focus on convolutional neural networks discussing in 
detail the basic convolution operations, while Subheading 5 will 
give an overview of the autoencoder architectures.
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2 Deep Feedforward Networks 

In this section, we will present the early deep learning approaches 
together with the main functions that are commonly used in deep 
feedforward networks. Deep feedforward networks are a set of 
parametric, non-linear, and hierarchical representation models 
that are optimized with stochastic gradient descent. In this defini-
tion, the term parametric holds due to the parameters that we need 
to learn during the training of these models, the non-linearity due 
to the non-linear functions that they are composed of, and the 
hierarchical representation due to the fact that the output of one 
function is used as the input of the next in a hierarchical way. 

2.1 Perceptrons The perceptron [1] was originally developed for supervised binary 
classification problems, and it was inspired by works from neuros-
cientists such as Donald Hebb [17]. It was built around a 
non-linear neuron, namely, the McCulloch-Pitts model of a neu-
ron. More formally, we are looking for a function f(x;w, b) such that 
f ð:;w, bÞ : x∈p → fþ1, -1g where w and b are the parameters 
of f and the vector x= [x1, . . ., xp]

⊤ is the input. The training set is 
{(x(i) , y(i) )}. In particular, the perceptron relies on a linear model for 
performing the classification: 

f ðx;w, bÞ= 
þ1 if  w⊤x þ b ≥0

-1 otherwise 
: ð1Þ 

Such a model can be interpreted geometrically as a hyperplane 
that can appropriately divide data points that are linearly separable. 
Moreover, one can observe that, in the previous definition, a per-
ceptron is a combination of a weighted summation between the 
elements of the input vector x combined with a step function that 
performs the decision for the classification. Without loss of gener-
ality, this step function can be replaced by other activation functions 
such as the sigmoid, hyperbolic tangent, or softmax functions (see 
Subheading 2.3); the output simply needs to be thresholded to 
assign the + 1 or -1 class. Graphically, a perceptron is presented in 
Fig. 1 on which each of the elements of the input is described as a 
neuron and all the elements are combined by weighting with the 
models’ parameters and then passed to an activation function for 
the final decision. 

During the training process and similarly to the other machine 
learning algorithms, we need to find the optimal parameters w and 
b for the perceptron model. One of the main innovations of Rosen-
blatt was the proposition of the learning algorithm using an itera-
tive process. First, the weights are initialized randomly, and then 
using one sample (x(i) , y(i) ) of the training set, the prediction of the



perceptron is calculated. If the prediction is correct, no further 
action is needed, and the next data point is processed. If the 
prediction is wrong, the weights are updated with the 
following rule: the weights are increased in case the prediction is 
smaller than the ground-truth label y(i) and decreased if the predic-
tion is higher than the ground-truth label. This process is repeated 
until no further errors are made for the data points. A pseudocode 
of the training or convergence algorithm is presented in 
Algorithm 1 (note that in this version, it is assumed that the data 
is linearly separable). 
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Fig. 1 A simple perceptron model. The input elements are described as neurons 
and combined for the final prediction ŷ . The final prediction is composed of a 
weighted sum and an activation function 

Algorithm 1 Train perceptron 

procedure Train({(x(i), y(i))}) 
Initialization: initialize randomly the weights w and bias b 
while ∃i ∈ {1, . . . , n}, f(x(i);w, b) �= y(i) do 

Pick i randomly 
error = y(i) − f(x(i);w, b) 
if error �= 0  then 

w ← w + error · x(i) 

b b + error 

Originally, the perceptron has been proposed for binary classi-
fication tasks. However, this algorithm can be generalized for the 
case of multiclass classification, fc(x;w, b), where c∈{1, . . ., C} are 
the different classes. This can be easily achieved by adding more 
neurons to the output layer of the perceptron. That way, the 
number of output neurons would be the same as the number of 
possible outputs we need to predict for the specific problem. Then, 
the final decision can be made by choosing the maximum of the 
different output neurons f n = max f cðx;w, bÞ. 

c∈f1, ...,CgFinally, in the following, we will integrate the bias b in the 
weights w (and thus add 1 as the first element of the input vector 
x= [1, x1, . . ., xp]

⊤ ). The model can then be rewritten as f(x;w) such 
that f ð:;wÞ : x∈pþ1 → fþ1, -1g.
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2.2 Multilayer 

Perceptrons 

The limitation of perceptrons to linear problems can be overcome 
by using multilayer perceptions, often denoted as MLP. An MLP 
consists of at least three layers of neurons: the input layer, a hidden 
layer, and an output layer. Except for the input neurons, each 
neuron uses a non-linear activation function, making it capable of 
distinguishing data that is not linearly separable. These layers can 
also be called fully connected layers since they connect all the 
neurons of the previous and of the current layer. It is absolutely 
crucial to keep in mind that non-linear functions are necessary for 
the network to find non-linear separations in the data (otherwise, 
all the layers could simply be collapsed together into a single 
gigantic linear function). 

2.2.1 A Simple Multilayer 

Network 

Without loss of generality, an MLP with one hidden layer can be 
defined as: 

zðxÞ= gðW 1 xÞ 
ŷ = f ðx;W 1 ,W 2Þ=W 2 zðxÞ 

, ð2Þ 

where gðxÞ :  →denotes the non-linear function (which can be 
applied element-wise to a vector), W1 the matrix of coefficients of 
the first layer, and W2 the matrix of coefficients of the second layer. 

Equivalently, one can write: 

yc = 
d1 

j =1 

W 2 
ðc,jÞgðW 1⊤ 

ðjÞxÞ, ð3Þ 

where d1 is the number of neurons for the hidden layer which 
defines the width of the network, W 1 

ðjÞ denotes the first column 
of the matrix W1 , and W 2 

ðc,jÞ denotes the c, j element of the matrix 
W2 . Graphically, a two-layer perceptron is presented in Fig. 2 on
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x2 

xp 

z3 

z2 

z1 
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1 

W 1 W 2 

ŷ 

2 ŷ 

Fig. 2 An example of a simple multilayer perceptron model. The input layer is fed 
into a hidden layer (z), which is then combined for the last output layer providing 
the final prediction



which the input neurons are fed into a hidden layer whose neurons 
are combined for the final prediction.

82 Maria Vakalopoulou et al.

There were a lot of research works indicating the capacity of 
feedforward neural networks with a single hidden layer of finite size 
to approximate continuous functions. In the late 1980s, the first 
proof was published [18] for sigmoid activation functions (see 
Subheading 2.3 for the definition) and was generalized to other 
functions for feedforward multilayer architectures [19–21]. In par-
ticular, these works prove that any continuous function can be 
approximated under mild conditions as closely as wanted by a 
three-layer network. As N →1, any continuous function f can 
be approximated by some neural network f̂ , because each compo-
nent gðW T 

ðjÞxÞ behaves like a basis function and functions in a 
suitable space admit a basis expansion. However, since N may 
need to be very large, introducing some limitations for these 
types of networks, deeper networks, with more than one hidden 
layer, can provide good alternatives. 

2.2.2 Deep Neural 

Network 

The simple MLP networks can be generalized to deeper networks 
with more than one hidden layer that progressively generate 
higher-level features from the raw input. Such networks can be 
written as: 

z1ðxÞ= gðW 1 xÞ 
. . .  

zkðxÞ= gðWk zk-1ðxÞÞ 
. . .  

ŷ = f ðx;W 1 , . . .,W K Þ= zK ðzK -1ð. . .ðz1ðxÞÞÞÞ 

, ð4Þ 

where K denotes the number of layers for the neural network, 
which defines the depth of the network. In Fig. 3, a graphical 
representation of the deep multilayer perceptron is presented. 
Once again, the input layer is fed into the different hidden layers 
of the network in a hierarchical way such that the output of one 
layer is the input of the next one. The last layer of the network 
corresponds to the output layer, which makes the final prediction of 
the model. 

As for networks with one hidden layer, they are also universal 
approximators. However, the approximation theory for deep net-
works is less understood compared with neural networks with one 
hidden layer. Overall, deep neural networks excel at representing 
the composition of functions. 

So far, we have described neural networks as simple chains of 
layers, applied in a hierarchical way, with the main considerations 
being the depth of the network (the number of layers K) and the



width of each k layer (the number of neurons dk). Overall, there are 
no rules for the choice of the K and dk parameters that define the 
architecture of the MLP. However, it has been shown empirically 
that deeper models perform better. In Fig. 4, an overview of 
2 different networks with 3 and 11 hidden layers is presented 
with respect to the number of parameters and their accuracy. For 
each architecture, the number of parameters varies by changing the 
number of neurons dk. One can observe that, empirically, deeper 
networks achieve better performance using approximately the same 
or a lower number of parameters. Additional evidence to support 
these empirical findings is a very active field of research [22, 23]. 
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Fig. 3 An example of a deep neural network. The input layer, the kth layer of the deep neural network, and the 
output layer are presented in the figure 

Fig. 4 Comparison of two different networks with almost the same number of parameters, but different 
depths. Figure inspired by Goodfellow et al. [24] 

Neural networks can come in a variety of models and architec-
tures. The choice of the proper architecture and type of neural 
network depends on the type of application and the type of data.



2 j =0 j
are homogeneously, linearly separable.

Most of the time, the best architecture is defined empirically. In the 
next section, we will discuss the main functions used in neural 
networks. 
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2.3 Main Functions A neural network is a composition of different functions also called 
modules. Most of the times, these functions are applied in a sequen-
tial way. However, in more complicated designs (e.g., deep residual 
networks), different ways of combining them can be designed. In 
the following subsections, we will discuss the most commonly used 
functions that are the backbones of most perceptrons and multi-
layer perceptron architectures. One should note, however, that a 
variety of functions can be proposed and used for different deep 
learning architectures with the constraint to be differentiable – 
almost – everywhere. This is mainly due to the way that deep neural 
networks are trained, and this will be discussed later in the chapter. 

2.3.1 Linear Functions One of the most fundamental functions used in deep neural net-
works is the simple linear function. Linear functions produce a 
linear combination of all the nodes of one layer of the network, 
weighted with the parameters W. The output signal of the linear 
function is Wx, which is a polynomial of degree one. While it is easy 
to solve linear equations, they have less power to learn complex 
functional mappings from data. Moreover, when the number of 
samples is much larger than the dimension of the input space, the 
probability that the data is linearly separable comes close to zero 
(Box 1). This is why they need to be combined with non-linear 
functions, also called activation functions (the name activation has 
been initially inspired by biology as the neuron will be active or not 
depending on the output of the function). 

Box 1: Function Counting Theorem 
The so-called Function Counting Theorem (Cover [25]) 
counts the number of linearly separable dichotomies of 
n points in general position in p . The theorem shows that, 
out of the total 2n dichotomies, only Cðn, pÞ= 

p n-1 

When n>> p, the probability of a dichotomy to be line-
arly separable converges to zero. This indicates the need for 
the integration of non-linear functions into our modeling and 
architecture design. Note that n>> p is a typical regime in 
machine learning and deep learning applications where the 
number of samples is very large.
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Tanh Sigmoid ReLU 

(a) (b) (c) 

Fig. 5 Overview of different non-linear functions (in green) and their first-order derivative (blue). (a) Hyperbolic 
tangent function (tanh), (b) sigmoid, and (c) rectified linear unit (ReLU) 

2.3.2 Non-linear 

Functions 

One of the most important components of deep neural networks is 
the non-linear functions, also called activation functions. They 
convert the linear input signal of a node into non-linear outputs 
to facilitate the learning of high-order polynomials. There are a lot 
of different non-linear functions in the literature. In this subsec-
tion, we will discuss the most classical non-linearities. 

Hyperbolic Tangent 

Function (tanh) 

One of the most standard non-linear functions is the hyperbolic 
tangent function, aka the tanh function. Tanh is symmetric around 
the origin with a range of values varying from-1 to 1. The biggest 
advantage of the tanh function is that it produces a zero-centered 
output (Fig. 5a), thereby supporting the backpropagation process 
that we will cover in the next section. The tanh function is used 
extensively for the training of multilayer neural networks. Formally, 
the tanh function, together with its gradient, is defined as: 

g = tanh ðxÞ= 
ex - e - x 

ex þ e - x 

∂g 
∂x 

=1- tanh 2ðxÞ 
: ð5Þ 

One of the downsides of tanh is the saturation of gradients that 
occurs for large or small inputs. This can slow down the training of 
the networks. 

Sigmoid Similar to tanh, the sigmoid is one of the first non-linear functions 
that were used to compose deep learning architectures. One of the 
main advantages is that it has a range of values varying from 0 to 
1 (Fig. 5b) and therefore is especially used for models that aim to 
predict a probability as an output. Formally, the sigmoid function, 
together with its gradient, is defined as: 

g = σðxÞ= 
1 

1þ e - x 

∂g 
∂x 

= σðxÞð1- σðxÞÞ 
: ð6Þ
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Note that this is in fact the logistic function, which is a special 
case of the more general class of sigmoid function. As it is indicated 
in Fig. 5b, the sigmoid gradient vanishes for large or small inputs 
making the training process difficult. However, in case it is used for 
the output units which are not latent variables and on which we 
have access to the ground-truth labels, sigmoid may be a good 
option. 

Rectified Linear Unit (ReLU) ReLU is considered among the default choice of non-linearity. 
Some of the main advantages of ReLU include its efficient calcula-
tion and better gradient propagation with fewer vanishing gradient 
problems compared to the previous two activation functions 
[26]. Formally, the ReLU function, together with its gradient, is 
defined as: 

g = max ð0, xÞ 
∂g 
∂x 

= 
0, if x ≤0 

1, if x >0 

: ð7Þ 

As it is indicated in Fig. 5c, ReLU is differentiable anywhere 
else than zero. However, this is not a very important problem as the 
value of the derivative at zero can be arbitrarily chosen to be 0 or 
1. In [27], the authors empirically demonstrated that the number 
of iterations required to reach 25% training error on the CIFAR-10 
dataset for a four-layer convolutional network was six times faster 
with ReLU than with tanh neurons. On the other hand, and as 
discussed in [28], ReLU-type neural networks which yield a piece-
wise linear classifier function produce almost always high confi-
dence predictions far away from the training data. However, due 
to its efficiency and popularity, many variations of ReLU have been 
proposed in the literature, such as the leaky ReLU [29] or the 
parametric ReLU [30]. These two variations both address the 
problem of dying neurons, where some ReLU neurons die for all 
inputs and remain inactive no matter what input is supplied. In such 
a case, no gradient flows from these neurons, and the training of the 
neural network architecture is affected. Leaky ReLU and parametric 
ReLU change the g(x)=0 part, by adding a slope and extending 
the range of ReLU. 

Swish The choice of the activation function in neural networks is not 
always easy and can greatly affect performance. In [31], the authors 
performed a combination of exhaustive and reinforcement 
learning-based searches to discover novel activation functions. 
Their experiments discovered a new activation function that is 
called Swish and is defined as:



n
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g = x � σðβxÞ 
∂g 
∂x 

= βgðxÞ þ  σðβxÞð1- βgðxÞÞ 
, ð8Þ 

where σ is the sigmoid function and β is either a constant or a 
trainable parameter. Swish tends to work better than ReLU on 
deeper models, as it has been shown experimentally in [31] i  
different domains. 

Softmax Softmax is often used as the last activation function of a neural 
network. In practice, it normalizes the output of a network to a 
probability distribution over the predicted output classes. Softmax 
is defined as: 

SoftmaxðxiÞ= 
ex i 
C 
j e

x 
j 

: ð9Þ 

The softmax function takes as input a vector x of C real num-
bers and normalizes it into a probability distribution consisting of 
C probabilities proportional to the exponentials of the input num-
bers. However, a limitation of softmax is that it assumes that every 
input x belongs to at least one of the C classes (which is not the case 
in practice, i.e., the network could be applied to an input that does 
not belong to any of the classes). 

2.3.3 Loss Functions Besides the activation functions, the loss function (which defines 
the cost function) is one of the main elements of neural networks. It 
is the function that represents the error for a given prediction. To 
that purpose, for a given training sample, it compares the prediction 
f(x(i) ;W) to the ground truth y(i) (here we denote for simplicity as 
W all the parameters of the network, combining all the W1 , . . ., WK 

in the multilayer perceptron shown above). The loss is denoted as 
ℓ(y, f(x;W)). The average loss across the n training samples is called 
the cost function and is defined as: 

J ðW Þ= 
1 
n 

n 

i =1 

ℓ yðiÞ, f ðxðiÞ;W Þ , ð10Þ 

where {(x(i) , y(i) )}i=1..n composes the training set. The aim of the 
training will be to find the parameters W such that J(W) is mini-
mized. Note that, in deep learning, one often calls the cost function 
the loss function, although, strictly speaking, the loss is for a given 
sample, and the cost is averaged across samples. Besides, the objec-
tive function is the overall function to minimize, including the cost 
and possible regularization terms. However, in the remainder of 
this chapter, in accordance with common usage in deep learning, 
we will sometimes use the term loss function instead of cost 
function.
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In neural networks, the loss function can be virtually any func-
tion that is differentiable. Below we present the two most common 
losses, which are, respectively, used for classification or regression 
problems. However, specific losses exist for other tasks, such as 
segmentation, which are covered in the corresponding chapters. 

Cross-Entropy Loss One of the most basic loss functions for classification problems 
corresponds to the cross-entropy between the expected values and 
the predicted ones. It leads to the following cost function: 

J ðW Þ= -
n 

i =1 

log P y= yðiÞjx= xðiÞ;W , ð11Þ 

where P y= yðiÞjx= xðiÞ;W is the probability that a given sample is 
correctly classified. 

The cross-entropy can also be seen here as the negative 
log-likelihood of the training set given the predictions of the net-
work. In other words, minimizing this loss function corresponds to 
maximizing the likelihood: 

J ðW Þ= ∏ 
n 

i =1 

P y= yðiÞjx= xðiÞ;W : ð12Þ 

Mean Squared Error Loss For regression problems, the mean squared error is one of the most 
basic cost functions, measuring the average of the squares of the 
errors, which is the average squared difference between the pre-
dicted values and the real ones. The mean squared error is 
defined as: 

J ðW Þ= 
n 

i =1 

jj yðiÞ - f ðxðiÞ;W Þ jj 2 : ð13Þ 

3 Optimization of Deep Neural Networks 

Optimization is one of the most important components of 
neural networks, and it focuses on finding the parameters W that 
minimize the loss function J(W). Overall, optimization is a difficult 
task. Traditionally, the optimization process is performed by care-
fully designing the loss function and integrating its constraints to 
ensure that the optimization process is convex (and thus, one can 
be sure to find the global minimum). However, neural networks are 
non-convex models, making their optimization challenging, and, in 
general, one does not find the global minimum but only a local one. 
In the next sections, the main components of their optimization 
will be presented, giving a general overview of the optimization 
process, its challenges, and common practices.
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Fig. 6 The gradient descent algorithm. This first-order optimization algorithm is 
finding a local minimum by taking steps toward the opposite direction of the 
gradient 

3.1 Gradient Descent Gradient descent is an iterative optimization algorithm that is 
among the most popular and basic algorithms in machine learning. 
It is a first-order1 optimization algorithm, which is finding a local 
minimum of a differentiable function. The main idea of gradient 
descent is to take iterative steps toward the opposite direction of the 
gradient of the function that needs to be optimized (Fig. 6). 

That way, the parameters W of the model are updated by: 

W tþ1 ←W t - η 
∂J ðW t Þ 
∂W t , ð14Þ 

where t is the iteration and η, called learning rate, is the hyperpara-
meter that indicates the magnitude of the step that the algorithm 
will take. 

Besides its simplicity, gradient descent is one of the most com-
monly used algorithms. More sophisticated algorithms require 
computing the Hessian (or an approximation) and/or its inverse 
(or an approximation). Even if these variations could give better 
optimization guarantees, they are often more computationally 
expensive, making gradient descent the default method for 
optimization. 

In the case of convex functions, the optimization problem can 
be reduced to the problem of finding a local minimum. Any local 
minimum is then guaranteed to be a global minimum, and gradient 
descent can identify it. However, when dealing with non-convex 
functions, such as neural networks, it is possible to have many local 
minima making the use of gradient descent challenging. Neural 
networks are, in general, non-identifiable [24]. A model is said to 
be identifiable if it is theoretically possible, given a sufficiently large 
training set, to rule out all but one set of the model’s parameters. 
Models with latent variables, such as the hidden layers of neural 
networks, are often not identifiable because we can obtain equiva-
lent models by exchanging latent variables with each other.

1 First-order means here that the first-order derivatives of the cost function are used as opposed to second-order 
algorithms that, for instance, use the Hessian.



However, all these minima are often almost equivalent to each 
other in cost function value. In that case, these local minima are 
not a problematic form of non-convexity. It remains an open ques-
tion whether there exist many local minima with a high cost that 
prevent adequate training of neural networks. However, it is cur-
rently believed that most local minima, at least as found by modern 
optimization procedures, will correspond to a low cost (even 
though not to identical costs) [24].

90 Maria Vakalopoulou et al.

For W� to be a local minimum, we need mainly two conditions 
to be fulfilled:

• ∂J 
∂W 

ðW �Þ =0.

• All the eigenvalues of ∂2 J 

∂W 2 ðW �Þ to be positive. 

For random functions in n dimensions, the probability for the 
eigenvalues to be all positive is 1 n. On the other hand, the ratio of the 
number of saddle points to localminima increases exponentiallywith 
n [32]. A saddle point, or critical point, is a point where the deriva-
tives are zero without being a minimum of the function. Such points 
could result in a high error making the optimization with gradient 
descent challenging. In [32], this issue is discussed, and an optimi-
zation algorithm that leverages second-order curvature information 
is proposed to deal with this issue for deep and recurrent networks. 

3.1.1 Stochastic Gradient 

Descent 

Gradient descent efficiency is not enough when it comes to 
machine learning problems with large numbers of training samples. 
Indeed, this is the case for neural networks and deep learning which 
often rely on hundreds or thousands of training samples. Updating 
the parameters W after calculating the gradient using all the 
training samples would lead to a tremendous computational com-
plexity of the underlying optimization algorithm [33]. To deal with 
this problem, the stochastic gradient descent (SGD) algorithm is a 
drastic simplification. Instead of computing the ∂J ðW Þ 

∂W 
exactly, each 

iteration estimates this gradient on the basis of a small set of 
randomly picked examples, as follows: 

W tþ1 ←W t - ηtGðW tÞ, ð15Þ 
where 

GðW tÞ= 
1 
K 

K 

k=1 

∂J ðikÞW
t 

∂W 
, ð16Þ 

where J ik 
is the loss function at training sample ik, 

fðxðikÞ, yðikÞÞgk=1...K is the small subset of K training samples 
(K<<N). This subset of K samples is called a mini-batch or 
sometimes a batch.2 In such a way, the iteration cost of stochastic

2 Note that, as often in deep learning, the terminology can be confusing. In isolation, the term batch is usually a 
synonym of mini-batch. On the contrary, batch gradient descent means computing the gradient using all training 
samples and not only a mini-batch [24].



gradient descent will be OðKÞ and for gradient descent OðN Þ. The 
ideal choice for the batch size is a debated question. First, an upper 
limit for the batch size is often simply given the available GPU 
memory, in particular when the size of the input data is large (e.g., 
3D medical images). Besides, choosing K as a power of 2 often 
leads to more efficient computations. Finally, small batch sizes tend 
to have a regularizing effect which can be beneficial [24]. In any 
case, the ideal batch size usually depends on the application, and it 
is not uncommon to try different batch sizes. Finally, one calls an 
epoch a complete pass over the whole training set (meaning that 
each training sample has been used once). The number of epochs is 
the number of full passes over the whole training set. It should not 
be confused with the number of iterations which is the number of 
mini-batches that have been processed.
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Note that various improvements over traditional SGD have 
been introduced, leading to more efficient optimization methods. 
These state-of-the-art optimization methods are presented in 
Subheading 3.4. 

Box 2: Convergence of SGD Theorem 

In [34], the authors prove that stochastic gradient 
descent converges if the network is sufficiently overpara-
metrized. Let (x(i) , y(i) )1≤i≤n be a training set satisfying 
mini,j:i ≠ jkx(i)-x( j )k2> δ> 0. Consider fitting the data 
using a feedforward neural network with ReLU activa-
tions. Denote by D (resp. W ) the depth (resp. width) of 
the network. Suppose that the neural network is suffi-
ciently overparametrized, i.e.: 

W ≫ polynomial n,D, 
1 
δ 

: ð17Þ 

Then, with high probability, running SGD with some random 
initialization and properly chosen step sizes ηt yields J(W

t ) 
< E in t / log 1 ε. 

3.2 Backpropagation The training of neural networks is performed with backpropaga-
tion. Backpropagation computes the gradient of the loss function 
with respect to the parameters of the network in an efficient and 
local way. This algorithm was originally introduced in 1970. How-
ever, it started becoming very popular after the publication of [6], 
which indicated that backpropagation works faster than other 
methods that had been proposed back then for the training of 
neural networks.



3.3 Generalization

and Overfitting

Þ
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Fig. 7 A multilayer perceptron with one hidden layer 

The backpropagation algorithm works by computing the gra-
dient of the loss function (J) with respect to each weight by the 
chain rule, computing the gradient one layer at a time, and iterating 
backward from the last layer to avoid redundant calculations of 
intermediate terms in the chain rule. In Fig. 7, an example of a 
multilayer perceptron with one hidden layer is presented. In such a 
network, the backpropagation is calculated as: 

∂J ðW Þ 
∂w2 

= 
∂J ðW Þ 

∂ŷ 
× 

∂ŷ 
∂w2 

∂J ðW Þ 
∂w1 

= 
∂J ðW Þ 

∂ŷ 
× 

∂ŷ 
∂w1 

= 
∂J ðW Þ 

∂ŷ 
× 

∂ŷ 
∂z1 

× 
∂z1 
∂w1 

: ð18Þ 

Overall, backpropagation is very simple and local. However, 
the reason why we can train a highly non-convex machine with 
many local minima, like neural networks, with a strong local 
learning algorithm is not really known even today. In practice, 
backpropagation can be computed in different ways, including 
manual calculation, numerical differentiation using finite difference 
approximation, and symbolic differentiation. Nowadays, deep 
learning frameworks such as [14, 16] use automatic differentiation 
[35] for the application of backpropagation. 

Similar to all the machine learning algorithms (discussed in 
Chapter 2), neural networks can suffer from poor generaliza-
tion and overfitting. These problems are caused mainly by the 
optimization of the parameters of the models performed in the 
{(xi, yi)}i=1,. .  .,n training set, while we need the model to per-
form well on other unseen data that are not available during the 
training. More formally, in the case of cross-entropy, the loss 
that we would like to minimize is: 

J ðW Þ= - log ∏ðx, yÞ∈T T 
P y= yjx= x;Wð , ð19Þ 

where TT is the set of any data, not available during training. In 
practice, a small validation set TV is used to evaluate the loss on 
unseen data. Of course, this validation set should be distinct from 
the training set. It is extremely important to keep in mind that the 
performance obtained on the validation set is generally biased 
upward because the validation set was used to perform early stop-
ping or to choose regularization parameters. Therefore, one should 
have an independent test set that has been isolated at the



beginning, has not been used in any way during training, and is 
only used to report the performance (see Chap. 20 for details). In 
case one cannot have an additional independent test set due to a 
lack of data, one should be aware that the performance may be 
biased and that this is a limitation of the specific study. 
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To avoid overfitting and improve the generalization perfor-
mance of the model, usually, the validation set is used to monitor 
the loss during the training of the networks. Tracking the training 
and validation losses over the number of epochs is essential and 
provides important insights into the training process and the 
selected hyperparameters (e.g., choice of learning rate). Recent 
visualization tools such as TensorBoard3 or Weights & Biases4 

make this tracking easy. In the following, we will also mention 
some of the most commonly applied optimization techniques that 
help with preventing overfitting. 

Early Stopping Using the reported training and validation errors, 
the best model in terms of performance and generalization power is 
selected. In particular, early stopping, which corresponds to select-
ing a model corresponding to an earlier time point than the final 
epoch, is a common way to prevent overfitting [36]. Early stopping 
is a form of regularization for models that are trained with an 
iterative method, such as gradient descent and its variants. Early 
stopping can be implemented with different criteria. However, 
generally, it requires the monitoring of the performance of the 
model on a validation set, and the model is selected when its 
performance degrades or its loss increases. Overall, early stopping 
should be used almost universally for the training of neural net-
works [24]. The concept of early stopping is illustrated in Fig. 8. 

Weight Regularization Similar to other machine learning meth-
ods (Chap. 2), weight regularization is also a very commonly used 
technique for avoiding overfitting in neural networks. More specif-
ically, during the training of the model, the weights of the network 
start growing in size in order to specialize the model to the training 
data. However, large weights tend to cause sharp transitions in the 
different layers of the network and, that way, large changes in the 
output for only small changes in the inputs [37]. To handle this 
problem, during the training process, the weights can be updated in 
such a way that they are encouraged to be small, by adding a penalty 
to the loss function, for instance, the ℓ2 norm of the parameters 
λkWk2 , where λ is a trade-off parameter between the loss and the 
regularization. Since weight regularization is quite popular in

3 https://www.tensorflow.org/tensorboard. 
4 https://wandb.ai/site.



neural networks, different optimizers have integrated them into 
their optimization process in the form of weight decay.
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Validation 

Training 

Loss 

Time (epochs) 

Underfitting Overfitting 

Fig. 8 Illustration of the concept of early stopping. The model that should be selected corresponds to the 
dashed bar which is the point where the validation loss starts increasing. Before this point, the model is 
underfitting. After, it is overfitting 

Weight Initialization The way that the weights of neural net-
works will be initialized is very important, and it can determine 
whether the algorithm converges at all, with some initial points 
being so unstable that the algorithm encounters numerical difficul-
ties and fails altogether [24]. Most of the time, the weights are 
initialized randomly from a Gaussian or uniform distribution. 
According to [24], the choice of Gaussian or uniform distribution 
does not seem to matter very much; however, the scale does have a 
large effect both on the outcome of the optimization procedure 
and on the ability of the network to generalize. Nevertheless, more 
tailored approaches have been developed over the last decade that 
have become the standard initialization points. One of them is the 
Xavier Initialization [38] which balances between all the layers to 
have the same activation variance and the same gradient variance. 
More formally the weights are initialized as: 

Wi,j � Uniform -
6 

m þ n , 
6 

m þ n , ð20Þ 

where m is the number of inputs and n the number of outputs of 
matrix W. Moreover, the biases b are initialized to 0. 

Drop-out There are other techniques to prevent overfitting, such 
as drop-out [39], which involves randomly destroying neurons 
during the training process, thereby reducing the complexity of



the model. Drop-out is an ensemble method that does not need to 
build the models explicitly. In practice, at each optimization itera-
tion, random binary masks on the units are considered. The proba-
bility of removing a unit (p) is defined as a hyperparameter during 
the training of the network. During inference, all the units are 
activated; however, the obtained parameters W are multiplied 
with this probability p. Drop-out is quite efficient and commonly 
used in a variety of neural network architectures. 
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Fig. 9 Examples of data transformations applied in the MNIST dataset. Each of these generated samples is 
considered additional training data 

Data Augmentation Since neural networks are data-driven meth-
ods, their performance depends on the training data. To increase 
the amount of data during the training, data augmentation can be 
performed. It generates slightly modified copies of the existing 
training data to enrich the training samples. This technique acts as 
a regularizer and helps reduce overfitting. Some of the most com-
monly used transformations applied during data augmentation 
include random rotations, translations, cropping, color jittering, 
resizing, Gaussian blurring, and many more. In Fig. 9, examples 
of different transformations on different digits (first column) of the 
MNIST dataset [40] are presented. For medical images, the 
TorchIO library allows to easily perform data augmentation [41]. 

Batch Normalization To ensure that the training of the networks 
will be more stable and faster, batch normalization has been pro-
posed [42]. In practice, batch normalization re-centers and 
re-scales the layer’s input, mitigating the problem of internal



covariate shift which changes the distribution of the inputs of each 
layer affecting the learning rate of the network. Even if the method 
is quite popular, its necessity and use for the training have recently 
been questioned [43]. 
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3.4 State-of-the-Art 

Optimizers 

Over the years, different optimizers have been proposed and widely 
used, aiming to provide improvements over the classical stochastic 
gradient descent. These algorithms are motivated by challenges 
that need to be addressed with stochastic gradient descent and are 
focusing on the choice of the proper learning rate, its dynamic 
change during training, as well as the fact that it is the same for all 
the parameter updates [44]. Moreover, a proper choice of opti-
mizer could speed up the convergence to the optimal solution. In 
this subsection, we will discuss some of the most commonly used 
optimizers nowadays. 

3.4.1 Stochastic Gradient 

Descent with Momentum 

One of the limitations of the stochastic gradient descent is that 
since the direction of the gradient that we are taking is random, it 
can heavily oscillate, making the training slower and even getting 
stuck in a saddle point. To deal with this problem, stochastic 
gradient descent with momentum [45, 46] keeps a history of the 
previous gradients, and it updates the weights taking into account 
the previous updates. More formally: 

gt ← ρgt -1 þ ð1- ρÞGðW tÞ 
ΔW t ← - ηt g

t 

W tþ1 ←W t þ ΔW t 

, ð21Þ 

where gt is the direction of the update of the weights in time-step 
t and ρ∈ [0, 1] is a hyperparameter that controls the contribution 
of the previous gradients and current gradient in the current 
update. When ρ=0, it is the same as the classical stochastic gradient 
descent. A large value of ρ will mean that the update is strongly 
influenced by the previous updates. 

The momentum algorithm accumulates an exponentially 
decaying moving average of the past gradients and continues to 
move in their direction [24]. Momentum increases the speed of 
convergence, while it is also helpful to not get stuck in places where 
the search space is flat (saddle points with zero gradient), since the 
momentum will pursue the search in the same direction as before 
the flat region. 

3.4.2 AdaGrad To facilitate and speed up, even more, the training process, optimi-
zers with adaptive learning rates per parameter have been proposed. 
The adaptive gradient (AdaGrad) optimizer [47] is one of them. It 
updates each individual parameter proportionally to their compo-
nent (and momentum) in the gradient. More formally:



Deep Learning: Basics and CNN 97

gt ←GðW tÞ 
rt ← rt -1 þ gt gt 

ΔW t ← -
η 

δþ rt
p gt 

W tþ1 ←W t þ ΔW t 

, ð22Þ 

where gt is the gradient estimate vector in time-step t, rt is the term 
controlling the per parameter update, and δ is some small quantity 
that is used to avoid the division by zero. Note that rt constitutes of 
the gradient’s element-wise product with itself and of the previous 
term rt-1 accumulating the gradients of the previous terms. 

This algorithm performs very well for sparse data since it 
decreases the learning rate faster for the parameters that are more 
frequent and slower for the infrequent parameters. However, since 
the update accumulates gradients of the previous steps, the updates 
could decrease very fast, blocking the learning process. This limita-
tion is mitigated by extensions of the AdaGrad algorithm as we 
discuss in the next sections. 

3.4.3 RMSProp Another algorithm with adaptive learning rates per parameter is the 
root mean squared propagation (RMSProp) algorithm, proposed 
by Geoffrey Hinton. Despite its popularity and use, this algorithm 
has not been published. RMSProp is an extension of the AdaGrad 
algorithm dealing with the problem of radically diminishing 
learning rates by being less influenced by the first iterations of the 
algorithm. More formally: 

gt ←GðW t Þ 
rt ← ρrt -1 þ ð1- ρÞgt gt 

ΔW t ← -
η 

δþ rt
p gt 

W tþ1 ←W t þ ΔW t 

, ð23Þ 

where ρ is a hyperparameter that controls the contribution of the 
previous gradients and the current gradient in the current update. 
Note that RMSProp estimates the squared gradients in the same 
way as AdaGrad, but instead of letting that estimate continually 
accumulate over training, we keep a moving average of it, integrat-
ing the momentum. Empirically, RMSProp has been shown to be 
an effective and practical optimization algorithm for deep neural 
networks [24]. 

3.4.4 Adam The effectiveness and advantages of the AdaGrad and RMSProp 
algorithms are combined in the adaptive moment estimation 
(Adam) optimizer [48]. The method computes individual adaptive 
learning rates for different parameters from estimates of the first 
and second moments of the gradients. More formally:



a
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gt ←GðW tÞ 
s t ← ρ1s

t -1 þ ð1- ρ1Þgt 

rt ← ρ2r
t -1 þ ð1- ρ2Þgt gt 

ŝ t ←
s t 

1- ðρ1Þt 

r̂ t ←
rt 

1- ðρ2Þt 
ΔW t ← -

λ 

δþ r̂ t
p ŝ t 

W tþ1 ←W t þ ΔW t 

, ð24Þ 

where st is the gradient with momentum, rt accumulates the 
squared gradients with momentum as in RMSProp, and ŝ t and r̂ t 

are smaller than st and rt , respectively, but they converge toward 
them. Moreover, δ is some small quantity that is used to avoid the 
division by zero, while ρ1 and ρ2 are hyperparameters of the algo-
rithm. The parameters ρ1 and ρ2 control the decay rates of each 
moving average, respectively, and their value is close to 1. Empirical 
results demonstrate that Adam works well in practice and compares 
favorably to other stochastic optimization methods, making it the 
go-to optimizer for deep learning problems. 

3.4.5 Other Optimizers The development of efficient (in terms of speed and stability) 
optimizers is still an active research direction. RAdam [49] is  
variant of Adam, introducing a term to rectify the variance of the 
adaptive learning rate. In particular, RAdam leverages a dynamic 
rectifier to adjust the adaptive momentum of Adam based on the 
variance and effectively provides an automated warm-up custom-
tailored to the current dataset to ensure a solid start to training. 
Moreover, LookAhead [50] was inspired by recent advances in the 
understanding of loss surfaces of deep neural networks and pro-
vides a breakthrough in robust and stable exploration during the 
entirety of the training. Intuitively, the algorithm chooses a search 
direction by looking ahead at the sequence of fast weights gener-
ated by another optimizer. These are only some of the optimizers 
that exist in the literature, and depending on the problem and the 
application, different optimizers could be selected and applied. 

4 Convolutional Neural Networks 

Convolutional neural networks (CNNs) are a specific category of 
deep neural networks that employ the convolution operation in 
order to process the input data. Even though the main concept 
dates back to the 1990s and is greatly inspired by neuroscience [51] 
(in particular by the organization of the visual cortex), their wide-
spread use is due to a relatively recent success on the ImageNet 
Large Scale Visual Recognition Challenge of 2012 [27]. In contrast



to the deep fully connected networks that have been already dis-
cussed, CNNs excel in processing data with a spatial or grid-like 
organization (e.g., time series, images, videos, etc.) while at the 
same time decreasing the number of trainable parameters due to 
their weight sharing properties. The rest of this section is first 
introducing the convolution operation and the motivation behind 
using it as a building block/module of neural networks. Then, a 
number of different variations are presented together with exam-
ples of the most important CNN architectures. Lastly, the impor-
tance of the receptive field – a central property of such networks – 
will be discussed. 
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4.1 The Convolution 

Operation 

The convolution operation is defined as the integral of the product 
of the two functions ( f, g)5 after one is reversed and shifted over the 
other function. Formally, we write: 

hðtÞ= 
1

-1 
f ðt - τÞgðτÞ dτ: ð25Þ 

Such an operation can also be denoted with an asterisk (�), so it 
is written as: 

hðtÞ= ðf � gÞðtÞ: ð26Þ 
In essence, the convolution operation shows how one function 

affects the other. This intuition arises from the signal processing 
domain, where it is typically important to know how a signal will be 
affected by a filter. For example, consider a uni-dimensional con-
tinuous signal, like the brain activity of a patient on some electro-
encephalography electrode, and a Gaussian filter. The result of the 
convolution operation between these two functions will output the 
effect of a Gaussian filter on this signal which will, in fact, be a 
smoothed version of the input. 

A different way to think of the convolution operation is that it 
shows how the two functions are related. In other words, it shows 
how similar or dissimilar the two functions are at different relative 
positions. In fact, the convolution operation is very similar to the 
cross-correlation operation, with the subtle difference being that in 
the convolution operation, one of the two functions is inverted. In 
the context of deep learning specifically, the exact differences 
between the two operations can be of secondary concern; however, 
the convolution operation has more properties than correlation, 
such as commutativity. Note also that when the signals are symmet-
ric, both operations will yield the same result. 

In order to deal with discrete and finite signals, we can expand 
the definition of the convolution operation. Specifically, given two

5 Note that f and g have no relationship to their previous definitions in the chapter. In particular, f is not the deep 
learning model.



discrete signals f[k] and g[k], with k∈, the convolution operation 
is defined by:
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0 1 1 1 0 0 0 

0 0 1 1 1 0 0 

0 0 0 1 1 1 0 

0 0 0 1 1 0 0 

0 0 1 1 0 0 0 
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1 1 0 0 0 0 0 
I 

∗ 
1 0 1 

0 1 0 

1 0 1 

K 

= 

1 4 3 4 1 

1 2 4 3 3 

1 2 3 4 1 

1 3 3 1 1 

3 3 1 1 0 
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1 0 1 

×1 ×0 ×1 

×0 ×1 ×0 

×1 ×0 ×1 

Fig. 10 A visualization of the discrete convolution operation in 2D 

h½k�= 
n 
f ½k-n�g ½n�: ð27Þ 

Lastly, the convolution operation can be extended for multidi-
mensional signals similarly. For example, we can write the convolu-
tion operation between two discrete and finite two-dimensional 
signals (e.g., I[i, j], K[i, j]) as: 

H ½i, j �= 
m n 

I ½i-m, j -n�K ½m,n�: ð28Þ 

Very often, the first signal will be the input of interest (e.g., a 
large size image), while the second signal will be of relatively small 
size (e.g., a 3 ×3 or 4×4 matrix) and will implement a specific 
operation. The second signal is then called a kernel. In Fig. 10, a  
visualization of the convolution operation is shown in the case of a 
2D discrete signal such as an image and a 3 ×3 kernel. In detail, the 
convolution kernel is shifted over all locations of the input, and an 
element-wise multiplication and a summation are utilized to calcu-
late the convolution output at the corresponding location. Exam-
ples of applications of convolutions to an image are provided in 
Fig. 11. Finally, note that, as in multilayer perceptrons, a convolu-
tion will generally be followed by a non-linear activation function, 
for instance, a ReLU (see Fig. 12 for an example of activation 
applied to a feature map). 

In the following sections of this chapter, any reference to the 
convolution operation will mostly refer to the 2D discrete case. The



extension to the 3D case, which is often encountered in medical 
imaging, is straightforward. 
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1 0 -1  

1 0 -1  

1 0 -1  

1 1 1  

0 0 0

-1 -1 -1 

Original image Vertical edge detection Horizontal edge detection 

Fig. 11 Two examples of convolutions applied to an image. One of the filters acts as a vertical edge detector 
and the other one as a horizontal edge detector. Of course, in CNNs, the filters are learned, not predefined, so 
there is no guarantee that, among the learned filters, there will be a vertical/horizontal case detector, although 
it will often be the case in practice, especially for the first layers of the architecture 

Fig. 12 Example of application of a non-linear activation function (here a ReLU) to an image 

4.2 Properties of the 

Convolution Operation 

In the case of a discrete domain, the convolution operation can be 
performed using a simple matrix multiplication without the need of 
shifting one signal over the other one. This can be essentially 
achieved by utilizing the Toeplitz matrix transformation. The Toe-
plitz transformation creates a sparse matrix with repeated elements 
which, when multiplied with the input signal, produces the convo-
lution result. To illustrate how the convolution operation can be 
implemented as a matrix multiplication, let’s take the example of a 
3× 3 kernel (K) and a 4 ×4 input (I):



K =

k00 k01 k02 0

0 k00 k01 k

0 0 0 0

0 0 0 0

I = i00 i01 i02 i½
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K = 

k00 k01 k02 

k10 k11 k12 

k20 k21 k22 

and I = 

i00 i01 i02 i03 

i10 i11 i12 i13 

i20 i21 i22 i23 

i30 i31 i32 i33 

: 

Then, the convolution operation can be computed as a matrix 
multiplication between the Toepliz transformed kernel: 

k10 k11 k12 0 k20 k21 k22 0 0 0 0 0  

02 0 k10 k11 k12 0 k20 k21 k22 0 0 0 0  

k00 k01 k02 0 k10 k11 k12 0 k20 k21 k22 0 

0  k00 k01 k02 0 k10 k11 k12 0 k20 k21 k22 

and a reshaped input: 

03 i10 i11 i12 i13 i20 i21 i22 i23 i30 i31 i32 i33 �⊤ : 
The produced output will need to be reshaped as a 2×2 matrix 

in order to retrieve the convolution output. This matrix multiplica-
tion implementation is quite illuminating on a few of the most 
important properties of the convolution operation. These proper-
ties are the main motivation behind using such elements in deep 
neural networks. 

By transforming the convolution operation to a matrix multi-
plication operation, it is evident that it can fit in the formalization of 
the linear functions, which has already been presented in Subhead-
ing 2.3. As such, deep neural networks can be designed in a way to 
utilize trainable convolution kernels. In practice, multiple convolu-
tion kernels are learned at each convolutional block, while several of 
these trainable convolutional blocks are stacked on top of each 
other forming deep CNNs. Typically, the output of a convolution 
operation is called a feature map or just features. 

Another important aspect of the convolution operation is that 
it requires much fewer parameters than the fully connected 
MLP-based deep neural networks. As it can also be seen from the 

K matrix, the exact same parameters are shared across all locations. 
Eventually, rather than learning a different set of parameters for the 
different locations of the input, only one set is learned. This is 
referred to as parameter sharing or weight sharing and can greatly 
decrease the amount of memory that is required to store the 
network parameters. An illustration of the process of weight sharing 
across locations, together with the fact that multiple filters (result-
ing in multiple feature maps) are computed for a given layer, is 
illustrated in Fig. 13. The multiple feature maps for a given layer are 
stored using another dimension (see Fig. 14), thus resulting in a 3D



array when the input is a 2D image (and a 4D array when the input 
is a 3D image). 
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Fig. 13 For a given layer, several (usually many) filters are learned, each of them being able to detect a 
specific characteristic in the image, resulting in several feature/filter maps. On the other hand, for a given 
filter, the weights are shared across all the locations of the image 

Fig. 14 The different feature maps for a given layer are arranged along another dimension. The feature maps 
will thus be a 3D array when the input is a 2D image (and a 4D array when the input is a 3D image) 

Convolutional neural networks have proven quite powerful in 
processing data with spatial structure (e.g., images, videos, etc.). 
This is effectively based on the fact that there is a local connectivity 
of the kernel elements while at the same time the same kernel is 
applied at different locations of the input. Such processing grants a 
quite useful property called translation equivariance enabling the



4.3 Functions and

Variants

network to output similar responses at different locations of the 
input. An example of the usefulness of such a property can be 
identified on an image detection task. Specifically, when training a 
network to detect tumors in an MR image of the brain, the model 
should respond similarly regardless of the location where the anom-
aly can be manifested. 
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Lastly, another important property of the convolution opera-
tion is that it decouples the size of the input with the trainable 
parameters. For example, in the case of MLPs, the size of the weight 
matrix is a function of the dimension of the input. Specifically, a 
densely connected layer that maps 256 features to 10 outputs 
would have a size of W∈10 ×256 . On the contrary, in convolu-
tional layers, the number of trainable parameters only depends on 
the kernel size and the number of kernels that a layer has. This 
eventually allows the processing of arbitrarily sized inputs, for 
example, in the case of fully convolutional networks. 

An observant reader might have noticed that the convolution 
operation can change the dimensionality of the produced output. 
In the example visualized in Fig. 10, the image of size 7× 7, when 
convolved with a kernel of size 3× 3, produces a feature map of size 
of 5× 5. Even though dimension changes can be avoided with 
appropriate padding (see Fig. 15 for an illustration of this process) 
prior to the convolution operation, in some cases, it is actually 
desired to reduce the dimensions of the input. Such a decrease 
can be achieved in a number of ways depending on the task at 
hand. In this subsection, some of the most typical functions that 
are utilized in CNNs will be discussed. 

Fig. 15 The padding operation, which involves adding zeros around the image, allows to obtain feature maps 
that are of the same size as the original image
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Max pooling with 
2×2 filter and stride 2 

Input feature map 

Pooled feature map 

Fig. 16 Effect of a pooling operation. Here, a maximum pooling of size 2 × 2 with a stride of 2 

Downsampling Operations (i.e., Pooling Layers) In many 
CNN architectures, there is an extensive use of downsampling 
operations that aim to compress the size of the feature maps and 
decrease the computational burden. Otherwise referred to as pool-
ing layers, these processing operations are aggregating the values of 
their input depending on their design. Some of the most common 
downsampling layers are the maximum pooling, average pooling, or  
global average pooling. In the first two, either the maximum or the 
average value is used as a feature for the output across 
non-overlapping regions of a predefined pooling size. In the case 
of the global average pooling, the spatial dimensions are all repre-
sented with the average value. An example of pooling is provided in 
Fig. 16. 

Strided Convolution The strided convolution refers to the spe-
cific case in which, instead of applying the convolution operation 
for every location using a step size (or stride, s) of 1, different step 
sizes can be considered (Fig. 17). Such an operation will produce a 
convolution output with much fewer elements. Convolutional 
blocks with s>1 can be found on CNN architectures as a way to 
decrease the feature sizes in intermediate layers. 

Atrous or Dilated Convolution Dilated, also called atrous, con-
volution is the convolution with kernels that have been dilated by 
inserting zero holes (à trous in French) between the non-zero 
values of a kernel. In this case, an additional parameter (d) of the 
convolution operation is added, and it is changing the distance 
between the kernel elements. In essence, it is increasing the reach 
of the kernel but keeping the number of trainable parameters the 
same. For example, a dilated convolution with a kernel size of 3 ×3 
and a dilation rate of d=2 would be sparsely arranged on a 
5× 5 grid.
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Fig. 17 Stride operation, here with a stride of 2 

Transposed Convolution In certain circumstances, one needs 
not only to downsample the spatial dimensions of the input but 
also, usually at a later stage of the network, apply an upsample 
operation. The most emblematic case is the task of image segmen-
tation (see Chap. 13), in which a pixel-level classification is 
expected, and therefore, the output of the neural network should 
have the same size as the input. In such cases, several upsampling 
operations are typically applied. The upsampling can be achieved by 
a transposed convolution operation that will eventually increase the 
size of the output. In details, the transposed convolution is per-
formed by dilating the input instead of the kernel before applying a 
convolution operation. In this way, an input of size 5 ×5 will reach a 
size of 10×10 after being dilated with d=2. With proper padding 
and using a kernel of size 3× 3, the output will eventually double 
in size. 

4.4 Receptive Field 

Calculation 

In the context of deep neural networks and specifically CNNs, the 
term receptive field is used to define the proportion of the input 
that produces a specific feature. For example, a CNN that takes an 
image as input and applies only a single convolution operation with 
a kernel size of 3 ×3 would have a receptive field of 3 ×3. This 
means that for each pixel of the first feature map, a 3× 3 region of 
the input would be considered. Now, if another layer were to be 
added, with again 3 ×3 size, then the receptive field of the new 
feature map with respect to the CNN’s input would be 5× 5. In 
other words, the proportion of the input that is used to calculate 
each element of the feature map of the second convolution layer 
increases. 

Calculating the receptive field at different parts of a CNN is 
crucial when trying to understand the inner workings of a specific 
architecture. For instance, a CNN that is designed to take as an 
input an image of size 256× 256 and that requires information



4.5 Classical

Convolutional Neural

Network Architectures

from all parts of it should have a receptive field close to the size of 
the input. The receptive field can be influenced by all the different 
convolution parameters and down-/upsampling operations 
described in the previous section. A comprehensive presentation 
of mathematical derivations for calculating receptive fields for 
CNNs is given in [52]. 
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In the last decades, a variety of convolutional neural network archi-
tectures have been proposed. In this chapter, we cover only a few 
classical architectures for classification and regression. Note that 
classification and regression can usually be performed with the 
same architecture, just changing the loss function (e.g., cross-
entropy for classification, mean squared error for regression). 
Architectures for other tasks can be found in other chapters. 

A Basic CNN Architecture Let us start with the most simple 
CNN, which is actually very close to the original one proposed by 
LeCun et al. [53], sometimes called “LeNet.” Such architecture is 
typically composed of two parts: the first one is based on convolu-
tion operations and learns the features for the image and the second 
part flattens the features and inputs them to a set of fully connected 
layers (in other words, a multilayer perceptron) for performing the 
classification/regression (see illustration in Fig. 18). Note that, of 
course, the whole network is trained end to end: the two parts are 
not trained independently. In the first part, one combines a series of 
blocks composed of a convolution operation (possibly strided 
and/or dilated), a non-linear activation function (for instance, a 
ReLU), and a pooling operation. It is often a good idea to include a 
drawing of the different layers of the chosen architecture.

Input image Convolution 
+ 

Non-linearity 

Pooling Convolution 
+ 

Non-linearity 

Pooling 

Feature learning 

Fully 
connected 

Flatten 

Classification 

Fig. 18 A basic CNN architecture. Classically, it is composed of two main parts. The first one, using 
convolution operations, performs feature learning. The features are then flattened and fed into a set of fully 
connected layers (i.e., a multilayer perceptron), which performs the classification or the regression task



Unfortunately, there is no harmonized format for such a descrip-
tion. An example is provided in Fig. 19.
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Fig. 19 A drawing describing a CNN architecture. Classically, it is composed of two main parts. Here 
16@3 × 3 × 3 means that 16 features with a 3 × 3 × 3 convolution kernel will be computed. For the pooling 
operation, the kernel size is also mentioned (2 × 2). Finally, the stride is systematically indicated 

One of the first CNN architectures that follow this paradigm is 
the AlexNet architecture [54]. AlexNet was one of the first papers 
that empirically indicated that the ReLU activation function makes 
the convergence of CNNs faster compared to other non-linearities 
such as the tanh. Moreover, it was the first architecture that 
achieved a top 5 error rate of 18.2% on the ImageNet dataset, 
outperforming all the other methods on this benchmark by a 
huge margin (about 10%). Prior to AlexNet, best-performing 
methods were using (very sophisticated) pre-extracted features 
and classical machine learning. After this advance, deep learning 
in general and CNNs, in particular, became very active research 
directions to address different computer vision problems. This 
resulted in the introduction of a variety of architectures such as 
VGG16 [55] that reported a 7.3% error rate on ImageNet, intro-
ducing some changes such as the use of smaller kernel filters. 
Following these advances, and even if there were a lot of different 
architectures proposed during that period, one could mention the 
Inception architecture [56], which was one of the deepest archi-
tectures of that period and which further reduced the error rate on 
ImageNet to 6.7%. One of the main characteristics of this architec-
ture was the inception modules, which applied multiple kernel 
filters of different sizes at each level of the architecture. To solve 
the problem of vanishing gradients, the authors introduced auxil-
iary classifiers connected to intermediate layers, expecting to 
encourage discrimination in the lower stages in the classifier, 
increasing the gradient signal that gets propagated back, and 
providing additional regularization. During inference, these classi-
fiers were completely discarded. 

In the following section, some other recent and commonly 
used CNN architectures, especially for medical applications, will 
be presented.
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ResNet One of the most commonly used CNN architectures, even 
today, is the ResNet [57]. ResNet reduced the error rate on Ima-
geNet to 3.6%, while it was the first deep architecture that proposed 
novel concepts on how to gracefully go deeper than a few dozen of 
layers. In particular, the authors introduced a deep residual learning 
framework. The main idea of this residual learning is that instead of 
learning the desired underlying mapping of each network level, 
they learn the residual mapping. More formally, instead of learning 
the H(x) mapping after the convolutional and non-linear layers, 
they fit another mapping of F(x)=H(x)- x on which the original 
mapping is recast into F(x) + x. Feedforward neural networks can 
realize this mapping with “shortcut connections” by simply 
performing identity mapping, and their outputs are added to the 
outputs of the stacked layers. Such identity connections add neither 
additional complexity nor parameters to the network, making such 
architectures extremely powerful. 

Different ResNet architectures have been proposed even in the 
original paper. Even though the depth of the network is increased 
with the additional convolutions, especially for the 152-layer 
ResNet (11.3 billion floating point operations), it still has lower 
complexity (i.e., fewer parameters) than VGG16/VGG19 net-
works. Currently, different layered-size ResNet architectures 
pre-trained on ImageNet are used as backbones for various pro-
blems and applications, including medical imaging. Pre-trained 
ResNet models, even if they are 2D architectures, are commonly 
used on histopathology [58, 59], chest X-ray [60], or even brain 
imaging [61, 62], while the way that such pre-trained networks 
work for medical applications gathered the attention of different 
studies such as [63]. However, it should be noted that networks 
pre-trained on ImageNet are not always efficient for medical imag-
ing tasks, and there are cases where they perform poorly, much 
lower than simpler CNNs trained from scratch [64]. Nevertheless, 
a pre-trained ResNet is very often a good idea to use for a first try in 
a given application. Finally, there was an effort from the medical 
community to train 3D variations of ResNet architectures on a 
large amount of 3D medical data and release the pre-trained mod-
els. Such an effort is presented in [65] in which the authors trained 
and released different 3D ResNet architectures trained on different 
publicly available 3D datasets, including different anatomies such as 
the brain, prostate, liver, heart, and pancreas. 

EfficientNet A more recent CNN architecture that is worth men-
tioning in this section is the recently presented EfficientNet 
[66]. EfficientNets are a family of neural networks that are balanc-
ing all dimensions of the network (width/depth/resolution) auto-
matically. In particular, the authors propose a simple yet effective 
compound scaling method for obtaining these hyperpameters. In 
particular, the main compound coefficient ϕ uniformly scales



network width, depth, and resolution in a principled way: depth = 
αϕ , width = βϕ , resolution = γϕ s.t. α � β2 � γ2 ≈2, α≥1, β≥1, γ ≥1. 
In this formulation, the parameters α, β, γ are constants, and a small 
grid search can determine them. This grid search resulted in eight 
different architectures presented in the original paper. EfficientNet 
is used more and more for medical imaging tasks, as can be seen in 
multiple recent studies [67–69]. 
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5 Autoencoders 

An autoencoder is a type of neural network that can learn a com-
pressed representation (called the latent space representation) of 
the training data. As opposed to the multilayer perceptrons and 
CNNs seen until now that are used for supervised learning, auto-
encoders have widely been used for unsupervised learning, with a 
wide range of applications. The architecture of autoencoders is 
composed of a contracting path (called the encoder), which will 
transform the input into a lower-dimensional representation, and 
an expanding path (called the decoder), which will aim at recon-
structing the input as well as possible from the lower-dimensional 
representation (see Fig. 20). 

The loss is usually the ℓ2 loss and the cost function is then: 

J ðθ,ϕÞ= 
n 

i =1 

jj xðiÞ -DθðEϕðxðiÞÞÞk2 2, ð29Þ 

where Eϕ is the encoder (and ϕ its parameters) and Dθ is the 
decoder (and θ its parameters). Note that, in Fig. 20, Dθ(Eϕ(x)) is 
denoted as x̂. More generally, one can write: 

J ðθ,ϕÞ=x�μxref d x,DθðEϕðxÞÞ , ð30Þ 
where μref is the reference distribution that one is trying to approx-
imate and d is the reconstruction function. When μref is the

Fig. 20 The general principle of a denoising autoencoder. It aims at learning of a 
low-dimensional representation (latent space) z of the training data. The 
learning is done by aiming to provide a faithful reconstruction x̂ of the input 
data x̂



empirical distribution of the training set and d is the ℓ2 norm, 
Eq. 30 is equivalent to Eq. 29.
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Many variations of autoencoders exist, to prevent autoencoders 
from learning the identity function and to improve their ability to 
capture important information and learn richer representations. 
Among them, sparse autoencoders offer an alternative method for 
introducing an information bottleneck without requiring a reduc-
tion in the number of nodes at the hidden features. This is done by 
constructing the loss function such that it penalizes activations 
within a layer. This is achieved by enforcing sparsity in the network 
and encouraging it to learn an encoding and decoding which relies 
only on activating a small number of neurons. This sparsity is 
enforced in two main ways, an ℓ1 regularization on the parameters 
of the network and a Kullback-Leibler divergence, which is a mea-
sure of the difference between two probability distributions. More 
information about sparse autoencoders could be found in 
[70]. Moreover, a quite common type of autoencoders is the 
denoising autoencoders [71], on which the model is tasked with 
reproducing the input as closely as possible while passing through 
some sort of information bottleneck (Fig. 20). This way, the model 
is not able to simply develop a mapping that memorizes the training 
data but rather learns a vector field for mapping the input data 
toward a lower-dimensional manifold. One should note here that 
the vector field is typically well-behaved in the regions where the 
model has observed data during training. In out-of-distribution 
data, the reconstruction error is both large and does not always 
point in the direction of the true distribution. This observation 
makes these networks quite popular for anomaly detection in med-
ical data [72]. Additionally, contractive autoencoders [73] are other 
variants of this type of models, adding the contractive regulariza-
tion loss to the standard autoencoder loss. Intuitively, it forces very 
similar inputs to have a similar encoding, and in particular, it 
requires the derivative of the hidden layer activations to be small 
with respect to small changes in the input. The denoising autoen-
coders can be understood as a variation of the contractive autoen-
coder. In the limit of small Gaussian noise, the denoising 
autoencoders make the reconstruction error resistant to finite-
sized input perturbations, while the contractive autoencoders 
make the extracted features resistant to small input perturbations. 

Depending on the input type, different autoencoder architec-
tures could be designed. In particular, when the inputs are images, 
the encoder and the decoder are classically composed of convolu-
tional blocks. The decoder uses, for instance, transposed convolu-
tions to perform the expansion. Finally, the addition of skip 
connections has led to the U-Net [74] architectures that are com-
monly used for segmentation purposes. Segmentation architectures 
will be more extensively described in Chap. 13. Finally, variational 
autoencoders, which rely on a different mathematical formulation,



are not covered in the present chapter and are presented, together 
with other generative models, in Chap. 5. 
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6 Conclusion 

Deep learning is a very fast evolving field, with numerous still 
unanswered theoretical questions. However, deep learning-based 
models have become the state-of-the-art methods for a variety of 
fields and tasks. In this chapter, we presented the basic principles of 
deep learning, covering both perceptrons and convolutional neural 
networks. All architectures were feedforward and recurrent net-
works are covered in Chap. 4. Generative adversarial networks are 
covered in Chap. 5, along with other generative models. Chapter 6 
presents a recent class of deep learning methods, which does not 
use convolutions, and that are called transformers. Finally, through-
out the other chapters of the book, different deep learning archi-
tectures are presented for various types of applications. 
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Chapter 4 

Recurrent Neural Networks (RNNs): Architectures, Training 
Tricks, and Introduction to Influential Research 

Susmita Das, Amara Tariq, Thiago Santos, Sai Sandeep Kantareddy, 
and Imon Banerjee 

Abstract 

Recurrent neural networks (RNNs) are neural network architectures with hidden state and which use 
feedback loops to process a sequence of data that ultimately informs the final output. Therefore, RNN 
models can recognize sequential characteristics in the data and help to predict the next likely data point in 
the data sequence. Leveraging the power of sequential data processing, RNN use cases tend to be 
connected to either language models or time-series data analysis. However, multiple popular RNN 
architectures have been introduced in the field, starting from SimpleRNN and LSTM to deep RNN, and 
applied in different experimental settings. In this chapter, we will present six distinct RNN architectures and 
will highlight the pros and cons of each model. Afterward, we will discuss real-life tips and tricks for training 
the RNN models. Finally, we will present four popular language modeling applications of the RNN 
models –text classification, summarization, machine translation, and image-to-text translation– thereby 
demonstrating influential research in the field. 

Key words Recurrent neural network (RNN), LSTM, GRU, Bidirectional RNN (BRNN), Deep 
RNN, Language modeling 

1 Introduction 

Recurrent neural network (RNN) is a specialized neural network 
with feedback connection for processing sequential data or time-
series data in which the output obtained is fed back into it as input 
along with the new input at every time step. The feedback connec-
tion allows the neural network to remember the past data when 
processing the next output. Such processing can be defined as a 
recurring process, and hence the architecture is also known as 
recurring neural network. 

RNN concept was first proposed by Rumelhart et al. [1] in a  
letter published by Nature in 1986 to describe a new learning 
procedure with a self-organizing neural network. Another impor-
tant historical moment for RNNs is the (re-)discovery of Hopfield

Olivier Colliot (ed.), Machine Learning for Brain Disorders, Neuromethods, vol. 197, https://doi.org/10.1007/978-1-0716-3195-9_4, 
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networks which is a special kind of RNN with symmetric connec-
tions where the weight from one node to another and from the 
latter to the former are the same (symmetric). The Hopfield net-
work [2] is fully connected, so every neuron’s output is an input to 
all the other neurons, and updating of nodes happens in a binary 
way (0/1). These types of networks were specifically designed to 
simulate the human memory.
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The other types of RNNs are input-output mapping networks, 
which are used for classification and prediction of sequential data. 
In 1993, Schmidhuber et al. [3] demonstrated credit assignment 
across the equivalent of 1,200 layers in an unfolded RNN and 
revolutionized sequential modeling. In 1997, one of the most 
popular RNN architectures, the long short-term memory 
(LSTM) network which can process long sequences, was proposed. 

In this chapter, we summarize the six most popular contempo-
rary RNN architectures and their variations and highlight the pros 
and cons of each. We also discuss real-life tips and tricks for training 
the RNN models, including various skip connections and gradient 
clipping. Finally, we highlight four popular language modeling 
applications of the RNN models –text classification, summariza-
tion, machine translation, and image-to-text translation– thereby 
demonstrating influential research in each area. 

2 Popular RNN Architectures 

In addition to the SimpleRNN architecture, many variations were 
proposed to address different use cases. In this section, we will 
unwrap some of the popular RNN architectures like LSTM, 
GRU, bidirectional RNN, deep RNN, and attention models and 
discuss their pros and cons. 

2.1 SimpleRNN SimpleRNN architecture, which is also known as SimpleRNN, 
contains a simple neural network with a feedback connection. It 
has the capability to process sequential data of variable length due 
to the parameter sharing which generalizes the model to process 
sequences of variable length. Unlike feedforward neural networks 
which have separate weights for each input feature, RNN shares the 
same weights across several time steps. In RNN, the output of a 
present time step depends on the previous time steps and is 
obtained by the same update rule which is used to obtain the 
previous outputs. As we will see, the RNN can be unfolded into a 
deep computational graph in which the weights are shared across 
time steps. 

The RNN operating on an input sequence x(t) with a time step 
index t ranging from 1 to τ is illustrated in Fig. 1. The time step 
index t may not necessarily refer to the passage of time in the real 
world; it can refer to the position in the sequence. The cycles in the



computational graph represent the impact of the past value of a 
variable on the present time step. The computational graph has a 
repetitive structure that unfolds the recursive computation of the 
RNN which corresponds to a chain of events. It shows the flow of 
the information, forward in the time of computing the outputs and 
losses and backward when computing the gradients. The unfolded 
computational graph is shown in Fig. 1. The equation 
corresponding to the computational graph is h(t) = f(h(t-1) , x(t) ; 
W), where h is the hidden state of the network, x is the input, t is 
the time step, and W denotes the weights of the network connec-
tions comprising of input-to-hidden, hidden-to-hidden, and 
hidden-to-output connection weights. 
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o 

h 

x 

Unfold 
h(....) h(....)h(t-1) h(t) h(t+1) 

x(t-1) x(t) x(t+1) 

o(t-1) o(t) o(t+1) 

Fig. 1 (Left) Circuit diagram for SimpleRNN with input x being incorporated into hidden state h with a feedback 
connection and an output o. (Right) The same SimpleRNN network shown as an unfolded computational graph 
with nodes at every time step 

2.1.1 Training 

Fundamentals 

Training is performed by gradient computation of the loss function 
with respect to the parameters involved in forward propagation 
from left to right of the unrolled graph followed by back-
propagation moving from right to left through the graph. Such 
gradient computation is an expensive operation as the runtime 
cannot be reduced by parallelism because the forward propagation 
is sequential in nature. The states computed in the forward pass are 
stored until they are reused in the back-propagation. The back-
propagation algorithm applied to RNN is known as back-propa-
gation through time (BPTT) [4]. 

The following computational operations are performed in 
RNN during the forward propagation to calculate the output and 
the loss. 

aðtÞ = b þ Whðt -1Þ þ UxðtÞ 

hðtÞ = tanhðaðtÞÞ 
oðtÞ = c þ VhðtÞ 

ŷðtÞ = σðoðtÞÞ
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where b and c are the biases and U, V , and W are the weight matrix 
for input-to-hidden connections, hidden-to-output connection, 
and hidden-to-hidden connections respectively, and σ is a sigmoid 
function. The total loss for a sequence of x values and its 
corresponding y values is obtained by summing up the losses over 
all time steps. 

τ 

t =1 

LðtÞ =Lððxð1Þ, . . . . . . , xðτÞÞ, ðyð1Þ, . . . . . . , yðτÞÞÞ 
To minimize the loss, the gradient of the loss function is 

calculated with respect to the parameters associated with it. The 
parameters associated with the nodes of the computational graph 
are U, V , W, b, c, x(t) , h(t) , o(t) , and L(t) . The output o(t) is the 
argument to the softmax to obtain the vector ŷ of probabilities over 
the output. During back-propagation, the gradient for each node is 
calculated recursively starting with the nodes preceding the final 
loss. It is then iterated backward in time to back-propagate gradi-
ents through time. tanh is a popular choice for activation function 
as it tends to avoid vanishing gradient problem by retaining 
non-zero value longer through the back-propagation process. 

2.1.2 SimpleRNN 

Architecture Variations 

Based on Parameter 

Sharing 

Variations of SimpleRNN can be designed depending upon the 
style of graph unrolling and parameter sharing [5]:

• Connection between hidden units. The RNN produces outputs at 
every time step, and the parameters are passed between hidden-
to-hidden units (Fig. 2a). This corresponds to the standard 
SimpleRNN presented above and is widely used.

• Connection between outputs to hidden units. The RNN produces 
outputs at every time step, and the parameters are passed from 
an output at a particular time step to the hidden unit at the next 
time step (Fig. 2b).

• Sequential input to single output. The RNN produces a single 
output at the end after reading the entire sequence and has 
connections between the hidden units at every time step 
(Fig. 2c). 

2.1.3 SimpleRNN 

Architecture Variations 

Based on Inputs and 

Outputs 

Different variations also exist depending on the number of inputs 
and outputs:

• One-to-one: The traditional RNN has one-to-one input to out-
put mapping at each time step t as shown in Fig. 3a.

• One-to-many: One-to-many RNN has one input at a time step 
for which it generates a sequence of outputs at consecutive time 
steps as shown in Fig. 3b. This type of RNN architecture is often 
used for image captioning.
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h(....) h(....)h(t-1) h(t) h(t+1) 

x(t-1) x(t) x(t+1) 
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o 

(a) (b) 

(c) 

Fig. 2 Types of SimpleRNN architectures based on parameter sharing: (a) SimpleRNN with connections 
between hidden units, (b) SimpleRNN with connections from output to hidden units, and (c) SimpleRNN with 
connections between hidden units that read the entire sequence and produce a single output

• Many-to-one: Many-to-one RNN has many inputs and one out-
put, at each time step as shown in Fig. 3c. This type of RNN 
architecture is used for text classification.

• Many-to-many: Many-to-many RNN architecture can be 
designed in two ways. First, the input is taken by the RNN and 
the corresponding output is given at the same time step as 
illustrated in Fig. 3d. This type of RNN is used for named entity 
recognition. Second, the input is taken by the RNN at each time 
step and the output is given by the RNN at the next time step 
depending upon all the input sequence as illustrated in 
Fig. 3e. Popular uses of this type of RNN architecture are in 
machine translation. 

2.1.4 Challenges of 

Long-Term Dependencies 

in SimpleRNN 

SimpleRNN works well with the short-term dependencies, but 
when it comes to long-term dependencies, it fails to remember 
the long-term information. This problem arises due to the vanish-
ing gradient or exploding gradient [6]. When the gradients are 
propagated over many stages, it tends to vanish most of the times 
or sometimes explodes. The difficulty arises due to the exponen-
tially smaller weight assigned to the long-term interactions com-
pared to the short-term interactions. It takes very long time to learn 
the long-term dependencies as the signals from these dependencies 
tend to be hidden by the small fluctuations arising from the short-
term dependencies.
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Fig. 3 (a) One-to-one RNN. (b) One-to-many RNN. (c) Many-to-one RNN. (d) Many-to-many RNN. (e) Many-to-
many RNN. x represents the input and o represents the output 

2.2 Long Short-Term 

Memory (LSTM) 

To address this long-term dependency problem, gated RNNs were 
proposed. Long short-term memory (LSTM) is a type of gated 
RNN which was proposed in 1997 [7]. Due to the property of 
remembering the long-term dependencies, LSTM has been a suc-
cessful model in many applications like speech recognition, 
machine translation, image captioning, etc. LSTM has an inner 
self loop in addition to the outer recurrence of the RNN. The 
gradients in the inner loop can flow for longer duration and are 
conditioned on the context rather than being fixed. In each cell, the 
input and output is the same as that of ordinary RNN but has a 
system of gating units to control the flow of information. Figure 4 
shows the flow of the information in LSTM with its gating units. 

There are three gates in the LSTM—the external input gate, 
the forget gate, and the output gate. The forget gate at time t and 
state si (f 

ðtÞ 
i ) decides which information should be removed from 

the cell state. The gate controls the self loop by setting the weight 
between 0 and 1 via a sigmoid function σ. When the value is near to 
1, the information of the past is retained, and if the value is near to



0, the information is discarded. After the forget gate, the internal 
state s

ðtÞ 
i is updated. Computation for external input gate (gt 

i ) is  
similar to that of forget gate with a sigmoid function to obtain a 
value between 0 and 1 but with its own parameters. The output 
gate of the LSTM also has a sigmoid unit which determines 
whether to output the value or to shut off the value ht i via the 
output gate qt i . 
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Fig. 4 Long short-term memory with cell state ct , hidden state ht , input xt , and output ot 

f 
ðtÞ 
i = σ 

j 

U f 
i , jx

t 
j þ 

j 

W f 
i , jh

ðt -1Þ 
j þ bf i 

s
ðtÞ 
i = f t i s

ðt -1Þ 
i þ gt iσ bi þ 

j 

U i, jx
t 
j þ 

j 

W i, jh
ðt -1Þ 
j 

g t 
i = σ bg i þ 

j 

U g 
i , jx

t 
j þ 

j 

W g 
i , jh

ðt -1Þ 
j 

ht i = tanhðst i Þqt i 
qt i = σ bo i þ 

j 

U o 
i , jx

t 
i þ W o 

i , jh
ðt -1Þ 
j 

xt is the input vector at time t, h(t) is the hidden layer vector, bi 
denote the biases, and Ui and Wi represent the input weights and 
the recurrent weights, respectively.
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Fig. 5 Gated recurrent neural network (GRU) with input xt and hidden unit ht 

2.3 Gated Recurrent 

Unit (GRU) 

In LSTM, the computation time is large as there are a lot of 
parameters involved during back-propagation. To reduce the com-
putation time, gated recurrent unit (GRU) was proposed in the 
year 2014 by Cho et al. with less gates than in LSTM [8]. The 
functionality of the GRU is similar to that of LSTM but with a 
modified architecture. The representation diagram for GRU can be 
found in Fig. 5. Like LSTM, GRU also solves the vanishing and 
exploding gradient problem by capturing the long-term dependen-
cies with the help of gating units. There are two gates in GRU, the 
reset gate and the update gate. The reset gate determines how 
much of the past information it needs to forget, and the update 
gate determines how much of the past information it needs to carry 
forward. 

The computation at the reset gate (rt i) and the update gate (u
t 
i), 

as well as hidden state (ht i) and the at time t, can be represented by the 
following: 

r
ðtÞ 
i = σðbr i þ 

j 

U r 
i,jx

ðtÞ 
j þ 

j 

W r 
i,jh

ðtÞ 
j Þ 

u
ðtÞ 
i = σðbu i þ 

j 

Uu 
i,jx

ðtÞ 
j þ 
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W u 
i,jh

ðtÞ 
j Þ 

h
ðtÞ 
i =u

ðt -1Þ 
i h

ðt -1Þ 
i þ ð1-uiÞ 

× σðbi þ 
j 

U i,jx
ðt -1Þ 
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W i,j r
ðt -1Þ 
j h

ðt -1Þ 
j Þ 

where bi denotes biases and Ui and Wi denote initial and recurrent 
weights, respectively.
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When the reset gate value is close to 0, the previous hidden 
state value is discarded and reset with the present value. This 
enables the hidden state to forget the past information that is 
irrelevant for future. The update gate determines how much of 
the relevant past information to carry forward for future. 

The property of the update gate to carry forward the past 
information allows it to remember the long-term dependencies. 
For short-term dependencies, the reset gate will be frequently 
active to reset with current values and remove the previous ones, 
while, for long-term dependencies, the update gate will be often 
active for carrying forward the previous information. 

2.3.1 Advantage of LSTM 

and GRU over SimpleRNN 

The LSTM and GRU can handle the vanishing gradient issue of 
SimpleRNN with the help of gating units. The LSTM and GRU 
have the additive feature that they retain the past information by 
adding the relevant past information to the present state. This 
additive property makes it possible to remember a specific feature 
in the input for longer time. In SimpleRNN, the past information 
loses its relevance when new input is seen. In LSTM and GRU, any 
important feature is not overwritten by new information. Instead, it 
is added along with the new information. 

2.3.2 Differences 

Between LSTM and GRU 

There are a few differences between LSTM and GRU in terms of 
gating mechanism which in turn result in differences observed in 
the content generated. In LSTM unit, the amount of the memory 
content to be used by other units of the network is regulated by the 
output gate, whereas in GRU, the full content that is generated is 
exposed to other units. Another difference is that the LSTM com-
putes the new memory content without controlling the amount of 
previous state information flowing. Instead, it controls the new 
memory content that is to be added to the network. On the other 
hand, the GRU controls the flow of the past information when 
computing the new candidate without controlling the candidate 
activation. 

2.4 Bidirectional 

RNN (BRNN) 

In SimpleRNN, the output of a state at time t only depends on the 
information of the past x(1) , .. . ., x(t-1) and the present input x(t) . 
However, for many sequence-to-sequence applications, the present 
state output depends on the whole sequence information. For 
example, in language translation, the correct interpretation of the 
current word depends on the past words as well as the next words. 
To overcome this limitation of SimpleRNN, bidirectional RNN 
(BRNN) was proposed by Schuster and Paliwal in the year 
1997 [9]. 

Bidirectional RNNs combine an RNN which moves forward 
with time, beginning from the start of the sequence, with another 
RNN that moves backward through time, beginning from the end 
of the sequence. Figure 6 illustrates a bidirectional RNN with h(t)



the state of the sub-RNN that moves forward through time and g(t) 

the state of the sub-RNN that moves backward with time. The 
output of the sub-RNN that moves forward is not connected to 
the inputs of sub-RNN that moves backward and vice versa. The 
output o(t) depends on both past and future sequence data but is 
sensitive to the input values around t. 
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o(t–1) 

g(...) g(...) 

o(t+1)o(t) 

g(t–1) g(t+1)g(t) 
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Fig. 6 Bidirectional RNN with forward sub-RNN having ht hidden state and 
backward sub-RNN having gt hidden state 

2.5 Deep RNN Deep models are more efficient than their shallow counterparts, 
and, with the same hypothesis, deep RNN was proposed by 
Pascanu et al. in 2014 [10]. In “shallow” RNN, there are generally 
three blocks for computation of parameters: the input state, the 
hidden state, and the output state. These blocks are associated with 
a single weight matrix corresponding to a shallow transformation 
which can be represented by a single-layer multilayer perceptron 
(MLP). In deep RNN, the state of the RNN can be decomposed 
into multiple layers. Figure 7 shows in general a deep RNN with 
multiple deep MLPs. However, different types of depth in an RNN 
can be considered separately like input-to-hidden, hidden-to-
hidden, and hidden-to-output layer. The lower layer in the hierar-
chy can transform the input into an appropriate representation for 
higher levels of hidden state. In hidden-to-hidden state, it can be 
constructed with a previous hidden state and a new input. This 
introduces additional non-linearity in the architecture which 
becomes easier to quickly adapt changing modes of the input. By 
introducing deep MLP in hidden-to-output state makes the layer 
compact which helps in summarizing the previous inputs and helps 
in predicting the output easily. Due to the deep MLP in the RNN 
architecture, the learning becomes slow and optimization is 
difficult.
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Fig. 7 Deep recurrent neural network 

2.6 Encoder– 
Decoder 

Encoder–decoder architecture was proposed by Cho et al. (2014) 
[8] to map a variable length input sequence to a variable length 
output sequence. Therefore, it is also known as sequence-to-
sequence architecture. Before encoder–decoder was introduced, 
there were RNN models which were used for sequence-to-
sequence applications, but they had limitations as the input and 
output sequences had to have the same length. Encoder–decoder 
was used for addressing variable length sequence-to-sequence pro-
blems such as machine translation or speech recognition where the 
input sequence and output sequence lengths may not be the same 
in most of the cases. Encoder and decoder are both RNNs where 
the encoder RNN encodes the whole input X = xð1Þ, . . . ::, xðnxÞ 

into a context vector c and outputs the context vector c which is 
fed as an input to the decoder RNN. The decoder RNN generates 
an output sequence Y = yð1Þ, . . . ::, yðny Þ. In the encoder–decoder 
model, the input length xðnxÞ and the output length yðny Þ can be 
different unlike the previous RNN models. The number of hidden 
layers in encoder and decoder are not necessarily be the same. The 
limitation of this architecture is that it fails to properly summarize a



long sequence if the context vector is too small. This problem was 
solved by Bahdanau et al. (2015) [11] by making the context vector 
a variable length sequence with added attention mechanism. 

128 Susmita Das et al.

2.7 Attention Models 

(Transformers) 

Due to the sequential learning mechanism, the context vector 
generated by the encoder (see Subheading 2.6) is more focused 
on the later part of the sequence than on the earlier part. An 
extension to the encoder–decoder model was proposed by 
Bahdanau et al. [11] for machine translation where the model 
generates each word based on the most relevant information in 
the source sentence and previously generated words. Unlike the 
previous encoder–decoder model where the whole input sequence 
is encoded into a single context vector, this extended encoder– 
decoder model learns to give attention to the relevant words pres-
ent in the source sequence regardless of the position in the 
sequence by encoding the input sequence into sequences of vectors 
and chooses selectively while decoding each word. This mechanism 
of paying attention to the relevant information that are related to 
each word is known as attention mechanism. 

Although this model solves the problem for fixed-length con-
text vectors, the sequential decoding problem still persists. To 
decode the sequence in less time by introducing parallelism, self-
attention was proposed by Google Brain team, Ashish Vaswani et al. 
[12]. They invented the Transformer model which is based on self-
attention mechanism and was designed to reduce the computation 
time. It computes the representation of a sequence that relates to 
different positions of the same sequence. The self-attention mech-
anism was embedded in the Transformer model. The Transformer 
model has a stack of six identical layers each for encoding the 
sequence and decoding the sequence as illustrated in Fig. 8. Each 
layer of the encoder and decoder has sub-layers comprising multi-
head self-attention mechanisms and position-wise fully connected 
layers. There is a residual connection around the two sub-layers 
followed by normalization. In addition to the two sub-layers, there 
is a third layer in the decoder that performs multi-head attention 
over the output of the encoder stack. In the decoder, the multi-
head attention is masked to prevent the position from attending the 
later part of the sequence. This ensures that the prediction for a 
position p depends only on the positions less than p in the sequence. 
The attention function can be described as mapping a query and 
key-value pairs to an output. All the parameters involved in the 
computation are all vectors. To calculate the output, scalar 
dot product operation is performed on the query and all keys, 
and divide each key by dk 

p
(where dk is the dimension on 

the keys). Finally, the softmax is applied to it to obtain the 
weights on the values. The computation of attention function 
can be represented by the following equation:



AttentionðQ ,K ,V Þ= sof  tmaxð QKT 

dk 

p ÞV , where Q, K, and V are 

all matrices corresponding to query, keys, and values, respectively. A 
more in-depth coverage of Transformers is provided in Chap. 6. 
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Fig. 8 Transformer with six layers of encoders and six layers of decoders 

3 Tips and Tricks for RNN Training 

As previously stated, the vanishing gradient and exploding gradient 
problems are well-known concerns when it comes to properly 
training RNN models [13, 14]. The fundamental challenge arises 
from the fact that RNNs can be naturally unfolded, allowing their 
recurrent connections to perform feedforward calculations, which 
result in an RNN with the same number of layers as the number of 
elements in the sequence. Two major issues arise as a result:
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• Gradient vanishing problem. It becomes difficult to effectively 
learn long-term dependencies in sequences due to the gradient 
vanishing problem [6]. As a result, a prospective model predic-
tion will be essentially unaffected by earlier layers.

• Exploding gradient problem. Adding more layers to the network 
amplifies the effect of large gradients, increasing the risk of a 
learning derailment since significant changes to the network 
weights can be performed at each step, potentially causing the 
gradients to blow out exponentially. In fact, weights that are 
closer to the input layer will obtain larger updates than weights 
that are closer to the output layer, and the network may become 
unable to learn correlations between temporally distant events. 

To overcome these limitations, we need to create solutions so 
that the RNN model can work on various time scales, with some 
sections operating on fine-grained time scales and handling small 
details and others operating on coarse time scales and efficiently 
transferring information from the distant past to the present. In this 
section, we discuss several popular strategies to tackle these issues. 

3.1 Skip Connection The practice of skipping layers effectively simplifies the network by 
using fewer direct connected layers in the initial training stages. 
This speeds learning by reducing the impact of vanishing gradients, 
as there are fewer layers to propagate through. As the network 
learns the feature space during the training phase, it gradually 
restores the skipped layers. Lin et al. [15] proposed the use of 
such skip connections, which follows from the idea of incorporating 
delays in feedforward neural networks from Lang et al. [16]. Con-
ceptually, skip connections are a standard module in deep architec-
tures and are commonly referred to as residual networks, as 
described by He et al. [17]. They are responsible to skip layers in 
the neural network and feeding the output of one layer as the input 
to the next layers. This technique is used to allow gradients to flow 
through a network directly, without passing through non-linear 
activation functions, and it has been empirically proven that these 
additional steps are often beneficial for the model convergence 
[17]. Skip connections can be used through the non-sequential 
layer in two fundamental ways in neural networks:

• Additive Skip Connections. In this type of design, the data 
from early layers is transported to deeper layers via matrix addi-
tion, causing back-propagation to be done via addition 
(Fig. 9b). This procedure does not require any additional para-
meters because the output from the previous layer is added to 
the layer ahead. One of the most common techniques used in 
this type of architecture is to stack the skip residual blocks 
together and use an identity function to preserve the gradient 
[18]. The core concept is to use a vector addition to back-
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Fig. 9 Skip connection residual architectures: (a) concatenate output of previous layer and skip connection; (b) 
sum of the output of previous layer and skip connection 

propagate through the identity function. The gradient is then 
simply multiplied by one, and its value is preserved in the earlier 
layers.

• Concatenative Skip Connections. Another way for establish-
ing skip connections is to concatenate previous feature maps. 
The aim of concatenation is to leverage characteristics acquired 
in prior layers to deeper layers. In addition, concatenating skip 
connections provides an alternate strategy for assuring feature 
reusability of the same dimensionality from prior layers without 
the need to learn duplicate maps. Figure 9(a) illustrates a dia-
gram example of how the architecture looks like. The primary 
concept of the architecture is to allow subsequent layers to reuse 
intermediary representations, allowing them to maintain more 
information and enhance long-term dependency performance. 

3.2 Leaky Units One of the major challenges when training RNNs is capturing 
long-term dependencies and efficiently transferring information 
from distant past to present. An effective method to obtain coarse 
time scales is to employ leaky units [19], which are hidden units 
with linear self-connections and a weight on the connections that is 
close to one. In a leaky RNN, hidden units are able to access values 
from prior states and can be utilized to obtain temporal representa-
tions. Formula ht= α ht-1 + (1- α) ht expresses the state update



rule of a leaky unit, where α∈ (0, 1) is an example of a linear self-
connection from ht-1 to ht, and it is a parameter to be learned 
during the training stage. Essentially, α controls the information 
flow in the state. When α is near one, the state is almost unchanged, 
and information about the past is retained for a long time, and 
when α is close to zero, the information about the past is rapidly 
discarded, and the state is largely replaced by a new state ht. 
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3.3 Clipping 

Gradients 

Gradient clipping is a technique that tries to overcome the explod-
ing gradient problem in RNN training, by constraining gradient 
norms (element-wise) to a predetermined minimum or maximum 
threshold value since the exploding gradients are clipped and the 
optimization begins to converge to the minimum point. Gradient 
clipping can be used in two fundamental ways:

• Clipping-by-value. Using this technique, we define a minimum 
clip value and a maximum clip value. If a gradient exceeds the 
threshold value, we clip the gradient to the maximum threshold. 
If the gradient is less than the lower limit of the threshold, we 
clip the gradient to the minimum threshold.

• Clipping-by-norm. The idea behind this technique is very 
similar to clipping-by-value. The key difference is that we clip 
the gradients by multiplying the unit vector of the gradients with 
the threshold. Gradient descent will be able to behave properly 
even if the loss landscape of the model is irregular since the 
weight updates will also be rescaled. This significantly reduces 
the likelihood of an overflow or underflow of the model. 

4 RNN Applications in Language Modeling 

Language modeling is the process of learning meaningful vector 
representations for language or text using sequence information 
and is generally trained to predict the next token or word given the 
input sequence of tokens or words. Bengio et al. [20] proposed a 
framework for neural network-based language modeling. RNN 
architecture is particularly suited to processing free-flowing natural 
language due to its sequential nature. As described by Mikolov et al. 
[21], RNNs can learn to compress a whole sequence as opposed to 
feedforward neural networks that compress only a single input 
item. Language modeling can be an independent task or be part 
of a language processing pipeline with downstream prediction or 
classification task. In this section, we will discuss applications of 
RNN for various language processing tasks.
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4.1 Text 

Classification 

Many interesting real-world applications concerning language data 
can be modeled as text classification. Examples include sentiment 
classification, topic or author identification, and spam detection 
with applications ranging from marketing to query-answering 
[22, 23]. In general, models for text classification include some 
RNN layers to process sequential input text [22, 23]. The embed-
ding of the input learnt by these layers is later processed through 
varying classification layers to predict the final class label. Many-to-
one RNN architectures are often employed for text classification. 

As a recent technical innovation, RNNs have been combined 
with convolutional neural networks (CNNs), thus combining the 
strengths of two architectures, to process textual data for classifica-
tion tasks. LSTMs are popular RNN architecture for processing 
textual data because of their ability to track patterns over long 
sequences, while CNNs have the ability to learn spatial patterns 
from data with two or more dimensions. Convolutional LSTM 
(C-LSTM) combines these two architectures to form a powerful 
architecture that can learn local phrase-level patterns as well as 
global sentence-level patterns [24]. While CNN can learn local 
and position-invariant features and RNN is good at learning global 
patterns, another variation of RNN has been proposed to introduce 
position-invariant local feature learning into RNN. This variation is 
called disconnected RNN (DRNN) [25]. Information flow 
between tokens/words at the hidden layer is limited by a hyper-
parameter called window size, allowing the developer to choose the 
width of the context to be considered while processing text. This 
architecture has shown better performance than both RNN and 
CNN on several text classification tasks [25]. 

4.2 Text 

Summarization 

Text summarization approaches can be broadly categorized into 
(1) extractive and (2) abstractive summarization. The first approach 
relies on selection or extraction of sentences that will be part of the 
summary, while the latter generates new text to build a summary. 
RNN architectures have been used for both types of summarization 
techniques. 

4.2.1 Extractive Text 

Summarization 

Extractive summarization frameworks use many-to-one RNN as a 
classifier to distinguish sentences that should be part of the sum-
mary. For example, a two-layer RNN architecture is presented in 
[26] where one layer processes words in one sentence and the other 
layer processes many sentences as a sequence. The model generates 
sentence-level labels indicating whether the sentence should be part 
of the summary or not, thus producing an extractive summary of 
the input document. Xu et al. have presented a more sophisticated 
extractive summarization model that not only extracts sentences to 
be part of the summary but also proposes possible syntactic com-
pressions for those sentences [27]. Their proposed architecture is a



combination of CNN and bidirectional LSTM, while a neural 
classifier evaluates possible syntactic compressions in the context 
of the sentence as well as the broader context of the document. 
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4.2.2 Abstractive Text 

Summarization 

Abstractive summarization frameworks expect the RNN to process 
input text and generate a new sequence of text that is the summary 
of input text, effectively using many-to-many RNN as a text gener-
ation model. While it is relatively straightforward for extractive 
summarizers to achieve basic grammatical correctness as correct 
sentences are picked from the document to generate a summary, 
it has been a major challenge for abstractive summarizers. Gram-
matical correctness depends on the quality of the text generation 
module. Grammatical correctness of abstractive text summarizers 
has improved recently due to developments in contextual text 
processing, language modeling, as well as availability of computa-
tional power to process large amounts of text. 

Handling of rare tokens/words is a major concern for modern 
abstractive summarizers. For example, proper nouns such as specific 
names of people and places occur less frequently in the text; how-
ever, generated summaries are incomplete and incomprehensible if 
such tokens are ignored. Nallapati et al. proposed a novel solution 
composed of GRU-RNN layers with attention mechanism by 
including switching decoder in their abstractive summarizer archi-
tecture [28] where the text generator module has a switch which 
can enable the module to choose between two options: (1) generate 
a word from the vocabulary and (2) point to one of the words in the 
input text. Their model is capable of handling rare tokens by 
pointing to their position in the original text. They also employed 
large vocabulary trick which limits the vocabulary of the generator 
module to tokens of the source text only and then adds frequent 
tokens to the vocabulary set until its size reaches a certain thresh-
old. This trick is useful in limiting the size of the network. 

Summaries have latent structural information, i.e., they convey 
information following certain linguistic structures such as “What-
Happended” or “Who-Action-What.” Li et al. presented a recur-
rent generative decoder based on variational auto-encoder (VAE) 
[29]. VAE is a generative model that takes into account latent 
variables, but is not inherently sequential in nature. With the his-
torical dependencies in latent space, it can be transformed into a 
sequential model where generative output is taking into account 
history of latent variables, hence producing a summary following 
latent structures. 

4.3 Machine 

Translation 

Neural machine translation (NMT) models are trained to process 
input sequence of text and generate an output sequence which is 
the translation of the input sequence in another language. As 
mentioned in Subheading 2.6, machine translation is a classic 
example of conversion of one sequence to another using encoder–



decoder architecture where lengths of both sequences may be 
different. In 2014, many-to-many RNN-based encoder–decoder 
architecture was proposed where one RNN encodes the input 
sequence of text to a fixed-length vector representation, while 
another RNN decodes the fixed-length vector to the target trans-
lated sequence [30]. Both RNNs are jointly trained to maximize 
the conditional probability of the target sequence given the input 
sequence. Later, attention-based modeling was added to vanilla 
encoder–decoder architecture for machine translation. Luong 
et al. discussed two types of attention mechanism in their work 
on NMT: (i) global and (ii) local attention [31]. In global atten-
tion, a global context vector is estimated by learning variable length 
alignment and attention scores for all source words. In local atten-
tion, the model predicts a single aligned position for the current 
target word and then computes a local context vector from atten-
tion predicted for source words within a small window of the 
aligned position. Their experiments show significant improvement 
in translation performance over models without attention. Local 
attention mechanism has the advantage of being computationally 
less expensive than global attention mechanism. 
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4.4 Image-to-Text 

Translation 

Image-to-text translation models are expected to convert visual 
data (i.e., images) into textual data (i.e., words). In general, the 
image input is passed through some convolutional layers to gener-
ate a dense representation of the visual data. Then, the embedded 
representation of the visual data is fed to an RNN to generate a 
sequence of text. Many-to-one RNN architectures are popular for 
this task. 

In 2015, Karpathy et al. [32] presented their influential work 
on training region convolutional neural network (RCNN) to gen-
erate representation vectors for image regions and bidirectional 
RNN to generate representation vectors for corresponding caption 
in semantic alignment with each other. They also proposed novel 
multi-modal RNN to generate a caption that is semantically aligned 
with the input image. Image regions were selected based on the 
ranked output of an object detection CNN. 

Xu et al. proposed an attention-based framework to generate 
image caption that was inspired by machine translation models 
[33]. They used image representations generated by lower convo-
lutional layers from a CNN model rather than the last fully 
connected layer and used an LSTM to generate words based on 
hidden state, last generated word, and context vector. They defined 
the context vector as a dynamic representation of the image gener-
ated by applying an attention mechanism on image representation 
vectors from lower convolutional layers of CNN. Attention mech-
anism allowed the model to dynamically select the region to focus 
on while generating a word for image caption. An additional 
advantage of their approach was intuitive visualization of the



model’s focus for generation of each word. Their visualization 
experiments showed that their model was focused on the right 
part of the image while generating each important word. 
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Such influential works in the field of automatic image caption-
ing were based on image representations generated by CNNs 
designed for object detection. Some recently proposed captioning 
models have sought to change this trend. Biten et al. proposed a 
captioning model for images used to illustrate new articles 
[34]. Their caption generation LSTM takes into account both 
CNN-generated image features and semantic embeddings to the 
text of corresponding new articles to generate a template of a 
caption. This template contains spaces for the names of entities 
like organizations and places. These places are filled in using atten-
tion mechanism on the text of the corresponding article. 

4.5 ChatBot for 

Mental Health and 

Autism Spectrum 

Disorder 

ChatBots are automatic conversation tools that have gained vast 
popularity in e-commerce and as digital personal assistants like 
Apple’s Siri and Amazon’s Alexa. ChatBots represent an ideal appli-
cation for RNN models as conversations with ChatBots represent 
sequential data. Questions and answers in a conversation should be 
based on past iterations of questions and answers in that conversa-
tion as well as patterns of sequences learned from other conversa-
tions in the dataset. 

Recently, ChatBots have found application in screening and 
intervention for mental health disorders such as autism spectrum 
disorder (ASD). Zhong et al. designed a Chinese-language Chat-
Bot using bidirectional LSTM in sequence-to-sequence framework 
which showed great potential for conversation-mediated interven-
tion for children with ASD [35]. They used 400,000 selected 
sentences from chatting histories involving children in many 
cases. Rakib et al. developed similar sequence-to-sequence model 
based on Bi-LSTM to design a ChatBot to respond empathetically 
to mentally ill patients [36]. A detailed survey of medical ChatBots 
is presented in [37]. This survey includes references to ChatBots 
built using NLP techniques, knowledge graphs, as well as modern 
RNN for a variety of applications including diagnosis, searching 
through medical databases, dialog with patients, etc. 

5 Conclusion 

Due to the sequential nature of their architecture, RNNs are 
applied for ordinal or temporal problems, such as language transla-
tion, text summarization, and image captioning, and are 
incorporated into popular applications such as Siri, voice search, 
and Google Translate. In addition, they are also often used to 
analyze longitudinal data in medical applications (i.e., cases where 
repeated observations are available at different time points for each



patient of a dataset). While research in RNN is still an evolving area 
and new architectures are being proposed, this chapter summarizes 
fundamentals of RNN including different traditional architectures, 
training strategies, and influential work. It may serve as a stepping 
stone for exploring sequential models using RNN and provides 
reference pointers. 
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Chapter 5 

Generative Adversarial Networks and Other Generative 
Models 

Markus Wenzel 

Abstract 

Generative networks are fundamentally different in their aim and methods compared to CNNs for classifi-
cation, segmentation, or object detection. They have initially been meant not to be an image analysis tool 
but to produce naturally looking images. The adversarial training paradigm has been proposed to stabilize 
generative methods and has proven to be highly successful—though by no means from the first attempt. 
This chapter gives a basic introduction into the motivation for generative adversarial networks (GANs) 

and traces the path of their success by abstracting the basic task and working mechanism and deriving the 
difficulty of early practical approaches. Methods for a more stable training will be shown, as well as typical 
signs for poor convergence and their reasons. 

Though this chapter focuses on GANs that are meant for image generation and image analysis, the 
adversarial training paradigm itself is not specific to images and also generalizes to tasks in image analysis. 
Examples of architectures for image semantic segmentation and abnormality detection will be acclaimed, 
before contrasting GANs with further generative modeling approaches lately entering the scene. This will 
allow a contextualized view on the limits but also benefits of GANs. 

Key words Generative models, Generative adversarial networks, GAN, CycleGAN, StyleGAN, 
VQGAN, Diffusion models, Deep learning 

1 Introduction 

Generative adversarial networks are a type of neural network archi-
tecture, in which one network part generates solutions to a task and 
another part compares and rates the generated solutions against a 
priori known solutions. While at first glimpse this does not sound 
much different from any loss function, which essentially also com-
pares a generated solution with the gold standard, there is one 
fundamental difference. A loss function is static, but the “judge” 
or “discriminator” network part is trainable (Fig. 1). This means 
that it can be trained to distinguish the generated from the true 
solutions and, as long as it succeeds in its task, a training signal for 
the generative part can be derived. This is how the notion of 
adversaries came into the name GAN. The discriminator part is
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trained to distinguish true from generated solutions, while the 
generative part is trained to arrive at the most realistic-appearing 
solutions, making them adversaries with regard to their aims.
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Fig. 1 The fundamental GAN setup for image generation consisting of a genera-
tor and a discriminator network; here, CNNs 

Generative adversarial networks are now among the most pow-
erful tools to create naturally looking images from many domains. 
While they have been created in the context of image generation, 
the original publication describes the general idea of how to make 
two networks learn by competing, regardless of the application 
domain. This key idea can be applied to generative tasks beyond 
image creation, including text generation, music generation, and 
many more. 

The research interest skyrocketed in the years after the first 
publication proposing an adversarial training paradigm [1]. Look-
ing at the number of web searches for the topic “generative adver-
sarial networks” shows how the interest in the topic has rapidly 
grown but also the starting decline of the last years. Authors since 
2014 have cast all kinds of problems into the GAN framework, to 
enable this powerful training mechanism for a variety of tasks, 
including image analysis tasks as well. This is surprising at first, 
since there is no immediate similarity between a generative task 
and, for example, a segmentation or detection task. Still, as evi-
denced by the success in these application areas, the adversarial 
training approach can be applied with benefits. Clearly, the decline 
in interest can to some degree be attributed to the emergence of 
best practices and proven implementations, while simultaneously 
the scientific interest has recently shifted to successor approaches. 
However, similar to the persistent relevance of CNN architectures 
like ResNets for classification, Mask R-CNNs for detection, or basic 
transformer architectures for sequence processing, GANs will



remain an important tool for image creation and image analysis. 
The adversarial training paradigm has become an ingredient to 
models apart from generative aims, providing flexible ways to -
custom-tailor loss components for given tasks (compare Figs. 2 
and 3). 
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Fig. 2 Google web search-based interest estimate for “generative adversarial networks” since 2014. Relative 
scale 

Fig. 3 Some of the most-starred shared GAN code repositories on Github, until 2018. Ranking within this 
selection in brackets 

2 Generative Models 

Generative processes are fundamentally hard to grasp computation-
ally. Their nature and purpose is to create something “meaningful” 
out of something less meaningful (even random). The first question 
to ask therefore is how this can even be possible for a computer 
program since, intuitively, creation requires an inventive spirit—call 
it creativity, to use the term humans tend to associate with this. To 
introduce some of the terminology and basic concepts that we will 
use in the remainder of this section, some remarks on human 
creativity will set the scene. 

In fact, creative human acts are inherently limited by our con-
cepts of the world, acquired by learning and experience through the



sensory means we have available, and by the available expressive 
means (tools, instruments, . . .) with which we can even conceive of 
creating something. This is true for any kind of creative act, includ-
ing writing, painting, wood carving, or any other art, and similarly 
also for computer programming, algorithm development, or sci-
ence in general. Our limited internal representation of the world 
around us frames our creative scope. 
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This is very comparable to the way computerized, pro-
grammed, or learned generative processes create output. They 
have either an in-build mechanism, or a way to acquire such a 
mechanism, that represents the tools by which creation is possible, 
as well as a model of the world that defines the scope of outputs. 
Practically, a CNN-based generative process uses convolutions as 
the in-built tool and is by this tool geared to produce image-like 
outputs. The convolutional layers, if not a priori defined, will 
represent a set of operations defined by a training process and 
limited in their expressiveness by the training material—by the 
fraction of the world that was presented. This will lead us to the 
fundamental notion of how to capture the variability of the “frac-
tion of the world” that is interesting and how to make a neural 
network represent this partial world knowledge. It is interesting to 
note at this point that neither for human creative artists nor for 
neural networks the ability to (re)create convincing results implies 
an understanding of the way the templates (in the real world) have 
come into existence. Generating convincing artifacts does not 
imply understanding nature. Therefore, GANs cannot explain the 
parts of nature they are able to generate. 

2.1 The Language of 

Generative Models: 

Distributions, Density 

Estimation, and 

Estimators 

Understanding the principles of generative models requires a basic 
knowledge of distributions. The reason is that—as already hinted at 
in the previous section—the “fraction of the world” is in fact 
something that can be thought of as a distribution in a parameter 
space. If you were to describe a part of the world in a computer-
interpretable way, you would define descriptive parameters. To 
describe persons, you could characterize them by simple measures 
like age, height, weight, hair and eye color, and many more. You 
could add blood pressure, heart rate, muscle mass, maximum 
strength, and more, and even a whole-genome sequencing result 
might be a parameter. Each of the parameters individually can be 
collected for the world population, and you will obtain a picture of 
how this parameter is “distributed” worldwide. In addition, para-
meters will be in relation with each other, for example, age and 
maximum strength. Countless such relationships exist, of which the 
majority are and probably will remain unknown. Those interrela-
tionships are called a joint distribution. Would you know the joint 
distribution, you could “create” a plausible parameter combination 
of a nonexisting human. Let us formalize these thoughts now.
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2.1.1 Distributions A distribution describes the frequency of particular observations 
when watching a random process. Plotting the number of occur-
rences over an axis of all possible observations creates a histogram. 
If the possible observations can be arranged on a continuous scale, 
one can see that observations cluster in certain areas, and we say 
that they create a “density” or are “dense” there. Hence, when 
trying to describe where densities are in parameter space, this is 
associated with the desire to reproduce or sample from distribu-
tions, like we want to do it to generate instances from a domain. 
Before being able to reproduce the function that generates obser-
vations, estimating where the dense areas are is required. This will 
in the most general sense be called density estimation. 

Sometimes, the shape of the distribution follows an analytical 
formula, for example, the normal distribution. If such a closed-
form description of the distribution can be given, for instance, the 
normal distribution, this distribution generalizes the shape of the 
histogram of observations and makes it possible to produce new 
observations very easily, by simply sampling from the distribution. 
When our observations follow a normal distribution, we mean that 
we expect to observe instances more frequently around the mean of 
the normal distribution than toward the tails. In addition, the 
standard deviation quantifies how much more likely observations 
close to the mean are compared to observations in the tails. We 
describe our observations with a parametric description of the 
observed density. 

In the remainder of this section, rather than providing a rigor-
ous mathematical definition and description of the mathematics of 
distributions and (probability) density estimation, we will intro-
duce the basic concepts and terminology in an intuitive way (also 
compare Box 1). Readers with the wish for a more in-depth treat-
ment can find tutoring material in the references [2–6]. 

Box 1: Probability Distributions: Terminology 

Several common terms regarding distributions have intuitive 
interpretations which are given in the following. Let a be an 
event from the probability distribution A, written as a�A, 
and b B an event from another probability distribution. 

In a medical example, A might be the distribution of 
possible neurological diseases and B the distribution of all 
possible variations of smoking behavior. 

Conditional Probability P(A|B) The conditional probability 
of a certain a�A, for exam-
ple, a stroke, might depend 
on the concrete smoking 
history of a person,

(continue



Box 1 (continued) 
described by b�B. The 
conditional probability is 
written as p(a|b) for the 
concrete instances or P(A| 
B) if talking about the 
entire probability distribu-
tions A and B. 

Joint Probability P(A, B) The probability of seeing 
instantiations of A and 
B together is termed the 
joint probability. Notably, 
if expanded, this will lead 
to a large table of probabil-
ities, joining each possible 
a�A (e.g., stroke, demen-
tia, Parkinson’s disease, 
etc.) with each possible 
b�B (casual smoker, fre-
quent smoker, nonsmoker, 
etc.). 

Marginal Probability The marginal probabilities 
of A and B (denoted, 
respectively, P(A) and 
P(B)) are the probabilities 
of each possible outcome 
across (and independent 
of) all of the possible out-
comes of the other distribu-
tion. For example, it is the 
probability of seeing non-
smokers across all neuro-
logical diseases or seeing a 
specific disease regardless of 
smoking status. It is said to 
be the probability of one 
distribution marginalized 
over the other probability 
distributions.
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2.1.2 Density Estimation We assume in the following that our observations have been pro-
duced by a function or process that is not known to us and that 
cannot be guessed from an arrangement of the observations. In a 
practical example, the images from a CT or MRI scanner are pro-
duced by such a function. Notably, the concern is less about the 
intractability of the imaging physics but about the appearance of the 
human body. The imaging physics might be modeled analytically 
up to a certain error. But the outer shape and inner structure of the



human body and its organs depend on a large amount of mutually 
influencing factors. Some of these factors are known and can even 
be modeled, but many are not. In particular, the interdependence 
of factors must be assumed to be intractable. What we can accumu-
late is measured data providing information about the body, its 
shape, and its function. While many measurement instruments 
exist in medicine, for this chapter, we will be concerned with images 
as our observations. In the following thought experiment, we will 
explore a naı̈ve way to model the distribution and try to generate 
images. 
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The first step is to examine the gray value distribution or, in 
other words, estimate the density of values. The most basic way for 
estimating a density is plotting a histogram. Let the value on the x 
axis be the image gray value of the medical image in question (in CT 
expressed in Hounsfield units (HU) and in arbitrary units for 
MRI). Two plots show histograms of a head MRI (Fig. 4) and an 
abdominal CT (Fig. 5). While the brain MRI suggests three or four 
major “bumps” of the histogram at about values 25, 450, and 
600, the abdominal CT doesn’t lend itself to such a description. 

In the next step, we want to describe the histograms through 
analytical functions, to make them amenable for computational

Fig. 4 Brain MRI (left) and histogram of gray values for one slice of a brain MRI 
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Fig. 5 Abdominal CT (left) and histogram of gray values for one slice of an abdominal CT



ends. This means we will aim to estimate an analytical description of 
the observations.
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Expectation maximization (EM; see Box 2) is an algorithm 
suitable for this task. EM enables us to perform maximum likeli-
hood estimation in the presence of unobserved (“latent) variables 
and incomplete data—this being the default assumption when 
dealing with real data. Maximum likelihood estimation (MLE) is 
the process of finding parameters of a parametric distribution to 
most accurately match the distribution to the observations. In 
MLE, this is achieved by adapting the parameters steered by an 
error metric that indicates the closeness of the fit; in short, a 
parameter optimization algorithm. 

Box 2: Expectation Maximization—Example 
Focusing on our density estimate of the MRI data, we want to 
use expectation maximization (EM) to optimize the para-
meters of a fixed number of Gaussian functions adding up to 
the closest possible fit to the empirical shape of the histogram. 

In our data, we observe “bumps” of the histogram. We 
can by image analysis determine that certain organs imaged by 
MRI lead to certain bumps in the histogram, since they are of 
different material and create different signal intensities. This, 
however, is unknown to EM—the so-called “latent” variables. 

The EM algorithm has two parts, the expectation step and 
the maximization step. They can, with quite far-reaching 
omission of details, be sketched as follows: 

Expectation takes each point (or a number of sampled 
points) of the distribution and estimates the 
expectation to which of the parameterized dis-
tribution to assign it to. Figuring out this 
assignment is the step of dealing with the 
“latent” variable of the observations. 

Maximization iterates over all parameterized distributions 
and adjusts their parameters to match the 
assigned points as well as possible. 

This process is iterated until a fitting error cannot be 
improved anymore. 

A short introductory treatment of EM with examples and 
applications is presented in [7]. The standard reference for the 
algorithm is [8].
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Fig. 6 A Gaussian mixture model (GMM) of four Gaussians was fit to the brain MRI data we have visualized as a 
histogram in Fig. 4 

In Fig. 6, a mixture of four Gaussian distributions has been fit 
to the brain MRI voxel value data seen before. 

It is tempting to model even more complex observations by 
mixing simple analytical distributions (e.g., Gaussian mixture mod-
els (GMMs)), but in general this will be intractable for two reasons. 
Firstly, realistic joint distributions will have an abundance of mixed 
maxima and therefore require a vast number of basic distributions 
to fit. Even basic normal distributions in high-dimensional param-
eter spaces are no longer functions with two parameters (μ, σ), but 
with a vector of means and a covariance matrix. Secondly, it is no 
longer trivial to sample from such high-dimensional joint distribu-
tions, and while some methods, among others Markov chain 
Monte Carlo methods, allow to sample from them, such numerical 
approaches are of such high computational complexity that it makes 
their use difficult in the context of deep neural network parameter 
estimation. 

We will learn about alternatives. In principle, there are different 
approaches for density (distribution) estimation, direct distribution 
estimation, distribution approximation, or even more indirectly, by



using a simple surrogate distribution that is made to resemble the 
unknown distribution as good as possible through a mapping 
function. We will see this in the further elaboration of generative 
modeling approaches. 
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2.1.3 Estimators and the 

Expected Value 

Assume we have found suitable mean values and standard devia-
tions for three normal distributions that together approximate the 
shape of the MRI data density estimate to our satisfaction. Such a 
combination of normal (Gaussian) distributions is called a Gaussian 
mixture model (GMM), and sampling from such a GMM is 
straightforward. We are thus able to sample single pixels in any 
number, and over time we will sample them such that their density 
estimate or histogram will look similar to the one we started with. 

However, if we want to generate a brain MRI image using a 
sampling process from our closed-form GMM representation of the 
distribution, we will notice that a very important notion wasn’t 
respected in our approach. We start with one slice of 512×512 
voxels and therefore randomly draw the required number of voxel 
values from the distribution. However, this will not yield an image 
that resembles one slice of a brain MRI, but will almost look like 
random noise, because we did not model the spatial relation of the 
gray values with respect to each other. Since the majority of voxels 
of a brain MRI are not independent of each other, drawing one new 
voxel from the distribution needs to depend on the spatial locations 
and gray values of all voxels drawn before. Neighboring voxels will 
have a higher likelihood of similar gray values than voxels far apart 
from each other, for example. More crucially, underneath the inter-
dependence lies the image generation process: the image values 
observed in a real brain MRI stem from actual tissue—and this is 
what defines their interdependence. This means the anatomy of the 
brain indirectly reflects itself in the rules describing the dependency 
of gray values of one another. 

For the modeling process, this implies that we cannot argue 
about single-voxel values and their likelihood, but we need to 
approach the generative process differently. One idea for a genera-
tive process has been implied in the above description already: pick 
a random location of the to-be-generated image and predict the 
gray value depending on all existing voxel values. Implemented 
with the method of mixture models, this results in unfathomably 
many distributions to be estimated, as for each possible “next 
voxel” location, any possible combination of already existing 
voxel numbers and positions needs to be considered. We will see 
in Subheading 5.1 on diffusion models how this general approach 
to image generation can still be made to work. 

A different sequential approach to image generation has also 
been attempted, in which pixels are generated in a defined order, 
starting at the top left and scanning the image row by row across 
the columns. Again, the knowledge about the already produced



pixels is memorized and used to predict the next voxel. This has 
been dubbed the PixelRNN (Pixel Recurrent Neural Network), 
which lends its general idea from text processing networks [9]. 
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Lastly, a direct approach to image generation could be formu-
lated by representing or approximating the full joint distribution of 
all voxels in one distribution that is tangible and to sample all voxels 
at once from this. The full joint distribution in this approach 
remains implicit, and we use a surrogate. This will actually be the 
approach implemented in GANs, though not in a naı̈ve way. 

Running the numbers of what a likelihood-based naı̈ve 
approach implies, the difficulties of making it work will become 
obvious. Consider an MRI image as the joint distribution of 
512×512 voxels (one slice of our brain MRI), where we approxi-
mated the gray value distribution of one voxel with a GMM with six 
parameters. This results in a joint distribution of 512×512×6=1, 
572, 864 parameters. Conceptually, this representation therefore 
spans a 1,572,864-dimensional space, in which every one brain 
MRI slice will be one data point. Referring back to the histograms 
of CT and MRI images in the figures above, we have seen continu-
ous lines with densities because we have collected all voxels of an 
entire medical image, which are many million. Still, we only covered 
one single dimension out of the roughly 1.5 million. Searching for 
the density in the 1,572,864-dimensional MRI-slice-space that is 
given by all collected brain MRI slices is the difficult task any 
generative algorithm has to solve. In this vastly large space, the 
brain MRI slices “live” in a very tiny region that is extremely hard to 
find. We say the images occupy a low-dimensional manifold within 
the high-dimensional space. 

Consider the maximum likelihood formulation 

θ̂ = argmax 
θ 

x�Pdata 
logQ θðxjθÞ ð1Þ 

where Pdata is the unknown data distribution and Qθ the distribu-
tion generated by the model which is parameterized by θ. θ can, for 
example, be the weights and biases of a deep neural network.1 In 
other words, the result of maximum likelihood estimation is para-
meters θ̂ so that the product of two terms, out of which only the 
second depends on the choice of θ, is maximal. The first term is the 
expectation of x with regard to the real data distribution. The 
second term is the (log of) the conditional probability (likelihood) 
of seeing the example x given the choice of θ under the model Qθ. 
Hence, maximizing the likelihood function means maximizing the 
probability that x is seen in Qθ, which will be the case when 
Q matches P as closely as possible given the parametric form of Q. 

1 We will use θ when referring to parameters of models in general but designate parameters of neural networks 
with w in accordance with literature.
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The maximum likelihood mechanism is very nicely illustrated in 
[10]. Here, it is also visually shown how finding the maximum 
likelihood estimate of parameters of the distribution can be done 
by working with partial derivatives of the likelihood function with 
respect to μ and σ2 and seeking their extrema. The partial deriva-
tives are called the score function and will make a reappearance 
when we discuss score-based and diffusion models later in Sub-
heading 5.1 on advanced generative models. 

2.1.4 Sampling from 

Distributions 

When a distribution is a model of how observed values occur, then 
sampling from this distribution is the process of generating random 
new values that could have been observed, with a probability similar 
to the probability to observe this value in reality. There are two 
basic approaches to sampling from distributions: generating a ran-
dom number from the uniform distribution (this is what a random 
number generator is always doing underneath) and feeding this 
number through the inverse cumulative density function (iCDF) 
of the distribution, which is the function that integrates the proba-
bility density function (PDF) of the distribution. This can only be 
achieved if the CDF is given in closed form. If it is not, the second 
approach to sampling can be used, which is called acceptance 
(or rejection) sampling. With f being the PDF, two random num-
bers x and y are drawn from the uniform distribution. The random 
x is accepted, if f(x)> y, and rejected otherwise. 

Our use case, as we have seen, involves not only high-
dimensional (multivariate) distributions but even more their joints, 
and they are not given in closed form. In such scenarios, sampling 
can be done still, using Markov chain Monte Carlo (MCMC) 
sampling, which is a framework using rejection sampling with 
added mechanisms to increase efficiency. While MCMC has favor-
able theoretic properties, it is still computationally very demanding 
for complex joint distributions, which leads to important difficul-
ties in the context of sampling from distributions we are facing in 
the domain of image analysis and generation. 

We are therefore at this point facing two problems: we can 
hardly hope to be able to estimate the density, and even if we 
could, we could practically not sample from it. 

3 Generative Adversarial Networks 

3.1 Generative vs. 

Discriminative Models 

To emphasize the difficulty that generative models are facing, com-
pare them to discriminative models. Discriminative models solve 
tasks like classification, detection, and segmentation, to name some 
of the most prominent examples. How classification models are in 
the class of discriminative models is obvious: discriminating exam-
ples is exactly classifying them. Detection models are also discrimi-
native models, though in a broader sense, in that they classify the



detection proposals into accepted object detections or rejected 
proposals, and even the bounding box estimation, which is often 
solved through bounding box regression, typically involves the 
discriminative prediction of template boxes. Segmentation, on the 
other hand, for example, using a U-Net, is only the extension of 
classic discriminative approaches into a fast framework that avoids 
pixel-wise inference through the model. It is common to all these 
models that they yield output corresponding to their input, in the 
sense that they extract information from the input image (e.g., an 
organ segmentation, a classification, or even a textual description of 
the image content) or infer additional knowledge about it (e.g., a 
volume measurement or an assessment or prediction of a treatment 
success given the appearance of the image). 
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Generative models are fundamentally different, in that they 
generate output potentially without any concrete input, out of 
randomness. Still, they are supposed to generate output that con-
forms to certain criteria. In the most general form and intuitive 
formulation, their output should “look natural.” We want to fur-
ther formalize the difference between the models in the following 
by using the perspective of distributions again. Figure 7 shows how 
discriminative and generative models have to construct differently 
complex boundaries in the representation space of the domain to 
accomplish their tasks. 

Discriminative models take one example and map it to a label— 
e.g., the class. This is also true for segmentation models: they do 
this for each image voxel. The conceptual process is that the model 
has to estimate the probabilities that the example (or the voxel) 
comes from the distribution of the different available classes. The 
distributions of all possible appearances of objects of all classes do

Fig. 7 The discriminative task compared to the generative task. Discriminative models only need to find the 
separating line between classes, while generative models need to delineate the part of space covering the 
classes (figure inspired by: https://developers.google.com/machine-learning/gan/generative)



not need to be modeled analytically for this to be successful. It is 
only important to know them locally—for example, it is sufficient 
to delineate their borders or overlaps with other distributions of 
other classes, but not all boundaries are important.
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Generative models, on the other hand, are tasked to produce an 
example that is within a desired distribution. For this to work, the 
network has to learn the complete shape of this distribution. This is 
immensely complex, since all domains of practical importance in 
medical imaging are extremely high-dimensional and the distribu-
tions defining examples of interest within these domains are very 
small and hard to find. Also, they are neither analytically given nor 
normally distributed in their multidimensional space. But they have 
as many parameters as the output image of interest has voxels. 

As already remarked, different other approaches were devised 
to generate output before GANs entered the scene. Among the 
trainable ones, approaches comprised (restricted) Boltzmann 
machines, deep belief networks, or generative stochastic networks, 
variational autoencoders, and others. Some of them involved feed-
back loops in the inference process (the prediction of a generated 
example) and were therefore unstable to train using 
backpropagation. 

This was solved with the adversarial net framework proposed in 
2014 by Goodfellow et al. [1]. They tried to solve the downsides 
like computational intractability or instability of such previous gen-
erative models by introducing the adversarial training framework. 

To understand how GANs relate to one of the closest prede-
cessors, the variational autoencoder, we will review their basic 
layout next. We will learn how elegantly the GAN paradigm turns 
the previously unsupervised approach to generative modeling into a 
supervised one, with the benefit of much more control over the 
training process. 

3.2 Before GANs: 

Variational 

Autoencoders 

Generative adversarial networks (GANs) haven’t been the first or 
only attempt at generating realistically looking images (or any type 
of output, generally speaking). Apart from GANs, a related neural 
network-based approach to generative modeling is the variational 
autoencoder, which will be treated in more details below. Among 
other generative models with different approaches are as follows: 

Flow-based models This category of generative models attempt 
to model the data-generating distribution 
explicitly through an iterative process 
known as the normalizing flow [11], in 
which through repeated changes of variables 
a sequence of differentiable basis distribu-
tions is stacked to model the target distribu-
tion. The process is fully invertible, yielding 
models with desirable properties, since an



analytical solution to the data-generating dis-
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tribution allows to directly estimate densities 
to predict the likelihood of future events, 
impute missing data points, and of course 
generate new samples. Flow-based models 
are computation-intensive. They can be cate-
gorized as a method that returns an explicit, 
tractable density. Another method in this 
category is, for example, the PixelRNN [9] 
or the PixelCNN [12] which also serves for 
conditional image generation. RealNVP [13] 
also uses a chain of invertible functions. 

Boltzmann machines work fundamentally differently. They also 
return explicit densities but this time only 
approximate the true target distribution. In 
this regard, they are similar to variational 
autoencoders, though their method is based 
on Markov chains, and not a variational 
approach. Deep Boltzmann machines have 
been proposed already in 2009, uniting a 
Markov chain-based loss component with a 
maximum likelihood-based component and 
showing good results on, at that time, highly 
complex datasets. [14] Boltzmann machines 
are very attractive but harder to train and use 
than other comparably powerful alternatives 
that exist today. This might change with 
future research, however. 

Variational autoencoders (VAE) are a follow-up development 
of plain autoencoders, autoregressive models that in their essence 
try to reconstruct their input after transforming it, usually into a 
low-dimensional representation (see Fig. 8). This low-dimensional

Fig. 8 Schematic of an autoencoder network. The encoder, for images, for 
example, a CNN with a number of convolutional and pooling layers, condenses 
the defining information of the input image into the variables of the latent space. 
The decoder, again convolutions, but this time with upsampling layers, recreates 
a representation in image space. Input and output images are compared in the 
loss function, which drives the gradient descent



representation is often termed the “latent space,” implying that 
here hidden traits of the data-generating process are coded, which 
are essential to the reconstruction process. This is very akin to the 
latent variables estimated by EM. In the autoencoder, the encoder 
will learn to code its input in terms of these latent variables, while 
the decoder will learn to represent them again in the source 
domain. In the following, we will be discussing the application to 
images though, in principle, both autoencoders and their varia-
tional variant are general mechanisms working for any domain.
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We will later be interested in a behind-the-scene understanding 
of their modeling approach, which will be related to the employed 
loss function. We will then look at VAEs more extensively from the 
same vantage point: to understand their loss function—which is 
closest to the loss formulation of early GANs, the Kullback-Leibler 
divergence or KL divergence, DKL. 

With this tool in hand, we will examine how to optimize (train) 
a network with regard to KL divergence as the loss and understand 
key problems with this particular loss function. This will lead us to 
the motivation for a more powerful alternative. 

3.2.1 From AE to VAE VAEs are an interesting subject to study to emphasize the limits a 
loss function like KL divergence may place on a model. We will 
begin with a recourse to plain autoencoders to introduce the con-
cept of learning a latent representation. We will then proceed to 
modify the autoencoder into a variational formulation which brings 
about the switch to a divergence measure as a loss function. From 
these grounds, we will then show how GANs again modified the 
loss function to succeed in high-quality image generation. 

Figure 8 shows the schematic of a plain autoencoder (AE). As 
indicated in the sketch, input and output are of potentially very 
high dimensionality, like images. In between the encoder and 
decoder networks lies a “bottleneck” representation, which is, for 
example, a convolutional layer of orders of magnitude lower 
dimensionality (represented, for example, by a convolutional layer 
with only a few channels or a dense layer with a given low number 
of weights), which forces the network to find an encoding that 
preserves all information required for reconstruction. 

A typical loss function to use when training the autoencoder is, 
for example, cross entropy, which is applicable for sigmoid activa-
tion functions, or simply the mean squared error (MSE). Any loss 
shall essentially force the AE to learn the identity function between 
input and output. 

Let us introduce the notation for this. Let X be the input image 
tensor and X′ the output image tensor. With fw being the encoder 
function given as a neural network parameterized by weights and 
biases w and gv the decoder function parameterized by v, the loss 
hence works to make X=X′= gv( fw(X)).
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In a variational autoencoder,2 things work differently. Auto-
encoders like before use a fixed (deterministic) latent code to map 
the input to, while variational autoencoders will replace this with a 
distribution. We can call this distribution pw, indicating the param-
eterization by w. It is crucial to understand that a choice was made 
here that imposes conditions on the latent code. It is meant to 
represent the input data in a variational way: in a way following 
Bayes’ laws. Our mapping of the input image tensor X to the latent 
variable z is by this choice defined by

• The prior probability pw(z)

• The likelihood (conditional probability) pw(X|z)

• The posterior probability pw(z|X) 

Therefore, once we have obtained the correct parameters ŵ by 
training the VAE, we can produce a new output X′ by sampling a 
z(i) from the prior probability pŵðzÞ and then generate the example 
from the conditional probability through X ðiÞ = pŵ X z= zðiÞ . 

Obtaining the optimal parameters, however, isn’t possible 
directly. The searched optimal parameters are those that maximize 
the probability that the generated example X′ looks real. This 
probability can be rewritten as the aggregated conditional 
probabilities: 

pwðX ðiÞÞ= pwðX ðiÞjzÞpwðzÞdz: 

This, however, does not make the search any easier since we 
need to enumerate and sum up all z. Therefore, an approximation is 
made through a surrogate distribution, parameterized by another 
set of parameters, qv . Weng [15] shows in her explanation of the 
VAE the graphical model highlighting how qv is a stand-in for the 
unknown searched pw (see Fig. 9). 

The reason to introduce this surrogate distribution actually 
comes from our wish to train neural networks for the decoding/ 
encoding functions, and this requires us to back-propagate through 
the random variable, z, which of course cannot be done. Instead, if 
we have control over the distribution, we can select it such that the 
reparameterization trick can be employed. We define qv to be a 
multivariate Gaussian distribution with means and a covariance 
matrix that can be learned and a stochastic element multiplied to 
the covariance matrix for sampling [15, 16]. With this, we can back-
propagate through the sampling process. 

2 Though variational autoencoders are in general not necessarily neural networks, in our context, we restrict 
ourselves to this implementation and stick to the notation with parameters w and v, where in many publications 
they are denoted θ and ϕ.
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Fig. 9 The graphical model of the variational autoencoder. In a VAE, the variational decoder is pw(X|z), while 
the variational encoder is qv(z|X) (Figure after [15]) 

At this point, the two distributions need to be made to match: 
qv should be as similar to pw as possible. Measuring their similarity 
can be done in a variety of ways, of which Kulback-Leibler diver-
gence (KL divergence or KLD) is one. 

3.2.2 KL Divergence A divergence can be thought of as an asymmetric distance function 
between two probability distributions, P and Q, measuring the 
similarity between them. It is a statistical distance which is not 
symmetric, which means it will not yield the same value if measured 
from P to Q or the other way around: 

DKLðPkQ Þ≠DKLðQ kPÞ 

This can be seen when looking at the definition of KL 
divergence: 

DKLðPkQ Þ= 
x 
PðxÞ log PðxÞ 

Q ðxÞ ð2Þ 

Sometimes, the measure DKL is also called the relative entropy 
or information gain of P over Q, which also indicates the 
asymmetry. 

To give the two distributions more meaning, let us associate 
them with a use case. P is usually the probability distribution of the 
example data, which can be our real images we wish to model, and 
is assumed to be unknown and high-dimensional. Q, on the other 
hand, is the modeled distribution, for example, parameterized by θ, 
similar to Eq. 1. Hence, Q is the distribution we can play with 
(in our case, optimize its parameters) to make them more similar to 
P. This means Q will get more informative with respect to the true 
P when we approach the optimal parameters.
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Box 3: Example: Calculating DKL 

When comparing the two distributions given in Fig. 10, the 
calculation of the Kullback-Leibler divergence, DKL, can 
explicitly be given by reading off the y values of the nine 
elements (columns) from Fig. 11 and inserting them into 
Eq. 2. 

The result of this calculation is for 

DKLðPkQ Þ= 
x 
PðxÞ log PðxÞ 

Q ðxÞ 

=0:02 � log 
:02 
:01 

þ 0:04 � log 
:04 
:12

þ � � � þ  0:02 � log 
:02 
:022 

=0:004- 0:01 þ � � �- 0:0002 

=0:0801 

which we call “forward KL” as it calculates in the direction 
from the actual distribution P to the model distribution Q and 
for 

DKLðQ kPÞ = 
x 
Q ðxÞ log Q ðxÞ 

PðxÞ 

=0:01 � log 
0:01 
0:02

þ 0:12 � log 
0:12 
0:04

þ � � � þ  0:022 � log 
0:022 
0:02 

= -0:002-0:05þ � � � þ  0:0002 
=0:0899 

which we call “reverse KL.” 

Note that in the example in Box 3, there is both a P(X= xi) and 
Q(X= xi) for each i∈{0, 1, . . ., 8}. This is crucial for KL divergence 
to work as a loss function. 

3.2.3 Optimizing the KL 

Divergence 

Examine what happens in forward and reverse KL if this condition 
is not satisfied for some i. If in forward KL P has values everywhere 
but Q has not (or extremely small values), the quotient in the log

Fig. 10 Two distributions P and Q, here scaled to identical height



function will tend to infinity by means of the division by almost 
zero, and the term will be very large.
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Fig. 11 The distributions P and Q, scaled to unit density, with added labels 

Fig. 12 The distributions P (solid) and Qθ (dashed), in the initial configuration and after minimizing reverse KL 
DKL(Qθ|P). This time, in the initial configuration, Qθ has values greater than 0 where P has not (marked with 
green shading) 

In Fig. 12, we assume Qθ to be a unimodal normal distribution, 
i.e., a Gaussian, while P is any empirical distribution. In the left 
plots of the figure, we show a situation before minimizing the 
forward/reverse KL divergence between P and Qθ, in the right 
plots, the resulting shape of the Gaussian after minimization. 

When in the minimization of forward KL DKL(P|Qθ) Qθ is zero 
where P has values greater zero, KL goes to infinity in these regions 
(marked area in the start configuration of the top row in Fig. 12), 
since the denominator in the log function goes to zero. This, in 
turn, drives the parameters of Qθ to broaden the Gaussian to cover 
these areas, thereby removing the large loss contributions. This is 
known as the mean-seeking behavior of forward KL. 

Conversely, in reverse KL (bottom row in Fig. 12), in the 
marked areas of the initial configuration, P is zero in regions 
where Qθ has values greater than zero. This yields high-loss



contributions from the log denominator, in this case driving the 
Gaussian to remove these areas from Qθ. Since we assumed a 
unimodal Gaussian Q, the minimization will focus on the largest 
mode of the unknown P. This is known as the mode-seeking behav-
ior of reverse KL. 
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Forward KL tends to overestimate the target distribution, 
which is exaggerated in the right plot in Fig. 12. In contrast, reverse 
KL tends to underestimate the target distribution, for example, by 
dropping some of its modes. Since underestimation is the more 
desirable property in practical settings, reverse KL is the loss func-
tion of choice, for example, in variational autoencoders. The down-
side is that as soon as target distribution P and model distribution 
Qθ have no overlap, KL divergence evaluates to infinity and is 
therefore uninformative. One countermeasure to take is to add 
noise to Qθ, so that there is guaranteed overlap. This noise, how-
ever, is not desirable in the model distribution Qθ since it disturbs 
the generated output. 

Another way to remedy the problem of KL going to infinity is 
to adjust the calculation of the divergence, which is done in Jensen-
Shannon divergence (JS divergence, DJS) defined as 

DJS = 
1 
2
ðDKLðPkM Þ þ  DKLðQ θkM ÞÞ, ð3Þ 

where M = PþQ θ 
2 . In the case of nonoverlapping P and Qθ, this 

evaluates to constant log 2, which is still not providing information 
about the closeness but is computationally much friendlier and does 
not require the addition of a noise term to achieve numerical 
stability. 

3.2.4 The Limits of VAE In the VAE, reverse KL is used. Our optimization goal is maximiz-
ing the likelihood to produce realistic looking examples—ones with 
a high pw(x). Simultaneously, we want to minimize the difference 
between the real and estimated posterior distributions qv and pw . 
This can only be achieved through a reformulation of reverse KL 
[15]. After some rearranging of reverse KL, the loss of the varia-
tional autoencoder becomes 

LVAEðw, vÞ = - log pwðX Þ þ  DKLðqvðzjX ÞkpwðzjX ÞÞ 
= -z�qvðzjX Þ log pwðX jzÞ þ  DKLðqvðzjX ÞkpwðzÞÞ 

ð4Þ 
ŵ and v̂ are the parameters maximizing the loss. 

We have seen how mode-seeking reverse KL divergence limits 
the generative capacity of variational autoencoders through the 
potential underrepresentation of all modes of the original 
distribution.
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KL divergence and minimizing the ELBO also have a second 
fundamental downside: there is no way to find out how close our 
solution is to the obtainable optimum. We measure the similarity to 
the target distribution up to the KL divergence, but since the true 
pŵð:Þ is unknown, the stopping criterion in the optimization has to 
be set by another metric, e.g., to a maximum number of iterations 
or corresponding to an improvement of the loss below some ε. 

The original presentation of the variational autoencoder was 
given as one example of the general framework called the autoen-
coding variational Bayes. This publication presented the above 
ideas in a thorough mathematical formulation, starting from a 
directed graphical model that poses the abstract problem. The 
authors also develop the seminal “reparameterization trick” to 
make the loss formulation differentiable and with this to make the 
search for the autoencoder parameters amenable to gradient 
descent optimizers [16]. The details are beyond this introductory 
treatment. 

3.3 The Fundamental 

GAN Approach 

At the core of the adversarial training paradigm is the idea to create 
two players competing in a minimax game. In such games, both 
players have access to the same variables but have opposing goals, so 
that they will manipulate the variables in different directions. 

Referring to Fig. 13, we can see the generative part in orange 
color, where random numbers are drawn from the latent space and, 
one by one, converted into a set of “fake images” by the generator

Fig. 13 Schematic of a GAN network. Generator (orange) creates fake images based on random numbers 
drawn from a latent space. These together with a random sample of real images are fed into the discriminator 
(blue, right). The discriminator looks at the batch of real/fake images and tries to assign the correct label (“0” 
for fake, “1” for real)
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network, in the figure implemented by a CNN. Simultaneously, 
from a database of real images, a matching number of examples are 
randomly drawn. The real and fake images are composed into one 
batch of images which are fed into the discriminator. On the right 
side, the discriminator CNN is indicated in blue. It takes the batch 
of real and fake images and decides for each if it appears real 
(yielding a value close to “1”) or fake (“0”).
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The error signal is computed from the number of correct 
assignments the discriminator can do on the batch of generated 
and real images. Both the generator and the discriminator can then 
update their parameters based on this same error signal. Crucially, 
the generator has the aim to maximize the error, since this signifies 
that it has successfully fooled the discriminator into taking the fake 
images for real, while the discriminator weights are updated to 
minimize the same error, indicating its success in telling true and 
fake examples apart. This is the core of the competitive game 
between generator and discriminator. 

Let us introduce some abbreviations to designate GAN com-
ponents. We will denote the generator and discriminator networks 
with G and D, respectively. The objective of GAN training is a game 
between generator and discriminator, where both affect a common 
loss function J, but in opposed directions. Formally, this can be 
written as 

min 
G 

max 
D 

J ðG,DÞ, 

with the GAN objective function 

J ðG,DÞ=x�pdata ½logDðxÞ� þ z�pG ½1- logDðGðzÞÞ� ð5Þ 
D will attempt to maximize J by maximizing the probability to 
assign the correct labels to real and generated examples: this is the 
case if D(x)=1, maximizing the first loss component, and if 
D(G(z))=0, maximizing the second loss component. The genera-
tor G, instead, will attempt to generate realistic examples that the 
discriminator labels with “1,” which corresponds to a minimization 
of log 1-D G z . 

3.4 Why Early GANs 

Were Hard to Train 

GANs with this training objective implicitly use JS divergence for 
the loss, which can be seen by examining the GAN training objec-
tive. Consider the ideal discriminator D for a fixed generator. Its 
loss is minimal for the optimal discriminator given by [1] 

D̂ðxÞ= 
pdataðxÞ 

pdataðxÞ þ  pGðxÞ
: ð6Þ 

Substituting D̂ in Eq. 5 yields (without proof) the implicit use 
of the Jensen-Shannon divergence if the above training objective is 
employed:
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J ðG, D̂Þ=2DJSðpdatakpGÞ- log 4: ð7Þ 
This theoretical result shows that a minimum in the GAN 

training can be found when the Jensen-Shannon divergence is 
zero. This is achieved for identical probability distributions pdata 
and pG or, equivalently, when the generator perfectly matches the 
data distribution [17]. 

Unfortunately, it also shows that this loss is, like KL divergence, 
only helpful when target distribution (i.e., data distribution) and 
model distribution have overlapping support. Therefore, added 
noise can be required to approximate the target distribution. In 
addition, the training criterion saturates if the discriminator in the 
early phase of training perfectly distinguishes between fake and real 
examples. The generator will therefore no longer obtain a helpful 
gradient to update its weights. An approach thought to prevent this 
was proposed by Goodfellow et al. [1]. The generator loss was 
turned from the minimization problem into a maximization prob-
lem that has the same fixed point in the overall minimax game but 
prevents saturation: instead of minimizing logð1-DðGðzÞÞÞ, one 
maximizes log D G z [1]. 

3.5 Improving GANs GAN training has quickly become notorious for the difficulties it 
posed upon the researchers attempting to apply the mechanism to 
real-world problems. We have qualitatively attributed a part of these 
problems to the inherently difficult task of density estimation and 
motivated the intuition that while fewer samples might suffice to 
learn a decision boundary in a discriminative task, many more 
examples are required to build a powerful generative model. 

In the following, some more light shall be shed on the reasons 
why GAN training might fail. Typical GAN problems comprise the 
following: 

Mode dropping is the phenomenon in forward KL caused by 
regions of the data distribution not being 
covered by the generator distribution, which 
implies large probabilities of samples coming 
from Pdata and very small probabilities of ori-
ginating from PG. This drives forward KL 
toward infinity and punishes the generator 
for not covering the entire data distribution 
[18]. If all modes but one are dropped, one 
can call this mode collapse: the generator only 
generates examples from one mode of the 
distribution. 

Poor convergence can be caused by a discriminator learning to 
distinguish real and fake examples very early— 
which is also very likely to happen throughout 
the GAN training. This is rooted in the



observation that by the generative process
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that projects from a low-dimensional latent 
space into the high-dimensional pG, the sam-
ples in pG are not close to each other but 
rather inhabit “islands” [18]. The discrimina-
tor can learn to find them and thereby differ-
entiate between true and false samples easily, 
which causes the gradients driving generator 
optimization to vanish [17]. 

Poor sample quality despite a high log likelihood of the model is a 
consequence of the practical independence of 
sample quality and model log likelihood. 
Theis et al. [19] show that neither does a 
high log likelihood imply generated sample 
fidelity nor do visually pleasing samples 
imply a high log likelihood. Therefore, train-
ing a GAN with a loss function that effectively 
implements maximizing a log likelihood term 
is not an ideal choice—but exactly corre-
sponds to KL minimization. 

Unstable training is a consequence of reformulating the genera-
tor loss into maximizing logDðGðzÞÞ. It can 
be shown [18] that this choice effectively 
makes the generator struggle between a 
reverse KL divergence favoring mode-seeking 
behavior and a negative JS divergence actually 
driving the generator into examples different 
from the real data distribution. 

There have been many subsequent authors touching these 
topics, but already Arjovsky and Bottou [18] have shown best 
practices of how to overcome these problems. 

Among the solutions proposed for GAN improvements are 
some that prevent the generator from producing only too similar 
samples in one batch, some that keep the discriminator insecure 
about the true labels of real and fake examples, and more, which 
Creswell et al. [17] have summarized in their GAN overview. A 
collection of best practices compiled from these sources is pre-
sented in Box 4. It is almost impossible to write a cookbook for 
successful, converging, stable GAN training. For almost every tip, 
there is a caveat or situation where it cannot be applied. The 
suggestions below therefore are to be taken with a grain of salt 
but have been used by many authors successfully.
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Box 4: Best Practices for Stable GAN Training 

General measures. GAN training is sensitive to hyperpara-
meters, most importantly the learning rate. Mode collapse 
might already be mitigated by a lower learning rate. Also, 
different learning rates for generator and discriminator 
might help. Other typical measures are batch normalization 
(or instance normalization in case of small batch sizes; mind 
however that batch normalization can taint the randomness of 
latent vector sampling and in general should not be used in 
combination with certain GAN loss functions), use of trans-
posed convolutions instead of parameter-free upsampling, 
and strided convolutions instead of down-sampling. 

Feature matching. One typical observation is that nei-
ther discriminator nor generator converges. They play their 
“cat-and-mouse” game too effectively. The generator pro-
duces a good image, but the discriminator learns to figure it 
out, and the generator shifts to another good image, and 
so on. 

A remedy for this is feature matching, where the ℓ2 dis-
tance between the average feature vectors of real and fake 
examples is computed instead of a cross-entropy loss on the 
logits. Because per batch the feature vectors change slightly, 
this introduces randomness that helps to prevent discrimina-
tor overconfidence. 

Minibatch discrimination. When the generator only 
produces very convincing but extremely similar images, this 
is an indication for mode collapse. 

This can be counteracted by calculating a similarity metric 
between generated samples and penalizing the generator for 
too little variation. Minibatch discrimination is considered to 
be superior in performance to feature matching. 

One-sided label smoothing. Deep classification models 
often suffer from overconfidence, focusing on only very few 
features to classify an image. If this happens in a GAN, the 
generator might figure this out and only produce the feature 
the discriminator uses to decide for a real example. 

A simple measure to counteract this is to provide not a 
“1” as a label for the real images in the batch but a lower 
value. This way, the discriminator is penalized for overconfi-
dence (when it returns a value close to “1”). 

Cost function selection. Several sources list possible 
GAN cost functions. Randomly trying them one by one 
might work, but often some of the above measures, in partic-
ular learning rate and hyperparameter tuning, might be more 
successful first steps.
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Besides these methods, one area of discussion concerned the 
question if there is a need of balancing discriminator and generator 
learning and convergence at all. The argument was that a converged 
discriminator will as well yield a training signal to the generator as a 
non-converged discriminator. Practically, however, many authors 
described carefully designed update schedules, e.g., updating the 
generator once per a given number of discriminator updates. 

Many more ideas exist: weight updating in the generator using 
an exponential moving average of previous weights to avoid “for-
getting,” different regularization and conditioning techniques, and 
injecting randomness into generator layers anew. Some we will 
encounter later, as they have proven to be useful in more recent 
GAN architectures. 

Despite the recent advances in stabilizing GAN training, even 
the basic method described so far, with the improvements made in 
the seminal DCGAN publication [20], finds application until 
today, e.g., for the de novo generation of PET color images 
[21]. The usefulness of an approach as presented in their publica-
tion might be doubted, since the native PET data is obviously not 
colored. The authors use 2D histograms of the three-color channel 
combinations to compare true and fake examples. As we have 
discussed earlier, this is likely a poor metric since it does not allow 
insights into the high-dimension joint probability distribution 
underlying the data-generating process. Figure 14 shows an exam-
ple comparison of some generated examples compared to original 
PET images. 

Fig. 14 PET images generated from random noise using a DCGAN architecture. Image taken from [21] 
(CC-BY4.0)
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To address many of the GAN training dilemmas, Arjovsky and 
Bottou [18] have proposed to employ the Wasserstein distance as a 
replacement for KL or JS divergence already in their examination of 
the root causes of poor GAN training results and have later 
extended this into their widely anticipated approach we will focus 
on next [22, 23]. We will also see more involved and recent 
approaches to stabilize and speed up GAN training in later sections 
of this chapter (Subheading 4). 

3.6 Wasserstein 

GANs 

Wasserstein GANs were appealing to the deep learning and GAN 
scene very quickly after Arjovsky et al.’s [22] seminal publication 
because of a number of traits their inventors claimed they’d have. 
For one, Wasserstein GANs are based on the theoretical idea that 
the change of the loss function to the Wasserstein distance should 
lead to improved results. This combined with the reported bench-
mark performance would already justify attention. But Wasserstein 
GANs additionally were reported to train much more stably, 
because, as opposed to previous GANs, the discriminator would 
be trained to convergence in every iteration, instead of demanding 
a carefully and heuristically found update schedule for generator 
and discriminator. In addition, the loss was directly reported to 
correlate with visual quality of generated results, instead of being 
essentially meaningless in a minimax game. 

Wasserstein GANs are therefore worth an in-depth treatment in 
the following sections. 

3.6.1 The Wasserstein 

(Earthmover) Distance 

The Wasserstein distance figuratively measures how, with an opti-
mal transport plan, mass can be moved from one configuration to 
another configuration with minimal work. Think, for example, of 
heaps of earth. Figure 15 shows two heaps of earth, P and 
Q (discrete probability distributions), both containing the same 
amount of earth in total, but in different concrete states x and 
y out of all possible states. 

Work is defined as the shovelfuls of earth times the distance it is 
moved. In the three rows of the figure, earth is moved (only within 
one of P or Q, not from one to the other), in order to make the 
configuration identical. First, one shovelful of earth is moved one 
pile further, which adds one to the Wasserstein distance. Then, two 
shovelfuls are moved three piles, adding six to the final Wasserstein 
distance of DW=7. 

Note that in an alternative plan, it would have been possible to 
move two shovelfuls of earth from p4 to p1 (costing six) and one 
from p4 to p3, which is the inverse transport plan of the above, 
executed on P, and leading to the same Wasserstein distance. The 
Wasserstein distance is in fact a distance, not a divergence, because 
it yields the same result regardless of the direction. Also note that



we implicitly assumed that P and Q share their support,3 but that in 
case of disjunct support, only a constant term would have to be 
added, which grows with the distance between the support regions. 
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Fig. 15 One square is one shovel full of earth. Transporting the earth shovel-wise 
from pile to pile amasses performed work: the Wasserstein (earthmover) dis-
tance. The example shows a Wasserstein distance of DW= 7 

Many other transport plans are possible, and others can be 
equally cheap (or even cheaper—it is left to the reader to try this 
out). Transport plans need not modify only one of the stocks but 
can modify both to reach the optimal strategy to make them 
identical. Algorithmically, the optimal solution to the question of 
the optimal transport plan can be found by formulating it as a linear 
programming problem. However, enumerating all transport plans 
and computing the linear programming algorithm are intractable 
for larger and more complex “heaps of earth.” Any nontrivial GAN 
will need to estimate transport of such complex “heaps,” so they

3 The support, graphically, is the region where the distribution is not equal to zero.



suffer this intractability problem. Consequently, in practice, a dif-
ferent approach must be taken, which we will sketch below.4
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Formalizing the search for the optimal transport plan, we look 
at all possible joint distributions of our P and Q, forming the set of 
all possible transport plans, and denote this set Π(P, Q), implying 
that for all γ ∈Π(P, Q), P and Q will be their marginal distribu-
tions.5 This, in turn, means that by definition ∑xγ(x, y)=P( y) and 
∑yγ(x, y)=Q(x). 

For one concrete transport plan γ that works between a state 
x in P and a state y in Q, we are interested in the optimal transport 
plan γ(x, y). Let kx- yk be the Euclidian distance to shift earth 
between x and y, and then multiplying this with every value of γ (the 
amount of earth shifted) leads to 

DWðP ,Q Þ= inf 
γ∈Π x, y 

kx - ykγðx, yÞ, 

which can be rewritten to obtain 

DWðP ,Q Þ= inf 
γ�ΠðP,Q Þ 

ðx,yÞ�γkx- yk: ð8Þ 

It measures both the distance of two distributions with disjunct 
support and the difference between distributions with perfectly 
overlapping support because it includes both, the shifting of earth 
and the distance to move it. 

Practically, though, this result cannot be used directly, since the 
Linear Programming problem scales exponentially with the num-
ber of dimensions of the domain of P and Q, which are high for 
images. To our disadvantage, we additionally need to differentiate 
the distance function if we want to use it for deep neural network 
training using backpropagation. However, we cannot obtain a 
derivative from our distance function in the given form, since, in 
the linear programming (LP) formulation, our optimized distribu-
tion (as well as the target distribution) end up as constraints, not 
parameters. 

Fortunately, we are not interested in the transport plan γ itself, 
but only in the distance (of the optimal transport plan). We can 
therefore use the dual form of the LP problem, in which the 
constraints of the primal form become parameters. With some 
clever definitions, the problem can be cast into the dual form, finally 
yielding 

4 An extensive treatment of Wasserstein distance and optimal transport in general is given in the 1.000-page 
treatment of Villani’s book [24], which is freely available for download. 
5 This section owes to the excellent blog post of Vincent Herrmann, at https://vincentherrmann.github.io/ 
blog/wasserstein/. Also recommended is the treatment of the “Wasserstein GAN” paper by Alex Irpan at https:// 
www.alexirpan.com/2017/02/22/wasserstein-gan.html. An introductory treatment of Wasserstein distance is 
also found in [25, 26].
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DWðP ,Q Þ= kf kL ≤1sup x�P f ðxÞ-x�Q f ðxÞ 
with a function f that has to adhere to a constraint called the 
1-Lipschitz continuity constraint, which requires f to have a slope 
of at most magnitude 1 everywhere. f is the neural network, and 
more specifically for a GAN, the discriminator network. 
1-Lipschitzness can be achieved trivially by clipping the weights 
to a very small interval around 0. 

3.6.2 Implementing 

WGANs 

To implement the distance as a loss function, we rewrite the last 
result again as 

DWðP ,Q Þ= max 
w∈W 

x�P ½DwðxÞ�-z�Q ½DwðGwðzÞÞ�: ð9Þ 
Note that in opposition to other GAN losses we have seen 

before, there is no logarithm anymore, because, this time, the 
“discriminator” is no longer a classification network that should 
learn to discriminate true and fake samples but rather serves as a 
“blank” helper function that during training learns to estimate the 
Wasserstein distance between the sets of true and fake samples. 

Box 5: Spectral Normalization 

Spectral normalization is applied to the weight matrices of a 
neural network to ensure a boundedness of the error function 
(e.g., Lipschitzness of the discriminator network in the 
WGAN context). This helps convergence like any other nor-
malization method, as it provides a guaranty that gradient 
directions are stable around the current point, allowing larger 
step widths. 

The spectral norm (or matrix norm) measures how far a 
matrix A can stretch a vector x: 

jjAjj= max 
x ≠0 

jjAxjj 
jjxjj 

The numerical value of the spectral norm of A can be 
shown to be just its maximum singular value. To compute the 
maximum singular value, an algorithmic idea helps: the power 
iteration method, which yields the maximal eigenvector. 

Power iteration uses the fact that any matrix will rotate a 
random vector toward its largest eigenvector. Therefore, by 
iteratively calculating AX 

jAxj, the largest eigenvector is obtained 
eventually. 

In practice, it is observed that a single iteration is already 
sufficient to achieve the desired normalizing behavior.
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Consequently, the key ingredient is the Lipschitzness con-
straint of the discriminator network,6 and how to enforce this in a 
stable and regularized way. It soon turned out that weight clipping 
is not an ideal choice. Rather, two other methods have been pro-
posed: the gradient penalty approach and normalizing the weights 
with the spectral norm of the weight matrices. 

Both have been added to the standard catalogue of 
performance-boosting measures in GAN training ever since, 
where in particular spectral normalization (cf. Box 5) is attractive 
as it can be implemented very efficiently, has a sound theoretical and 
mathematical foundation, and ensures stable and efficient training. 

3.6.3 Example 

Application: Brain 

Abnormality Detection 

Using WGAN 

One of the first applications of Wasserstein GANs in a practical use 
case was presented in the medical domain, specifically in the context 
of attributing visible changes of a diseased patient with respect to a 
normal control to locations in the images [27]. The way this 
detection problem was cast into a GAN approach (and then solved 
with a Wasserstein GAN) was to delineate the regions that make the 
images of a diseased patient look “diseased,” i.e., find the residual 
region, that, if subtracted from the diseased-looking image, would 
make it look “normal.” 

Figure 16 shows the construction of the VA-GAN architecture 
with images from a mocked dataset for illustration. For the authors’ 
results, see their publication and code repository.7 

For their implementation, the authors note that neither batch 
normalization nor layer normalization helped convergence and 
hypothesize that the difference between real and generated exam-
ples may be a reason that in particular batch normalization may in 
fact have an adverse effect especially during the early training phase. 
Instead, they impose an ℓ1 norm loss component on the U-Net-
generated “visual (feature) attribution” (VA) map to ensure it to be 
a minimal change to the subject. This serves to prevent the genera-
tor from changing the subject into some “average normal” image 
that it may otherwise learn. They employ an update regime that 
trains the critic network for more iterations than the generator, but 
doesn’t train it to convergence as proposed in the original WGAN 
publications. Apart from these measures, in their code repository, 
the authors give several practical hints and heuristics that may 
stabilize the training, e.g., using a tanh activation for the generator 
or exploring other dropout settings and in general using a large 
enough dataset. They also point out that the Wasserstein distance 
isn’t suited for model selection since it is too unstable and not 
directly correlated to the actual usefulness of the trained model. 

6 The discriminator network in the context of continuous generator loss functions like the Wasserstein-based loss 
is called a “critique” network, as it no longer discriminates but yields a metric. For ease of reading, this chapter 
sticks to the term “discriminator.” 
7 https://github.com/baumgach/vagan-code.
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Fig. 16 An image of a diseased patient is run through a U-Net with the goal to yield a map that, if added to the 
input image, results in a modified image that fools the discriminator (“critique”) network into classifying it as a 
“normal” control. The map can be interpreted as the regions attributed to appear abnormal, giving rise to the 
name of the architecture: visual attribution GAN (VA-GAN) 

This is one more reason to turn in the next section to an 
important topic in the context of validation for generative models: 
How to quantify their results? 

3.7 GAN 

Performance Metrics 

One imminent question has so far been postponed, though it 
implicitly plays a crucial role in the quest for “better” GANs: 
How to actually measure the success of a GAN or the performance 
in terms of result quality? 

GANs can be adapted to solve image analysis tasks like segmen-
tation or detection (cf. Subheading 3.6.3). In such cases, the qual-
ity and success can be measured in terms of task-related 
performance (Jaccard/Dice coefficient for segmentation, overlap 
metrics for detection etc.). 

Performance assessment is less trivial if the GAN is meant to 
generate unseen images from random vectors. In such scenarios, 
the intuitive criterion is how convincing the generated results are. 
But convincing to whom? One could expose human observers to 
the real and fake images, ask them to tell them apart, and call a GAN 
better than a competing GAN if it fools the observer more consis-
tently.8 Since this is practically infeasible, metrics were sought that 
provide a more objective assessment. 

8 In fact, there is only very little research on the actual performance of GANs in fooling human observers, though 
guides exist on how to spot “typical” GAN artifacts in generated images. These are older than the latest GAN 
models, and it can be hypothesized that the lack of such literature is indirect confirmation of the overwhelming 
capacity of GANs to fool human observers.
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The most widely used way to assess GAN image quality is the 
Fréchet inception distance (FID). This distance is conceptually 
related to the Wasserstein distance. It has an analytical solution to 
calculate the distance of Gaussian (normal) distributions. In the 
multivariate case, the Fréchet distance between two distributions 
X and Y is given by the squared distance of their means μX (resp. 
μY) and a term depending on the covariance matrix describing their 
variances ΣX (resp. ΣY): 

dðX ,Y Þ= jjμX - μY jj2 þ TrðΣX þ ΣY -2 ΣXΣY 

p Þ: ð10Þ 
The way this distance function is being used is often the score, 

which is computed as follows:

• Take two batches of images (real/fake, respectively).

• Run them through a feature extraction or embedding model. 
For FID, the inception model is used, pretrained on ImageNet. 
Retain the embeddings for all examples.

• Fit each one multivariate normal distribution to the embedded 
real/fake examples.

• Calculate their Fréchet distance according to the analytical for-
mula in Eq. 10. 

This metric has a number of downsides. Typically, if computed 
for a larger batch of images, it decreases, although the same model 
is being evaluated. This bias can be remedied, but FID remains the 
most used metric still. Also, if the inception network cannot capture 
the features of the data FID should be used on, it might simply be 
uninformative. This is obviously a grave concern in the medical 
domain where imaging features look much different from natural 
images (although, on the other hand, transfer learning for medical 
classification problems proved to work surprisingly well, so that 
apparently convolutional filters trained on photographs also extract 
applicable features from medical images). In any case, the selection 
of the pretrained embedding model brings a bias into the validation 
results. Lastly, the assumption of a multivariate normal distribution 
for the inception features might not be accurate, and only describ-
ing it through their means and covariances is a severe reduction of 
information. Therefore, a qualitative evaluation is still required. 

One obvious additional question arises: If the ultimate metric 
to judge the quality of the generator is given by, for example, the 
FID, why can’t it be used as the optimization goal instead of 
minimizing a discriminator loss? In particular, as the Fréchet dis-
tance is a variant of the Wasserstein distance, an answer to this 
question is not obvious. In fact, feature matching as described in 
Box 4 exactly uses this type of idea, and likewise, it has been 
partially adopted in recent GAN architectures to enhance the sta-
bility of training with a more fine-grained loss component than a 
pure categorical cross-entropy loss on the “real/fake” classification 
of the discriminator.



GANs and Beyond 173

Related recent research is concerned with the question how 
generated results can automatically be detected to counteract 
fraudulent authors. So-called forensic algorithms detect patterns 
that point out generated images. This research puts up the question 
how to detect fake images reliably. Solutions based on different 
analysis directions encompass image fingerprinting and frequency-
domain analysis [28–31]. 

4 Selected GAN Architectures You Should Know 

In the following, we will examine some GAN architectures and 
GAN developments that were taken up by the medical community 
or that address specific needs that might make them appealing, e.g., 
for limited data scenarios. 

4.1 Conditional GAN GANs cannot be told what to produce—at least that was the case 
with early implementations. It was obvious, though, that a properly 
trained GAN would imprint the semantics of the domain onto its 
latent space, which was evidenced by experiments in which the 
latent space was traversed and images of certain characteristics 
could be produced by sampling accordingly. Also, it was found 
that certain dimensions of the latent space can correspond to 
certain features of the images, like hair color or glasses, so that 
modifying them alone can add or take away such visible traits. 

With the improved development of conditional GANs [32] 
following a number of GANs that modeled the conditioning 
input more explicitly, another approach was introduced that was 
based on the U-Net architecture as a generator and a favorable 
discriminator network that values local style over a full-image 
assessment. 

Technically, the formulation of a conditional GAN is straight-
forward. Recalling the value function (learning objective) of GANs 
from Eq. 5, 

J ðG,DÞ=x�pdata ½logDðxÞ� þ z�pG ½1- logDðGðzÞÞ�, 
We now want to condition the generation on some additional 

knowledge or input. Consequently, both the generator G and the 
discriminator D will receive an additional “conditioning” input, 
which we call x. This can be a class label but also any other asso-
ciated information. Very commonly, the additional input will be an 
image, as, for example, for image translation application (e.g., 
transforming from one image modality to another such as, for 
instance, MRI to CT). The result is the cGAN objective function: 

J cGANðG,DÞ=x�pdata ½logDðxjyÞ� þ z�pG ½1- logDðGðzjyÞÞ�
ð11Þ
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Fig. 17 A possible architecture for a cGAN. Left: the generator network takes the base images x as input and 
generates a translated image ŷ . The discriminator receives either this pair of images or a true pair x, y (right). 
The additional generator reconstruction loss (often a ℓ1 loss) is calculated between y and ŷ 

Isola et al. [32] describe experiments with MNIST handwritten 
digits, where a simple generator with two layers of fully connected 
neurons was used, and similarly for the discriminator. x was set to 
be the class label. In a second experiment, a CNN creates a feature 
representation of images, and the generator is trained to generate 
textual labels (choosing from a vocabulary of about 250.000 
encoded terms) for the images conditioned on this feature 
representation. 

Figure 17 shows a possible architecture to employ a cGAN 
architecture for image-to-image translation. In this diagram, the 
conditioning input is the target image that the trained network shall 
be able to produce based on some image input. The generator 
network therefore is a U-Net. The discriminator network can be 
implemented, for example, by a classification network. This net-
work always receives two inputs: the conditioning image (x in 
Fig. 17) and either the generated output ŷ or the true paired 
image y.
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Fig. 18 Input and output of a pix2pix experiment. Online demo at https://affinelayer.com/pixsrv/ 

Note that the work of Isola et al. [32] introduces an additional 
loss term on the generator that measures the ℓ1 distance between 
the generated and ground truth image, which is (with variables as in 
Eq. 11) 

J ℓ1ðGÞ=x;y;zky -Gðx, zÞk1, 
where 1 is the ℓ1 norm. 

The authors do not further justify this loss term apart from 
stating that ℓ1 is preferred over ℓ2 to encourage less blurry results. It 
can be expected that this loss component provides a good training 
signal to the generator when the discriminator loss doesn’t, e.g., in 
the beginning of the training with little or no overlap of target and 
parameterized distributions. The authors propose to give the ℓ1 loss 
orders of magnitudes more weight than the discriminator loss 
component to value accurate translations of images over “just” 
very plausible images in the target domain. 

The cGAN, namely, in the configuration with a U-Net serving 
as the generative network, was very quickly adopted by artists and 
scientists, thanks to the free implementation pix2pix.9 One example 
created with pix2pix is given in Fig. 18, where the cGAN was 
trained to produce cat images from line drawings. 

One application in the medical domain was proposed, for 
example, by Senaras et al. [33]. The authors used a U-Net as a 
generator to produce a stained histopathology image from a label 
image that has two distinct labels for two kinds of cell nuclei. Here, 
the label image is the conditioning input to the network. Conse-
quently, the discriminator network, a classification CNN tailored to

9 https://github.com/phillipi/pix2pix.



the patch-based classification of slides, receives two inputs: the 
histopathology image and a label image.
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Another example employed an augmented version of the con-
ditional GAN to translate CT to MR images of the brain, including 
a localized uncertainty estimate about the image translation suc-
cess. In this work, a Bayesian approach to model the uncertainty 
was taken by including dropout layers in the generator model [34]. 

Lastly, a 3D version of the pix2pix approach with a 3D U-Net 
as a generative network was devised to segment gliomas in multi-
modal brain MRI using data from the 2020 International Multi-
modal Brain Tumor Segmentation (BraTS) challenge [35]). The 
authors called their derived model vox2vox, alluding to the exten-
sion to 3D data [36]. 

More conditioning methods have been developed over the 
years, some of which will be sketched further on. It is common to 
this type of GANs that paired images are required to train the 
network. 

4.2 CycleGAN While cGANs require paired data for the gold standard and condi-
tioning input, this is often hard to come by, in particular in medical 
use cases. Therefore, the development of the CycleGAN set a 
milestone as it alleviates this requirement and allows to train 
image-to-image translation networks without paired input samples. 

The basic idea in this architecture is to train two mapping 
functions between two domains and to execute them in sequence 
so that the resulting output is considered to be in the origin domain 
again. The output is compared against the original input, and their 
ℓ1 or ℓ2 distance establishes a novel addition to the otherwise usual 
adversarial GAN loss. This might conceptually remind one of the 
autoencoder objectives: reproduce the input signal after encoding 
and decoding; only this time, there is no bottleneck but another 
interpretable image space. This can be exploited to stabilize the 
training, since the sequential concatenation of image translation 
functions, which we will call G and F, can be reversed. Figure 19 
shows a schematic of the overall process (left) and one incarnation 
of the cycle, here from image domain X to Y and back (middle). 

CycleGANs employ several loss terms in training: two adver-
sarial losses JðG,DY Þ and JðF ,DX Þ and two cycle consistency 
losses, of which one J cycðG, F Þ is indicated rightmost in Fig. 19. 
Zhu et al. [37] presented the initial publication with a participation 
of the cGAN author Isola [37]. The cycle consistency losses are ℓ1 
losses in their implementation, and the GAN losses are least square 
losses instead of negative log likelihood, since more stable training 
was observed with this choice. 

Almahairi et al. [38] provided an augmented version [38], 
noting that the original implementation suffers from the inability 
to generate stochastic results in the target domain Y but rather 
learns a one-to-one mapping between X and Y and vice versa. To



alleviate this problem, the generators are conditioned on one latent 
space each for both directions, so that, for the same input 
x∈X, G will now produce multiple generated outputs in Y 
depending on the sample from the auxiliary latent space (and 
similarly in reverse). Still, F has to recreate a x̂ minimizing the 
cycle consistency loss for each of these samples. This also remedies a 
second criticism brought forward against vanilla CycleGANs: these 
networks can learn to hide information in the (intermediate) target 
image domain that fool the discriminator but help the backward 
generator to minimize the cycle consistency loss more efficiently 
[39]. Chu et al. [39] use adaptive histogram equalization to show 
that in visually empty regions of the intermediate images informa-
tion is present. This is a finding reminiscent of adversarial attacks, 
which the authors elaborate on in their publication. 
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Fig. 19 Cycle GAN. Left: image translation functions G and F convert between two domains. Discriminators DX 
and DY give adversarial losses in both domains. Middle: for one concrete translation of an image x, the 
translation to Y and back to X is depicted. Right: after the translation cycle, the original and back-translated 
result are compared in the cycle consistency loss 

Zhang et al. [40] show a medical application. In their work, a 
CycleGAN has been used to train image translation and segmenta-
tion models on unpaired images of the heart, acquired with MRI 
and CT and with gold standard expert segmentations available for 
both imaging datasets. The authors proposed to learn more pow-
erful segmentation models by enriching both datasets with artifi-
cially generated data. To this end, MRIs are converted into CT 
contrast images and vice versa using GANs. Segmentation models 
for MRI and CT are then trained on dataset consisting of original 
images and their expert segmentations and augmented by the con-
verted images, for which expert segmentations can be carried over 
from their original domain. To achieve this, it is of importance that 
the converted (translated) images accurately depict the shape of the 
organs as expected in the target domain, which is enforced using 
the shape consistency loss. 

In the extended setup of the CycleGAN with shape and cycle 
consistency, three different loss types instead of the original two are 
combined during training: 

Adversarial GAN losses JGAN. This loss term is the same as 
defined, e.g., in Eq. 5.



cyc 1 

original CycleGAN authors dis-
cussed above. 

Shape consistency losses J shape. The shape consistency loss is a new 
addition proposed by the authors. 
A cross-correlation loss takes into 
account two segmentations, the 
first being the gold standard seg-
mentation mx for an x∈X and one 
segmentation produced by a seg-
menter network S that was trained 
on domain Y and receives the 
translated image ŷ =GðxÞ. 
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Fig. 20 Cycle GAN with shape consistency loss (rightmost part of figure). Note that the figure shows only one 
direction to ease readability 

Cycle consistency losses J . This is the ℓ loss presented by the 

Figure 20 depicts the three loss components, of which the first 
two are known already from Fig. 19. 

Note that the description as well as Fig. 20 only show one 
direction for cycle and shape consistency loss. Both are duplicated 
into the other direction and combined into the overall training 
objective, which then consists of six components. 

In several other works, the CycleGAN approach was extended 
and combined with domain adaption methods for various segmen-
tation tasks and also extended to volumetric data [41–43]. 

4.3 StyleGAN and 

Successor 

One of the most powerful image synthesis GANs to date is the 
successor of StyleGAN, StyleGAN2 [44, 45]. The authors, at the 
time of writing researching at Nvidia, deviate from the usual GAN 
approach in which an image is generated from a randomly sampled 
vector from a latent space. Instead, they use a latent space that is 
created by a mapping function f which is in their architecture 
implemented as a multilayer perceptron which maps from a 
512-dimensional space Z into a 512-dimensional space W. The 
second major change consisted of the so-called adaptive instance 
normalization layer, AdaIN, which implements a normalization to 
zero-mean and unit variance of each feature map, followed by a 
multiplicative factor and an additive bias term. This serves to



reweight the importance of feature maps in one layer. To ensure the 
locality of the reweighting, the operation is followed by the non-
linearity. The scaling and bias are two components of y= (ys, yb), 
which is the result of a learnable affine transformation A applied to a 
sample from W. 
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Fig. 21 StyleGAN architecture, after [44]. Learnable layers and transformations are shown in green, the AdaIN 
function in blue 

In their experiments, Karras et al. [44] recognized that after 
these changes, the GAN actually no longer depended on the input 
vector drawn from W itself, so the random latent vector was 
replaced by a static vector fed into the GAN. The y, which they 
call styles, remained to be results from a vector randomly sampled 
from the new embedding space W. 

Lastly, noise is added in each layer, which serves to allow the 
GAN to produce more variation without learning to produce it 
from actual image content. The noise, like the latent vector, is fed 
through learnable transformations B, before it is added to the 
unnormalized feature maps. The overall architecture is sketched 
in Fig. 21. 

In the basic setup, one sample is drawn from W and fed 
through per-layer learned A to gain per-layer different interpreta-
tions of the style, y= (ys, yb). This can be changed, however, and the 
authors show how using one random sample w1 in some of the layer 
blocks and another sample w2 in the remaining; the result will be a 
mixture of styles of both individual samples. This way, the coarse 
attributes of the generated image can stem from one sample and the 
fine detail from another. Applied to a face generator, for example, 
pose and shape of the face are determined in the coarse early layers 
of the network, while hair structure and skin texture are the fine



details of the last layers. The architecture and results gained wide-
spread attention through a website,10 which recently was followed 
up by further similar pages. Results are depicted in Fig. 22. 
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Fig. 22 Images created with StyleGAN; https://this{person—artwork—cat—horse—chemical}doesnotexist. 
com. Last accessed: 2022-01-14 

The crucial finding in StyleGAN was that the mapping function 
F transforming the latent space vector from Z to W serves to ensure 
a disentangled (flattened) latent space. Practically, this means that if 
interpolating points zi between two points z1 and z2 drawn from Z 
and reconstructing images from these interpolated points zi, 
semantic objects might appear (in a StyleGAN-generating faces, 
for example, a hat or glasses) that are neither part of the generated 
images from the first point z1 nor the second point z2 between 
which it has been interpolated. Conversely, if interpolating in W , 
this “semantic discontinuity” is no longer the case, as the authors 
show with experiments in which they measure the visual change of 
resulting images when traversing both latent spaces. 

In their follow-up publications, the same authors improve the 
performance even further. They stick to the basic architecture but 
redesign the generative network pertaining to the AdaIN function. 
In addition, they add their metric from [44] that was meant to 
quantify the entanglement of the latent space as a regularizer. The 
discriminator network was also enhanced, and the mechanisms of 
StyleGAN that implement the progressive growing have been suc-
cessively replaced by more performance-efficient setups. In their 
experiments, they show a growth of visual and measured quality 
and removal of several artifacts reported for StyleGAN [45]. 

4.4 Stabilized GAN 

for Few-Shot Learning 

GAN training was very demanding both regarding GPU power, in 
particular for high-performance architectures like StyleGAN and 
StyleGAN2, and, as importantly, availability of data. StyleGAN2, 
for example, has typical training times of about 10 days on a Nvidia 
8-GPU Tesla V100. The datasets comprised at least tens of 
thousands of images and easily orders of magnitude more. Particu-
larly in the medical domain, such richness of data is typically hard 
to find. 

10 https://thispersondoesnotexist.com/.
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Fig. 23 The FastGAN generator network. Shortcut connections through feature map weighting layers (called 
skip-layer excitation, SLE) transport information from low-resolution feature maps into high-resolution feature 
maps. For details regarding the blocks, see text 

The authors of [46] propose simple measures to stabilize the 
training of a specific GAN architecture, which they design from 
scratch using a replacement for residual blocks, arranged in an 
architecture with very few convolutional layers, and a loss that 
drives the discriminator to be less certain when it gets closer to 
convergence. In sum, this achieves very fast training and yields 
results competitive with prior GANs [46] and outperforming 
them in low-data situations. 

The key ingredients to the architecture are shortcut connec-
tions in the generator model that rescale feature maps of higher 
resolution with learnable weights derived from low resolutions. 
The effect is to make fine details simultaneously more independent 
of direct predecessor feature maps and yet ensure consistency across 
scales. 

A random seed vector of length 256 enters the first block (“Up 
Conv”), where it is upscaled to a 256× 4× 4 tensor. In Fig. 23, the 
further key blocks of the architecture are “upsample” and “SLE” 
blocks. 

Upsample blocks consist of a nearest-neighbor upsampling fol-
lowed by a 3×3 convolution, batch normalization, and 
nonlinearity. 

SLE blocks (seen in the top right inset in the architecture 
diagram) don’t touch the incoming high-resolution 
input (entering from top into the block) but comprise a 
pooling layer that in each SLE block is set up to yield a



4 ×4 stack of feature maps, followed by a convolution to
reduce to a 1 ×1 tensor, which is then in a 1×1 convo-
lution brought to the same number of channels as the 
high-resolution input. This vector is then multiplied to 
the channels of the high-resolution input. 
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Fig. 24 The FastGAN self-supervision mechanism of the discriminator network. Self-supervision manifests 
through the loss term indicated by the curly bracket between reconstructions from feature maps and 
resampled/cropped versions of the original real image, J recon 

Secondly, the architecture introduces a self-supervision feature 
in the discriminator network. The discriminator network (see 
Fig. 24) is a simple CNN with strided convolutions in each layer, 
halving resolution in each feature map. In the latest (coarsest) 
feature maps, simple up-scaling convolutional networks are 
attached that generate small images, which are then compared in 
loss functions (J recon in Fig. 24) to down-sampled versions of the 
real input image. This self-supervision of the discriminator is only 
performed for real images, not for generated ones. 

The blocks in the figure spell out as follows: 

Down Conv Block consists of two convolutional layers with strided 
4 ×4 convolutions, effectively reducing the res-
olution from 10242 to 2562 . 

Residual Blocks have two sub-items, “Conv Block A” being a 
strided 4×4 convolution to half resolution, 
followed by a padded 3×3 convolution. 
“Conv Block B” consists of a strided 2×2 aver-
age pooling that quarters resolution, followed 
by a 1 ×1 convolution, so that both blocks 
result in identically shaped tensors, which are 
then added.



� ½ ð ð ÞÞ�

4 ×4 convolution without strides or padding, 
so that the incoming 82 feature map is reduced 
to 52 . 

Decoder The decoder networks are four blocks of 
upsampling layers each followed by 3 ×3 
convolutions. 
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Fig. 25 FastGAN as implemented by the authors has been used to train a CT slice generative model. Images 
are not cherry-picked, but arranged by similar anatomical regions 

Conv Block C consists of a 1 ×1 convolution followed by a 

The losses employed in the model are the discriminator loss 
consisting of the hinge version of the usual GAN loss, with the 
added regularizing reconstruction loss between original real sam-
ples and their reconstruction, and the generator loss plainly being 
JG =z Z D G z . 

The model is easy to train on modest hardware and little data, 
as evidenced by own experiments on a set of about 30 chest CTs 
(about 2500 image slices, converted to RGB). Figure 25 shows 
randomly picked generated example slices, roughly arranged by 
anatomical content. It is to be noted that organs appear mirrored 
in some images. On the other hand, no color artifacts are visible, so 
that the model has learned to produce only gray scale images. 
Training time for 50,000 iterations on a Nvidia TitanX GPU was 
approximately 10 hours.
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Fig. 26 The VQGAN+CLIP combination creates images from text inputs, here: “A 
child drawing of a dark garden full of animals” 

4.5 VQGAN In a recent development, a team of researchers combined techni-
ques for text interpretation with a dictionary of elementary image 
elements feeding into a generative network. The basic architecture 
component that is employed goes back to vector quantization 
variational autoencoders (VQ-VAE), where the latent space is no 
longer allowed to be continuous, but is quantized. This allows to 
use the latent space vectors in a look-up table: the visual elements. 

Figure 26 was created using code available online, which 
demonstrates how images of different visual styles can be created 
using the combination of text-based conditioning and a powerful 
generative network. 

The basis for image generation is the VQGAN (“vector quan-
tization generative adversarial network”) [47], which learns repre-
sentations of input images that can later steer the generative 
process, in an adversarial framework. The conditioning is achieved 
with the CLIP (“Contrastive Image-Language Pretraining”) model 
that learns a discriminator that can judge plausible images for a text 
label or vice versa [48]. 

The architecture has been developed with an observation in 
mind that puts the benefits and drawbacks of convolutional and 
transformer architectures in relation to each other. While the local-
ity bias of convolutional architectures is inappropriate if overall 
structural image relations should be considered, it is of great help 
in capturing textural details that can exist anywhere, like fur, hair, 
pavement, or grass, but where the exact representation of hair



positions or pavement stones is irrelevant. On the other hand, 
image transformers are known to learn convolutional operators 
implicitly, posing a severe computational burden without a visible 
impact on the results. Therefore, Esser et al. [47] suggest to com-
bine convolutional operators for local detail representation and 
transformer-based components for image structure. 
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Since the VQGAN as a whole is no longer a pure CNN but for a 
crucial component uses a transformer architecture, this model will 
be brought up again briefly in Subheading 5.2. 

The VQGAN architecture is derived from the VQ-VAE (vector 
quantization variational autoencoder) [49], adding a reconstruc-
tion loss through a discriminator, which turns it into a GAN. At the 
core of the architecture is the quantization of estimated codebook 
entries. Among the quantized entries in the codebook, the closest 
entry to the query vector coding, an image patch is determined. 
The found codebook entry is then referred to by its index in the 
codebook. This quantization operation is non-differentiable, so for 
end-to-end training, gradients are simply copied through it during 
backpropagation. 

The transformer can then efficiently learn to predict codebook 
indices from those comprising the current version of the image, and 
the generative part of the architecture, the decoder, produces a new 
version of the image. Learning expressive codebook entries is 
enforced by a perceptual loss that punishes inaccurate local texture, 
etc. Through this, the authors can show that high compression 
levels can be achieved—a prerequisite to enable efficient, yet com-
prehensive, transformer training. 

5 Other Generative Models 

We have already seen how GANs were not the first approach to 
image generation but have prevailed for a time when they became 
computationally feasible and in consequence have been better 
understood and improved to accomplish tasks in image analysis 
and image generation with great success. In parallel with GANs, 
other fundamentally different generative modeling approaches 
have also been under continued development, most of which have 
precursors from the “before-GAN” era as well. To give a compre-
hensive outlook, we will sketch in this last section the state of the art 
of a selection of these approaches.11 

11 The research on the so-called flow-based models, e.g., normalizing flows, has been omitted in this chapter, 
though acknowledging their emerging relevance also in the context of image generation. Flow-based models are 
built from sequences of invertible transformations, so that they learn data distributions explicitly at the expense of 
sometimes higher computational costs due to their sequential architecture. When combined, e.g., with a powerful 
GAN, they allow innovative applications, for example, to steer the exploration of a GAN’s latent space to achieve 
fine-grained control over semantic attributes for conditional image generation. Interested readers are referred to 
the literature [11, 13, 50–52].
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5.1 Diffusion and 

Score-Based Models 

Diffusion models take a completely different approach to distribu-
tion estimation. GANs implicitly represent the target distribution 
by learning a surrogate distribution. Likelihood-based models like 
VAE approximate the target distribution explicitly, not requiring 
the surrogate. In diffusion models, however, the gradient of the log 
probability density function is estimated, instead of looking at the 
distribution itself (which would be the unfathomable integral of the 
gradient). This value is known as the Stein score function, leading 
to the notion that diffusion models are one variant of score-based 
models [53]. 

The simple idea behind this class of models is to revert a 
sequential noising process. Consider some image. Then, perform 
a large number of steps. In each step, add a small amount of noise 
from a known distribution, e.g., the normal distribution. Do this 
until the result is indistinguishable from random noise. 

The denoising process is then formulated as a latent variable 
model, where T-1 latents successively progress from a noise image 
xT � N ðxT ;0, IÞ to the reconstruction that we call x0� q(x0). The 
reconstructed image, x0, is therefore obtained by a reverse process 
qθ(x0:T). Note that each step in this chain can be evaluated in closed 
form [54]. Several model implementations of this approach exist, 
one being the deep diffusion probabilistic model (DDPM). Here, a 
deep neural network learns to perform one denoising step given the 
so-far achieved image and a t∈{1, . . ., T}. Iterative application of 
the model to the result of the last iteration will eventually yield a 
generated image from noise input. 

Autoregressive diffusion models (ARDMs) [55] follow yet 
another thought model, roughly reminiscent of PixelRNNs we 
have briefly mentioned above (see Subheading 3.2). Both share 
the approach to condition the prediction of the next pixel or pixels 
on the already predicted ones. Other than in the PixelRNN, how-
ever, the specific ARDM proposed by the authors does not rely on a 
predetermined schedule of pixel updates, so that these models can 
be categorized as latent variable models. 

As of late, the general topic of score-based methods, among 
which diffusion models are one variant, received more attention in 
the research community, fueled by a growing body of publications 
that report image synthesis results that outperform GANs [53, 56, 
57]. Score function-based and diffusion models superficially share 
the similar concept of sequentially adding/removing noise but 
achieve their objective with very different means: where score 
function-based approaches are trained by score-matching and 
their sampling process uses Langevin dynamics [58], diffusion 
models are trained using the evidence lower bound (ELBO) and 
sample with a decoder, which is commonly a neural network. 
Figure 27 visualizes an example for a score function. 

Score function-based (sometimes also score-matching) genera-
tive models have been developed to astounding quality levels, and



the recent works of Yang Song and others provide accessible blog 
posts,12 and a comprehensive treatment of the subject in several 
publications [53, 58, 59]. 
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Fig. 27 The Stein score function can be conceived of as the gradient of the log probability density function, 
here indicated by two Gaussians. The arrows represent the score function 

In the work of Ho et al. [54], the stepwise reverse (denoising) 
process is the basis of the denoising diffusion probabilistic models 
(DDPM). The authors emphasize that a proper selection of the 
noise schedule is crucial to fast, yet high-quality, results. They point 
out that their work is a combination of diffusion probabilistic 
models with score-matching models, in this combination also gen-
eralizing and including the ideas of autoregressive denoising mod-
els. In an extension of Ho et al.’s [54] work by Nichol and Dhariwal 
[57], an importance sampling scheme was introduced that lets the 
denoising process steer the most easy to predict next image ele-
ments. Equipped with this new addition, the authors can show that, 
in comparison to GANs, a wider region of the target distribution is 
covered by the generative model. 

5.2 Transformer-

Based Generative 

Models 

The basics of how attention mechanisms and transformer architec-
tures work will be covered in the subsequent chapter on this 
promising technology (Chapter 6). Attention-based models, pre-
dominantly transformers, have been used successfully for some time 
in sequential data processing and are now considered the superior 
alternative to recurrent networks like long-short-term memory 
(LSTM) networks. Transformers have, however, only recently 
made their way into the image analysis and now also the image 
generation world. In this section, we will only highlight some 
developments in the area of generative tasks. 

12 https://yang-song.github.io/blog/.
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Google Brain/Google AI’s 2018 publication on so-called 
image transformers [60], among other tasks, shows successful con-
ditional image generation for low-resolution input images to 
achieve super-resolution output images, and for image inpainting, 
where missing or removed parts of input images are replaced by 
content produced by the image transformer. 

OpenAI have later shown that even unmodified language trans-
formers can succeed to model image data, by dealing in sheer 
compute power for hand modeling of domain knowledge, which 
was the basis for the great success of previous unsupervised image 
generation models. They have trained Image GPT (or iGPT for 
short), a multibillion parameter language transformer model, and it 
excels in several image generation tasks, though only for fairly small 
image sizes [61] 

In the recent past, StyleSwin has been proposed by Microsoft 
Research Asia [62], enabling high-resolution image generation. 
However, the approach uses a block-wise attention window, 
thereby potentially introducing spatial incoherencies at block 
edges, which they have to correct for. 

“Taming transformers” [47], another recent publication 
already mentioned above, uses what the authors call a learned 
template code book of image components, which is combined 
with a vector quantization GAN (VQGAN). The VQGAN is struc-
turally modeled after the VQ-VAE but adds a discriminator net-
work. A transformer model in this architecture composes these 
code book elements and is interrogated by the GAN variational 
latent space, conditioned on a textual input, a label image, or other 
possible inputs. The GAN reconstructs the image from the 
so-quantized latent space using a combination of a perceptual loss 
assessing the overall image structure and a patch-based high-reso-
lution reconstruction loss. By using a sliding attention window 
approach, the authors prevent patch border artifacts known from 
StyleSwin. Conditioning on textual input makes use of parts of the 
CLIP [48] idea (“Contrastive Language-Image Pretraining”), 
where a language model was train in conjunction with an image 
encoder to learn embeddings of text-image pairs, sufficient to solve 
many image understanding tasks with competitive precision, with-
out specific domain adaption. 

It is evidenced by the lineup of institutions that training image 
transformer models successfully is nothing that can be achieved 
with modest hardware or on even a medium-scale image database. 
In particular for the medical area, where data is comparatively 
scarce even under best assumptions, the power of such models 
will only be available in the near future if domain transfer learning 
can be successfully achieved. This, however, is a known strength of 
transformer architectures.
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Chapter 6 

Transformers and Visual Transformers 

Robin Courant, Maika Edberg, Nicolas Dufour, and Vicky Kalogeiton 

Abstract 

Transformers were initially introduced for natural language processing (NLP) tasks, but fast they were 
adopted by most deep learning fields, including computer vision. They measure the relationships between 
pairs of input tokens (words in the case of text strings, parts of images for visual transformers), termed 
attention. The cost is exponential with the number of tokens. For image classification, the most common 
transformer architecture uses only the transformer encoder in order to transform the various input tokens. 
However, there are also numerous other applications in which the decoder part of the traditional trans-
former architecture is also used. Here, we first introduce the attention mechanism (Subheading 1) and then 
the basic transformer block including the vision transformer (Subheading 2). Next, we discuss some 
improvements of visual transformers to account for small datasets or less computation (Subheading 3). 
Finally, we introduce visual transformers applied to tasks other than image classification, such as detection, 
segmentation, generation, and training without labels (Subheading 4) and other domains, such as video or 
multimodality using text or audio data (Subheading 5). 

Key words Attention, Transformers, Visual transformers, Multimodal attention 

1 Attention 

Attention is a technique in Computer Science that imitates the way 
in which the brain can focus on the relevant parts of the input. In 
this section, we introduce attention: its history (Subheading 1.1), 
its definition (Subheading 1.2), its types and variations (Subhead-
ings 1.3 and 1.4), and its properties (Subheading 1.5). 

To understand what attention is and why it is so useful, con-
sider the following film review: 

While others claim the story is boring, I found it fascinating. 

Is this film review positive or negative? The first part of the 
sentence is unrelated to the critic’s opinion, while the second part 
suggests a positive sentiment with the word ‘fascinating’. To a 
human, the answer is obvious; however, this type of analysis is not 
necessarily obvious to a computer. 

Olivier Colliot (ed.), Machine Learning for Brain Disorders, Neuromethods, vol. 197, https://doi.org/10.1007/978-1-0716-3195-9_6, 
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1.2 Definition of
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Typically, sequential data require context to be understood. In 
natural language, a word has a meaning because of its position in 
the sentence, with respect to the other words: its context. In our 
example, while “boring” alone suggests that the review is negative, 
its contextual relationship with other words allows the reader to 
reach the appropriate conclusion. In computer vision, in a task like 
object detection, the nature of a pixel alone cannot be identified: we 
need to account for its neighborhood, its context. So, how can we 
formalize the concept of context in sequential data? 

1.1 The History of 

Attention 

This notion of context is the motivation behind the introduction of 
the attention mechanism in 2015 [1]. Before this, language trans-
lation was mostly relying on encoder-decoder architectures: recur-
rent neural networks (RNNs) [2] and in particular long-short-term 
memory (LSTMs) networks were used to model the relationship 
among words [3]. Specifically, each word of an input sentence is 
processed by the encoder sequentially. At each step, the past and 
present information are summarized and encoded into a fixed-
length vector. In the end, the encoder has processed every word 
and outputs a final fixed-length vector, which summarizes all input 
information. This final vector is then decoded and finally translates 
the input information into the target language. 

However, the main issue of such structure is that all the infor-
mation is compressed into one fixed-length vector. Given that the 
sizes of sentences vary and as the sentences get longer, a fixed-
length vector is a real bottleneck: it gets increasingly difficult not to 
lose any information in the encoding process due to the vanishing 
gradient problem [1]. 

As a solution to this issue, Bahdanue et al. [1] proposed the 
attention module in 2015. The attention module allows the model 
to consider the parts of the sentence that are relevant to predicting 
the next word. Moreover, this facilitates the understanding of 
relationships among words that are further apart. 

Given two lists of tokens, X ∈N × dx and Y ∈N × dy , attention 
encodes information from Y into X, where N is the length of inputs 
X and Y and dx and dy are their respective dimensions. For this, we 
first define three linear mappings, query mapping W Q ∈dx × dq , 
key mapping W K ∈dy × dk , and value mapping W V ∈dy × dv , 
where dq, dk, and dv are the embedding dimensions in which the 
query, key, and value are going to be computed, respectively. 

Then, we define the query Q, key K, and value V [4] as: 

Q =XW Q 

K =YW K 

V =YW V
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Next, the attention matrix is defined as: 

AðQ ,K Þ= Softmax 
QK⊤ 

dk 

p : ð1Þ 

This is illustrated in the left part of Fig. 1. The nominator 

QKT ∈N ×N represents how each part of the input in X attends 
to each part of the input in Y.1 This dot product is then put 
through the softmax function to normalize its values and get posi-
tive values that add to 1. However, for large values of dk, this may 
result in the softmax to have incredibly small gradients, so it is 
scaled down by dk 

p 
. 

The resulting N×N matrix encodes the relationship between X 
with respect to Y : it measures how important a token in X is with 
respect to another one in Y . 

Finally, the attention output is defined as: 

AttentionðQ ,K ,V Þ=AðQ ,K ÞV : ð2Þ 
Figure 1 displays this. The attention output encodes the infor-

mation of each token by taking into account the contextual infor-
mation. Therefore, through the learnable parameters—queries, 
keys, and values—the attention layers learn a token embedding 
that takes into account their relationship. 

Contextual Relationships How does Eq. 2 encode contextual 
relationships? To answer this question, let us reconsider analyzing 
the sentiment of film reviews. To encode contextual relationships 
into the word embedding, we first want a matrix representation of 
the relationship between all words. To do so, given a sentence of 
length N, we take each word vector and feed it to two different 
linear layers, calling one output “query” and the other output 
“key”. We pack the queries into the matrix Q and the keys into 
the matrix K, by taking their product (QKT ). The result is a N×N 
matrix that explains how important the i-th word (row-wise) is to 
understand the j-th word (column-wise). This matrix is then scaled 
and normalized by the division and softmax. Next, we feed the 
word vectors into another linear layer, calling its output “value”. 
We multiply these two matrices together. The results of their prod-
uct are attention vectors that encode the meaning of each word, by 
including their contextual meaning as well. Given that each of these 
queries, keys, and values is learnable parameter, as the attention 
layer is trained, the model learns how relationships among words 
are encoded in the data. 

1 Note that in the literature, there are two main attention functions: additive attention [1] and dot-product 
attention (Eq. 1). In practice, the dot product is more efficient since it is implemented using highly optimized 
matrix multiplication, compared to the feed-forward network of the additive attention; hence, the dot product is 
the dominant one.
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Fig. 1 Attention block. Next to each element, we denote its dimensionality. 
Figure inspired from [4] 

1.3 Types of 

Attention 

There exist two dominant types of attention mechanisms: self-
attention and cross attention [4]. In self-attention, the queries, 
keys, and values come from the same input, i.e., X=Y; in  cross 
attention, the queries come from a different input than the key and 
value vectors, i.e., X≠Y. These are described below in Subheadings 
1.3.1 and 1.3.2, respectively. 

1.3.1 Self-Attention In self-attention, the tokens of X attend to themselves (X=Y). 
Therefore, it is modeled as follows: 

SAðX Þ=AttentionðXW Q ,XW K ,XW V Þ: ð3Þ 
Self-attention formalizes the concept of context. It learns the 

patterns underlying how parts of the input correspond to each 
other. By gathering information from the same set, given a 
sequence of tokens, a token can attend to its neighboring tokens 
to compute its output. 

1.3.2 Cross Attention Most real-world data are multimodal—for instance, videos contain 
frames, audios, and subtitles, images come with captions, etc. 
Therefore, models that can deal with such types of multimodal 
information have become essential.



1.4 Variation of

Attention
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Cross attention is an attention mechanism designed to handle 
multimodal inputs. Unlike self-attention, it extracts queries from 
one input source and key-value pairs from another one (X≠Y ). It 
answers the following question: “Which parts of input X and input 
Y correspond to each other?” Cross attention (CA) is defined as: 

CAðX ,Y Þ=AttentionðXW Q ,YW K ,YW V Þ: ð4Þ 

Attention is typically employed in two ways: (1) multi-head self-
attention (MSA, Subheading 1.4) and (2) masked multi-head 
attention (MMA, Subheading 1.4). 

Attention Head We call attention head the mechanism presented 
in Subheading 1.2, i.e., query-key-value projection, followed by 
scaled dot product attention (Eqs. 1 and 2). 

When employing an attention-based model, relying only on a 
single attention head can inhibit learning. Therefore, the multi-
head attention block is introduced [4]. 

Multi-head Self-Attention (MSA) MSA is shown in Fig. 2 and is 
defined as: 

MSAðX Þ =Concatðhead1ðX Þ, . . . , headhðX ÞÞW O , 

headiðX Þ = SAðX Þ , 8i ∈f1, hg, ð5Þ 

where Concat is the concatenation of h attention heads and 

W O ∈hdv × d is projection matrix. This means that the initial 
embedding dimension dx is decomposed into h× dv and the com-
putation per head is carried out independently. The independent 
attention heads are usually concatenated and multiplied by a linear 
layer to match the desired output dimension. The output dimen-
sion is often the same as the input embedding dimension d. This 
allows an easier stacking of multiple blocks. 

Multi-head Cross Attention (MCA) Similar to MSA, MCA is 
defined as: 

MCAðX ,Y Þ =Concatðhead1ðX ,Y Þ, . . . , headhðX ,Y ÞÞW O , 

headiðX ,Y Þ =CAðX ,Y Þ , 8i ∈f1, hg: 
ð6Þ 

Masked Multi-head Self-Attention (MMSA) The MMSA layer 
[4] is another variation of attention. It has the same structure as the 
multi-head self-attention block (Subheading 1.4), but all the later 
vectors in the target output are masked. When dealing with sequen-
tial data, this can help make training parallel.
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Fig. 2 Multi-head self-attention block (MSA). First, the input X is projected to 
queries, keys, and values and then passed through h attention blocks. The 
h resulting attention outputs are then concatenated together and finally 
projected to a d-dimensional output vector. Next to each element, we denote 
its dimensionality. Figure inspired from [4] 

1.5 Properties of 

Attention 

While attention encodes contextual relationships, it is permutation 
equivalent, as the mechanism does not account for the order of the 
input data. As shown in Eq. 2, the attention computations are all 
matrix multiplication and normalizations. Therefore, a permuted 
input results in a permuted output. In practice, however, this may 
not be an accurate representation of the information. For instance, 
consider the sentences “the monkey ate the banana” and “the 
banana ate the monkey.” They have distinct meanings because of 
the order of the words. If the order of the input is important, 
various mechanisms, such as the positional encoding, discussed in 
Subheading 2.1.2, are used to capture this subtlety. 

2 Visual Transformers 

The transformer architecture was introduced in [4] and is the first 
architecture that relies purely on attention to draw connections 
between the inputs and outputs. Since its debut, it revolutionized 
deep learning, making breakthroughs in numerous fields, including



2.1 Basic

Transformers

natural language processing, computer vision, chemistry, and biol-
ogy, thus making its way to becoming the default architecture for 
learning representations. Recently, the standard transformer [4] has 
been adapted for vision tasks [5]. And again, visual transformer has 
become one of the central architectures in computer vision. 
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In this section, we first introduce the basic architecture of 
transformers (Subheading 2.1) and then present its advantages 
(Subheading 2.2). Finally, we describe the vision transformer (Sub-
heading 2.3). 

As shown in Fig. 3, the transformer architecture [4] is an encoder-
decoder model. First, it embeds input tokens X= (x1, . . ., xN) into 
a latent space, resulting in latent vectors Z= (z1, . . ., zN), which are 
fed to the decoder to output Y = (y1, . . ., yM). The encoder is a 
stack of L layers, with each one consisting of two sub-blocks: multi-
head self-attention (MSA) layers and a multilayer perceptron 
(MLP). The decoder is also a stack of L layers, with each one 
consisting of three sub-blocks: masked multi-head self-attention 
(MMSA), multi-head cross attention (MCA), and MLP. 

Overview Below, we describe the various parts of the transformer 
architecture, following Fig. 3. First, the input tokens are converted 
into the embedding tokens (Subheading 2.1.1). Then, the posi-
tional encoding adds a positional token to each embedding token 
to denote the order of tokens (Subheading 2.1.2). Then, the 
transformer encoder follows (Subheading 2.1.3). This consists of 
a stack of L multi-head attention, normalization, and MLP layers 
and encodes the input to a set of semantically meaningful features. 
After, the decoder follows (Subheading 2.1.4). This consists of a 
stack of L masked multi-head attention, multi-head attention, and 
MLP layers followed by normalizations and decodes the input 
features with respect to the output embedding tokens. Finally, the 
output is projected to linear and softmax layers. 

2.1.1 Embedding The first step of transformers consists in converting input tokens2 

into embedding tokens, i.e., vectors with meaningful features. To 
do so, following standard practice [6], each input is projected into 
an embedding space to obtain embedding tokens Ze . The embed-
ding space is structured in a way that the distance between a pair of 
vectors is relative to the semantic similarity of their associated 
words. For the initial NLP case, this means that we get a vector of 
each word, such that the vectors that are closer together have 
similar meanings. 

2 Note the initial transformer architecture was proposed for natural language processing (NLP), and therefore the 
inputs were words.
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Fig. 3 The transformer architecture. It consists of an encoder (left) and a decoder 
(right) block, each one consisting from a series of attention blocks (multi-head 
and masked multi-head attention) and MLP layers. Next to each element, we 
denote its dimensionality. Figure inspired from [4] 

2.1.2 Positional Encoding As discussed in Subheading 1.5, the attention mechanism is posi-
tional agnostic, which means that it does not store the information 
on the position of each input. However, in most cases, the order of 
input tokens is relevant and should be taken into account, such as 
the order of words in a sentence matter as they may change its 
meaning. Therefore, [4] introduced the Positional Encoding 

PE ∈N × dx , which adds a positional token to each embedding 
token Z e ∈N × dx .
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Sinusoidal Positional 

Encoding 

The sinusoidal positional encoding [4] is the main positional 
encoding method, which encodes the position of each token with 
sinusoidal waves of multiple frequency. For an embedding token 

Z e ∈N × dx , its positional encoding PE ∈N × dx is defined as: 

PEði, 2jÞ = sin 
i 

100002j=d 

PEði, 2j þ 1Þ = cos 
i 

100002j=d 
, 8i, j ∈½j1,nj�× ½j1, dj�: 

ð7Þ 

Learnable Positional 

Encoding 

An orthogonal approach is to let the model learn the positional 
encoding. In this case, PE ∈N × dx becomes a learnable parameter. 
This, however, increases the memory requirements, without neces-
sarily bringing improvements over the sinusoidal encoding. 

Positional Embedding After its computation, either the positional encoding PE is added 
to the embedding tokens or they are concatenated as follows: 

Z pe =Ze þ PE, or  

Z pe =ConcatðZe ,PEÞ, 
ð8Þ 

where Concat denotes vector concatenation. Note that the concat-
enation has the advantage of not altering the information contained 
in Ze , since the positional information is only added to the unused 
dimension. Nevertheless, it augments the input dimension, leading 
to higher memory requirements. Instead, the addition does pre-
serve the same input dimension while altering the content of the 
embedding tokens. When the input dimension is high, this content 
altering is trivial, as most of the content is preserved. Therefore, in 
practice, for high dimension, summing positional encodings is 
preferred, whereas for low dimensions concatenating them prevails. 

2.1.3 Encoder Block The encoder block takes as input the embedding and positional 
tokens and outputs features of the input, to be decoded by the 
decoder block. It consists of a stack of L multi-head self-attention 
(MSA) layers and a multilayer perceptron (MLP). Specifically, the 
embedding and positional tokens, Z pe 

x ∈N × d , go through a 
multi-head self-attention block. Then, a residual connection with 
layer normalization is deployed. In the transformer, this operation 
is performed after each sub-layer. Next, we feed its output to an 
MLP and a normalization layer. This operation is performed 
L times, and each time the output of each encoder block (of size 
N× d) is the input of the subsequent block. In the L-th time, the 
output of the normalization is the input of the cross-attention 
block in the decoder (Subheading 2.1.4).
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2.1.4 Decoder Block The decoder has two inputs: first, an input that constitutes the 
queries Q ∈N × d of the encoder, and, second, the output of the 
encoder that constitutes the key-value K ,V ∈N × d pair. Similar 
to Subheadings 2.1.1 and 2.1.2, the first step constitutes encoding 
the output token to output embedding token and output positional 
token. These tokens are fed into the main part of the decoder, 
which consists of a stack of L masked multi-head self-attention 
(MMSA) layers, multi-head cross-attention (MCA) layers, and 
multilayer perceptron (MLP) followed by normalizations. Specifi-
cally, the embedding and positional tokens, Z pe 

y ∈N × d , g  
through a MMSA block. Then, a residual connection with layer 
normalization follows. Next, an MCA layer (followed by normali-
zation) maps the queries to the encoded key values before forward-
ing the output to an MLP. Finally, we project the output of the 
L decoder blocks (of dimension N × dy) through a linear layer and 
get output probability through a softmax layer. 

2.2 Advantages of 

Transformers 

Since their introduction, the transformers have had a significant 
impact on deep learning approaches. 

In natural language processing (NLP), before transformers, 
most architectures used to rely on recurrent modules, such as 
RNNs [2] and in particular LSTMs [3]. However, recurrent models 
process the input sequentially, meaning that, to compute the cur-
rent state, they require the output of the previous state. This makes 
them tremendously inefficient, as they are impossible to parallelize. 
On the contrary, in transformers, each input is processed indepen-
dent of the others, and the multi-head attention can perform 
multiple attention computations at once. This makes transformers 
highly efficient, as they are highly parallelizable. 

This results in not only exceptional scalability, both in the 
complexity of the model and the size of datasets, but also relatively 
fast training. Notably, the recent switch transformers [7] was pre-
trained on 34 billion tokens from the C4 dataset [8], scaling the 
model to over 1 trillion parameters. 

This scalability [7] is the principal reason for the power of the 
transformer. While it was originally introduced for translation, it 
refrains from introducing many inductive biases, i.e., the set of 
assumptions that the user makes about the structure of the model 
input. In doing so, the transformer relies on data to learn how they 
are structured. Compared to its counterparts with more biases, the 
transformer requires much more data to produce comparable 
results [5]. However, if a sufficient amount of data is available, 
the lack of inductive bias becomes a strength. By learning the 
structure of the data from the data, the transformer is able to 
learn better without human assumptions hindering [9]. 

In most tasks involving transformers, the model is first pre-
trained on a large dataset and then fine-tuned for the task at hand 
on a smaller dataset. The pretraining phase is essential for



transformers to learn the global structure of the specific input 
modality. For fine-tuning, typically fewer data suffice as the model 
is already rich. For instance, in natural language processing, BERT 
[10], a state-of-the-art language model, is pretrained on a 
Wikipedia-based dataset [11], with over 6 million articles and 
Book Corpus [12] with over 10,000 books. Then, this model can 
be fine-tuned on much more specific tasks. In computer vision, the 
vision transformer (ViT) is pretrained on the JFT-300M dataset, 
containing over 1 billion labels for 300 million images [5]. Hence, 
with a sufficient amount of data, transformers achieve results that 
were never possible before in various areas of machine learning. 
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2.3 Vision 

Transformer 

Transformers offer an alternative to CNNs that have long held a 
stranglehold on computer vision. Before 2020, most attempts to 
use transformers for vision tasks were still highly reliant on CNNs, 
either by using self-attention jointly with convolutions [13, 14] or  
by keeping the general structure of CNNs while using self-attention 
[15, 16]. 

The reason for this is rooted in the two main weaknesses of the 
transformers. First, the complexity of the attention operation is 
high. As attention is a quadratic operation, the number of para-
meters skyrockets quickly when dealing with visual data, i.e., 
images—and even more so with videos. For instance, in the case 
of ImageNet [17], inputting a single image with 256×256=65, 
536 pixels in an attention layer would be too heavy computation-
ally. Second, transformers suffer from lack of inductive biases. Since 
CNNs were specifically created for vision tasks, their architecture 
includes spatial inductive biases, like translation equivariance and 
locality. Therefore, the transformers have to be pretrained on a 
significantly large dataset to achieve similar performances. 

The vision transformer (ViT) [5] is the first systematic 
approach that uses directly transformers for vision tasks by addres-
sing both aforementioned issues. It rids the concept of convolu-
tions altogether, using purely a transformer-based architecture. In 
doing so, it achieves the state of the art on image recognition on 
various datasets, including ImageNet [17] and CIFAR-100 [18]. 

Figure 4 illustrates the ViT architecture. The input image is first 
split into 16×16 patches, flattened, and mapped to the expected 
dimension through a learnable linear projection. Since the image 
size is reduced to 16× 16, the complexity of the attention mecha-
nism is no longer a bottleneck. Then, ViT encodes the positional 
information and attaches a learnable embedding to the front of the 
sequence, similarly to BERT’s classification token [10]. The output 
of this token represents the entirety of the input—it encodes the 
information from each part of the input. Then, this sequence is fed 
into an encoder block, with the same structure as in the standard 
transformers [4]. The output of the classification token is then fed 
into an MLP that outputs class probabilities.
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Fig. 4 The vision transformer architecture (ViT). First, the input image is split into patches (bottom), which are 
linearly projected (embedding), and then concatenated with positional embedding tokens. The resulting tokens 
are fed into a transformer, and finally the resulting classification token is passed through an MLP to compute 
output probabilities. Figure inspired from [5] 

Due to the lack of inductive biases, when ViT is trained only on 
mid-sized datasets such as ImageNet, it scores some percentage 
points lower than the state of the art. Therefore, the proposed 
model is first pretrained on the JFT-300M dataset [19] and then 
fine-tuned on smaller datasets, thereby increasing its accuracy by 
13%. 

For a complete overview of visual transformers and follow-up 
works, we invite the readers to study [9, 20]. 

3 Improvements over the Vision Transformer 

In this section, we present transformer-based methods that 
improve over the original vision transformer (Subheading 2.3)  in  
two main ways. First, we introduce approaches that are trained on 
smaller datasets, unlike ViT [5] that requires pretraining on 
300 million labeled images (Subheading 3.1). Second, we present 
extensions over ViT that are more computational-efficient than 
ViT, given that training a ViT is directly correlated to the image 
resolution and the number of patches (Subheading 3.2).



3.1 Data Efficiency
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As discussed in Subheading 2.3, the vision transformer (ViT) [5] is  
pretrained on a massive proprietary dataset (JFT-300M) which 
contains 300 million labeled images. This need arises with trans-
formers because we remove the inductive biases from the architec-
ture compared to convolutional-based networks. Indeed, 
convolutions contain some translation equivariance. ViT does not 
benefit from this property and thus has to learn such biases, requir-
ing more data. JFT-300M is an enormous dataset, and to make ViT 
work in practice, better data-efficiency is needed. Indeed, collecting 
that amount of data is costly and can be infeasible for most tasks. 

Data-Efficient Image Transformers (DeiT) [21] The first work 
to achieve an improved data efficiency is DeiT [21] . The main idea 
of DeiT is to distil the inductive biases from a CNN into a trans-
former (Fig. 5). DeiT adds another token that works similarly to the 
class token. When training, ground truth labels are used to train the 
network according to the class token output with a cross-entropy 
(CE) loss. However, for the distillation network, the output labels 
are compared to the labels provided from a teacher network with a

Fig. 5 The DeiT architecture. The architecture features an extra token, the 
distillation token. This token is used similarly to the class token. 
Figure inspired from [21]



cross-entropy loss. The final loss for a N-categorical classification 
task is defined as follows:
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LhardDistill 
global = 

1 
2
ðLCEðΨðZ classÞ, yÞ þ  LCEðΨðZ distillÞ, yT ÞÞ, 

LCEðŷ, yÞ = -
1 
N 

N 

i =1 

yi log ŷ i þ ð1- yiÞ log ð1- ŷ iÞ 
ð9Þ 

withΨ the softmax function, Zclass the class token output, Zdistill the 
class token output, y the ground truth label, and yT the teacher label 
prediction. 

The teacher network is a Convolutional Neural Network 
(CNN). The main idea is that the distillation head will provide 
the inductive biases needed to improve the data efficiency of the 
architecture. By doing this, DeiT achieves remarkable performance 
on the ImageNet dataset, by training “only” on ImageNet-1K 
[17], which contains 1.3 million images. 

Convit [22] The main disadvantage of DeiT [21] is that it 
requires a pretrained CNN, which is not ideal, and it would be 
more convenient to not have this requirement. The CNN has a 
hard inductive bias constraint that can be a major limitation. 
Indeed, if enough data is available, learning the biases from the 
data can result in better representations. 

Convit [22] overpasses this issue by including the inductive bias 
of CNNs into a transformer in a soft way. Specifically, if the induc-
tive bias is limiting the training, the transformer can discard it. The 
main idea is to include the inductive bias into the ViT initialization. 
Therefore, before beginning training, the ViT is equivalent to a 
CNN. Then, the network can progressively learn the needed biases 
and diverge from the CNN initialization. 

Compact Convolutional Transformer [23], DeiT [21], and 
Convit [22] successfully achieve data efficiency at the ImageNet 
scale. However, ImageNet is a big dataset with 1.3 million images, 
whereas most datasets are significantly smaller. 

To reach higher data efficiency, the compact convolutional 
transformer [23] uses a CNN operation to extract the patches and 
then uses these patches in a transformer network (Fig. 6). The 
compact convolutional transformer comes with some modifications 
that lead to major improvements. First, by having a more complex 
encoding of patches, the system relies on the convolutional induc-
tive biases at the lower scales and then uses a transformer network 
to remove the locality constraint of the CNN. Second, the authors 
show that discarding the “class” token results in higher efficiency. 
Specifically, instead of the class token, the compact convolutional 
transformer pools together all the patches token and classifies on 
top of this pooled token. These two modifications enable using



3.2 Computational

Efficiency

smaller transformers while improving both the data efficiency and 
the computational efficiency. Therefore, these improvements allow 
the compact convolutional transformer to be successfully trained 
on smaller datasets, such as CIFAR or MNIST. 
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Fig. 6 Compact convolutional transformers. This architecture features a convolutional-based patch extraction 
to leverage a smaller transformer network, leading to higher data efficiency. Figure inspired from [23] 

The vision transformer architecture (Subheading 2.3) suffers from 
a Oðn2Þ complexity with respect to the number of tokens. When 
considering small resolution images or big patch size, this is not a 
limitation; for instance, for an image of 224×224 resolution with 
16× 16 patches, this amounts to 196 tokens. However, when 
needing to process larger images (for instance, 3D images in medi-
cal imaging) or when considering smaller patches, using and train-
ing such models becomes prohibitive. For instance, in tasks such as 
segmentation or image generation, it is needed to have more 
granular representations than 16× 16 patches; hence, it is crucial 
to solve this issue to enable more applications of vision transformer. 

Swin Transformer [24] One idea to make transformers more 
computation-efficient is the Swin transformer [24]. Instead of 
attending every patch in the image, the Swin transformer proposes 
to add a locality constraint. Specifically, the patches can only attend 
other patches that are limited to a vicinity window K. This restores 
the local inductive bias of CNNs. To allow communication across



patches throughout the network, the Swin transformer shifts the 
attention windows from one operation to another (Fig. 7). There-
fore, the Swin transformer is quadratic with regard to the size of the 
window K but linear with respect to the number of tokens n with 
complexityOðnK 2Þ. In practice, however, K is small, and this solves 
the quadratic complexity problem of attention. 
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Fig. 7 Shifting operation in the Swin transformer [24]. Between each attention operation, the attention window 
is shifted so that each patch can communicate with different patches than before. This allows the network to 
gain more global knowledge with the network’s depth. Figure inspired from [24] 

Perceiver [25, 26] Another idea for more computation-efficient 
visual transformers is to make a more drastic change to the archi-
tecture. If instead of using self-attention the model uses cross 
attention, the problem of the quadratic complexity with regard to 
the number of tokens can be solved. Indeed, computing the cross 
attention between two sets of length m and n, respectively, has 
complexity OðmnÞ. This idea is introduced in the perceiver 
[25, 26]. The key idea is to have a smaller set of latent variables 
that will be used as queries and that will retrieve information in the 
image token set (Fig. 8). Since this solves the quadratic complexity 
issue, it also removes the need of using patches; hence, in the case of 
transformers, each pixel is mapped to a single token. 

4 Vision Transformers for Tasks Other than Classification 

Subheadings 1–3 introduce visual transformers for one main appli-
cation: classification. Nevertheless, transformers can be used for 
numerous other tasks than classification. 

In this section, we present some fundamental vision tasks where 
transformers have had a major impact: object detection in images 
(Subheading 4.1), image segmentation (Subheading 4.2), training



4.1 Object Detection

with Transformers

visual transformers without labels (Subheading 4.3), and image 
generation using generative adversarial networks (GANs) (Sub-
heading 4.4). 
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Fig. 8 The perceiver architecture [25, 26]. A set of latent tokens retrieve information from the image through 
cross attention. Self-attention is performed between the tokens to refine the learned representation. These 
operations are linear with respect to the number of image tokens. Figure inspired from [25, 26] 

Detection is one of the early tasks that have seen improvements 
thanks to transformers. Detection is a combined recognition and 
localization problem; this means that a successful detection system 
should both recognize whether an object is present in an image and 
localize it spatially in the image. Carion et al. [14] is the first 
approach that uses transformers for detection. 

DEtection TRansformer (DETR) [14] DETR first extracts 
visual representations with a convolutional network (Fig. 9).3 

Then, the encodings are processed by a transformer network. 
Finally, the processed tokens are provided to a transformer decoder. 
The decoder uses cross attention between a set of learned tokens 
and the image tokens encoded by the encoder and outputs a set of 
tokens. Each output token is then passed through a feed-forward 
network that predicts if an object is present in an image or not; if 
the object is indeed present, the network also predicts the class and 
spatial location of the object, i.e., coordinates within the image. 

4.2 Image 

Segmentation with 

Transformers 

The goal of image segmentation is to assign to each pixel of an image 
the label of the object it belongs to. The segmenter [27] is a purely 
ViT approach addressing image segmentation. The idea is to first use 
ViT to encode the image. Then, the segmenter learns a token per

3 Note that, in DETR, the transformer is not directly used to extract the visual representation. Instead, it focuses 
on refining the visual representation to extract the object information.



4.3 Training

Transformers Without

Labels

semantic label. The encoded patch tokens and the semantic tokens 
are then fed to a second transformer. Finally, by computing the scalar 
product between the semantic tokens and the image tokens, the 
network assigns a label to each patch. Figure 10 displays this.
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Fig. 9 The DETR architecture. It refines a CNN visual representation to extract object localization and classes. 
Figure inspired from [14] 

Fig. 10 The segmenter architecture. It is a purely ViT-based approach to perform semantic segmentation. 
Figure inspired from [27] 

Visual transformers have initially been trained for classification 
tasks. However, this tasks requires having access to massive 
amounts of labeled data, which can be hard to obtain 
(as discussed in Subheading 3.1). Subheadings 3.1 and 3.2 present 
ways to train ViT more efficiently. However, it would also be 
interesting to be able to train this type of networks with “cheaper” 
data. Therefore, the goal of this part is to introduce unsupervised 
learning with transformers, i.e., training transformers without any 
labels.
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Fig. 11 The DINO training procedure. It consists in matching the outputs between 
two networks (p1 and p2) having two different augmentations (X1 and X2) of the 
same image as input (X). The parameters of the teacher model are updated with 
an exponential moving average (ema) of the student parameters. Figure inspired 
from [28] 

Self-DIstillation with NO labels (DINO) [28] DINO is one of 
the first works that trains a ViT with self-supervised learning 
(Fig. 11). The main idea is to have two ViT models following the 
teacher-student paradigm: the first model is updated through gra-
dient descent, and the second is an exponential moving average of 
the first one. Then, the whole two-stream DINO network is trained 
using two augmentations of the same image, which are each passed 
to one of the two networks. The goal of the training is to match the 
output between the two networks, i.e., no matter the augmenta-
tion in the input data, both networks should produce the same 
result. The main finding of DINO is that the ViT is capable of 
learning a semantic understanding of the image, as the attention 
matrices display some semantic information. Figure 12 visualizes 
the attention matrix of the various ViT heads trained with DINO. 

Masked Autoencoders (MAE) [29] Another way to train a ViT 
without supervision is by using an autoencoder architecture. 
Masked autoencoders (MAE) [29] perform a random masking of 
the input token and give the task to reconstruct the original image 
to a decoder. The encoder learns a representation that performs



4.4 Image

Generation with

Transformers and

Attention

well in a given downstream task. This is illustrated in Fig. 13. One 
of the key observations of the MAE work [29] is that the decoder 
does not need to be very good for the encoder to achieve good 
performance: by using only a small decoder, MAE successfully 
trains a ViT in an autoencoder fashion. 
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Fig. 12 DINO samples. Visualization of the attention matrix of ViT heads trained with DINO. The ViT discovers 
the semantic structure of an image in an unsupervised way 

Fig. 13 The MAE training procedure. After masking some tokens of an image, the remaining tokens are fed to 
an encoder. Then a decoder tries to reconstruct the original image from this representation. Figure inspired 
from [29] 

Attention and vision transformers have also helped in developing 
fresh ideas and creating new architectures for generative models 
and in particular for generative adversarial networks (GANs). 

GANsformers [30] GANsformers are the most representative 
work of GANs with transformers, as they are a hybrid architecture 
using both attention and CNNs. The GANsformer architecture is 
illustrated in Fig. 14. The model first splits the latent vector of a 
GAN into multiple tokens. Then, a cross-attention mechanism is 
used to improve the generated feature maps, and at the same time, 
the GANsformer architecture retrieves information from the gen-
erated feature map to enrich the tokens. This mechanism allows the 
GAN to have better and richer semantic knowledge, which is 
showed to be useful for generating multimodal images. 

StyleSwin [31] Another approach for generative modeling is to 
purely use a ViT architecture like StyleSwin [31]. StyleSwin is a 
GAN that leverages a similar type of attention as the Swin trans-
former [24]. This allows to generate high-definition images with-
out having to deal with the quadratic cost problem.
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Fig. 14 GANsformer architecture. A set of latents contribute to bring information 
to a CNN feature map. Figure inspired from [30] 

5 Vision Transformers for Other Domains 

In this section, we present applications of visual transformers to 
other domains. First, we describe multimodal transformers 
operating with vision and language (Subheading 5.1), then we 
describe video-level attention and video transformers (Subheadings 
5.2 and 5.3), and finally we present multimodal video transformers 
operating with vision, language, and audio (Subheading 5.4). 

5.1 Multimodal 

Transformers: Vision 

and Language 

As transformers have found tremendous success in both natural 
language processing and computer vision, their use in vision-
language tasks is also of interest. In this section, we describe some 
representative multimodal methods for vision and language: ViL-
BERT (Subheading 5.1.1), DALL-E (Subheading 5.1.3), and 
CLIP (Subheading 5.1.2). 

5.1.1 ViLBERT Vision-and-language BERT (VilBERT) [32] is an example of archi-
tecture that fuses two modalities. It consists of two parallel streams, 
each one working with one modality. The vision stream extracts



bounding boxes from images via an object detection network, by 
encoding their position. The language stream embeds word vectors 
and extracts feature vectors using the basic transformer encoder 
block [4] (Fig. 3 left). These two resulting feature vectors are then 
fused together by a cross-attention layer (Subheading 1.3.2). This 
follows the standard architecture of the transformer encoder block, 
where the keys and values of one modality are passed onto the MCA 
block of the other modality. The output of the cross-attention layer 
is passed into another transformer encoder block, and these two 
layers are stacked multiple times. 
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The language stream is initialized with BERT trained on Book 
Corpus [12] and Wikipedia [11], while the visual stream is initi-
alized with Faster R-CNN [33]. On top of the pretraining of each 
stream, the whole architecture is pretrained on the Conceptual 
Captions dataset [34] on two pretext tasks. 

ViLBERT has been proven powerful for a variety of multimodal 
tasks. In the original paper, ViLBERT was fined-tuned to a variety 
of tasks, including visual question answering, visual commonsense 
reasoning, referring expressions, and caption-based image retrieval. 

5.1.2 CLIP Connecting Text and Images (CLIP) [35] is designed to address 
two major issues of deep learning models: costly datasets and 
inflexibility. While most deep learning models are trained on labeled 
datasets, CLIP is trained on 400 million text-image pairs that are 
scraped from the Internet. This reduces the labor of having to 
manually label millions of images that are required to train powerful 
deep learning models. When models are trained on one specific 
dataset, they also tend to be difficult to extend to other applica-
tions. For instance, the accuracy of a model trained on ImageNet is 
generally limited to its own dataset and cannot be applied to real-
world problems. To optimize training, CLIP models learn to per-
form a wide variety of tasks during pretraining, and this task allows 
for zero-shot transfer to many existing datasets. While there are still 
several potential improvements, this approach is competitive to 
supervised models that are trained on specific datasets. 

CLIP Architecture and 

Training 

CLIP is used to measure the similarity between the text input and 
the image generated from a latent vector. At the core of the 
approach is the idea of learning perception from supervision 
contained in natural language. Methods which work on natural 
language can learn passively from the supervision contained in the 
vast amount of text on the Internet. 

Given a batch of N (image, text) pairs, CLIP is trained to 
predict which of the N×N possible (image, text) pairings across a 
batch actually occurred. To do this, CLIP learns a multimodal 
embedding space by jointly training an image encoder and a text 
encoder to maximize the cosine similarity of the image and text



embeddings of the N real pairs in the batch while minimizing the 
cosine similarity of the embeddings of the N2-N incorrect pair-
ings. A symmetric cross-entropy loss over these similarity scores is 
optimized. 
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Two different architectures were considered for the image 
encoder. For the first, ResNet-50 [36] is used as the base architec-
ture for the image encoder due to its widespread adoption and 
proven performance. Several modifications were made to the origi-
nal version of ResNet. For the second architecture, ViT is used with 
some minor modifications: first, adding an extra layer normaliza-
tion to the combined patch and position embeddings before the 
transformer and, second, using a slightly different initialization 
scheme. 

The text encoder is a standard transformer [4] (Subheading 
2.1) with the architecture modifications described in [35]. As a base 
size, CLIP uses a 63M-parameter 12-layer 512-wide model with 
eight attention heads. The transformer operates on a lowercased 
byte pair encoding (BPE) representation of the text with a 49,152 
vocab size [37]. The max sequence length is capped at 76. The text 
sequence is bracketed with [SOS] and [EOS] tokens,4 and the 
activations of the highest layer of the transformer at the [EOS] 
token are treated as the feature representation of the text which is 
layer normalized and then linearly projected into the multimodal 
embedding space. 

5.1.3 DALL-E and 

DALL-E 2 

DALL-E [38] is another example of the application of transformers 
in vision. It generates images from a natural language prompt— 
some examples include “an armchair in the shape of an avocado” 
and “a penguin made of watermelon.” It uses a decoder-only 
model, which is similar to GPT-3 [39]. DALL-E uses 12 billion 
parameters and is pretrained on Conceptual Captions [34] with 
over 3.3 million text-image pairs. DALL-E 2 [40] is the upgraded 
version of DALL-E, based on diffusion models and CLIP (Sub-
heading 5.1.2), and allows better performances with more realistic 
and accurate generated images. In addition to producing more 
realistic results with a better resolution than DALL-E, DALL-E 
2 is also able to edit the outputs. Indeed, with DALL-E 2, one can 
add or remove realistically an element in the output and can also 
generate different variations of the same output. These two models 
clearly demonstrate the powerful nature and scalability of transfor-
mers that are capable of efficiently processing a web-scale amount 
of data. 

4 [SOS], start of sequence; [EOS], end of sequence
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5.1.4 Flamingo Flamingo [41] is a visual language model (VLM) tackling a wide 
range of multimodal tasks based on few-shot learning. This is an 
adaptation of large language models (LLMs) handling an extra 
visual modality with 80B parameters. 

Flamingo consists of three main components: a vision encoder, 
a perceiver resampler, and a language model. First, to encode 
images or videos, a vision convolutional encoder [42] is pretrained 
in a contrastive way, using image and text pairs.5 Then, inspired by 
the perceiver architecture [25] (detailed in Subheading 1.3.2), the 
perceiver resampler takes a variable number of encoded visual fea-
tures and outputs a fixed-length latent code. Finally, this visual 
latent code conditions the language model by querying language 
tokens through cross-attention blocks. Those cross-attention 
blocks are interleaved with pretrained and frozen language model 
blocks. 

The whole model is trained using three different kinds of 
datasets without annotations (text with image content from web-
pages [41], text and image pairs [41, 43], and text and video pairs 
[41]). Once the model is trained, it is fine-tuned using few-shot 
learning techniques to tackle specific tasks. 

5.2 Video Attention Video understanding is a long-standing problem, and despite 
incredible computer vision advances, obtaining the best video rep-
resentation is still an active research area. Videos require employing 
effective spatiotemporal processing of RGB and time streams to 
capture long-range interactions [44, 45] while focusing on impor-
tant video parts [46] with minimum computational resources [47]. 

Typically, video understanding benefits from 2D computer 
vision, by adapting 2D image processing methods to 3D spatio-
temporal methods [48]. And through the Video Vision Trans-
former (ViViT) [49], history repeats itself. Indeed, with the rise 
of transformers [4] and the recent advances in image classification 
[5], video transformers appear as logical successors of CNNs. 

However, in addition to the computationally expensive video 
processing, transformers also require a lot of computational 
resources. Thus, developing efficient spatiotemporal attention 
mechanisms is essential [25, 49, 50]. 

In this section, we first describe the general principle of video 
transformers (Subheading 5.2.1), and then, we detail three differ-
ent attention mechanisms used for video representation (Subhead-
ings 5.2.2, 5.2.3, and 5.2.4). 

5 The text is encoded using a pretrained BERT model [10].
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5.2.1 General Principle Generally, inputs of video transformers are RGB video clips 

X ∈F ×H ×W ×3 , with F frames of size H×W. 
To begin with, video transformers split the input video clip 

X into ST tokens x i ∈K , where S and T are, respectively, the 
number of tokens along the spatial and temporal dimension and 
K is the size of a token. 

To do so, the simplest method extracts nonoverlapping 2D 
patches of size P×P from each frame [5], as used in TimeSformer 
[50]. This results in S=HW/P2 , T=F, and K=P2 . 

However, there exist more elegant and efficient token extrac-
tion methods for videos. For instance, in ViViT [49], the authors 
propose to extract 3D volumes from videos (involving T≠F) t  
capture spatiotemporal information within tokens. In TokenLear-
ner [47], they propose a learnable token extractor to select the 
most important parts of the video. 

Once raw tokens xi are extracted, transformer architectures aim 
to map them into d-dimensional embedding vectors Z ∈ST × d 

using a linear embedding E ∈d ×K : 

Z = ½zcls ,Ex1,Ex2, . . .,ExST � þ  PE, ð10Þ 
where zcls  ∈d is a classification token that encodes information 
from all tokens of a single sample [10] and PE ∈ST × d is a 
positional embedding that encodes the spatiotemporal position of 
tokens, since the subsequent attention blocks are permutation 
invariant [4]. 

In the end, embedding vectors Z pass through a sequence of 
L transformer layers. A transformer layer ℓ is composed of a series of 
multi-head self-attention (MSA) [4], layer normalization 
(LN) [51], and MLP blocks: 

Y ℓ =MSAðLNðZ ℓÞÞ þ Z ℓ , 

Z ℓþ1 =MLPðLNðY ℓÞÞ þ Y ℓ :
ð11Þ 

In this way, as shown in Fig. 2, we denote four different 
components in a video transformer layer: the query-key-value 
(QKV) projection, the MSA block, the MSA projection, and the 
MLP. For a layer with h heads, the complexity of each component is 
[4]:

• QKV projection: Oðh:ð2ST ddk þ ST ddvÞ
• MSA: OðhS2 T 2 :ðdk þ dvÞÞ
• MSA projection: OðST hdvdÞ
• MLP: OðST d2Þ 

We note that the MSA complexity is the most impacting com-
ponent, with a quadratic complexity with respect to the number of 
tokens. Hence, for comprehension and clarity purposes, in the rest 
of the section, we consider the global complexity of a video trans-
former with L layers to equal to OðLS2 T 2Þ.
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Fig. 15 Full space-time attention mechanism. Embedding tokens at layer ℓ- 1, 
Z(ℓ-1) are all fed simultaneously through a unique spatiotemporal attention 
block. Finally, the spatiotemporal embedding is passed through an MLP and 
normalized to output embedding tokens of the next layer, Zℓ . Figure inspired 
from [50] 

5.2.2 Full Space-Time 

Attention 

As described in [49, 50], full space-time attention mechanism is the 
most basic and direct spatiotemporal attention mechanism. As 
shown in Fig. 15, it consists in computing self-attention across all 
pairs of extracted tokens. 

This method results in a heavy complexity of OðLS2 T 2Þ 
[49, 50]. This quadratic complexity can fast be memory-
consuming, in which it is especially true when considering videos. 
Therefore, using full space-time attention mechanism is 
impractical [50]. 

5.2.3 Divided Space-

Time Attention 

A smarter and more efficient way to compute spatiotemporal atten-
tion is the divided space-time attention mechanism, first described 
in [50]. 

As shown in Fig. 16, it relies on computing spatial and temporal 
attention separately in each transformer layer. Indeed, we first 
compute the spatial attention, i.e., self-attention within each tem-
poral index, and then the temporal attention, i.e., self-attention 
across all temporal indices.
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Fig. 16 Divided space-time attention mechanism. Embedding tokens at layer 
ℓ- 1, Z(ℓ-1) are first processed along the temporal dimension through a first 
MSA block, and the resulting tokens are processed along the spatial dimension. 
Finally, the spatiotemporal embedding is passed through an MLP and normalized 
to output embedding tokens of the next layer, Zℓ . Figure inspired from [50] 

The complexity of this attention mechanism is OðLST :ðS þ 
T ÞÞ [50]. By separating the calculation of the self-attention over 
the different dimensions, one tames the quadratic complexity of the 
MSA module. This mechanism highly reduces the complexity of a 
model with respect to the full space-time complexity. Therefore, it 
is reasonable to use it to process videos [50]. 

5.2.4 Cross-Attention 

Bottlenecks 

An even more refined way to reduce the computational cost of 
attention calculation consists of using cross attention as a bottle-
neck. For instance, as shown in Fig. 17 and mentioned in Subhead-
ing 3.2, the perceiver [25] projects the extracted tokens xi into a



very low-dimensional embedding through a cross-attention block 
placed before the transformer layers. 
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Fig. 17 Attention bottleneck mechanism. Raw input patches and embedding 
tokens at layer ℓ- 1, Z(ℓ-1) are fed to a cross-attention block (CA) and then 
normalized and projected. Finally, the resulting embedding is passed through a 
transformer to output embedding tokens of the next layer, Zℓ . Figure inspired 
from [25] 

Here, the cross-attention block placed before the L transformer 
layers reduce the input dimension from ST to N, where N≪ ST,6 

thus resulting in a complexity of OðSTN Þ. Hence, the total com-
plexity of this attention block is OðSTN þ LN 2Þ. It reduces again 
the complexity of a model with respect to the divided space-time 
attention mechanism. We note that it enables to design deep archi-
tectures, as in the perceiver [25], and then it enables the extraction 
of higher-level features. 

5.2.5 Factorized Encoder Lastly, the factorized encoder [49] architecture is the most efficient 
with respect to the complexity/performance trade-off. 

As in divided space-time attention, the factorized encoder aims 
to compute spatial and temporal attention separately. Nevertheless, 
as shown in Fig. 18, instead of mixing spatiotemporal tokens in 
each transformer layer, here, there exist two separate encoders:

6 In practice, N≤512 for perceiver [25], against ST=16×16× (32/2)=4096 for ViViT-L [49]



First, a representation of each temporal index is obtained, thanks to 
a spatial encoder with Ls layers. Second, these tokens are passed 
through a temporal encoder with Lt layers (i.e., L=Ls +Lt).
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Fig. 18 Factorized encoder mechanism. First, a spatial transformer processes input tokens along the spatial 
dimension. Then, a temporal transformer processes the resulting spatial embedding along the temporal 
dimension. Figure inspired from [25] 

Hence, the complexity of a such architecture has two main 
components: the spatial encoder complexity of OðLsS

2Þ and the 
temporal encoder complexity of OðLtT

2Þ. It results in a global 
complexity of OðLsS

2 þ LtT
2Þ. Thus, it leads to very lightweight 

models. However, as it first extracts per-frame features and then 
aggregates them to a final representation, it corresponds to a late-
fusion mechanism, which can sometimes be a drawback as it does 
not mix spatial and temporal information simultaneously [52]. 

5.3 Video 

Transformers 

In this section, we present two modern transformer-based archi-
tectures for video classification. We start by introducing the Time-
Sformer architecture in Subheading 5.3.1 and then the ViViT 
architecture in Subheading 5.3.2. 

5.3.1 TimeSformer TimeSformer [50] is one of the first architectures with space-time 
attention that impacted the video classification field. It follows the 
same structure and principle described in Subheading 5.2.1. 

First, it takes as input an RGB video clip sampled at a rate of 
1/32 and decomposed into 2D 16 ×16 patches. 

As shown in Fig. 19, the TimeSformer architecture is based on 
the ViT architecture (Subheading 2.3), with 12 12-headed MSA 
layers. However, the added value compared to the ViT is that 
TimeSfomer uses the divided space-time attention mechanism (Sub-
heading 5.2.3). Such attention mechanism enables to capture high-
level spatiotemporal features while taming the complexity of the 
model. Moreover, the authors introduce three variants of the archi-
tecture: (i) TimeSformer, the standard version of the model, that 
operates on 8 frames of 224×224; (ii) TimeSformer-L, a configu-
ration with high spatial resolution, that operates on 16 frames of 
448×448; and (iii) TimeSformer-HR, a long temporal range setup, 
that operates on 96 frames of 224× 224.
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Fig. 19 TimeSformer architecture. The TimeSformer first projects input to 
embedding tokens, which are summed to positional embedding tokens. The 
resulting tokens are then passed through L divided space-time attention blocks 
and then linearly projected to obtain output probabilities 

Finally, the terminal classification token embedding is passed 
through an MLP to output a probability for all video classes. 
During inference, the final prediction is obtained by averaging the 
output probabilities from three different spatial crops of the input 
video clip (top left, center, and bottom right). 

TimeSformer achieves similar state-of-the-art performances as 
the 3D CNNs [53, 54] on various video classification datasets, such 
as Kinetics-400 and Kinetics-600 [55]. Note the TimeSformer is 
much faster to train (416 training hours against 3840 hours [50] 
for a SlowFast architecture [54]) and, also, more efficient (0.59 
TFLOPs against 1.97 TFLOPs [50] for a SlowFast architecture 
[53]). 

5.3.2 ViViT ViViT [49] is the main extension of the ViT [5] architecture 
(Subheading 2.3) for video classification. 

First, the authors use a 16 tubelet embedding instead of a 2D 
patch embedding, as mentioned in Subheading 5.2.1. This alter-
nate embedding method aims to capture the spatiotemporal



information from the tokenization step, unlike standard architec-
tures that fuse spatiotemporal information from the first attention 
block. 
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Fig. 20 ViViT architecture. The ViViT first projects input to embedding tokens, 
which are summed to positional embedding tokens. The resulting tokens are first 
passed through Ls spatial attention blocks and then through Lt temporal attention 
blocks. The resulting output is linearly projected to obtain output probabilities 

As shown in Fig. 20, the ViViT architecture is based on factor-
ized encoder architecture (Subheading 5.2.5) and consists of one 
spatial and one temporal encoder operating on input clips with 
32 frames of 224×224. The spatial encoder uses one of the three 
ViT variants as backbone.7 For the temporal encoder, the number

7 ViT-B: 12 12-headed MSA layers; ViT-L: 24 16-headed MSA layers; and ViT-H: 32 16-headed MSA layers.



of layers does not impact much the performance, so that, according 
to the performance/complexity trade-off, the number MSA layers 
is fixed at 4. The authors show that such architecture reaches high 
performances while reducing drastically the complexity.
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Finally, as in TimeSformer (Subheading 5.3.1), ViViT outputs 
probabilities for all video classes through the last classification token 
embedding and averages the obtained probabilities across three 
crops of each input clip (top left, center, and bottom right). 

ViViT outperforms both 3D CNNs [53, 54] and TimeSformer 
[50] on the Kinetics-400 and Kinetics-600 datasets [55]. Note the 
complexity of this architecture is highly reduced in comparison to 
other state-of-the-art models. For instance, the number of FLOPs 
for a ViViT-L/16×16× 2 is 3.89 ×1012 against 7.14 ×1012 for a 
TimeSformer-L [50] and 7.14× 1012 for a SlowFast [53] 
architecture. 

5.4 Multimodal Video 

Transformers 

Nowadays, one of the main gaps between artificial and human 
intelligence is the ability for us to process multimodal signals and 
to enrich the analysis by mixing the different modalities. Moreover, 
until recently, deep learning models have been focusing mostly on 
very specific visual tasks, typically based on a single modality, such as 
image classification [5, 17, 18, 56, 57], audio classification [25, 52, 
58, 59], and machine translation [10, 60–63]. These two factors 
combined have pushed researchers to take up multimodal 
challenges. 

The default solution for multimodal tasks consists in first cre-
ating an individual model (or network) per modality and then in 
fusing the resulting single-modal features together [64, 65]. Yet, 
this approach fails to model interactions or correlations among 
different modalities. However, the recent rise of attention [4, 5, 
49] is promising for multimodal applications, since attention per-
forms very well at combining multiple inputs [25, 52, 66, 67]. 

Here, we present two main ways of dealing with several 
modalities: 

1. Concatenating tokens from different modalities into one 
vector [25, 66]. The multimodal video transformer 
(MM-ViT) [66] combines raw RGB frames, motion features, 
and audio spectrogram for video action recognition. To do so, 
the authors fuse tokens from all different modalities into a 
single-input embedding and pass it through transformer layers. 
However, a drawback of this method is that it fails to distin-
guish well one modality to another. To overcome this issue, the 
authors of the perceiver [25] propose to learn a modality 
embedding in addition to the positional embedding (see Sub-
headings 3.2 and 5.2.1). This allows associating each token
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with its modality. Nevertheless, given that (i) the complexity of 
a transformer layer is quadratic with respect to the number of 
tokens (Subheading 5.2.1) and (ii), with this method, the 
number of tokens is multiplied by the number of modalities, 
it may lead to skyrocketing computational cost [66]. 

2. Exploiting cross attention [52, 67, 68]. Several modern 
approaches exploit cross attention to mix multiple modalities, 
such as [52] for audio and video, [67] for text and video, and 
[68] for audio, text, and video. The commonality among all 
these methods is that they exploit the intrinsic properties of 
cross attention by querying one modality with a key-value pair 
from the other one [52, 67]. This idea can be easily generalized 
to more than two modalities by computing cross attention 
across each combination of modalities [68]. 

6 Conclusion 

Attention is an intuitive and efficient technique that enables 
handling local and global cues. 

On this basis, the first pure attention architecture, the trans-
former [4], has been designed for NLP purposes. Quickly, the 
computer vision field has adapted the transformer architecture for 
image classification, by designing the first visual transformer model: 
the vision transformer (ViT) [5]. 

However, even if transformers naturally lead to high perfor-
mances, the raw attention mechanism is a computationally greedy 
and heavy technique. For this reason, several enhanced and refined 
derivatives of attention mechanisms have been proposed [21–26]. 

Then, rapidly, a wide variety of other tasks have been con-
quered by transformer-based architectures, such as object detection 
[14], image segmentation [27], self-supervised learning [28, 29], 
and image generation [30, 31]. In addition, transformer-based 
architectures are particularly well suited to handle multidimen-
sional tasks. This is because multimodal signals are easily combined 
through attention blocks, in particular vision and language cues 
[32, 35, 38] and spatiotemporal signals are also easily tamed, as in 
[25, 49, 50]. 

For these reasons, transformer-based architectures enabled 
many fields to make tremendous progresses in the last few years. 
In the future, transformers will need to become more and more 
computationally efficient, e.g., to be usable on cellphones, and will 
play a huge role to tackle multimodal challenges and bridge 
together most AI fields.
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Chapter 7 

Clinical Assessment of Brain Disorders 

Stéphane Epelbaum and Federica Cacciamani 

Abstract 

The clinical evaluation of brain diseases strictly depends on patient’s complaint and observation of their 
behavior. The specialist, often the neurologist, chooses whether and how to assess cognition, motor system, 
sensory perception, and autonomic nervous system. They may also decide to request a more in-depth 
examination, such as neuropsychological and language assessments and imaging or laboratory tests. From 
the synthesis of all these results, they will be able to make a diagnosis. The neuropsychological assessment in 
particular is based on the collection of medical history, on the clinical observation, and on the administra-
tion of standardized cognitive tests validated in the scientific literature. It is therefore particularly useful 
when a neurological disease with cognitive and/or behavioral manifestation is suspected. The introduction 
of machine learning methods in neurology represents an important added value to the evaluation per-
formed by the clinician to increase the diagnostic accuracy, track disease progression, and assess treatment 
efficacy. 

Key words Clinical assessment, Neurological examination, Neuropsychology, Cognitive scores 

1 Introduction 

1.1 What Is a 

Disease? Why Are 

Clinical Assessments 

Important? 

A disease is a specific set of processes, often biological or histologi-
cal, that induce symptoms (subjectively felt), which negatively affect 
the individual’s normal functioning (e.g., discomfort, pain, 
suffering), are often associated with a complaint, and will manifest 
by signs (objectively measured), for instance, decreased motor 
strength or slowed speech. Symptoms and signs taken together 
define a syndrome (e.g., headache, vomiting, stiff neck point to a 
meningeal syndrome), and the syndromes are contextually inter-
preted by physicians to hypothesize on a given disease. If, for 
instance, the meningeal syndrome appears brutally and is very 
intense, the suspected disease will be meningeal hemorrhage. If it 
appears subacutely over a few hours and is accompanied by a fever, 
the physician will rather surmise a meningitis. Box 1 introduces the 
main medical definitions. 
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A clinical evaluation is therefore requested by the patient him-
self/herself or by a clinician (general practitioner, specialist, psy-
chologist, etc.). The aim is to better characterize the symptoms and 
the underlying disease. 

Box 1 Main Medical Definitions 

Disease Physiological (biological and/or pathological) process 
(es) causing pejorative clinical manifestations 

Symptom Subjective manifestation of a disease (pain, memory 
complaint, nausea, etc.) 

Sign Objective manifestation of a disease upon medical 
examination (decreased reflex, elevated blood pressure, 
etc.) 

Syndrome Association of symptoms and signs that can be related to a 
set of diseases (e.g., headache, nausea, and neck stiffness 
are a meningeal syndrome that can correspond to either 
meningitis or meningeal hemorrhage) 

Clinical 
assessment 

Stereotyped interrogation, observation, and examination of 
an individual by a trained healthcare provider in order to 
collect his/her symptoms and signs to determine a 
syndrome and hypothesize a main disease diagnosis and 
differential diagnoses 

During their studies, physicians learn over a few years a large 
quantity of diagnostic and prognostic “decision trees” based on the 
co-occurrence of every set of symptoms and signs. The learning is 
structured so that frequent and severe diseases are more studied, 
while rare or orphan diseases and those considered less severe are 
covered more briefly. For instance, the few symptoms described 
above will most likely be recognized and diagnosed well by any 
physician as well as the degree of urgency they imply. This learning 
is based on aggregated knowledge at one point in time which is 
always susceptible to change. A clear example of such changes is 
Alzheimer’s disease (AD) which was considered a rare form of 
dementia of the young from its seminal description in 1906 [1] 
until the 1980s when it was finally identified by numerous patho-
logical studies to be the predominant cause of dementia in the 
elderly [2]. Importantly, clinical assessment requires tools to be 
performed, such as the famous reflex hammer used by neurologists 
or cognitive tests used by the neuropsychologist. Machine learning, 
and the decision support system that it entails, may be considered as 
such a tool, although it has the peculiarity of being harder to 
comprehend for most clinicians which may be a specific challenge 
for its implementation.
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Every clinical assessment, whether conducted in the routine 
practice of medicine or in biomedical research, has to adhere to strict 
ethical rules that warrant the trust the patient puts in their healthcare 
providers. The main rules are that of beneficence; non-maleficence; 
respect for any individual notwithstanding their race, gender, reli-
gion, or personal beliefs; and medical confidentiality. 

Finally, the current development of digital and information 
technologies is rapidly changing the scope of clinical assessments. 
Prior to consultation, auto-assessment and patient empowerment 
are promoted through the development of specific applications to 
explicitly diagnose or monitor a disease [3, 4] and patient education 
and access to relevant information [5]. The main issue concerning 
this last point is the exponential growth of these digital solutions 
and the risk of misinformation that can sometime lead the patient 
toward unethical care [6]. 

1.2 Peculiarities of 

Clinical Assessment of 

Brain Disorders 

The brain has functionally distinct regions, so there is a topograph-
ical correspondence between the location of the lesion in the brain 
and the symptom. The characterization of symptoms therefore 
allows to trace which brain region is affected. This helps in identify-
ing the underlying disease. The motor and sensory cortices are 
perfect examples of this functional topography often depicted as 
homunculi [7]. 

Clinical evaluations for brain disorders thus follow a standar-
dized procedure. In addition to the symptoms and signs appraisal, 
the physician often makes an assumption as to where the nervous 
system is affected. This often overlaps with the syndromic defini-
tion: “frontotemporal dementia” implies that the lesions are in the 
frontotemporal cortices. However, this is not always the case as 
some diseases and syndromes still bear the name of the physician 
who was the first to describe it. While most neurologists know that 
a parkinsonism (or Parkinson syndrome) is due to basal ganglia 
lesions, it is not implied in its name. 

2.1 General 

Information on the 

Neurological 

Examination 

The neurological examination begins with the collection of anam-
nestic data, that is, the complete history recalled and recounted by a 
patient or their entourage, including complaint, medical history, 
lifestyle, concurrent treatments, etc. During the collection of anam-
nestic data, the clinician also carefully observes patient’s behavior. 
The neurologist then proceeds with the examination of brain func-
tion, which is oriented by the complaint, and often includes cogni-
tive screening tests and examination of motor system, sensitivity, 
and autonomic nervous system. Usually, this examination has more 
formal and structured parts (this can be, for example, a systematic 
evaluation of reflexes always in the same order or the use of a 
specific scale to assess sensory or cognitive function) and other



Personal and family history with, if necessary, a family tree.

In a formal evaluation, especially in cohort studies and clinical

more informal ones. In fact, the clinician chooses case by case on 
the basis of what is required and what is available to the physician at 
the time of the said assessment. For example, they may use a lay 
journal in their office to ask a patient to describe a complex photo-
graph in order to get a general idea of their visuospatial perception 
skills. This is quite time-consuming, and, depending on the 
patient’s case, presence of entourage, and thoroughness of the 
clinician, an initial visit can take from 0.5 h to 2 h to capture the 
essential features necessary to formulate a diagnosis, prognosis, and 
care plan. If the neurologists deem it necessary, they may request 
additional tests or examinations, such as a neuropsychological eval-
uation, language assessment, laboratory tests, imaging tests, etc. 

For applying machine learning techniques, the results of formal 
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exams are usually more adequate because they offer quantitative 
measures. However, this may change over the coming years as 
solutions are being developed to analyze informal material. This 
may include clinical reports or videos of patient examinations. 
Another example is natural language processing tools that may 
help in identifying semantic deficits in patients suffering from 
incipient dementia [8]. The context of data acquisition is very 
important and can greatly impact its quality. Among the different 
contexts, we can cite “routine clinical practice,” “retrospective or 
prospective observational studies,” and “clinical trials” that have 
increasing levels of quality due to the level of standardization of 
data acquisition and monitoring. 

2.2 Clinical Interview A clinical interview precedes any objective assessment. It is adapted 
to the patient’s complaint and as standardized as possible so as not 
to forget any question. It consists of: 

– 

– Lifestyle (including alcohol intake and smoking). 

– Past or current treatments. 

– As accurate as possible description of the illness made by the 
patient and/or their informant. It is important to know the 
intensity of the symptoms, their frequency, the chronological 
order of their appearance, the explorations already carried out, 
and the treatments undertaken as well as their effectiveness. 

trials, symptoms can be assessed thanks to different scales, some of 
which will be presented in this chapter, depending on the clinical 
variable of interest. These scales’ results will also be used to monitor 
the disease evolution, notably in order to test new treatments. 

The interview process is probably the most important part of 
the whole clinical assessment. It will allow delineating the patient’s 
medical issue, which in turn will determine the next steps of the 
examination and management plan. It also creates a relation of trust 
that is essential for the future adhesion of the patient to the physi-
cian’s propositions.
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2.3 Evaluation of 

Cognition and 

Behavior 

The assessment of cognition and behavior can be carried out by the 
neurologist using more or less in-depth tests depending on the 
situation, or a complete neuropsychological assessment can be 
requested and carried out separately by a neuropsychologist (see 
Subheading 3 of this chapter). The assessment of cognition is 
guided by the cognitive complaint of the patient and/or the infor-
mant [9]. However, on the one hand, it is possible that the patient 
is not fully aware of their deficits. This is a symptom called anosog-
nosia (which literally means lack of knowledge of the disease) and is 
typical of various forms of dementia, including AD and frontotem-
poral dementia, but also brain damage due, for example, to stroke 
in certain regions of the brain. On the other hand, a cognitive 
complaint can be due to anxiety, depression, and personality traits 
and may have no neurological basis. The medical doctor can use 
simple tests in their daily practice such as the Mini-Mental State 
Examination (MMSE) [10]. For a more detailed description of the 
MMSE, please refer to Subheading 3 of this chapter. 

2.4 Evaluation of 

Motor System 

The examination of motor function starts as soon as the physician 
greets their patient in the waiting room. They will immediately 
observe the patient’s walk and their bodily movements. Then, in 
their office, the observation will continue to search, for example, for 
a muscular atrophy or fascicules (i.e., muscular shudder detected by 
looking at the skin of the patient). This purely observational phase 
is followed by a formal examination, provoking objective signs. 

One goal of motor assessment is to assess muscle strength. This 
is done segmentally, that is, carried out by evaluating the function 
of muscle groups that perform the same action, for example, the 
muscles that allow the elbow to flex. The neurologist gives a score 
ranging from 0 to 5, where 0 indicates that they did not detect any 
movement and 5 indicates normal movement strength. 

A second aspect which is assessed is muscle tone. It is explored 
by passively mobilizing the patient joints. Hypertonia, or rigidity, is 
an increase in the tone. When the neurologist moves the joint, it 
may remain rigidly in that position (plastic or parkinsonian hyper-
tonia), or the limb may immediately return to the resting position 
as soon as the neurologist stops manipulating it (spastic or elastic 
hypertonia). Hypotonia is a reduction of muscle tone, i.e., lack of 
tension or resistance to passive movement. This is observed in 
cerebellar lesions and chorea. 

Another goal of motor assessment is evaluating deep tendon 
reflexes. Using a reflex hammer, the neurologist taps the tendons 
(e.g., Achilles’ tendon for the Achillean reflex). The deep tendon 
reflexes will be categorized as (1) normal, (2) increased and 
polykinetic (i.e., a single tap provokes more than one movement), 
(3) diminished or abolished (as in peripheral nervous system dis-
eases), and (4) pendular (as in cerebellar syndrome). Often evi-
denced in case of increased reflexes, Babinski’s sign is the lazy and



Box 2 MDS-UPDRS Structures

Part I: Non-motor experiences of Part II: Motor experiences of

Part III: Motor examination Part IV: Motor complications

majestic extension of the big toe followed by the other toes in 
response to the scraping of the outer part of the foot plant. It is 
pathognomonic (i.e., totally specific) of a pyramidal syndrome, 
which is named after the axonal fiber tract that is altered: the 
pyramidal fasciculus. Motor assessment also includes evaluation of 
tremors and posture. 

Once again, specific scales exist to robustly and homogeneously 
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assess some of these signs such as the Unified Parkinson’s disease 
rating scale (UPDRS) in Parkinson’s disease [11]. For more infor-
mation, the Movement Disorder Society UPDRS Revision Task 
Force has made the questionnaire available [12]. We report 
MDS-UPDRS items in Box 2. There are 65 items, 60 of which 
with a score from 0 to 4 (0, normal; 1, slight; 2, mild; 3, moderate; 
and 4, severe) and 5 with yes/no responses. 

daily living 
13 items. Less than 10 min 

1. Cognitive impairment 
2. Hallucinations and psychosis 
3. Depressed mood 
4. Anxious mood 
5. Apathy 
6. Features of dopamine 

dysregulation syndrome 
7. Nighttime sleep problems 
8. Daytime sleepiness 
9. Pain and other sensations 

10. Urinary problems 
11. Constipation problems 
12. Lightheadedness on standing 
13. Fatigue 

daily living 
13 items. It does not involve 
examiner time; items are answered 
by the patient or caregiver 
independently. 

1. Speech 
2. Salivation and drooling 
3. Chewing and swallowing 
4. Eating tasks 
5. Dressing 
6. Hygiene 
7. Handwriting 
8. Doing hobbies and other 

activities 
9. Turning in bed 

10. Tremor 
11. Getting out of bed, car, or 

deep chair 
12. Walking and balance 
13. Freezing 

33 items (18 items with different 
duplicates corresponding to the right 
or left side or to different body parts). 
15 min 

1. Speech 
2. Facial expression 
3. Rigidity of neck and four 

extremities 
4. Finger taps 
5. Hand movements 

Six items. 5 min 

1. Time spent with dyskinesia 
2. Functional impact of 

dyskinesias 
3. Time spent in the OFF state 
4. Functional impact of 

fluctuations 
5. Complexity of motor 

fluctuations 
6. Painful OFF-state dystonia 

(continued)



Box 2 (continued)

6. Pronation/supination
7. Toe tapping
8. Leg agility
9. Arising from chair
10. Gait
11. Freezing of gait
12. Postural stability
13. Posture
14. Global spontaneity of

movement
15. Postural tremor of hands
16. Kinetic tremor of hands
17. Rest tremor amplitude
18. Constancy of rest tremor

2.5 Evaluation of Sensitivity is the ability to feel different tactile sensations: normal

very close stimuli.

–
blind prehension. The doctor can also ask the patient if the

–

2.6 Other The physician evaluation will also assess the autonomic nervous

2.7 Summary of the

Neurological

Evaluation

described in the report, and the physician specifies:

– A syndromic group of signs and symptoms

– The presumed location of brain damage
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Sensitivity (or crude) tact, pain, hot, or cold. Once again, it depends on the 
anatomical regions and tracts affected by a pathological process. 
The anterior spinothalamic tract carries information about crude 
touch. The lateral spinothalamic tract conveys pain and tempera-
ture. Assessment includes measuring: 

– Epicritic sensitivity: test the patient’s ability to discriminate two 

Deep sensitivity: test the direction of position of the joints by the 

vibrations of a diapason on joint bones (knee, elbow) are felt. 

Discrimination of hot and cold; sensitivity to pain. 

Evaluations system which, when impaired, can induce tensile disorders: 
hypo-/hypertension, orthostatic hypotension (without compen-
satory acceleration of pulse), diarrhea, sweating disorders, accom-
modation disorders, and sexual disorders. They will also evaluate 
cerebellar functions: balance, coordination (which when impaired 
causes ataxia), and tremor. 

Finally, clinicians will assess cranial nerves’ functions. Cranial 
nerves are those coming out of the brainstem and have various 
functions including olfaction, vision, eye movements, face sensori-
motricity, and swallowing. They are tested once again in a standar-
dized way from the first one to the twelfth. 

At the end of this examination, the signs and symptoms are



3 Neuropsychological

3.1 Generalities on

Neuropsychological

Assessment

Neuropsychology is concerned with how cognitive functions (see
Box ) and behavior are correlated with anatomo-physiological
brain mechanisms. Thanks to the scientific-technological advances

3

retains few pieces of information for the time needed to
perform a certain task, using mechanisms such as mental

Episodic memory allows long-term conscious memory of a
potentially infinite number of events (episodes) and
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– A main diagnostic hypothesis 

– Possibly, secondary hypotheses (differential diagnosis) 

– Additional examination strategy through neuroimaging or addi-
tional examinations to refine disease diagnosis 

– A therapeutic program 

Assessment 

made in recent decades and the advent of increasingly sensitive 
structural and functional imaging techniques, we have discovered 
that human cognition has a modular architecture in which each 
module—whose operationalization depends on the reference 
framework—corresponds to a specific function [13]. This allowed 
us to understand which brain regions or structures we expect to be 
damaged when we observe a certain cognitive deficit [14–17]. The 
role of the neuropsychologist can be summarized in two core 
activities: assessment and intervention. In this chapter, we will 
focus on neuropsychological assessment, which produces data 
that is typically used by machine learning algorithms. 

Neuropsychological assessment includes a clinical interview, 
followed by the measurement of cognitive functions using standar-
dized tests and finally the interpretation of the results. This is 
applicable in diagnostic settings, to monitor disease progression if 
the diagnosis has previously been made or to measure the effective-
ness of a treatment. 

Box 3 Main Cognitive Functions 

Memory Short-term memory or working memory temporarily 

repetition 

contexts (time and place) in which they occurred 
Semantic memory allows the long-term conscious memory 
of a potentially infinite number of facts, concepts, and 
vocabulary, which constitute the knowledge that the 
individual has of the world 

Procedural memory is the memory of how things are done 
(e.g., tying shoelaces) and how objects are used 

(continued)



Box 3 (contin

Attention

abilities and the objects and between the objects themselves and

Language
phonological, morphological, syntactic, semantic, and

Executive
functions

making, mental flexibility, etc.

Social
cognition

that of others in social situations

Neuropsyc
is first and foremost a branch of psychology. The clinical interview

h
regarding medical history, lifestyle, and familiarity), observes
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ued) 

Selective attention is the ability to select relevant 
information from the environment 

Sustained attention is the ability to persist for a relatively 
long time on a certain task 

Visuospatial Estimation of spatial relationships between the individual 

identification of visual characteristics of a stimulus such 
as its orientation 

Oral and written production and comprehension, at a 

pragmatic level 

Superior cognitive functions such as planning, 
organization, performance monitoring, decision-

Using information previously learned more or less 
explicitly to explain and predict one’s own behavior and 

hology is therefore an interdisciplinary discipline. It 

that precedes t 
disciplines. T 

he administration of tests is typical of psychological 
e clinician collects anamnestic information (i.e., 

patient behavior, and builds a relationship of trust and collabora-
tion with him/her. All of these are crucial aspects in any type of 
psychological interview. In addition, the neuropsychologist must 
also be able to understand whether the cognitive complaint or the 
deficits detected are linked to brain damage or whether they are 
psychogenic. To do this, they assess, qualitatively or quantitatively 
depending on the situation, the mood of the patient and the 
presence of any anxiety syndromes, psychotic symptoms, etc. 

Neuropsychology also has obvious points in common with 
neurology, since it is interested in the evaluation and intervention 
on the cognitive-behavioral manifestation of pathologies of the 
central nervous system. Over the past decades, much knowledge 
has been gained on the relationship between cognition and brain, 
and many tests have been developed. As a result, neuropsychologi-
cal assessment has split off from neurological examination, assum-
ing a separate role [18].



3.2 Psychometric

Properties of

Neuropsychological

Tests

The use of cognitive tests is the specificity of the neuropsychologi-
cal assessment. 

Each new test is developed according to a rigid and rigorous 
methodology, trying to minimize all possible sources of error or 
bias, and based on scientific evidence. For example, a test that aims 

242 Stéphane Epelbaum and Federica Cacciamani

to assess learning skills might include a list of words for the partici-
pant to memorize and then recall. These words will not be ran-
domly selected but carefully chosen based on characteristics such as 
frequency of use, length, phonology, etc. The procedures for 
administering neuropsychological tests are also standardized. The 
situation (i.e., materials, instructions, test conditions, etc.) is the 
same for all individuals and dictated by the administration manuals 
provided with each test. 

All tests, before being published, are validated for their psycho-
metric properties and normed. A normative sample is selected 
according to certain criteria which may change depending on the 
situation [19]. In most cases, these are large samples of healthy 
individuals from the general population, stratified by age, sex, 
and/or level of education. In other cases, more specific samples 
are preferred. The goal is to identify how the score is distributed in 
the normative sample. In this way, we can determine if the score 
obtained by a hypothetical patient is normal (i.e., around the 
average of the normative distribution) or pathological (i.e., far 
from the average). Establishing how far from the average an obser-
vation must be in order to be considered abnormal is a real matter 
of debate [20]. Many neuropsychological scores, as well as many 
biological or physical attributes, follow a normal distribution in the 
general population. The most used metrics to determine pathology 
thresholds are z scores and percentiles. For a given patient, the 
neuropsychologist usually computes the z score by subtracting the 
mean of the normative sample from the raw score obtained by the 
patient and then dividing the result by the standard deviation 
(SD) of the normative sample. The distribution of z scores will 
have a mean of 0 and a SD of 1. We can also easily find the percentile 
corresponding to the z score. Most often, a score below the fifth 
percentile (or z score = -1.65) or the second percentile (or z-
score =-2) is considered pathological. As an example, intelligence, 
or intelligence quotient (IQ), is an attribute that follows a normal 
distribution. It is conventionally measured with the Wechsler Adult 
Intelligence Scale, also known as WAIS [21], or the Wechsler 
Intelligence Scale for Children, also known as WISC [22]. The 
distribution of IQs has a mean of 100 and a SD of 15 points. 
Around 68% of individuals in the general population achieve an 
IQ of 100 ± 15 points. Scores between 85 and 115 are therefore 
considered to be average IQs (therefore normal). Ninety-five per-
cent of individuals are in a range within 30 points of 100, thus



between 70 and 130. Scores between 70 and 85 and those between 
115 and 130 indicate borderline intelligence and medium-to-
higher intelligence, respectively. Finally, only a little more than 2% 
of people are located in the two tails, respectively. An IQ below 
70 is therefore considered pathological and indicative of intellectual 
disability. An IQ above 130 is indicative of superior intelligence. 

Another reason a new test is administered to a normative 
sample is to evaluate its psychometric properties to understand 
whether it is suitable for clinical or research use [23]. The two 
main properties worth mentioning are reliability and validity [24]. 

Reliability indicates the consistency of a measure or in other 
words the proportion of variance in the observed scores attribut-
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able to the actual variance of the measured function, and not to 
measurement errors [25]. Reliability may be assessed in various 
ways. Internal consistency, for example, indicates whether the 
items of a test all measure the same cognitive function. A common 
procedure to evaluate it is to randomly divide the test into two 
halves and calculate the correlation between them. Test–retest 
reliability indicates the ability of a test to provide the same score 
consistently over time. No undesirable event, such as a pathological 
event, should have occurred between the two assessments and 
cause the patient to score worse (or better) on the second one. 
Another bias that could undermine test–retest reliability is practice 
effect, which refers to a gain in scores that occurs when the respon-
dent is retested with the same cognitive test. This gain does not 
reflect a real improvement in the function assessed [26]. Parallel 
forms of the same test are often used to avoid these problems. 
Another measure of reliability is the consistency between different 
examiners (inter-rater reliability). In fact, despite the standardiza-
tion described above, some degree of variance may remain between 
examiners [27]. 

Validity is the capacity of a test to measure what it actually 
proposes to measure and not similar constructs [28]. The validity 
of a test can be assessed by calculating the correlation between the 
score of interest with another measure that is theoretically supposed 
to be correlated. The following are some types of validity com-
monly assessed when developing or validating a new 
neuropsychological test: content validity (i.e., the test only mea-
sures what it is supposed to measure), substantive validity (i.e., the 
test is developed on the basis of theoretical knowledge and empiri-
cal evidence), convergent validity (i.e., individuals belonging to a 
certain homogeneous group have a similar score on the same test), 
and divergent validity (i.e., individuals belonging to two different 
groups have different scores on the same test, e.g., patients versus 
controls).



3.3 Realization of a

Neuropsychological

Assessment and

3.4 The Example of a

Cognitive Test: The

Mini-Mental State

During an assessment, the neuropsychologist chooses the most 
appropriate tests for the patient, ensures that they are performed 
correctly, and interprets their results. Indeed, each neuropsycho-
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Interpretation of Its 

Results 

logical assessment is tailored to the patient’s needs. To assess a 
certain cognitive function, the clinician can choose a specific test 
depending on the patient’s level of education, the presence of any 
sensory deficits (e.g., tests involving verbal material will be pro-
posed to a visually impaired patient), as well as the diagnostic 
hypothesis. 

Once anamnestic data has been collected and the cognitive 
scores have been obtained, the goal is to interpret these results 
and define the patient’s cognitive profile. Defining a cognitive 
profile means identifying which cognitive functions are preserved 
and which are impaired. In the event that one or more impaired 
cognitive deficits are detected, it is necessary to specify at what level 
the deficit is located and its severity. For example, a patient may 
have a memory disorder whose severity can be identified by com-
paring their score to normative data as described above. Depending 
on the test used, the neuropsychologist will be able to define 
whether this memory disorder is due to difficulties in creating 
new memory traces (linked to the medial temporal lobe [14]), or 
to difficulties in retrieving existing traces (linked to the prefrontal 
lobe [16]), and so on. By describing the impaired and preserved 
cognitive mechanisms and by referring to what we know about 
brain correlates of cognitive function, the neuropsychologist will 
be able to detect a pattern. This may be a cortical syndrome, such as 
in the event of alteration of language or visuospatial functions [29]; 
a subcortico-frontal profile, involving, for example, impaired exec-
utive functions [30]; a subcortical profile, often involving slow 
information processing [31]; etc. 

It is important to clarify that the aim of the neuropsychological 
assessment is not to diagnose a disease, but to describe a cognitive 
profile. This is only one of the elements taken into account by a 
physician, often a neurologist, to make the diagnosis. The physician 
will determine which disease or pathological condition underlies 
the cognitive impairment, by combining the evidence from other 
tests, such as laboratory tests, imaging, and neurological examina-
tion, as described above. 

The Mini-Mental State Examination, also known as MMSE, is one 
of the most widely used tools in both clinical practice and research, 
validated in many languages and adapted to administration in many 

Examination (MMSE) countries. It is a screening tool for adults, which allows assessing 
global cognition quickly and easily through a paper–pencil test 
lasting 5–10 min.



Temporal orientation [5 points, 1 per item]
The respondent is asked to say the day of the week, the day of the month, the

The MMSE includes 30 questions, each with a binary score

presented in Box . The total score ranges from 0 to 30. AnMMSE4

Box 4 MMSE Questions and Scoring System 
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month, the year, and the season 

Spatial orientation [5 points, 1 per item] 
The respondent is asked to say the floor and the name of the hospital or 
practice, district, town, and country. 

Short-term memory [3 points, 1 per word] 
The examiner names three objects (apple, table, and penny in the English 
version), and the respondent repeats them immediately 

Attention [5 points, 1 per subtraction] 
The respondent subtracts 7 from 100 five times 

Verbal learning [3 points, 1 per word] 
The respondent recalls the three previously learned words 

Denomination [2 points, 1 per object] 
The respondent names two objects indicated by the examiner, often a pen 
and a watch 

Repetition [1 point] 
The respondent repeats the sentence “No ifs, ands, or buts” 

Listening comprehension [3 points, 1 per task] 
The respondent is asked to take a sheet with their right hand, fold it in half, 
and throw it on the ground 

Written comprehension [1 point] 
The respondent executes a written command, often “Close your eyes” 

Writing [1 point] 
The respondent writes a sentence that contains a verb and a subject 

Praxico-constructive and visuospatial skills [1 point] 
Copy of two intersecting pentagons showed by the examiner 

(0 for wrong answer and 1 for correct answer). More details are 

score of 18 or less indicates severe impairment of cognitive func-
tions. A score between 18 and 24 indicates moderate to mild 
impairment. A score of 25 is considered borderline. And a score 
of 26–30 indicates cognitive normality. Different diagnostic thresh-
olds have been proposed as they depend—mainly—on age, educa-
tion, and setting [32]. In clinical settings, a score below 24 is 
commonly considered pathological [33]. In research contexts, it 
is more common to use a cut-off of 26 (pathological if <26) 
[34]. The MMSE is therefore very useful for getting an idea of 
the patient’s cognitive functioning, also facilitating effective com-
munication between professionals.



clinical setting [36]. Lower coefficients may be related to lower

4 Clinical Examinatio

Neurology is a broad branch of medicine that deals with all pathol-
ogies affecting the central and peripheral nervous system, also
including blood vessels and muscles, such as neurodegenerative

4.1 Diversity of Brain

Disorders and Clinical

Evaluation

Neurodegenerative disorders affecting
mostly cognition or behavior

Alzheimer’s disease
Frontotemporal dementia

Movement disorders Parkinson’s disease

Concerning psychometric properties, internal consistency is 
reported to vary significantly according to the setting. Alpha coef-
ficient was around 0.30 in the general population [35] and 0.96 in a 
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variability in community-based samples where the majority of par-
ticipants are healthy and often highly educated. Regarding test– 
retest reliability, healthy individuals scored better at retest (about 
one point higher) when they repeated the MMSE about 3 months 
after the first assessment. Patients with cognitive impairment, on 
the contrary, did not show such learning. In [10], the MMSE also 
had good validity in discriminating patients with Alzheimer’s 
dementia, depression, and schizophrenia. 

n by Pathology 

diseases, epilepsy, sleep disorders, vascular diseases, headaches, 
movement disorders, neuro-oncology, etc. Clinical evaluation is 
therefore tailored to the complaint and symptoms. The purpose is 
to propose a treatment or follow the evolution of the disease. There 
is therefore a need for sensitive clinical tests that allow for early 
detection of abnormalities, so that treatment can be administered 
more promptly. 

As science advances, medicine is getting increasingly specialized. 
Although “general neurologists” are the majority in the domain, 
the field is segmented in different subspecialties in university hos-
pitals, each with their topic and diseases of interest, and dedicated 
tools for innovative studies. We briefly describe these subspecialties 
below (see Box 5). 

Box 5 Non-exhaustive List of the Main Neurological 
Diseases 

Lewy body dementia 
Primary progressive aphasia 

Essential tremor 
Dystonia 

(continued)



Epilepsy Generalized idiopathic epilepsy
Absence

traumatic, post-stroke, etc.)

Stroke or neurovascular diseases

Neuro-oncology
Oligodendroglioma

Brain metastasis

Peripheral nerve diseases

Headaches Migraine

Sleep disorders

diseases

Myopathies

4.1.1 Neurodegenerative

Disorders Affecting Mostly

Cognition or Behavior

They include Alzheimer’s disease, Lewy body and frontotemporal
dementias, as well rarer conditions
aphasias. This field relies heavily on n
Although progress has been achieved in diagnosis of these condi-

4.1.2 Movement

Disorders

the dopamine levels in the brain (one of the main neurotransmitters
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Partial idiopathic epilepsy 
Secondary epilepsy (post-

Ischemic stroke 
Brain hemorrhage 
Cerebral venous thrombosis 

Meningioma 

Astrocytoma 
Glioblastoma 

Mononeuropathy 
Polyneuropathy 
Radiculopathy 
Plexopathy 

Tension-type headache 

Sleep apnea 
Narcolepsy 

Inflammatory and demyelinating brain Multiple sclerosis 
Sarcoidosis 

Neurogenetic diseases Huntington’s chorea 
Spinocerebellar ataxia 

Neuromuscular disorders Amyotrophic lateral sclerosis 
Myasthenia 

such as primary progressive 
europsychological evaluation. 

tions (especially Alzheimer’s disease) these last decades, therapeutic 
unmet needs remain high. 

These include Parkinson’s disease but also dystonia, myoclonus, 
tics, and tremors. Different treatment options have emerged for 
this group of diseases in the last years. These include drugs based on 

for movement) and deep brain stimulation which requires the 
implantation of electrodes to stimulate or inhibit specific regions 
of the basal ganglia.



4.1.3 Epilepsy

4.1.4 Stroke or

Neurovascular Diseases

4.1.5 Neuro-oncology

4.1.6 Peripheral Nerve

Diseases

4.1.7 Headaches

4.1.8 Sleep Disorders

This broad term refers to the abnormal electric activity of neurons 
in brain regions or in the whole brain inducing seizures. They are 

248 Stéphane Epelbaum and Federica Cacciamani

defined by the co-occurrence of symptoms or signs, and these 
electric abnormalities are detected by electroencephalography 
(EEG). Many anti-epileptic drugs exist to decrease the seizure 
frequency in these patients. Some patients present with pharma-
coresistant epilepsy. For such patients, surgery, which aims at 
resecting part of the brain in order to suppress seizures, can be a 
treatment option. 

Acute stroke is managed in stroke emergency units. A stroke can be 
either a brain infarction or a hemorrhage. They are not primary 
diseases of the brain tissue but of the arteries, capillaries, and veins 
that irrigate it. Treatment options range from rapid clot removal in 
ischemia (whether by thrombolysis or neuroradiological interven-
tion), anti-aggregating or anticoagulation therapy, and physical or 
speech rehabilitation. 

This specialty deals with brain tumors, which may be malignant or 
benign. There are close connections with neurosurgery units and 
neuropathology which play a valuable role in analyzing the micro-
structure of the tumor in order to achieve a precise diagnosis. 
Treatments typically rely on a combination of surgery, radiotherapy, 
and chemotherapy. 

They include all the diseases of the nerves outside of the brain, 
brainstem, or spine. These diseases induce motor, sensory, and 
autonomous impairments and are diagnosed through a combina-
tion of medical examination and electromyographic (EMG) record-
ings. Treatment options are very dependent on the cause of the 
disease which can range from simple mechanic compression of a 
nerve requiring mild surgery (carpal syndrome) to hepatic graft in 
some rare conditions (TTR mutation causing familial transthyretin 
amyloidosis). 

Although headaches are highly prevalent, specialists are rare in 
university hospital as these conditions (including migraine) are 
often cared for in private practice offices, except for the most urgent 
causes which are managed by emergency units. Treatments aim to 
decrease the frequency of the crisis (preventative treatments) for the 
most severe cases or the pain during a given crisis. 

Sleep disorders are sometimes managed by neurologists for some 
diseases (like narcolepsy) or pneumologists (since sleep apneas are 
among the most frequent cause of sleep impairment) or psychia-
trists (tackling insomnia, often associated with psychiatric comor-
bidities). A sleep recording called polysomnography is sometimes



4.1.9 Inflammatory and

Demyelinating Brain

4.1.10 Neurogenetic

Diseases

4.1.11 Neuromuscular

Disorders

4.2 Importance of a

Correct and Timely

required to assess the most complex problems. Physicians can 
prescribe continuous positive airway pressure devices which keep 
the airways opened during sleep. 

The most emblematic of this group is multiple sclerosis in which 
the autoimmune system turns against the individual, penetrates the 
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Diseases blood–brain barrier, and attacks the myelin which allows the rapid 
diffusion of the neuronal electric signal along the axons. This is one 
of the most advanced fields of neurology regarding treatment. 
Since the start of the twenty-first century, specific therapies pre-
venting the crossing of the blood–brain barrier of lymphocytes 
revolutionized the management of multiple sclerosis [37]. 

Neurogenetic diseases are a group of rare diseases (like Hunting-
ton’s chorea) due to a genetic mutation. These diseases usually 
follow a Mendelian mode of inheritance. They have the particular-
ity to be detectable (through genetic testing after a specific 
counseling) which gives the opportunity to study them in their 
premorbid phase (i.e., before the onset of typical symptoms in a 
group of mutation carriers). Innovative gene therapies are actually 
being developed in some of these neurogenetic conditions 
[38]. Note that there also exist genetic forms of diseases which 
are in majority sporadic (e.g., familial forms of Alzheimer’s disease). 

These are diseases affecting the motor neurons such as amyotrophic 
lateral sclerosis, the neuromuscular synapse like myasthenia, or 
specifically the muscles in myopathies. To the exception of myas-
thenia, few treatment options exist in this particular field of 
neurology. 

Neurologists have a saying: “time is brain.” The correct and timely 
identification of a neurological disease is indeed crucial to be able to 

Diagnostic 

Classification 

mitigate and sometimes reverse the signs and symptoms. As such, 
machine learning techniques may be very useful tools both in the 
context of slow-paced diseases such as Alzheimer’s which are often 
diagnosed quite late or not at all [39] and to optimize the patient 
flow in emergency care, in case of stroke, for instance. This frame-
work is theoretical as in practice some diseases can interact to 
induce symptoms. For instance, dementia is often of mixed origin, 
due to the association of degenerative (Alzheimer’s disease) and 
vascular alterations. A walking deficit can be due to Parkinson’s 
disease but also in part to arthrosis, etc. The correct identification 
of a disease is in part probabilistic, and this can lead to heterogene-
ity in the collected data from the clinical assessment.
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5 Conclusion 

Clinical assessment is central in neurology for the assessment of the 
patient because it is the direct reflection of what he/she feels and 
experiences. Indeed, according to regulatory agencies, a treatment 
is deemed effective if it has an effect on the clinical expression of the 
disease (e.g., on cognition, motor skills, sensitivity, autonomy, and 
survival) and not on intermediate markers such as imaging, biology, 
or others. 

Machine learning is bringing clinical evaluation into a new era 
because it allows to go beyond the intuitions of the individual 
physician and could associate signs that were previously not seen 
as part of a disease type or subtype. However, the researcher should 
always remember that the best algorithm is only as good as the data 
it runs on, which depends on the clinician’s understanding of how 
and why these particular data are collected and will be used for. So, 
for discovery, validation, and clinical implementation of new 
machine learning techniques, basic knowledge of the possible dis-
crepancies and biases one may experience going from research 
setting to clinical practice is paramount. 
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