
Machine
Learning for
Brain Disorders

Olivier Colliot Editor

Neuromethods 197

N E U R OM E T H O D S

Series Editor
Wolfgang Walz

University of Saskatchewan
Saskatoon, SK, Canada

For further volumes:
http://www.springer.com/series/7657

Neuromethods publishes cutting-edge methods and protocols in all areas of neuroscience as
well as translational neurological and mental research. Each volume in the series offers tested
laboratory protocols, step-by-step methods for reproducible lab experiments and addresses
methodological controversies and pitfalls in order to aid neuroscientists in experimentation.
Neuromethods focuses on traditional and emerging topics with wide-ranging implications to
brain function, such as electrophysiology, neuroimaging, behavioral analysis, genomics,
neurodegeneration, translational research and clinical trials. Neuromethods provides investi-
gators and trainees with highly useful compendiums of key strategies and approaches for
successful research in animal and human brain function including translational “bench to
bedside” approaches to mental and neurological diseases.

Machine Learning for Brain
Disorders

Edited by

Olivier Colliot

CNRS, Paris, France

Editor
Olivier Colliot
CNRS
Paris, France

ISSN 0893-2336 ISSN 1940-6045 (electronic)
Neuromethods
ISBN 978-1-0716-3194-2 ISBN 978-1-0716-3195-9 (eBook)
https://doi.org/10.1007/978-1-0716-3195-9

© The Editor(s) (if applicable) and The Author(s) 2023
Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and
reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.
The images or other third party material in this book are included in the book’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the book’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations
and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to
be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty,
expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been
made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Humana imprint is published by the registered company Springer Science+Business Media, LLC part of Springer
Nature.
The registered company address is: 1 New York Plaza, New York, NY 10004, U.S.A.

Preface to the Series

Experimental life sciences have two basic foundations: concepts and tools. The Neuro-
methods series focuses on the tools and techniques unique to the investigation of the
nervous system and excitable cells. It will not, however, shortchange the concept side of
things as care has been taken to integrate these tools within the context of the concepts and
questions under investigation. In this way, the series is unique in that it not only collects
protocols but also includes theoretical background information and critiques which led to
the methods and their development. Thus it gives the reader a better understanding of the
origin of the techniques and their potential future development. The Neuromethods pub-
lishing program strikes a balance between recent and exciting developments like those
concerning new animal models of disease, imaging, in vivo methods, and more established
techniques, including, for example, immunocytochemistry and electrophysiological tech-
nologies. New trainees in neurosciences still need a sound footing in these older methods in
order to apply a critical approach to their results.

Under the guidance of its founders, Alan Boulton and Glen Baker, the Neuromethods
series has been a success since its first volume published through Humana Press in 1985. The
series continues to flourish through many changes over the years. It is now published under
the umbrella of Springer Protocols. While methods involving brain research have changed a
lot since the series started, the publishing environment and technology have changed even
more radically. Neuromethods has the distinct layout and style of the Springer Protocols
program, designed specifically for readability and ease of reference in a laboratory setting.

The careful application of methods is potentially the most important step in the process
of scientific inquiry. In the past, new methodologies led the way in developing new dis-
ciplines in the biological and medical sciences. For example, Physiology emerged out of
Anatomy in the nineteenth century by harnessing new methods based on the newly discov-
ered phenomenon of electricity. Nowadays, the relationships between disciplines and meth-
ods are more complex. Methods are now widely shared between disciplines and research
areas. New developments in electronic publishing make it possible for scientists that
encounter new methods to quickly find sources of information electronically. The design
of individual volumes and chapters in this series takes this new access technology into
account. Springer Protocols makes it possible to download single protocols separately. In
addition, Springer makes its print-on-demand technology available globally. A print copy
can therefore be acquired quickly and for a competitive price anywhere in the world.

Saskatoon, SK, Canada Wolfgang Walz

v

Preface

Machine learning (ML) is at the core of the tremendous progress in artificial intelligence in
the past decade. ML offers exciting promises for medicine. In particular, research on ML for
brain disorders is a very active field. Neurological and psychiatric disorders are particularly
complex and can be characterized using various types of data. ML has the potential to exploit
such rich and complex data for a wide range of benefits including a better understanding of
disorders, the discovery of new biomarkers, assisting diagnosis, providing prognostic infor-
mation, predicting response to treatment and building more effective clinical trials.

Machine learning for brain disorders is an interdisciplinary field, involving concepts
from different disciplines such as mathematics, statistics and computer science on the one
hand and neurology, psychiatry, neuroscience, pathology and medical imaging on the other
hand. It is thus difficult to apprehend for students and researchers who are new to this area.
The aim of this book is to provide an up-to-date and comprehensive guide to both
methodological and applicative aspects of ML for brain disorders. This book aims to be
useful to students and researchers with various backgrounds: engineers, computer scientists,
neurologists, psychiatrists, radiologists, neuroscientists, etc.

Part I presents the fundamentals of ML. The book starts with a non-technical introduc-
tion to the main concepts underlying ML (Chapter 1). The main classic ML techniques are
then presented in Chapter 2. Even though not recent for most of them, these techniques are
still useful for various tasks. Chapters 3–6 are devoted to deep learning, a family of
techniques which have achieved impressive results in the past decade. Chapter 3 describes
the basics of deep learning, starting with simple artificial neural networks and then covering
convolutional neural networks (CNN) which are a standard family of approaches that are
mainly (but not only) used for imaging data. Those architectures are feed-forward, meaning
that information flows only in one direction. On the contrary, recurrent neural networks
(RNN), presented in Chapter 4, involve loops. They are particularly adapted to sequential
data, including longitudinal data (repeated measurements over time), time series and text.
Chapter 5 is dedicated to generative models: models that can generate new data. A large part
is devoted to generative adversarial networks (GANs), but other approaches such as diffu-
sion models are also described. Finally, Chapter 6 presents transformers, a recent approach
which is now the state-of-the-art for natural language processing and has achieved impres-
sive results for other applications such as imaging.

Part II is devoted to the main types of data used to characterize brain disorders. These
include clinical assessments (Chapter 7), neuroimaging (including magnetic resonance
imaging—MRI, positron emission tomography—PET, computed tomography—CT,
single-photon emission computed tomography—SPECT, Chapter 8), electro- and magne-
toencephalography (EEG/MEG, Chapter 9), genetic and omics data (including genotyp-
ing, transcriptomics, proteomics, metabolomics, Chapter 10), electronic health records
(EHR, Chapter 11), mobile devices, connected objects and sensor data (Chapter 12). The
emphasis is put on practical aspects rather on an in-depth description of the underlying data
acquisition techniques (which can be complex, for instance in the case of neuroimaging or
omics data). The corresponding chapters describe which information do these data provide,

vii

how they should be handled and processed and which features can be extracted from
such data.

viii Preface

Part III covers the core methodologies of ML for brain disorders. Each chapter is
devoted to a specific medical task that can be addressed with ML, presenting the main
state-of-the-art techniques. Chapter 13 deals with image segmentation, a crucial task for
extracting information from images. Image segmentation techniques allow delineating
anatomical structures and lesions (e.g. tumours, white matter lesions), which can in turn
provide biomarkers (e.g. the volume of the structure/lesion or other more sophisticated
derived measures). Image registration is presented in Chapter 14. It is also a fundamental
image analysis task which allows aligning images from different modalities or different
patients and which is a prerequisite for many other ML methods. Chapter 15 describes
methods for computer-aided diagnosis and prediction. These include methods to automati-
cally classify patients (for instance to assist diagnosis) as well as to predict their future state.
Chapter 16 presents ML methods to discover disease subtypes. Indeed, brain disorders are
heterogeneous and patients with a given diagnosis may have different symptoms, a different
underlying pathophysiology and a different evolution. Such heterogeneity is a major barrier
to the development of new treatments. ML has the potential to help discover more
homogeneous disease subtypes. Modelling disease progression is the focus of Chapter 17.
The chapter describes a wide range of techniques that allow, in a data-driven manner, to
build models of disease progression, which includes finding the ordering by which different
biomarkers become abnormal, estimating trajectories of change and uncovering different
evolution profiles within a given population. Chapter 18 is devoted to computational
pathology which is the automated analysis of histological data (which may come from
biopsies or post-mortem samples). Tremendous progresses have been made in this area in
the past years. Chapter 19 describes methods for integrating multimodal data including
medical imaging, clinical data and genetics (or other omics data). Indeed, characterizing the
complexity of brain disorders requires to integrate multiple types of data, but such integra-
tion raises computational challenges.

Part IV is dedicated to validation and datasets. These are fundamental issues that are
sometimes overlooked by ML researchers. It is indeed crucial that ML models for medicine
are thoroughly and rigorously validated. Chapter 20 covers model validation. It introduces
the main performance metrics for classification and regression tasks, describes how to
estimate these metrics in an unbiased manner and how to obtain confidence intervals.
Chapter 21 deals with reproducibility, the ability to reproduce results and findings. It is
widely recognized that many fields of science, including ML for medicine, are undergoing a
reproducibility crisis. The chapter describes the main types of reproducibility, what they
require and why they are important. The topic of Chapter 22 is interpretability of ML
methods. In particular, it reviews the main approaches to get insight on how “black-box”
models take their decisions and describes their application to brain imaging data. Chapter 23
provides a regulatory science perspective on performance assessment of ML algorithms. It is
indeed crucial to understand such perspective because regulation is critical to translate safe
and effective technologies to the clinic. Finally, Chapter 24 provides an overview of the main
existing datasets accessible to researchers. It can help scientists identify which datasets are
most suited to a particular research question and provides hints on how to use them.

Part V presents applications of ML to various neurological and psychiatric disorders.
Each chapter is devoted to a specific disorder or family of disorders. It presents some
information about the disorder that should, in particular, be useful to researchers who
don’t have a medical background. It then describes some important applications of ML to

this disorder as well as future challenges. The following disorders are covered: Alzheimer’s
disease and related dementia (including vascular dementia, frontotemporal dementia and
dementia with Lewy bodies) in Chapter , Parkinson’s disease and related disorders
(including multiple system atrophy, progressive supranuclear palsy and dementia with
Lewy bodies) in Chapter , epilepsy in Chapter , multiple sclerosis in Chapter ,
cerebrovascular disorders (including stroke, microbleeds, vascular malformations, aneur-
ysms and small vessel disease) in Chapter , brain tumours in Chapter , neurodevelop-
mental disorders (including autism spectrum and attention deficit with hyperactivity
disorders) in Chapter and psychiatric disorders (including depression, schizophrenia
and bipolar disorder) in Chapter . 32

31

3029

282726

25

Preface ix

We hope that this book will serve as a reference for researchers and graduate students
who are new to this field of research as well as constitute a useful resource for all scientists
working in this exciting scientific area.

Paris, France Olivier Colliot

Acknowledgements

I would like to express my profound gratitude to all authors for their contributions to the
book. It is thanks to you that this book has become a reality. I am also extremely grateful to
all present and past members of the ARAMIS team. Research is a collective endeavour. It was
a privilege (and a pleasure!) to work with you throughout all these years. I learn everyday
thanks to you all. More generally, I would like to acknowledge all colleagues with whom I
had the chance to work. I warmly thank the reviewers who have kindly reviewed chapters:
Maria Gloria Bueno Garcı́a, Sarah Cohen-Boulakia, Renaud David, Guillaume Dumas,
Anton Iftimovici, Hicham Janati, Jochen Klucken, Margy McCullough-Hicks, Paolo Mis-
sier, Till Nicke, Sebastian Raschka, Denis Schwartz as well as those who preferred to stay
anonymous. Your comments were very useful in improving the book. Finally, I would like to
thank my family members for their love and support.

I acknowledge the following funding sources: the French government under manage-
ment of the Centre National de la Recherche Scientifique, the French government under
management of Agence Nationale de la Recherche as part of the “Investissements d’avenir”
program, reference ANR-19-P3IA-0001 (PRAIRIE 3IA Institute) and reference ANR-10-
IAIHU-06 (Agence Nationale de la Recherche-10-IA Institut Hospitalo-Universitaire-6),
the European Union H2020 program (project EuroPOND, grant number 666992), the
Paris Brain Institute under the Big Brain Theory Program (project PredictICD, project
IMAGIN-DEAL in MS), Inria under the Inria Project Lab Program (project Neuromar-
kers), the Abeona Foundation (project Brain@Scale) and the Fondation Vaincre Alzheimer
(grant number FR-18006CB). This book was made Open Access thanks to the support of
the French government under management of Agence Nationale de la Recherche as part of
the “Investissements d’avenir” program, reference ANR-19-P3IA-0001 (PRAIRIE 3IA
Institute).

Paris, France Olivier Colliot

xi

Abbreviations

ABC Activities-Specific Balance Confidence
ABCD Adolescent Brain Cognitive Development
ACR American College of Radiology
AD Alzheimer’s Disease
Adagrad Adaptive Gradient optimizer
ADAS Alzheimer’s Disease Assessment Scale
ADC Apparent Diffusion Coefficient
ADHD Attention Deficit Hyperactivity Disorder
ADNI Alzheimer’s Disease Neuroimaging Initiative
AE Autoencoder
AI Artificial Intelligence
AIBL Australian Imaging Biomarkers and Lifestyle Study of Aging
ALS Amyotrophic Lateral Sclerosis
AP-HP Assistance Publique-Hôpitaux de Paris
ARDM Auto-Regressive Diffusion Models
ASD Autism Spectrum Disorder
ASL Arterial Spin Labelling
ASNR American Society of Neuroradiology
ASPECTS The Alberta Stroke Programme Early CT Score
ASR Age-Standardized incidence Rate
ASSD Average Symmetric Surface Distance
ATP Adenosine Triphosphate
AUC Area Under the Curve (can apply to ROC curve or PR curve for

instance)
AVM Arteriovenous Malformation
BA Balanced Accuracy
BAM Binary Alignment Map
BATS Brisbane Adolescent Twin Study
BCI Brain Computer Interface
BD Bipolar Disorder
Bi-LSTM Bi-directional Long Short-Term Memory
BMI Body Mass Index
BOLD Blood-Oxygen-Level-Dependent
BPTT Back Propagation Through Time
BraTS Brain Tumour Segmentation Challenge
BRNN Bi-directional Recurrent Neural Network
CA Cornu Ammonis
CA Cross-Attention
CAD Computer-Assisted Diagnosis
CADASIL Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts

and Leukoencephalopathy
CAM Class Activation Maps
CAP College of American Pathologists
CARS Coherent Anti-Stokes Raman Scattering
CBD Cortico-basal Degeneration

xiii

xiv Abbreviations

CBF Cerebral Blood Flow
CBV Cerebral Blood Volume
CC Cross-Correlation
CCA Canonical Correlation Analysis
CDF Cumulative Density Function
CDR Clinical Dementia Rating
CDRH Center for Devices and Radiological Health at FDA
cGAN Conditional Generative Adversarial Network
CIFAR Canadian Institute For Advanced Research
CIS Clinically Isolated Syndrome
CLAIM Checklist for Artificial Intelligence in Medical imaging
CLIP Contrastive Language-Image Pretraining
C-LSTM Convolutional Long Short-Term Memory
CMB Cerebral Microbleed
CN Healthy Controls (or Cognitively Normal participants)
CNN Convolutional Neural Network
CNS Central Nervous System
CNV Copy number variant
CP Computational Pathology
CPAB Continuous Piecewise Affine-Based
CPM Computational Precision Medicine
CPM-RadPath CPM Radiology-Pathology Challenge
CPRD Clinical Practice Research Datalink
CRAM Compressed Reference-oriented Alignment Map
CSF Cerebrospinal Fluid
cSVD Cerebral Small Vessel Disease
CT Computed Tomography
CTA Computed Tomography Angiography
CTSA Clinical Translational Science Awards
CTV-3 Clinical Terms Version 3
CV Cross-Validation
D3PM Data-Driven Disease Progression Modelling
DAT Dopamine Transporter
dbGAP Database of Genotypes and Phenotypes
DBS Deep Brain Stimulation
DCGAN Deep Convolutional Generative Adversarial Network
DDPM Denoising Diffusion Probabilistic Models
DEBM Discriminative Event-Based Model
DIAN Dominantly Inherited Alzheimer Network
DICOM Digital Imaging and Communications in medicine
DIR Double Inversion Recovery MR sequence
DL Deep Learning
DLB Dementia with Lewy Bodies
DNA Deoxyribonucleic Acid
dof Degrees of Freedom
DPCE Distance map Penalized Cross Entropy loss
DPS Disease Progression Score
DRAM Deep Recurrent Attention Model
DRNN Disconnected Recurrent Neural Network
DSA Digital Subtraction Angiography
DSC Dice Similarity Coefficient

Abbreviations xv

DSM-5 5th edition of the Diagnostic and Statistical Manual of Mental Disorders
DT Decision Tree
DTI Diffusion Tensor Imaging
DWI Diffusion-Weighted Imaging
DXA Dual-energy X-ray Absorptiometry
DZ Dizygotic
EBM Event-Based Model
EDSS Expanded Disability Status Scale
EEA European Economic Area
EEG Electroencephalography
EFA Exploratory Factor Analysis
EHR Electronic Health Record
ELBO Evidence Lower Bound
ELL Exponential Logarithmic Loss
EM Expectation-Maximization
ENIGMA Enhancing NeuroImaging Genetics Through Meta-Analysis
eQTL expression Quantitative Trait Loci
ET Enhancing Tumour
EU European Union
FA Fractional Anisotropy
FAIR Findable, Accessible, Interoperable, Reusable
FASTA Fast-All format
FCD Focal Cortical Dysplasia
FCN Fully Connected Network
FCNN Fully Convolutional Neural Network
FDA United States Food and Drug Administration
FDG-PET [18F]-Fluorodeoxyglucose Positron Emission Tomography
FDR False Discovery Rate
FFPE Formalin-Fixed Paraffin-Embedded
FID Fréchet Inception Distance
FLAIR Fluid-Attenuated Inversion Recovery
FLOP Floating Point Operations
fMRI functional Magnetic Resonance Imaging
FN False Negative
FOG Freezing of Gait
FP False Positive
FROC Free-response ROC
FTLD Fronto-temporal Lobar Degeneration
G2PSR Genome-to-Phenome Sparse Regression
GAN Generative Adversarial Network
GBM Glioblastoma
GD Generalized Dice loss
GDPR General Data Protection Regulation
GENFI Genetic FTD Initiative
GEO Gene Expression Omnibus
GFF General Feature Format
GIS Geographic Information Systems
GM Gray Matter
GMM Gaussian Mixture Model

xvi Abbreviations

GO Gene Ontology
GPPM Gaussian Process Progression Model
GPS Global Positioning System
GPU Graphical Processing Unit
Grad-CAM Gradient-weighted Class Activation Mapping
GRE Gradient-Recalled Echo
GRU Gated Recurrent Unit
GTEx Genotype-Tissue Expression
GWAS Genome-Wide Association Study
H&E Hematoxylin and Eosin
HAR Human Activity Recognition
HC Healthy Controls
HCP-YA Human Connectome Project Young Adult
HD Hausdorff Distance
HGG High-Grade Glioma
HIPAA Health Insurance Portability and Accountability Act
HS Hippocampal Sclerosis
HUPO Human Proteome Organization
HYDRA HeterogeneitY through DiscRiminative Analysis
i.i.d. Independent and Identically Distributed
IA Intracranial Aneurysm
ICA Independent Component Analysis
ICD International Classification of Diseases
iCDF Inverse Cumulative Density Function
ICF International Classification of Functioning, Disability and Health
ID Intelligence Disabilities
IDH Isocitrate Dehydrogenase
IEEE Institute of Electrical and Electronics Engineers
IHC Inmunohistochemistry
IoU Intersection over Union also called JI
IPMI Information Processing in Medical Imaging conference
IQ Intelligence Quotient
iRANO Immune-related Response Assessment in Neuro-Oncology
iRBD Idiopathic Rapid eye movement sleep Behaviour Disorder
ISBI International Symposium on Biomedical Imaging
ISLES The Ischemic Stroke Lesion Segmentation
JI Jaccard index also called IoU
JS/JSD Jensen-Shannon Divergence
KDE Kernel Density Estimate
KDE-EBM Kernel Density Estimation EBM
KEGG Kyoto Encyclopedia of Genes and Genomes
KL/KLD Kullback-Leibler Divergence
kNN k-Nearest Neighbours
LASSO Least Absolute Shrinkage and Selection Operator
LATE Limbic-predominant Age-related TDP-43 Encephalopathy
LDA Linear Discriminant Analysis
LDDMM Large Deformation Diffeomorphic Metric Mapping
LGG Low-Grade Glioma
LIME Local Interpretable Model-agnostic Explanations

Abbreviations xvii

LJTMM Latent Time Joint Mixed Model
LP Linear Programming
LPA Logopenic Progressive Aphasia
LR Logistic Regression
LR- Negative Likelihood Ratio
LR+ Positive Likelihood Ratio
LRP Layer-wise relevance
LSTM Long Short-Term Memory
LVO Large Vessel Occlusion
MAE Mean Absolute Error
MAGIC Multi-scAle heteroGeneity analysIs and Clustering
MAGNIMS Magnetic Resonance Imaging in Multiple Sclerosis network
MAP Maximum a Posteriori
MAR Missing at Random
MCA Multi-head Cross-Attention
MCAR Missing Completely at Random
MCMC Markov Chain Monte Carlo
mcVAE Multi-Channel Variational Autoencoder
MD Mean Diffusivity
MDD Major Depressive Disorder
MDE Major Depressive Episode
MDS-UPDRS Movement Disorder Society Unified Parkinson’s Disease Rating Scale

(synonymous: UPDRS)
MEDA Minimal Evidence of Disease Activity
MEG Magnetoencephalography
MEM Micro Electro Mechanical system
MGMT O6-Methylguanine-DNA Methyltransferase
MI Mutual Information
MICCAI The Medical Image Computing and Computer Assisted Intervention

Society
MICE Multiple Imputation by Chained Equations
MIDS Medical Imaging Data Structure
MIP Maximal Intensity Projection
ML Machine Learning
MLE Maximum Likelihood Estimation
MLP Multi-Layer Perceptron
MMSA Masked Multi-head Self-Attention
MMSE Mini-Mental state examination
MNAR Missing Not at Random
MND Motor Neuron Disease
MNI Montreal Neurological Institute
MNIST Modified National Institute of Standards and Technology dataset
MoCA Montreal Cognitive Assessment
MRA Magnetic Resonance Angiography
MRI Magnetic Resonance Imaging
mRNA Messenger RNA
mRS modified Rankin Score
MS Multiple Sclerosis
MSA Multi-head Self-Attention

xviii Abbreviations

MSA Multiple System Atrophy
MSA-C Cerebellar variant of Multiple System Atrophy
MSA-P Parkinsonian variant of Multiple System Atrophy
MSD Medical Segmentation Decathlon
MSE Mean Squared Error
mTOR Mammalian Target of Rapamycin
MTR Magnetization Transfer Ratio
MZ Monozygotic
mzML Mass Spectrometry Markup Language
NAWM Normal Appearing White Matter
NB Naive Bayes
NCBI National Center for Biotechnology Information
NCC Normalized Cross Correlation
ncRNA Non-coding RNA
NDDs Neurodevelopmental Disorders
NEDA No Evidence of Disease Activity
NeurIPS Neuronal Information Processing Systems conference
NGS Next Generation Sequencing
NifTI Neuroimaging Informatics Technology Initiative
NIH National Institutes of Health
NINCDS-ADRDA National Institute of Neurological and Communicative Disorders and

Stroke - Alzheimer’s Disease and Related Disorders Association
NIPALS Non-linear Iterative Partial Least Squares
NIVEL Netherlands Institute for Health Services Research
NIVEL-PCD NIVEL Primary Care Database
NLP Natural Language Processing
NMF Non-negative Matrix Factorization
NMI Normalized Mutual Information
NMOSD Neuromyelitis Optica Spectrum Disorder
NMT Neural Machine Translation
NN Neural Network
NPV Negative Predictive Value
OATS Older Adult Twin Study
OCD Obsessive Compulsive Disorder
OCT Optimal Cutting Temperature
OSF Open Science Framework
PACS Picture Archiving and Communication System
PCA Posterior Cortical Atrophy
PCA Principal Component Analysis
PD Parkinson’s Disease
PD Proton-Density MR sequence
PDF Probability Density Function
PE Positional Encoding
PET Positron Emission Tomography
PIB-PET [11C]-Pittsburgh Compound B Positron Emission Tomography
PiD Pick’s Disease
PLS Partial Least Squares
PLSR Partial Least Square Regression
PML Progressive Multifocal Leukoencephalopathy

Abbreviations xix

PNS Peripheral Nervous System
PPA Primary Progressive Aphasia
PPMI Parkinson’s Progression Markers Initiative
PPMS Primary Progressive Multiple Sclerosis
PPV Positive Predictive Value
PRS Polygenic Risk Score
PSI HUPO Proteomics Standards Initiative
PSI Proteomics Standards Initiative
PSP Progressive Supranuclear Palsy
psPD pseudoprogression of disease
PT Patient
PTSD Post-Traumatic Stress Disorder
PVS Perivascular Space
PWI Perfusion Weighted Imaging
QSM Quantitative Susceptibility Mapping
QT Quantitative Traits
QTAB Queensland Twin Adolescent Brain
QTIM Queensland Twin IMaging
rΔCBF relative CBF change
RANO Response Assessment in Neuro-Oncology
RAVEL Removal of Artificial Voxel Effect by Linear regression
RBF Radial Basis Function
RCNN Region Convolutional Neural Network
RECIST Response Evaluation Criteria in Solid Tumours
ReLU Rectified Linear Unit
REM Rapid Eye Movement
ResNet Residual Neural Network
RF Random Forest
RKHS Reproducing Kernel Hilbert Space
RMSE Root Mean Square Error
RMSProp Root Mean Squared Propagation
RNA Ribonucleic Acid
RNN Recurrent Neural Network
ROC Receiver Operating Characteristic curve
RRMS Relapsing Remitting Multiple Sclerosis
RS-fMRI Resting State functional Magnetic Resonance Imaging
RSNA Radiological Society of North America
SA Self-Attention
SAM Sequence Alignment Map
SD Standard Deviation
SDG Stochastic Gradient Descent
SHAP SHapley Additive exPlanations
Smile-GAN Semi-supervised cLustering via GANs
SNOMED-CT Systematized NOmenclature of MEDicine - Clinical Terms
SNP Single Nucleotide Polymorphism
SPECT Single-Photon Emission Computed Tomography
SPIE The Society for Photoelectrical Instrumentation Engineers - The Inter-

national Society for Optics and Photonics
SPIRIT-AI Standard Protocol Items: Recommendations for Interventional Trials-

Artificial Intelligence

xx Abbreviations

SPMS Secondary Progressive Multiple Sclerosis
SRA Sequence Read Archive
SRH Stimulated Raman scattering Histology
SS Sensitivity-Specificity loss
SSD Sum of Square Differences
SSL Semi-Supervised Learning
STARD-AI Standards for Reporting Diagnostic Accuracy Studies - Artificial

Intelligence
STN Spatial Transformer Network
STR Swedish Twin Registry
STRIVE the STandards for ReportIng Vascular changes on nEuroimaging
SUD Substance Use Disorder
SuLign Subtyping Alignment
SuStaIn Subtype and Stage Inference
SVD Singular Value Decomposition
SVM Support Vector Machine
SWI Susceptibility-Weighted Images
TC Tumour Core
TEBM Temporal Event-Based Model
TICI Thrombolysis in Cerebral Infarction
TLE Temporal Lobe Epilepsy
TMZ Temozolomide
TN True Negative
TNR True Negative Rate
TOPMed Trans-omics Precision Medicine
TP True Positive
TPR True Positive Rate
TRIPOD-ML Transparent Reporting of a Multivariable Prediction Model for Individ-

ual Prognosis or Diagnosis-Machine Learning
tRNA Transfer RNA
UAD Unsupervised Anomaly Detection
UDA Unsupervised Data Augmentation
UI User Interface
UKB UK Biobank
UMLS Unified Medical Language System
UPDRS Unified Parkinson’s Disease Rating Scale
UX User Experience
VaD Vascular Dementia
VAE Variational Autoencoder
VA-GAN Visual Attribution Generative Adversarial Network
VASARI Visually AcceSAble Rembrandt Images
VCCA Deep Variational CCA
VCI Vascular Cognitive Impairment
VETSA Vietnam Era Twin Study of Aging
ViT Vision Transformer
ViViT Video Vision Transformer
VQGAN Vector Quantization Generative Adversarial Network
VQ-VAE Vector Quantization Variational Autoencoder
WCE Weighted Cross Entropy loss

Abbreviations xxi

WGAN Wasserstein Generative Adversarial Network
WGS Whole Genome Sequence
WHO World Health Organization
WM White Matter
WMH White Matter Hyperintensity
WSI Whole Slide Image
WT Whole Tumour
WUSTL Washington University in Saint Louis
xAI eXplainable AI
XML eXtensible Markup Language
XNAT eXtensible Neuroimaging Archive Toolkit

Contents

Preface to the Series v
Preface vii
Acknowledgements xi
Abbreviations xiii
Contributors. xxvii

PART I MACHINE LEARNING FUNDAMENTALS

1 A Non-technical Introduction to Machine Learning. . . 3
Olivier Colliot

2 Classic Machine Learning Methods . . . 25
Johann Faouzi and Olivier Colliot

3 Deep Learning: Basics and Convolutional Neural Networks (CNNs) 77
Maria Vakalopoulou, Stergios Christodoulidis, Ninon Burgos,
Olivier Colliot, and Vincent Lepetit

4 Recurrent Neural Networks (RNNs): Architectures, Training Tricks,
and Introduction to Influential Research. 117
Susmita Das, Amara Tariq, Thiago Santos,
Sai Sandeep Kantareddy, and Imon Banerjee

5 Generative Adversarial Networks and Other Generative Models 139
Markus Wenzel

6 Transformers and Visual Transformers . 193
Robin Courant, Maika Edberg, Nicolas Dufour,
and Vicky Kalogeiton

PART II DATA

7 Clinical Assessment of Brain Disorders. 233
Stéphane Epelbaum and Federica Cacciamani

8 Neuroimaging in Machine Learning for Brain Disorders . 253
Ninon Burgos

9 Electroencephalography and Magnetoencephalography . 285
Marie-Constance Corsi

10 Working with Omics Data: An Interdisciplinary Challenge at
the Crossroads of Biology and Computer Science. 313
Thibault Poinsignon, Pierre Poulain, Mélina Gallopin,
and Gaëlle Lelandais

11 Electronic Health Records as Source of Research Data . 331
Wenjuan Wang, Davide Ferrari, Gabriel Haddon-Hill,
and Vasa Curcin

xxiii

xxiv Contents

12 Mobile Devices, Connected Objects, and Sensors . 355
Sirenia Lizbeth Mondrag�on-González, Eric Burguière,
and Karim N’diaye

PART III METHODOLOGIES

13 Medical Image Segmentation Using Deep Learning. . . 391
Han Liu, Dewei Hu, Hao Li, and Ipek Oguz

14 Image Registration: Fundamentals and Recent Advances
Based on Deep Learning. 435
Min Chen, Nicholas J. Tustison, Rohit Jena, and James C. Gee

15 Computer-Aided Diagnosis and Prediction in Brain Disorders. 459
Vikram Venkatraghavan, Sebastian R. van der Voort,
Daniel Bos, Marion Smits, Frederik Barkhof, Wiro J. Niessen,
Stefan Klein, and Esther E. Bron

16 Subtyping Brain Diseases from Imaging Data . 491
Junhao Wen, Erdem Varol, Zhijian Yang, Gyujoon Hwang,
Dominique Dwyer, Anahita Fathi Kazerooni,
Paris Alexandros Lalousis, and Christos Davatzikos

17 Data-Driven Disease Progression Modeling . . . 511
Neil P. Oxtoby

18 Computational Pathology for Brain Disorders . 533
Gabriel Jiménez and Daniel Racoceanu

19 Integration of Multimodal Data . 573
Marco Lorenzi, Marie Deprez, Irene Balelli,
Ana L. Aguila, and Andre Altmann

PART IV VALIDATION AND DATASETS

20 Evaluating Machine Learning Models and Their Diagnostic Value 601
Gael Varoquaux and Olivier Colliot

21 Reproducibility in Machine Learning for Medical Imaging 631
Olivier Colliot, Elina Thibeau-Sutre, and Ninon Burgos

22 Interpretability of Machine Learning Methods Applied
to Neuroimaging 655
Elina Thibeau-Sutre, Sasha Collin, Ninon Burgos,
and Olivier Colliot

23 A Regulatory Science Perspective on Performance Assessment
of Machine Learning Algorithms in Imaging . . 705
Weijie Chen, Daniel Krainak, Berkman Sahiner,
and Nicholas Petrick

Contents xxv

24 Main Existing Datasets for Open Brain Research on Humans 753
Baptiste Couvy-Duchesne, Simona Bottani, Etienne Camenen,
Fang Fang, Mulusew Fikere, Juliana Gonzalez-Astudillo, Joshua Harvey,
Ravi Hassanaly, Irfahan Kassam, Penelope A. Lind, Qianwei Liu, Yi Lu,
Marta Nabais, Thibault Rolland, Julia Sidorenko, Lachlan Strike, and
Margie Wright

PART V DISORDERS

25 Machine Learning for Alzheimer’s Disease and Related Dementia 807
Marc Modat, David M. Cash, Liane Dos Santos Canas,
Martina Bocchetta, and Sébastien Ourselin

26 Machine Learning for Parkinson’s Disease and Related Disorders 847
Johann Faouzi, Olivier Colliot, and Jean-Christophe Corvol

27 Machine Learning in Neuroimaging of Epilepsy . 879
Hyo Min Lee, Ravnoor Singh Gill, Neda Bernasconi,
and Andrea Bernasconi

28 Machine Learning in Multiple Sclerosis . 899
Bas Jasperse and Frederik Barkhof

29 Machine Learning for Cerebrovascular Disorders . 921
Yannan Yu and David Yen-Ting Chen

30 The Role of Artificial Intelligence in Neuro-oncology Imaging 963
Jennifer Soun, Lu-Aung Yosuke Masudathaya,
Arabdha Biswas, and Daniel S. Chow

31 Machine Learning for Neurodevelopmental Disorders. 977
Clara Moreau, Christine Deruelle, and Guillaume Auzias

32 Machine Learning and Brain Imaging for Psychiatric Disorders:
New Perspectives 1009
Ivan Brossollet, Quentin Gallet, Pauline Favre, and Josselin Houenou

Disclosure Statement of the Editor 1037
Index 1039

Contributors

ANA L. AGUILA • University College London, Centre for Medical Image Computing,
COMBINE Lab, London, UK

ANDRE ALTMANN • University College London, Centre for Medical Image Computing,
COMBINE Lab, London, UK

GUILLAUME AUZIAS • Aix-Marseille Université, CNRS, Institut de Neurosciences de la
Timone, Marseille, France

IRENE BALELLI • Université Côte d’Azur, Inria Sophia Antipolis, Epione Research Group,
Nice, France

IMON BANERJEE • Mayo Clinic, Phoenix, AZ, USA; Arizona State University, School of
Computing, Informatics, and Decision Systems Engineering, Tempe, AZ, USA

FREDERIK BARKHOF • Department of Radiology and Nuclear Medicine, Amsterdam
University Medical Center, Amsterdam, The Netherlands; Queen Square Institute of
Neurology and Centre for Medical Image Computing, University College, London, UK

ANDREA BERNASCONI • McGill University, Montreal Neurological Institute and Hospital,
Montreal, QC, Canada

NEDA BERNASCONI • McGill University, Montreal Neurological Institute and Hospital,
Montreal, QC, Canada

ARABDHA BISWAS • Department of Radiological Sciences, University of California, Irvine,
Irvine, CA, USA

MARTINA BOCCHETTA • UCL Queen Square Institute of Neurology, Dementia Research
Centre, London, UK; Centre for Cognitive and Clinical Neuroscience, Division of
Psychology, Department of Life Sciences, College of Health, Medicine and Life Sciences,
Brunel University, London, UK

DANIEL BOS • Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam,
The Netherlands; Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands

SIMONA BOTTANI • Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM,
CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France

ESTHER E. BRON • Biomedical Imaging Group Rotterdam, Department of Radiology and
Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands

IVAN BROSSOLLET • Neurospin, UNIACT Lab, PsyBrain Team, CEA Saclay, Gif-sur-Yvette,
France

NINON BURGOS • Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM,
CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France

ERIC BURGUIÈRE • Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM,
CNRS, Inserm, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France

FEDERICA CACCIAMANI • University of Bordeaux, Inserm, UMR Bordeaux Population
Health, PHARes Team, Bordeaux, France

ETIENNE CAMENEN • Sorbonne Université, Institut du Cerveau—Paris Brain Institute—
ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France

DAVID M. CASH • UCL Queen Square Institute of Neurology, Dementia Research Centre,
London, UK; UK Dementia Research Institute at UCL, London, UK

DAVID YEN-TING CHEN • Department of Medical Imaging, Taipei Medical University –
Shuang Ho Hospital, Zhonghe District, New Taipei City, Taiwan

xxvii

xxviii Contributors

MIN CHEN • University Pennsylvania, Department of Radiology, Philadelphia, PA, USA
WEIJIE CHEN • Division of Imaging, Diagnostics, and Software Reliability, Office of Science

and Engineering Laboratories, Center for Devices and Radiological Health, US Food and
Drug Administration, Silver Spring, MD, USA

DANIEL S. CHOW • Department of Radiological Sciences, University of California, Irvine,
Irvine, CA, USA

STERGIOS CHRISTODOULIDIS • Université Paris-Saclay, CentraleSupélec, Mathématiques et
Informatique pour la Complexité et les Systémes, Gif-sur-Yvette, France

SASHA COLLIN • Sorbonne Université, Institut du Cerveau – Paris Brain Institute – ICM,
CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France

OLIVIER COLLIOT • Sorbonne Université, Institut du Cerveau – Paris Brain Institute – ICM,
CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France

MARIE-CONSTANCE CORSI • Sorbonne Université, Institut du Cerveau—Paris Brain
Institute—ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, Paris,
France

JEAN-CHRISTOPHE CORVOL • Sorbonne Université, Institut du Cerveau – Paris Brain
Institute – ICM, CNRS, Inserm, AP-HP, Hôpital de la Pitié-Salpêtrière, Department of
Neurology, Paris, France

ROBIN COURANT • LIX, CNRS, Ecole Polytechnique, IP Paris, Paris, France; CNRS, IRISA,
INRIA, Univ. Rennes, Rennes, France

BAPTISTE COUVY-DUCHESNE • Sorbonne Université, Institut du Cerveau—Paris Brain
Institute—ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, Paris,
France; Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD,
Australia

VASA CURCIN • Department of Population Health Sciences, King’s College London, London,
United Kingdom

SUSMITA DAS • Indian Institute of Technology (IIT), Centre of Excellence in Artificial
Intelligence, Kharagpur, West Bengal, India

CHRISTOS DAVATZIKOS • Center for Biomedical Image Computing and Analytics, Perelman
School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

MARIE DEPREZ • Université Côte d’Azur, Inria Sophia Antipolis, Epione Research Group,
Nice, France

CHRISTINE DERUELLE • Aix-Marseille Université, CNRS, Institut de Neurosciences de la
Timone, Marseille, France

LIANE DOS SANTOS CANAS • King’s College London, School of Biomedical Engineering &
Imaging Sciences, London, UK

NICOLAS DUFOUR • LIX, CNRS, Ecole Polytechnique, IP Paris, Paris, France
DOMINIQUE DWYER • Department of Psychiatry and Psychotherapy, Ludwig-Maximilian

University, Munich, Germany
MAIKA EDBERG • LIX, CNRS, Ecole Polytechnique, IP Paris, Paris, France
STÉPHANE EPELBAUM • Sorbonne Université, Institut du Cerveau – Paris Brain Institute –

ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France; AP-
HP, Hôpital de la Pitié-Salpêtrière, Department of Neurology, Institut de la Mémoire et de
la Maladie d’Alzheimer (IM2A), Paris, France

FANG FANG • Karolinska Institutet (KI), Stockholm, Sweden
JOHANN FAOUZI • CREST, ENSAI, Campus de Ker-Lann, Bruz Cedex, France; Sorbonne

Université, Institut du Cerveau—Paris Brain Institute—ICM, CNRS, Inria, Inserm,
AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France

Contributors xxix

PAULINE FAVRE • Neurospin, UNIACT Lab, PsyBrain Team, CEA Saclay, Gif-sur-Yvette,
France; INSERM U955, Translational Neuropsychiatry Team, Faculté de Santé,
Université Paris Est Créteil, Créteil, France

DAVIDE FERRARI • Department of Population Health Sciences, King’s College London,
London, United Kingdom

MULUSEW FIKERE • Institute for Molecular Bioscience, The University of Queensland, St
Lucia, QLD, Australia

QUENTIN GALLET • Neurospin, UNIACT Lab, PsyBrain Team, CEA Saclay, Gif-sur-Yvette,
France; INSERM U955, Translational Neuropsychiatry Team, Faculté de Santé,
Université Paris Est Créteil, Créteil, France

MÉLINA GALLOPIN • Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS,
Université Paris-Saclay, Gif-sur-Yvette, France

JAMES C. GEE • University Pennsylvania, Department of Radiology, Philadelphia, PA, USA
RAVNOOR SINGH GILL • McGill University, Montreal Neurological Institute and Hospital,

Montreal, QC, Canada
JULIANA GONZALEZ-ASTUDILLO • Sorbonne Université, Institut du Cerveau—Paris Brain

Institute—ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, Paris,
France

GABRIEL HADDON-HILL • Department of Population Health Sciences, King’s College London,
London, United Kingdom

JOSHUA HARVEY • University of Exeter Medical School, RILD Building, RD&E Hospital
Wonford, Exeter, UK

RAVI HASSANALY • Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM,
CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France

JOSSELIN HOUENOU • Neurospin, UNIACT Lab, PsyBrain Team, CEA Saclay, Gif-sur-
Yvette, France; INSERM U955, Translational Neuropsychiatry Team, Faculté de Santé,
Université Paris Est Créteil, Créteil, France; APHP, Mondor Univ. Hospitals, DMU
Impact, Psychiatry Department, Créteil, France

DEWEI HU • Department of Electrical and Computer Engineering, Vanderbilt University,
Nashville, TN, USA

GYUJOON HWANG • Center for Biomedical Image Computing and Analytics, Perelman
School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

BAS JASPERSE • Department of Radiology and Nuclear Medicine, Amsterdam University
Medical Center, Amsterdam, The Netherlands

ROHIT JENA • University Pennsylvania, Department of Radiology, Philadelphia, PA, USA
GABRIEL JIMÉNEZ • Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM,

CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
VICKY KALOGEITON • LIX, CNRS, Ecole Polytechnique, IP Paris, Paris, France
SAI SANDEEP KANTAREDDY • Arizona State University, School of Computing, Informatics, and

Decision Systems Engineering, Tempe, AZ, USA
IRFAHAN KASSAM • Lee Kong Chian School of Medicine, Nanyang Technological University,

Singapore, Singapore
ANAHITA FATHI KAZEROONI • Institute for Mental Health and Centre for Human Brain

Health, School of Psychology, University of Birmingham, Birmingham, UK
STEFAN KLEIN • Biomedical Imaging Group Rotterdam, Department of Radiology and

Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands

xxx Contributors

DANIEL KRAINAK • Division of Radiological Health, Office of In Vitro Diagnostics and
Radiological Health, Center for Devices and Radiological Health, US Food and Drug
Administration, Silver Spring, MD, USA

PARIS ALEXANDROS LALOUSIS • Institute for Mental Health and Centre for Human Brain
Health, School of Psychology, University of Birmingham, Birmingham, UK

HYO MIN LEE • McGill University, Montreal Neurological Institute and Hospital, Montreal,
QC, Canada

GAËLLE LELANDAIS • Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS,
Université Paris-Saclay, Gif-sur-Yvette, France

VINCENT LEPETIT • LIGM, Ecole des Ponts, Univ Gustave Eiffel, CNRS, Marne-la-Vallée,
France

HAO LI • Department of Electrical and Computer Engineering, Vanderbilt University,
Nashville, TN, USA

PENELOPE A. LIND • Psychiatric Genetics, QIMR Berghofer Medical Research Institute,
Herston, QLD, Australia; School of Biomedical Sciences, Queensland University of
Technology, Kelvin Grove, QLD, Australia; School of Biomedical Sciences, Faculty of
Medicine, University of Queensland, St Lucia, QLD, Australia

HAN LIU • Department of Computer Science, Vanderbilt University, Nashville, TN, USA
QIANWEI LIU • Karolinska Institutet (KI), Stockholm, Sweden
MARCO LORENZI • Université Côte d’Azur, Inria Sophia Antipolis, Epione Research Group,

Nice, France
YI LU • Karolinska Institutet (KI), Stockholm, Sweden
LU-AUNG YOSUKE MASUDATHAYA • Department of Radiological Sciences, University of

California, Irvine, Irvine, CA, USA
MARC MODAT • King’s College London, School of Biomedical Engineering & Imaging

Sciences, London, UK
SIRENIA LIZBETH MONDRAGÓ N-GONZÁLEZ • Sorbonne Université, Institut du Cerveau—

Paris Brain Institute—ICM, CNRS, Inserm, AP-HP, Hôpital de la Pitié-Salpêtrière,
Paris, France

CLARA MOREAU • Human Genetics and Cognitive Functions, CNRS UMR 3571, Université
de Paris, Institut Pasteur, Paris, France

KARIM N’DIAYE • Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM,
CNRS, Inserm, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France

MARTA NABAIS • University of Exeter Medical School, RILD Building, RD&E Hospital
Wonford, Exeter, UK

WIRO J. NIESSEN • Biomedical Imaging Group Rotterdam, Department of Radiology and
Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands; Quantitative Imaging
Group, Department of Imaging Physics, Faculty of Applied Sciences, TU Delft, The
Netherlands

IPEK OGUZ • Department of Computer Science, Vanderbilt University, Nashville, TN, USA;
Department of Electrical and Computer Engineering, Vanderbilt University, Nashville,
TN, USA

SÉBASTIEN OURSELIN • King’s College London, School of Biomedical Engineering & Imaging
Sciences, London, UK

NEIL P. OXTOBY • UCL Centre for Medical Image Computing, Department of Computer
Science, University College London, London, UK

NICHOLAS PETRICK • Division of Imaging, Diagnostics, and Software Reliability, Office of
Science and Engineering Laboratories, Center for Devices and Radiological Health, US
Food and Drug Administration, Silver Spring, MD, USA

Contributors xxxi

THIBAULT POINSIGNON • Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS,
Université Paris-Saclay, Gif-sur-Yvette, France

PIERRE POULAIN • Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
DANIEL RACOCEANU • Sorbonne Université, Institut du Cerveau—Paris Brain Institute—

ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
THIBAULT ROLLAND • Sorbonne Université, Institut du Cerveau—Paris Brain Institute—

ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
BERKMAN SAHINER • Division of Imaging, Diagnostics, and Software Reliability, Office of

Science and Engineering Laboratories, Center for Devices and Radiological Health, US
Food and Drug Administration, Silver Spring, MD, USA

THIAGO SANTOS • Emory University, Department of Computer Science, Atlanta, GA, USA
JULIA SIDORENKO • Institute for Molecular Bioscience, The University of Queensland, St

Lucia, QLD, Australia
MARION SMITS • Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam,

The Netherlands
JENNIFER SOUN • Department of Radiological Sciences, University of California, Irvine,

Irvine, CA, USA
LACHLAN STRIKE • Queensland Brain Institute, the University of Queensland, St Lucia,

QLD, Australia
AMARA TARIQ • Mayo Clinic, Phoenix, AZ, USA
ELINA THIBEAU-SUTRE • Department of Applied Mathematics, Technical Medical Centre,

University of Twente, Enschede, The Netherlands; Sorbonne Université, Institut du
Cerveau – Paris Brain Institute – ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la
Pitié-Salpêtrière , Paris, France

NICHOLAS J. TUSTISON • University of Virginia, Department of Radiology and Medical
Imaging, Charlottesville, VA, USA

MARIA VAKALOPOULOU • Université Paris-Saclay, CentraleSupélec, Mathématiques et
Informatique pour la Complexité et les Systémes, Gif-sur-Yvette, France

ERDEM VAROL • Department of Statistics, Center for Theoretical Neuroscience, Zuckerman
Institute, Columbia University, New York, NY, USA

GAEL VAROQUAUX • Soda, Inria, Saclay, France
VIKRAM VENKATRAGHAVAN • Alzheimer Center Amsterdam, Neurology, Vrije Universiteit,

Amsterdam, The Netherlands; Amsterdam Neuroscience, Neurodegeneration, Amsterdam,
The Netherlands

SEBASTIAN R. VAN DER VOORT • Biomedical Imaging Group Rotterdam, Department of
Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands

WENJUAN WANG • Department of Population Health Sciences, King’s College London,
London, United Kingdom

JUNHAO WEN • Center for Biomedical Image Computing and Analytics, Perelman School of
Medicine, University of Pennsylvania, Philadelphia, PA, USA

MARKUS WENZEL • Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
MARGIE WRIGHT • Queensland Brain Institute, the University of Queensland, St Lucia,

QLD, Australia; Centre for Advanced Imaging, The University of Queensland, St Lucia,
QLD, Australia

ZHIJIAN YANG • Center for Biomedical Image Computing and Analytics, Perelman School of
Medicine, University of Pennsylvania, Philadelphia, PA, USA

YANNAN YU • Department of Radiology, University of California San Francisco, San
Francisco, CA, USA

Part I

Machine Learning Fundamentals

Chapter 1

A Non-technical Introduction to Machine Learning

Olivier Colliot

Abstract

This chapter provides an introduction to machine learning for a non-technical readership. Machine learning
is an approach to artificial intelligence. The chapter thus starts with a brief history of artificial intelligence in
order to put machine learning into this broader scientific context. We then describe the main general
concepts of machine learning. Readers with a background in computer science may skip this chapter.

Key words Machine learning, Artificial intelligence, Supervised learning, Unsupervised learning

1 Introduction

Machine learning (ML) is a scientific domain which aims at allow-
ing computers to perform tasks without being explicitly pro-
grammed to do so [1]. To that purpose, the computer is trained
using the examination of examples or experiences. It is part of a
broader field of computer science called artificial intelligence
(AI) which aims at creating computers with abilities that are char-
acteristic of human or animal intelligence. This includes tasks such
as perception (the ability to recognize images or sounds),
reasoning, decision-making, or creativity. Emblematic tasks which
are easy to perform for a human and are inherently difficult for a
computer are, for instance, recognizing objects, faces, or animals in
photographs or recognizing words in speech. On the other hand,
there are also tasks which are inherently easy for a computer and
difficult for a human, such as computing with large numbers or
memorizing exactly huge amounts of text. Machine learning is the
AI technique that has achieved the most impressive successes over
the past years. However, it is not the only approach to AI, and
conceptually different approaches also exist.

Machine learning also has close ties to other scientific fields.
First, it has evident strong links to statistics. Indeed, most machine
learning approaches exploit statistical properties of the data. More-
over, some classical approaches used in machine learning were

Olivier Colliot (ed.), Machine Learning for Brain Disorders, Neuromethods, vol. 197, https://doi.org/10.1007/978-1-0716-3195-9_1,
© The Author(s) 2023

3

actually invented in statistics (for instance, linear or logistic regres-
sion). Nowadays, there is a constant interplay between progress in
statistics and machine learning. ML has also important ties to signal
and image processing, ML techniques being efficient for many
applications in these domains and signal/image processing con-
cepts being often key to the design or understanding of ML tech-
niques. There are also various links to different branches of
mathematics, including optimization and differential geometry.
Besides, some inspiration for the design of ML approaches comes
from the observation of biological cognitive systems, hence the
connections with cognitive science and neuroscience. Finally, the
term data science has become commonplace to refer to the use of
statistical and computational methods for extracting meaningful
patterns from data. In practice, machine learning and data science
share many concepts, techniques, and tools. Nevertheless, data
science puts more emphasis on the discovery of knowledge from
the data, while machine learning focuses on solving tasks.

4 Olivier Colliot

This chapter starts by providing a few historical landmarks
regarding artificial intelligence and machine learning (Subheading
2). It then proceeds with the main concepts of ML which are
foundational to understand other chapters of this book.

2 A Bit of History

As a scientific endeavor, artificial intelligence is at least 80 years old.
Here, we provide a very brief overview of this history. For more
details, the reader may refer to [2]. A non-exhaustive timeline of AI
is shown in Fig. 1.

Fig. 1 A brief timeline of AI with some of the landmark advances

Introduction to Machine Learning 5

Even if this is debatable, one often considers AI to emerge in
the 1940s–1950s with a series of important concepts and events.
In 1943, the neurophysiologist Warren McCulloch and the logician
Walter Pitts proposed an artificial neuron model, which is a mathe-
matical abstraction of a biological neuron [3], and showed that sets
of neurons can compute logical operations. In 1948, the mathema-
tician and philosopher Norbert Wiener coined the term “cybernet-
ics” [4] to designate the scientific study of control and
communication in humans, animals, and machines. This idea that
such processes can be studied within the same framework in both
humans/animals and machines is a conceptual revolution. In 1949,
the psychologist Donald Hebb [5] described a theory of learning
for biological neurons which was later influential in the modifica-
tion of the weights of artificial neurons.

In 1950, Alan Turing, one of the founders of computer science,
introduced a test (the famous “Turing test”) for deciding if a
machine can think [6]. Actually, since the question can a machine
think? is ill-posed and depends on the definition of thinking, Turing
proposed to replace it with a practical test. The idea is that of a game
in which an interrogator is given the task of determining which of
two players A and B is a computer and which is a human (by using
only responses to written questions). In 1956, the mathematician
John McCarthy organized what remained as the famous Dart-
mouth workshop and which united ten prominent scientists for
2 months (among which were Marvin Minsky, Claude Shannon,
Arthur Samuel, and others). This workshop is more important by
its scientific program than by its outputs. Let us reproduce here the
first sentences of the proposal written by McCarthy et al. [7] as we
believe that they are particularly enlightening on the prospects of
artificial intelligence:

We propose that a 2 month, 10 man study of artificial intelligence be carried
out during the summer of 1956 at Dartmouth College in Hanover, New
Hampshire. The study is to proceed on the basis of the conjecture that every
aspect of learning or any other feature of intelligence can in principle be so
precisely described that a machine can be made to simulate it. An attempt
will be made to find how to make machines use language, form abstractions
and concepts, solve kinds of problems now reserved for humans, and
improve themselves. We think that a significant advance can be made in
one or more of these problems if a carefully selected group of scientists work
on it together for a summer.

There was no major advance made at the workshop, although a
reasoning program, able to prove theorems, was presented by Allen
Newell and Herbert Simon [8] at this occasion. This can be con-
sidered as the start of symbolic AI (we will come back later on the
two main families of AI: symbolic and connexionist). Let us end the
1950s with the invention, in 1958, of the perceptron by Frank
Rosenblatt [9], whose work was built upon the ideas of McCulloch,
Pitts, and Hebb. The perceptron was the first actual artificial

neuron. It was able to recognize images. This is an important
landmark for several reasons. The perceptron, with some modifica-
tions, is still the building block of modern deep learning algo-
rithms. To mimic an artificial neuron (Fig. 2), it is composed of a
set of inputs (which correspond to the information entering the
synapses) xi, which are linearly combined and then go through a
non-linear function g to produce an output y. This was an impor-
tant advance at the time, but it had strong limitations, in particular
its inability to discriminate patterns which are not linearly separable.
More generally, in the field of AI as a whole, unreasonable promises
had been made, and they were not delivered: newspapers were
writing about upcoming machines that could talk, see, write, and
think; the US government funded huge programs to design auto-
matic translation programs, etc. This led to a dramatic drop in
research funding and, more generally, in interest in AI. This is
often referred to as the first AI winter (Fig. 3).

6 Olivier Colliot

Even though research in AI continued, it was not before the
early 1980s that real-world applications were once again considered
possible. This wave was that of expert systems [10], which are a type
of symbolic AI approach but with domain-specific knowledge.
Expert systems led to commercial applications and to a real boom
in the industry. A specific programming language, called LISP [11],
became dominant for the implementation of expert systems. Com-
panies started building LISP machines, which were dedicated com-
puters with specific architecture tailored to execute LISP efficiently.
One cannot help thinking of a parallel with current hardware
dedicated to deep learning. However, once again, expectations
were not met. Expert systems were very large and complex sets of
rules. They were difficult to maintain and update. They also had
poor performances in perception tasks such as image and speech
recognition. Academic and industrial funding subsequently
dropped. This was the second AI winter.

At this stage, it is probably useful to come back to the two main
families of AI: symbolic and connexionist (Fig. 4). They had impor-
tant links at the beginning (see, e.g., the work of McCulloch and
Pitt aiming to perform logical operations using artificial neurons),
but they subsequently developed separately. In short, these two
families can be described as follows. The first operates on symbols
through sets of logical rules. It has strong ties to the domain of
predicate logic. Connexionism aims at training networks of artificial
neurons. This is done through the examination of training exam-
ples. More generally, it is acceptable to put most machine learning
methods within the connexionist family, even though they don’t
rely on artificial neuron models, because their underlying principle
is also to exploit statistical similarities in the training data. For a
more detailed perspective on the two families of AI, the reader can
refer to the very interesting (and even entertaining!) paper of
Cardon et al. [12].

Introduction to Machine Learning 7

(a)

(b)

Fig. 2 (a) Biological neuron. The synapses form the input of the neuron. Their signals are combined, and if the
result exceeds a given threshold, the neuron is activated and produces an output signal which is sent through
the axon. (b) The perceptron: an artificial neuron which is inspired by biology. It is composed of the set of
inputs (which correspond to the information entering the synapses) xi, which are linearly combined with
weights wi and then go through a non-linear function g to produce an output y. Image in panel (a) is courtesy of
Thibault Rolland

8 Olivier Colliot

Fig. 3 Summers and winters of AI

Fig. 4 Two families of AI. The symbolic approach operates on symbols through
logical rules. The connexionist family actually not only encompasses artificial
neural networks but more generally machine learning approaches

Let us come back to our historical timeline. The 1980s saw a
rebirth of connexionism and, more generally, the start of the rise of
machine learning. Interestingly, it is at that time that two of the
main conferences on machine learning started: the International
Conference on Machine Learning (ICML) in 1980 and Neural
Information Processing Systems (NeurIPS, formerly NIPS) in
1987. It had been known for a long time that neural networks
with multiple layers (as opposed to the original perceptron with a
single layer) (Fig. 5) could solve non-linearly separable problems,
but their training remained difficult. The back-propagation algo-
rithm for training multilayer neural networks was described by
David Rumelhart, Geoffrey Hinton, and Ronald Williams [13] in
1986, as well as by Yann LeCun in 1985 [14], who also refined the
procedure in his PhD thesis published in 1987. This idea had
actually been explored since the 1960s, but it was only in the
1980s that it was efficiently used for training multilayer neural
networks. Finally, in 1989, Yann LeCun proposed the convolu-
tional neural network [15], an architecture inspired by the organi-
zation of the visual cortex, whose principle is still at the core of

state-of-the-art algorithms for many image processing and recog-
nition tasks. Multilayer neural networks demonstrated their utility
in several real-world applications such as digit recognition on
checks and ZIP codes [16]. Nevertheless, they would not become
the dominant machine learning approach until the 2010s. Indeed,
at the time, they required considerable computing power for train-
ing, and there was often not enough training data.

Introduction to Machine Learning 9

Fig. 5 A multilayer perceptron model (here with only one hidden layer, but there
can be many more)

During the 1980s and 1990s, machine learning methods
continued to develop. Interestingly, connections between machine
learning and statistics increased. We are not going to provide an
overview of the history of statistics, but one should note that many
statistical methods such as linear regression [17], principal compo-
nent analysis [18], discriminant analysis [19], or decision trees [20]
can actually be used to solve machine learning tasks such as auto-
matic categorization of objects or prediction. In the 1980s, deci-
sion trees witnessed important developments (see, e.g., the ID3
[21] and CART [21] algorithms). In the 1990s, there were impor-
tant advances in the statistical theory of learning (in particular, the
works of Vladimir Vapnik [22]). A landmark algorithm developed
at that time was the support vector machine (SVM) [23] which
worked well with small training datasets and could handle
non-linearities through the use of kernels. The machine learning
field continued to expand through the 2000s and 2010s, with new
approaches but also more mature software packages such as scikit-
learn [24]. More generally, it is actually important to have in mind
that what is currently called AI owes more to statistics (and other
mathematical fields such as optimization in particular) than to
modeling of brain circuitry and that even approaches that take
inspiration from neurobiology can actually be viewed as complex
statistical machineries.

10 Olivier Colliot

2012 saw the revival of neural networks and the beginning of
the era of deep learning. It was undoubtedly propelled by the
considerable improvement obtained on the ImageNet recognition
challenge which contains 14 million natural images belonging to
20,000 categories. The solution, proposed by Alex Krizhevsky, Ilya
Sutskever, and Geoffrey Hinton [25], was a convolutional neural
network with a large number of layers, hence the term deep
learning. The building blocks of this solution were already present
in the 1980s, but there was not enough computing power nor large
training datasets for them to work properly. In the interval, things
had changed. Computers had become exponentially more power-
ful, and, in particular, the use of graphical processing units (GPU)
considerably sped up computations. The expansion of the Internet
had provided massive amounts of data of various sorts such as texts
and images. In the subsequent years, deep learning [26] approaches
became increasingly sophisticated. In parallel, efficient and mature
software packages including TensorFlow [27], PyTorch [28], or
Keras [29], whose development is supported by major companies
such as Google and Facebook, enable deep learning to be used
more easily by scientists and engineers.

Artificial intelligence in medicine as a research field is about
50 years old. In 1975, an expert system, called MYCIN, was
proposed to identify bacteria causing various infectious diseases
[30]. More generally, there was a growing interest in expert systems
for medical applications. Medical image processing also quickly
became a growing field. The first conference on Information Pro-
cessing in Medical Imaging (IPMI) was held in 1977 (it existed
under a different name since 1969). The first SPIE Medical Image
Processing conference took place in 1986, and the Medical Image
Computing and Computer-Assisted Intervention (MICCAI) con-
ference started in 1998. Image perception tasks, such as segmenta-
tion or classification, soon became among the key topics of this
field, even though the methods came in majority from traditional
image processing and not from machine learning. In the 2010s,
machine learning approaches became dominant for medical image
processing and more generally in artificial intelligence in medicine.

To conclude this part, it is important to be clear about the
different terms, in particular those of artificial intelligence, machine
learning, and deep learning (Fig. 6). Machine learning is one
approach to artificial intelligence, and other radically different
approaches exist. Deep learning is a specific type of machine
learning approach. It has recently obtained impressive results on
some types of data (in particular, images and text), but this does not
mean that it is the universal solution to all problems. As we will see
in this book, there are tasks for which other types of approaches
perform best.

(continued)

Introduction to Machine Learning 11

Fig. 6 Artificial intelligence, machine learning, and deep learning are not
synonymous. Deep learning is a type of machine learning which involves
neural networks with a large number of hidden layers. Machine learning is one
approach to artificial intelligence, but other approaches exist

3 Main Machine Learning Concepts

As aforementioned, machine learning aims at making a computer
capable of performing a task without explicitly being programmed
for that task. More precisely, it means that one will not write a
sequence of instructions that will directly perform the considered
task. Instead, one will write a program that allows the computer to
learn how to perform the task by examining examples or experi-
ences. The output of this learning process is a computer program
itself that performs the desired task, but this program was not
explicitly written. Instead, it has been learned automatically by the
computer.

In 1997, Tom Mitchell gave a more precise definition of a
well-posed machine learning problem [31]:

A computer program is said to learn from experience E with respect to some
task T and some performance measure P, if its performance at task T, as
measured by P, improves with experience E.

He then provides the example of a computer that learns to play
checkers: task T is playing checkers, performance measure P is the
proportion of games won, and the training experience E is playing
checker games against itself. Very often, the experience E will not
be an actual action but the observation of a set of examples, for
instance, a set of images belonging to different categories, such as
photographs of cats and dogs, or medical images containing tumors
or without lesions. Please refer to Box 1 for a summary.

Box 1: Definition of machine learning
Machine learning definition [31]:

a computer program is said to learn from experience E with respect to
some task T and some performance measure P, if its performance at
task T, as measured by P, improves with experience E.

(continued)

12 Olivier Colliot

Box 1 (continued)
Example: learning to detect tumors from medical images

• Task T: detect tumors from medical image

• Performance measure P: proportion of tumors correctly
identified

• Experience E: examining a dataset of medical images where
the presence of tumors has been annotated

3.1 Types of

Learning

One usually considers three main types of learning: supervised
learning, unsupervised learning, and reinforcement learning (Box
2). In both supervised and unsupervised learning, the experience E
is actually the inspection of a set of examples, which we will refer to
as training examples or training set.

Box 2: Supervised, Unsupervised, and Reinforcement
learning
• Supervised learning. Learns from labeled examples, i.e.,

examples for which the output that we are trying to learn is
known

– Example 1. The task is computer-aided diagnosis
(a classification problem), and the label can be the diagno-
sis of each patient, as defined by an expert physician.

– Example 2. The task is the prediction of the age of a person
from a set of biological variables (e.g., a brain MRI). This is
a regression problem. The label is the true age of a given
person in the training set.

• U

–

nsupervised learning. Learns from unlabeled examples

Example 1. Given a large set of newspaper articles, auto-
matically cluster them into groups dealing with the same
topic based only on the text of the article. The topics can,
for example, be economics, politics, or international
affairs. The topics are not known a priori.

– Example 2. Given a set of patients with autism spectrum
disorders, the aim is to discover a cluster of patients that
share the same characteristics. The clusters are not known a
priori. Examples 1 and 2 will be referred to as clustering
tasks.

– Example 3. Given a large set of medical characteristics
(various biological measurements, clinical and cognitive
tests, medical images), find a small set of variables that
best explain the variability of the dataset. This is a
dimensionality reduction problem.

–

Introduction to Machine Learning 13

Box 2 (continued)
• Reinforcement learning. Learns by iteratively performing

actions to maximize some reward

– Classical approach used for learning to play games (chess,
go, etc.) or in the domain of robotics

Currently few applications in the domain of brain diseases

3.1.1 Supervised

Learning

In supervised learning, the machine learns to perform a task by
examining a set of examples for which the output is known (i.e., the
examples have been labeled). The two most common tasks in
supervised learning are classification and regression (Fig. 7). Classi-
fication aims at assigning a category for each sample. The examples
can, for instance, be different patients, and the categories are the
different possible diagnoses. The outputs are thus discrete. Exam-
ples of common classification algorithms include logistic regression
(in spite of its name, it is a classification method), linear discrimi-
nant analysis, support vector machines, random forest classifiers,
and deep learning models for classification. In regression, the out-
put is a continuous number. This can be, for example, the future
clinical score of a patient that we are trying to predict. Examples of
common regression methods include simple or multiple linear
regression, penalized regression, and random forest regression.
Finally, there are many other tasks that can be framed as a super-
vised learning problem, including, for example, data synthesis,
image segmentation, and many others which will be described in
other chapters of this book.

3.1.2 Unsupervised

Learning

In unsupervised learning, the examples are not labeled. The two
most common tasks in unsupervised learning are clustering and
dimensionality reduction (Fig. 8). Clustering aims at discovering
groups within the training set, but these groups are not known a
priori. The objective is to find groups such that members of the
same group are similar, while members of different groups are
dissimilar. For example, one can aim to discover disease subtypes
which are not known a priori. Some classical clustering methods
are k-means or spectral clustering, for instance. Dimensionality
reduction aims at finding a space of variables (of lower dimension
than the input space) that best explain the variability of the
training data, given a larger set of input variables. This produces a
new set of variables that, in general, are not among the input
variables but are combinations of them. Examples of such methods
include principal component analysis, Laplacian eigenmaps, or
variational autoencoders.

14 Olivier Colliot

Classification

20 30 40 50 60
Age (in years)

17.5

20.0

22.5

25.0

27.5

30.0

B
od

y
m
as
s
in
de
x

Regression

Fig. 7 Two of the main supervised learning tasks: classification and regression.
The upper panel presents a classification task which aims at linearly separating
the orange and the blue class. Each sample is described by two variables. The
lower panel presents a linear regression task in which the aim is to predict the
body mass index from the age of a person. Figure courtesy of Johann Faouzi

3.1.3 Reinforcement

Learning

In reinforcement learning, the machine will take a series of actions
in order to maximize a reward. This can, for example, be the case of
a machine learning to play chess, which will play games against itself
in order to maximize the number of victories. These methods are
widely used for learning to play games or in the domain of robotics.
So far, they have had few applications to brain diseases and will not
be covered in the rest of this book.

3.1.4 Discussion Unsupervised learning is obviously attractive because it does not
require labels. Indeed, acquiring labels for a training set is usually
time-consuming and expensive because the labels need to be
assigned by a human. This is even more problematic in medicine
because the labels must be provided by experts in the field. It is thus
in principle attractive to adopt unsupervised strategies, even for

tasks which could be framed as supervised learning problems. Nev-
ertheless, up to now, the performances of supervised approaches are
often vastly superior in many applications. However, in the past
years, an alternative strategy called self-supervised learning, where
the machine itself provides its own supervision, has emerged. This is
a promising approach which has already led to impressive results in
different fields such as natural language processing in particular
[32–34].

Introduction to Machine Learning 15

Clustering

Fig. 8 Clustering task. The algorithm automatically identifies three groups
(corresponding to the red circles) from unlabeled examples (the blue dots).
The groups are not known a priori. Figure courtesy of Johann Faouzi

3.2 Overview of the

Learning Process

In this section, we aim at formalizing the main concepts underlying
most supervised learning methods. Some of these concepts, with
modifications, also extend to unsupervised cases.

The task that we will consider will be to provide an output,
denoted as y, from an input given to the computer, denoted as x. At
this moment, the nature of x does not matter. It can, for example,
be any possible photograph as in the example presented in Fig. 9.
It could also be a single number, a series of numbers, a text, etc. For
now, the nature of y can also be varied. Typically, in the case of
regression, it can be a number. In the case of classification, it
corresponds to a label (for instance, the label “cat” in our example).
For now, you do not need to bother about how these data (images,
labels, etc.) are represented in a computer. For those without a
background in computer science, this will be briefly covered in
Subheading 3.3.

Learning will aim at finding a function f that can transform
x into y, that is, such that y= f(x). For now, f can be of any type—

just imagine it as an operation that can associate a given x with a
given y. In Chap. the functions f will be artificial neural networks.
Learning aims at finding a function f which will provide the correct
output for each given input. Let us call the loss function and denote
ℓ a function that measures the error that is made by the function f.
The loss function takes two arguments: the true output y and the
predicted output f(x). The lower the loss function value, the closer
the predicted output is to the true output. An example of loss
function is the classical least squares loss ℓ(y, f(x))= (y - f(x))2,
but many others exist. Ideally, the best function f would be the one
that produces the minimal error for any possible input x and asso-
ciated output y, not only those which we have at our disposal, but
any other possible new data. Of course, we do not have any possible
data at our disposal. Thus, we are going to use a set of data called
the training set. In supervised learning, this set is labeled, i.e., for
each example in this set, we know the value of both x and y. Let us
denote as (x(1), y(1)), . . ., (x(n), y(n)) the n examples of the training

3,

16 Olivier Colliot

Fig. 9 Main concepts underlying supervised learning, here in the case of classification. The aim is to be able to
recognize the content of a photograph (the input x) which amounts to assigning it a label (the output y). In other
words, we would like to have a function f that transforms x into y. In order to find the function f, we will make
use of a training set (x(1) , y(1)), . . ., (x(n) , y(n)) (which in our case is a set of photographs which have been
labeled). All images come from https://commons.wikimedia.org/ and have no usage restriction

set which are n pairs of inputs and outputs. We are now going to
search for the function f that makes the minimum error over the
n samples of the training set. In other words, we are looking for the
function which minimizes the average error over the training set.
Let us call this average error the cost function:

Introduction to Machine Learning 17

J ðf Þ=
1
n

n

i =1

ℓ yðiÞ, f ðxðiÞÞ

Learning will then aim at finding the function f̂ which mini-
mizes the cost function:

f̂ = argmin
f ∈F

1
n

n

i =1

ℓ yðiÞ, f ðxðiÞÞ

In the above equation, argmin indicates that we are interested
in the function f that minimizes the cost J(f) and not in the value of
the cost itself. F is the space that contains all admissible functions.
F can, for instance, be the set of linear functions or the set of neural
networks with a given architecture.

The procedure that will aim at finding f that minimizes the cost
is called an optimization procedure. Sometimes, the minimum can
be find analytically (i.e., by directly solving an equation for f), but
this will rarely be the case. In other cases, one will resort to an
iterative procedure (i.e., an algorithm): the function f is iteratively
modified until we find the function which minimizes the cost.
There are cases where we will have an algorithm that is guaranteed
to find the global minimum and others where one will only find a
local minimum.

Minimizing the errors on the training set does not guarantee
that the trained computer will perform well on new examples which
were not part of the training set. A first reason may be that the
training set is too different from the general population (for
instance, we have trained a model on a dataset of young males,
and we would like to apply it to patients of any gender and age).
Another reason is that, even if the training set characteristics follow
those of the general population, the learned function f may be too
specific to the training set. In other words, it has learned the
training set “by heart” but has not discovered a more general rule
that would work for other examples. This phenomenon is called
overfitting and often arises when the dimensionality of the data is
too high (there are many variables to represent an input), when the
training set is too small, or when the function f is too flexible. A way
to prevent overfitting will be to modify the cost function so that it
not only represents the average error across training samples but
also constrains the function f to have some specific properties.

18 Olivier Colliot

Table 1
Example where the input is a series of number. Here each patient is
characterized by several variables

Age (years) Height (cm) Weight (kg)

Patient 1 52.5 172 52

Patient 2 75.1 182 78

Patient 3 32.7 161 47

Patient 4 45 190 92

3.3 Inputs and

Features

In the previous section, we made no assumption on the nature of
the input x. It could be an image, a number, a text, etc.

The simplest form of input that one can consider is when x is a
single number. Examples include age, clinical scores, etc. However,
for most problems, characterization of a patient cannot be done
with a single number but requires a large set of measurements
(Table 1). In such a case, the input can be a series of numbers
x1, . . ., xp which can be arranged into a vector:

x =

x1

⋮

xp

However, there are cases where the input is not a vector of
numbers. This is the case when the input is a medical image, a text,
or a DNA sequence, for instance. Of course, in a computer, every-
thing is stored as numbers. An image is an array of values represent-
ing the grayscale intensity of each pixel (Fig. 10). A text is a
sequence of characters which are each coded as a number. However,
unlike in the example presented in Table 1, these numbers are not
meaningful by themselves. For this reason, a common approach is
to extract features, which will be series of numbers that meaning-
fully represent the input. For example, if the input is a brain
magnetic resonance image (MRI), relevant features could be the
volumes of different anatomical regions of the brain (this specific
process is done using a technique called image segmentation which
is covered in another chapter). This would result in a series of
numbers that would form an input vector. The development of
efficient methods for extracting meaningful features from raw data
is important in machine learning. Such an approach is often called
feature engineering. Deep learning methods allow for avoiding
extracting features by providing an end-to-end approach from the
raw data to the output. In some areas, this has made feature
engineering less important, but there are still applications where
the so-called handcrafted features are competitive with deep
learning methods.

Introduction to Machine Learning 19

Fig. 10 In a computer, an image is represented as an array of numbers. Each number corresponds to the gray
level of a given pixel. Here the example is a slice of an anatomical MRI which has been severely undersampled
so that the different pixels are clearly visible. Note that an anatomical MRI is actually a 3D image and would
thus be represented by a 3D array rather than by a 2D array. Image courtesy of Ninon Burgos

3.4 Illustration in a

Simple Case

We will now illustrate step by step the above concepts in a very
simple case: univariate linear regression. Univariate means that the
input is a single number as in the example shown in Fig. 7. Linear
means that the model f will be a simple line. The input is a number
x and the output is a number y. The loss will be the least
squares loss: ℓ(y, f(x))= (y - f(x))2 . The model f will be a linear
function of x that is f(x)=w1x+w0 and corresponds to the equa-
tion of a line, w1 being the slope of the line and w0 the intercept. To
further simplify things, we will consider the case where there is no
intercept, i.e., the line passes through the origin. Different values of
w1 correspond to different lines (and thus to different functions f)
and to different values of the cost function J(f), which can be in
our case rewritten as J(w1) since f only depends on the parameter w1

(Fig. 11). The best model is the one for which J(w1) is minimal.
How can we find w1 such that J(w1) is minimal? We are going to

use the derivative of J: dJ dw1
. A minimum of J(w1) is necessarily such

that dJ dw1
=0 (in our specific case, the converse is also true). In our

case, it is possible to directly solve dJ
dw1

=0. This will nevertheless
not be the case in general. Very often, it will not be possible to solve
this analytically. We will thus resort to an iterative algorithm. One
classical iterative method is gradient descent. In the general case,
f depends not on only one parameter w1 but on a set of parameters
(w1, . . ., wp) which can be assembled into a vector w. Thus, instead
of working with the derivative dJ dw1

, we will work with the gradient
∇wJ. The gradient is a vector that indicates the direction that one
should follow to climb along J. We will thus follow the opposite of
the gradient, hence the name gradient descent. This process is
illustrated in Fig. 12, together with the corresponding algorithm.

20 Olivier Colliot

Fig. 11 We illustrate the concepts of supervised learning on a very simple case: univariate linear regression
with no intercept. Training samples correspond to the black circles. The different models f(x)=w1x
correspond to the different lines. Each model (and thus each value of the parameter w1) corresponds to a
value of the cost J(w1). The best model (the blue line) is the one which minimizes J(w1); here it corresponds to
the line with a slope w1= 1

repeat
w1 ← w1 − η dJ

dw1

until convergence;

Fig. 12 Upper panel: Illustration of the concept of gradient descent in a simple case where the model f is
defined using only one parameter w1. The value of w1 is iteratively updated by following the opposite of the
gradient. Lower panel: Gradient descent algorithm where η is the learning rate, i.e., the speed at which w1 will
be updated

ð Þ ð Þ

ð Þ

Introduction to Machine Learning 21

4 Conclusion

This chapter provided an introduction to machine learning
(ML) for a non-technical readership (e.g., physicians, neuroscien-
tists, etc.). ML is an approach to artificial intelligence and thus
needs to be put into this larger context. We introduced the main
concepts underlying ML that will be further expanded in
Chaps. 2–6. The reader can find a summary of these main concepts,
as well as notations, in Box 3.

B
•
ox 3: Summary of main concepts
The input x

• The output y

• The training samples (x(1) , y(1)), . . ., (x(n) , y(n))

• The model: transforms the input into the output

f such that y= f(x)

• The set of possible models F

• The loss: measures the error between the predicted and the
true output, for a given sample

ℓ(y, f(x))

• The cost function: measures the average error across the
training samples

J f = 1 n
n
i =1ℓ y

ðiÞ, f xðiÞ

• Learning process: finding the model which minimizes the cost
function

f̂ = argmin f ∈F J f

Acknowledgements

The author would like to thank Johann Faouzi for his insightful
comments. This work was supported by the French government
under management of Agence Nationale de la Recherche as part of
the “Investissements d’avenir” program, reference ANR-19-P3IA-
0001 (PRAIRIE 3IA Institute) and reference ANR-10-IAIHU-06
(Institut Hospitalo-Universitaire ICM).

22 Olivier Colliot

References

1. Samuel AL (1959) Some studies in machine
learning using the game of checkers. IBM J
Res Dev 3(3):210–229

2. Russell S, Norvig P (2002) Artificial intelli-
gence: a modern approach. Pearson, London

3. McCulloch WS, Pitts W (1943) A logical cal-
culus of the ideas immanent in nervous activity.
Bull Math Biophys 5(4):115–133

4. Wiener N (1948) Cybernetics or control and
communication in the animal and the machine.
MIT Press, Cambridge

5. Hebb DO (1949) The organization of behav-
ior. Wiley, New York

6. Turing AM (1950) Computing machinery and
intelligence. Mind 59(236):433–360

7. McCarthy J, Minsky ML, Rochester N, Shan-
non CE (1955) A proposal for the Dartmouth
summer research project on artificial intelli-
g e n c e . R e s e a r c h R e p o r t . h t t p : //
raysolomonof f.com/dar tmouth/boxa/
dart564props.pdf

8. Newell A, Simon H (1956) The logic theory
machine–a complex information processing
system. IRE Trans Inf Theory 2(3):61–79

9. Rosenblatt F (1958) The perceptron: a proba-
bilistic model for information storage and
organization in the brain. Psychol Rev 65(6):
386

10. Buchanan BG, Shortliffe EH (1984) Rule-
based expert systems: the MYCIN experiments
of the Stanford Heuristic Programming Proj-
ect. Addison-Wesley, Boston

11. McCarthy J (1960) Recursive functions of
symbolic expressions and their computation
by machine, part I. Commun ACM 3(4):
184–195

12. Cardon D, Cointet JP, Mazières A, Libbrecht E
(2018) Neurons spike back. Reseaux 5:173–
220. https://neurovenge.antonomase.fr/
RevengeNeurons_Reseaux.pdf

13. Rumelhart DE, Hinton GE, Williams RJ
(1986) Learning representations by back-
propagating errors. Nature 323(6088):
533–536

14. Le Cun Y (1985) Une procédure d’apprentis-
sage pour réseau à seuil assymétrique. Cogni-
tiva 85:599–604

15. LeCun Y, Boser B, Denker JS, Henderson D,
Howard RE, Hubbard W, Jackel LD (1989)
Backpropagation applied to handwritten zip

code recognition. Neural Comput 1(4):
541–551

16. Matan O, Baird HS, Bromley J, Burges CJC,
Denker JS, Jackel LD, Le Cun Y, Pednault
EPD, Satterfield WD, Stenard CE et al (1992)
Reading handwritten digits: a zip code recog-
nition system. Computer 25(7):59–63

17. Legendre AM (1806) Nouvelles méthodes
pour la détermination des orbites des comètes.
Firmin Didot

18. Pearson K (1901) On lines and planes of closest
fit to systems of points in space. The London,
Edinburgh, and Dublin Philosophical Maga-
zine and Journal of Science 2(11):559–572

19. Fisher RA (1936) The use of multiple measure-
ments in taxonomic problems. Ann Eugenics
7(2):179–188

20. Loh WY (2014) Fifty years of classification and
regression trees. Int Stat Rev 82(3):329–348

21. Quinlan JR (1986) Induction of decision trees.
Mach Learn 1(1):81–106

22. Vapnik V (1999) The nature of statistical
learning theory. Springer, Berlin

23. Boser BE, Guyon IM, Vapnik VN (1992) A
training algorithm for optimal margin
classifiers. In: Proceedings of the fifth annual
workshop on computational learning theory,
pp 144–152

24. Pedregosa F, Varoquaux G, Gramfort A,
Michel V, Thirion B et al (2011) Scikit-learn:
Machine learning in python. J Mach Learn Res
12:2825–2830

25. Krizhevsky A, Sutskever I, Hinton GE (2012)
ImageNet classification with deep convolu-
tional neural networks. In: Advances in neural
information processing systems, vol 25, pp
1097–1105

26. LeCun Y, Bengio Y, Hinton G (2015) Deep
learning. Nature 521(7553):436–444

27. Abadi M, Agarwal A et al (2015) TensorFlow:
Large-scale machine learning on heteroge-
neous systems. https://www.tensorflow.org/,
software available from tensorflow.org

28. Paszke A, Gross S, Massa F, Lerer A,
Bradbury J, Chanan G, Killeen T, Lin Z,
Gimelshein N, Antiga L et al (2019) PyTorch:
An imperative style, high-performance deep
learning library. In: Advances in neural infor-
mation processing systems, vol 32, pp
8026–8037

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International
License , which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.

(http://creativecommons.org/licenses/by/4.0/)

Introduction to Machine Learning 23

29. Chollet F et al (2015) Keras. https://github.
com/fchollet/keras

30. Shortliffe E (1976) Computer-based medical
consultations: MYCIN. Elsevier, Amsterdam

31. Mitchell T (1997) Machine learning. McGraw
Hill, New York

32. Mikolov T, Chen K, Corrado G, Dean J (2013)
Efficient estimation of word representations in
vector space. arXiv preprint arXiv:13013781

33. Radford A, Narasimhan K, Salimans T, Sutsk-
ever I (2018) Improving language understand-
ing by generative pre-training. https://cdn.
openai.com/research-covers/language-unsu
pervised/language_understanding_paper.pdf

34. Devlin J, Chang MW, Lee K, Toutanova K
(2018) Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv
preprint arXiv:181004805

Chapter 2

Classic Machine Learning Methods

Johann Faouzi and Olivier Colliot

Abstract

In this chapter, we present the main classic machine learning methods. A large part of the chapter is devoted
to supervised learning techniques for classification and regression, including nearest neighbor methods,
linear and logistic regressions, support vector machines, and tree-based algorithms. We also describe the
problem of overfitting as well as strategies to overcome it. We finally provide a brief overview of unsuper-
vised learning methods, namely, for clustering and dimensionality reduction. The chapter does not cover
neural networks and deep learning as these will be presented in Chaps. 3, 4, 5, and 6.

Key words Machine learning, Classification, Regression, Clustering, Dimensionality reduction

1 Introduction

This chapter presents the main classic machine learning
(ML) methods. There is a focus on supervised learning methods
for classification and regression, but we also describe some unsu-
pervised approaches. The chapter is meant to be readable by some-
one with no background in machine learning. It is nevertheless
necessary to have some basic notions of linear algebra, probabilities,
and statistics. If this is not the case, we refer the reader to Chapters
2 and 3 of [1].

The rest of this chapter is organized as follows. Rather than
grouping methods by categories (for instance, classification or
regression methods), we chose to present methods by increasing
order of complexity. We first provide the notations in Subheading
2. We then describe a very intuitive family of methods, that of
nearest neighbors (Subheading 3). We continue with linear regres-
sion (Subheading 4) and logistic regression (Subheading 5), the
latter being a classification technique. We subsequently introduce
the problem of overfitting (Subheading 6) as well as strategies to
mitigate it (Subheading 7). Subheading 8 describes support vector
machines (SVM). Subheading 9 explains how binary classification
methods can be extended to a multi-class setting. We then describe

Olivier Colliot (ed.), Machine Learning for Brain Disorders, Neuromethods, vol. 197, https://doi.org/10.1007/978-1-0716-3195-9_2,
© The Author(s) 2023

25

methods which are specifically adapted to the case of normal dis-
tributions (Subheading 10). Decision trees and random forests are
described in Subheading 11. We then briefly describe some unsu-
pervised learning techniques, namely, for clustering (Subheading
12) and dimensionality reduction (Subheading 13). The chapter
ends with a description of kernel methods which can be used to
extend linear techniques to non-linear cases (Subheading 14).
Box 1 summarizes the methods presented in this chapter, grouped
by categories and then sorted in order of appearance.

26 Johann Faouzi and Olivier Colliot

Box 1: Main Classic ML Methods

• Supervised learning

– Classification: nearest neighbors, logistic regression, sup-
port vector machine (SVM), naive Bayes, linear discrimi-
nant analysis (LDA), quadratic discriminant analysis, tree-
based models (decision tree, random forest, extremely
randomized trees)

– Regression: nearest neighbors, linear regression, support
vector machine regression, tree-based models (decision
tree, random forest, extremely randomized trees), kernel
ridge regression

• Unsupervised learning

– Clustering: k-means, Gaussian mixture model

– Dimensionality reduction: principal component analysis
(PCA), linear discriminant analysis (LDA), kernel principal
component analysis

2 Notations

Let n be the number of samples and p be the number of features. An
input sample is thus a p-dimensional vector:

x =

x1

⋮

xp

An output sample is denoted by y. Thus, a sample is (x, y). The
dataset of n samples can then be summarized as an n× p matrix X
representing the input data and an n-dimensional vector y repre-
senting the target data:

Classic Machine Learning Methods 27

X =

xð1Þ

⋮

xðnÞ
=

x
ð1Þ
1 . . . x

ð1Þ
p

⋮ ⋱ ⋮

x
ðnÞ
1 . . . x

ðnÞ
p

, y =

y1

⋮

yn

The input space is denoted by I, and the set of training samples is
denoted by X.

In the case of regression, y is a real number. In the case of
classification, y is a single label. More precisely, y can only take one
of a finite set of values called labels. The set of possible classes (i.e.,
labels) is denoted by C = fC 1, . . ., C qg, with q being the number of
classes. As the values of the classes are not meaningful, when there
are only two classes, the classes are often called the positive and
negative classes. In this case and also for mathematical reasons,
without loss of generality, we assume the values of the classes to
be + 1 and -1.

3 Nearest Neighbor Methods

One of the most intuitive approaches to machine learning is nearest
neighbors. It is based on the following intuition: for a given input,
its corresponding output is likely to be similar to the outputs of
similar inputs. A real-life metaphor would be that if a subject has
similar characteristics than other subjects who were diagnosed with
a given disease, then this subject is likely to also be suffering from
this disease.

More formally, nearest neighbor methods use the training
samples from the neighborhood of a given point x, denoted by
N(x), to perform prediction [2].

For regression tasks, the prediction is computed as a weighted
mean of the target values in N(x):

ŷ =
xðiÞ∈N ðxÞ

w
ðxÞ
i yðiÞ

where w
ðxÞ
i is the weight associated with x(i) to predict the output of

x, with w
ðxÞ
i ≥0 8i and iw

ðxÞ
i =1.

For classification tasks, the predicted label corresponds to the
label with the largest weighted sum of occurrences of each label:

ŷ = arg max
C xðiÞ∈N ðxÞ

w
ðxÞ
i 1yðiÞ = C k

A key parameter of nearest neighbor methods is the metric,
denoted by d, that is, a mathematical function that defines dissimi-
larity. The metric is used to define the neighborhood of any point
and can also be used to compute the weights.

28 Johann Faouzi and Olivier Colliot

3.1 Metrics Many metrics have been defined for various types of input data such
as vectors of real numbers, integers, or booleans. Among these
different types, vectors of real numbers are one of the most com-
mon types of input data, for which the most commonly used metric
is the Euclidean distance, defined as:

8x, x ′∈ I , kx - x ′ k2 =
p

j =1

ðxj - x 0 j Þ2

The Euclidean distance is sometimes referred to as the “ordinary”
distance since it is the one based on the Pythagorean theorem and
that everyone uses in their everyday lives.

3.2 Neighborhood The two most common definitions of the neighborhood rely on
either the number of neighbors or the radius around the given
point. Figure 1 illustrates the differences between both definitions.

The k-nearest neighbor method defines the neighborhood of a
given point x as the set of the k closest points to x:

N ðxÞ= fxðiÞgk i =1 with dðx, xð1ÞÞ≤ . . . ≤ dðx, xðnÞÞ
The radius neighbor method defines the neighborhood of a

given point x as the set of points whose dissimilarity to x is smaller
than the given radius, denoted by r:

N ðxÞ= fxðiÞ∈X j dðx, xðiÞÞ< rg

0.0 0.5 1.0

0.00

0.25

0.50

0.75

1.00

k-nearest neighbors (k = 5)

0.0 0.5 1.0

Radius neighbors (r = 0.2)

Fig. 1 Different definitions of the neighborhood. On the left, the neighborhood of
a given point is the set of its five nearest neighbors. On the right, the neighbor-
hood of a given point is the set of points whose dissimilarity is lower than the
radius. For a given input, its neighborhood may be different depending on the
definition used. The Euclidean distance is used as the metric in both examples

that is, if the metric d satisfies the following properties:

Classic Machine Learning Methods 29

3.3 Weights The two most common approaches to compute the weights are
to use:

• Uniform weights (all the weights are equal):

8i, wðxÞ
i =

1
jN ðxÞj

• Weights inversely proportional to the dissimilarity:

8i, wðxÞ
i =

1

dðxðiÞ, xÞ
j

1

dðxðjÞ, xÞ
=

1

dðxðiÞ, xÞ j
1

dðxðjÞ, xÞ

With uniform weights, every point in the neighborhood equally
contributes to the prediction. With weights inversely proportional
to the dissimilarity, closer points contribute more to the prediction
than further points. Figure 2 illustrates the different decision func-
tions obtained with uniform weights and weights inversely propor-
tional to the dissimilarity for a 3-nearest neighbor classification
model.

3.4 Neighbor Search The brute-force method to compute the neighborhood for
n points with p features is to compute the metric for each pair of
inputs, which has a Oðn2 pÞ algorithmic complexity (assuming that
evaluating the metric for a pair of inputs has a complexity of OðpÞ,
which is the case for most metrics). However, it is possible to
decrease this algorithmic complexity if the metric is a distance,

1. Non-negativity: 8a, b, d(a, b)≥0

2. Identity: 8a, b, d(a, b)=0 if and only if a= b

Training samples Uniform weights
Weights inversely proportional

to the dissimilarity

Fig. 2 Impact of the definition of the weights on the prediction function of a
3-nearest neighbor classification model. When the weights are inversely propor-
tional to the dissimilarity, the classifier is more subject to outliers since the
predictions in the close neighborhood of any input are mostly dedicated by the
label of this input, independently of the number of neighbors used. With uniform
weights, the prediction function tends to be smoother

s

30 Johann Faouzi and Olivier Colliot

3. Symmetry: 8a, b, d(a, b)= d(b, a)

4. Triangle inequality: 8a, b, c, d(a, b) + d(b, c)≥ d(a, c)

The key property is the triangle inequality, which has a simple
interpretation: the shortest path between two points is a straight
line. Mathematically, if a is far from c and c is close to b (i.e., d(a, c)
is large and d(b, c) is small), then a is far from b (i.e., d(a, b) i
large). This is obtained by rewriting the triangle inequality as
follows:

8a, b, c, dða, bÞ≥ dða, cÞ- dðb, cÞ
This means that it is not necessary to compute d(a, b) in this case.
Therefore, the computational cost of a nearest neighbor search can
be reduced to OðnlogðnÞpÞ or better, which is a substantial
improvement over the brute-force method for large n. Two popu-
lar methods that take advantage of this property are the K-dimen-
sional tree structure [3] and the ball tree structure [4].

4 Linear Regression

Linear regression is a regression model that linearly combines the
features. Each feature is associated with a coefficient that represents
the relative weight of this feature compared to the other features. A
real-life metaphor would be to see the coefficients as the ingredients
of a recipe: the key is to find the best balance (i.e., proportions)
between all the ingredients in order to make the best cake.

Mathematically, a linear model is a model that linearly com-
bines the features [5]:

f ðxÞ=w0 þ
p

j =1

wjxj

A common notation consists in including a 1 in x so that f(x) can be
written as the dot product between the vector x and the vector w:

f ðxÞ=w0 ×1þ
p

j =1

wjxj = x⊤w

where the vector w consists of:

• The intercept (also known as bias) w0

• The coefficients (w1, . . ., wp), where each coefficient wj is asso-
ciated with the corresponding feature xj

In the case of linear regression, f(x) is the predicted output:

ŷ = f ðxÞ= x⊤w

Classic Machine Learning Methods 31

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

x

0.0

0.5

1.0

1.5

2.0

2.5

y

Simple linear regression

Target data
Prediction
Error

Fig. 3 Ordinary least squares regression. The coefficients (i.e., the intercept and
the slope with a single predictor) are estimated by minimizing the sum of the
squared errors

There are several methods to estimate the w coefficients. In this
section, we present the oldest one which is known as ordinary least
squares regression.

In the case of ordinary least squares regression, the cost func-
tion J is the sum of the squared errors on the training data (see
Fig. 3):

J ðwÞ=
n

i =1

yðiÞ - ŷðiÞ
2
=

n

i =1

yðiÞ - xðiÞ⊤w
2
= ky -Xwk2 2

One wants to find the optimal parameters w⋆ that minimize the
cost function:

w⋆ = arg min
w

J ðwÞ

This optimization problem is convex, implying that any local mini-
mum is a global minimum, and differentiable, implying that every
local minimum has a null gradient. One therefore aims to find null
gradients of the cost function:

∇w⋆J =0

) 2X⊤ Xw⋆ -2X⊤ y =0

) X⊤ Xw⋆ =X⊤ y

) w⋆ = X⊤ Xð Þ-1
X⊤ y

Ordinary least squares regression is one of the few machine
learning optimization problems for which there exists a closed for-
mula, i.e., the optimal solution can be computed using a finite
number of standard operations such as addition, multiplication,

and evaluations of well-known functions. A summary of linear
regression can be found in Box 2.

32 Johann Faouzi and Olivier Colliot

Box 2: Linear Regression

• Main idea: best hyperplane (i.e., line when p= 1, plane when
p= 2) mapping the inputs and to the outputs.

• Mathematical formulation: linear relationship between the
predicted output ŷ and the input x that minimizes the sum of
squared errors:

ŷ =w⋆
0 þ

n

j =1

w⋆
j xj with w⋆ = arg min

w

n

i =1

yðiÞ - xðiÞ⊤w
2

• Regularization: can be penalized to avoid overfitting (ridge),
to perform feature selection (lasso), or both (elastic-net). See
Subheading 7.

5 Logistic Regression

Intuitively, linear regression consists in finding the line that best fits
the data: the true output should be as close to the line as possible.
For binary classification, one wants the line to separate both classes
as well as possible: the samples from one class should all be in one
subspace, and the samples from the other class should all be in the
other subspace, with the inputs being as far as possible from
the line.

Mathematically, for binary classification tasks, a linear model is
defined by a hyperplane splitting the input space into two subspaces
such that each subspace is characteristic of one class. For instance, a
line splits a plane into two subspaces in the two-dimensional case,
while a plane splits a three-dimensional space into two subspaces. A
hyperplane is defined by a vector w= (w0, w1, . . ., wp), and f(x)=
x⊤ w corresponds to the signed distance between the input x and the
hyperplane w: in one subspace, the distance with any input is always
positive, whereas in the other subspace, the distance with any input
is always negative. Figure 4 illustrates the decision function in the
two-dimensional case where both classes are linearly separable.

The sign of the signed distance corresponds to the decision
function of a linear binary classification model:

ŷ = signðf ðxÞÞ=
þ1 if f ðxÞ>0

-1 if f ðxÞ<0

Þ

Þ

Classic Machine Learning Methods 33

Fig. 4 Decision function of a logistic regression model. A logistic regression is a
linear model, that is, its decision function is linear. In the two-dimensional case,
it separates a plane with a line

The logistic regression model is a probabilistic linear model
that transforms the signed distance to the hyperplane into a proba-
bility using the sigmoid function [6], denoted by σðuÞ= 1

1þ exp -uð .
Consider the linear model:

f ðxÞ= x⊤w =w0 þ
p

i = j

wj xj

Then the probability of belonging to the positive class is:

P y= þ 1jx= xð Þ= σðf ðxÞÞ=
1

1þ exp - f ðxÞð Þ
and that of belonging to the negative class is:

P y= -1jx= xð Þ =1-P y= þ 1jx= xð Þ
=

exp - f ðxÞð Þ
1þ exp - f ðxÞð Þ

=
1

1þ exp f ðxÞð Þ
P y= -1jx= xð Þ = σð- f ðxÞÞ

By applying the inverse of the sigmoid function, which is
known as the logit function, one can see that the logarithm of the
odds ratio is modeled as a linear combination of the features:

log
P y= þ 1jx= xð Þ
P y= -1jx= xð Þ = log

P y= þ 1jx= xð Þ
1-P y= þ 1jx= xð = f ðxÞ

(continued)

34 Johann Faouzi and Olivier Colliot

The w coefficients are estimated by maximizing the likelihood
function, that is, the function measuring the goodness of fit of the
model to the training data:

LðwÞ= ∏
n

i =1
P y= yðiÞjx= xðiÞ;w

For computational reasons, it is easier to maximize the log-likeli-
hood, which is simply the logarithm of the likelihood:

logðLðwÞÞ =
n

i =1

log P y= yðiÞjx= xðiÞ;w

=
n

i =1

log σ yðiÞf ðxðiÞ;wÞ

=
n

i =1

- log 1þ exp yðiÞxðiÞ⊤w

logðLðwÞÞ = -
n

i =1

log 1þ exp yðiÞxðiÞ⊤w

Finally, we can rewrite this maximization problem as a minimiza-
tion problem by noticing that
max w logðLðwÞÞ= - min w - log ðLðwÞÞ:

max
w

logðLðwÞÞ= - min
w

n

i =1

log 1þ exp yðiÞxðiÞ⊤w

We can see that the w coefficients that maximize the likelihood are
also the coefficients that minimize the sum of the logistic loss values,
with the logistic loss being defined as:

ℓlogisticðy, f ðxÞÞ= log 1þ exp yf ðxÞð Þð Þ= log ð2Þ
Unlike for linear regression, there is no closed formula for this
minimization. One thus needs to use an optimization method
such as gradient descent which was presented in Subheading 3 of
Chap. 1. In practice, more sophisticated approaches such as quasi-
Newton methods and variants of stochastic gradient descent are
often used. The main concepts underlying logistic regression can be
found in Box 3.

Box 3: Logistic Regression

• Main idea: best hyperplane (i.e., line) that separates two
classes.

• Mathematical formulation: the signed distance to the
hyperplane is mapped into the probability to belong to the
positive class using the sigmoid function:

Classic Machine Learning Methods 35

f ðxÞ=w0 þ
j =1

wjxj

Pðy= þ 1jx= xÞ= σðf ðxÞÞ=
1

1þ expð- f ðxÞÞ

Box 3 (continued)
n

• Estimation: likelihood maximization.

• Regularization: can be penalized to avoid overfitting (ℓ2
penalty), to perform feature selection (ℓ1 penalty), or both
(elastic-net penalty).

6 Overfitting and Regularization

The original formulations of ordinary least squares regression and
logistic regression are unregularized models, that is, the model is
trained to fit the training data as much as possible. Let us consider a
real-life example as it is very similar to human learning. If a person
learns by heart the content of a book, they are able to solve the
exercises in the book, but unable to apply the theoretical concepts
to new exercises or real-life situations. If a person only quickly reads
through the book, they are probably unable to solve neither the
exercises in the book nor new exercises.

The corresponding concepts are known as overfitting and
underfitting in machine learning. Overfitting occurs when a
model fits too well the training data and generalizes poorly to
new data. Oppositely, underfitting occurs when a model does not
capture well enough the characteristics of the training data and thus
also generalizes poorly to new data.

Overfitting and underfitting are related to frequently used
terms in machine learning: bias and variance. Bias is defined as
the expected (i.e., mean) difference between the true output and
the predicted output. Variance is defined as the variability of the
predicted output. For instance, let us consider a model predicting
the age of a person from a picture. If the model always under-
estimates or overestimates the age, then the model is biased. If
the model makes both large and small errors, then the model has a
high variance.

Ideally, one would like to have a model with a small bias and a
small variance. However, the bias of a model tends to increase when
decreasing its variance, and the variance of the model tends to
increase when decreasing its bias. This phenomenon is known as
the bias-variance trade-off. Figure 5 illustrates this phenomenon.
One can also notice it by computing the squared error between the
true output y (fixed) and the predicted output ŷ (random variable):
its expected value is the sum of the squared bias of ŷ and the
variance of ŷ:

36 Johann Faouzi and Olivier Colliot

−3

−2

−1

0

1

2

3
High bias, high variance High bias, low variance

−2 0 2
−3

−2

−1

0

1

2

3
Low bias, high variance

−2 0 2

Low bias, low variance

Complexity

E
rr
or

Underfitting
(high bias, low variance)

Overfitting
(low bias, high variance)

Training set
Test set

Fig. 5 Illustration of underfitting and overfitting. Underfitting occurs when a
model is too simple and does not capture well enough the characteristics of
the training data, leading to high bias and low variance. Oppositely, overfitting
occurs when a model is too complex and learns the noise in the training data,
leading to low bias and high variance

Classic Machine Learning Methods 37

 ðy - ŷÞ2 = y2 -2y ŷ þ ŷ2

= y2 -2y ŷ½ � þ  ŷ2
= y2 -2y ŷ½ � þ  ŷ2 þ  ŷ½ �2 - ŷ½ �2

=  ŷ½ �- yð Þ2 þ  ŷ2 - ŷ½ �2

=  ŷ½ �- yð Þ2 þ  ŷ2 - ŷ½ �2

=  ŷ½ �- yð Þ2 þ  ŷ2 -2 ŷ½ �2 þ  ŷ½ �2

=  ŷ½ �- yð Þ2 þ  ŷ2 -2ŷ ŷ½ � þ  ŷ½ �2

=  ŷ½ �- yð Þ2 þ  ŷ- ŷ½ �ð Þ2

 ðy - ŷÞ2 =  ŷ½ �- yð Þ2

bias2

þ Var ŷ½ �
variance

7 Penalized Models

Depending on the class of methods, there exist different strategies
to tackle overfitting.

For neighbor methods, the number of neighbors used to define
the neighborhood of any input and the strategy to compute the
weights are the key hyperparameters to control the bias-variance
trade-off. For models that are presented in the remaining sections
of this chapter, we mention strategies to address the bias-variance
trade-off in their respective sections. In this section, we present the
most commonly used strategies for models whose parameters are
optimized by minimizing a cost function defined as the mean loss
values over all the training samples:

min
w

J ðwÞ with J ðwÞ=
1
n

n

i =1

ℓ yðiÞ, f ðxðiÞ;wÞ

This is, for instance, the case of the linear and logistic regression
methods presented in the previous sections.

7.1 Penalties The main idea is to introduce a penalty term Pen(w) that will
constraint the parameters w to have some desired properties. The
most common penalties are the ℓ2 penalty, the ℓ1 penalty, and the
elastic-net penalty.

7.1.1 ℓ2 Penalty The ℓ2 penalty is defined as the squared ℓ2 norm of the
w coefficients:

38 Johann Faouzi and Olivier Colliot

ℓ2ðwÞ= kwk2 2 =
p

j =1

w2
j

The ℓ2 penalty forces each coefficient wi not to be too large and
makes the coefficients more robust to collinearity (i.e., when some
features are approximately linear combinations of the other
features).

7.1.2 ℓ1 Penalty The ℓ2 penalty forces the values of the parameters not to be too
large, but does not incentivize to make small values tend to zero.
Indeed, the square of a small value is even smaller. When the
number of features is large, or when interpretability is important,
it can be useful to make the model select the most important
features. The corresponding metric is the ℓ0 “norm” (which is not
a proper norm in the mathematical sense), defined as the number of
nonzero elements:

ℓ0ðwÞ= kwk0 =
p

j =1

1wj ≠0

However, the ℓ0 “norm” is neither differentiable nor convex (which
are useful properties to solve an optimization problem, but this is
not further detailed for the sake of conciseness). The best convex
differentiable approximation of the ℓ0 “norm” is the ℓ1 norm (see
Fig. 6), defined as the sum of the absolute values of each element:

ℓ1ðwÞ= kwk1 =
p

j =1

jwj j

7.1.3 Elastic-Net Penalty Both the ℓ2 and ℓ1 penalties have their upsides and downsides. In
order to try to obtain the best of penalties, one can add both
penalties in the objective function. The combination of both penal-
ties is known as the elastic-net penalty:

ENðw, αÞ= αkwk1 þ ð1- αÞkwk2 2
where α∈ [0, 1] is a hyperparameter representing the proportion of
the ℓ1 penalty compared to the ℓ2 penalty.

7.2 New

Optimization Problem

A natural approach would be to add a constraint to the minimiza-
tion problem:

min
w

J ðwÞ subject to PenðwÞ< c ð1Þ
which reads as “Find the optimal parameters that minimize the cost
function J among all the parameters w that satisfy Pen(w)< c” for a
positive real number c. Figure 7 illustrates the optimal solution of a
simple linear regression task with different constraints. This figure

Classic Machine Learning Methods 39

�0
�1
�2

Fig. 6 Unit balls of the ℓ0, ℓ1, and ℓ2 norms. For each norm, the set of points in
2 whose norm is equal to 1 is plotted. The ℓ1 norm is the best convex
approximation to the ℓ0 norm. Note that the lines for the ℓ0 norm extend to
-1 and +1 but are cut for plotting reasons

also highlights the sparsity property of the ℓ1 penalty (the optimal
parameter for the horizontal axis is set to zero) that the ℓ2 penalty
does not have (the optimal parameter for the horizontal axis is small
but different from zero).

Although this approach is appealing due to its intuitiveness and
the possibility to set the maximum possible penalty on the para-
meters w, it leads to a minimization problem that is not trivial to
solve. A similar approach consists in adding the regularization term
in the cost function:

min
w

J ðwÞ þ λ×PenðwÞ ð2Þ
where λ>0 is a hyperparameter that controls the weights of the
penalty term compared to the mean loss values over all the training
samples. This formulation is related to the Lagrangian function of
the minimization problem with the penalty constraint.

This formulation leads to a minimization problem with no
constraint which is much easier to solve. One can actually show
that Eqs. 1 and 2 are related: solving Eq. 2 for a given λ, whose
optimal solution is denoted by w⋆

λ , is equivalent to solving Eq. 1 for
c =Penðw⋆

λ Þ. In other words, solving Eq. 2 for a given λ is equiva-
lent to solving Eq. 1 for c whose value is only known after finding
the optimal solution of Eq. 2.

Figure 8 illustrates the impact of the regularization term λ×Pen
(w) on the prediction function of a kernel ridge regression algo-
rithm (see Subheading 14 for more details) for different values of λ.
For high values of λ, the regularization term is dominating the
mean loss value, making the prediction function not fitting well
enough the training data (underfitting). For small values of λ, the

mean loss value is dominating the regularization term, making the
prediction function fitting too well the training data (overfitting). A
good balance between the mean loss value and the regularization
term is required to learn the best function.

40 Johann Faouzi and Olivier Colliot

−2 −1 0 1 2 3 4 5 6
−2

−1

0

1

2

3

4

5

6

w1

w2

w� = argminw∈R2 ‖y − Xw‖2 2
w� = argmin‖w‖2

2≤1 ‖y − Xw‖2 2
w� = argmin‖w‖1≤1 ‖y − Xw‖2 2
�2 unit ball
�1 unit ball

0

5

10

15

20

25

30

Fig. 7 Illustration of the minimization problem with a constraint on the penalty
term. The plot represents the value of the loss function for different values of the
two coefficients for a linear regression task. The black star indicates the optimal
solution with no constraint. The green and orange stars indicate the optimal
solutions when imposing a constraint on the ℓ2 and ℓ1 norms of the parameters
w, respectively

Since linear regression is one of the oldest and best-known
models, the aforementioned penalties were originally introduced
for linear regression:

• Linear regression with the ℓ2 penalty is also known as ridge [7]:

min
w

ky -Xwk2 2 þ λkwk2 2

Classic Machine Learning Methods 41

λ = 1000 λ = 100

λ = 10 λ = 1

λ = 0.1 λ = 0.01

λ = 0.001 λ = 0.0001

λ = 0.00001 λ = 0.000001

λ = 0.0000001 λ = 0.00000001

Fig. 8 Illustration of regularization. A kernel ridge regression algorithm is fitted
on the training data (blue points) with different values of λ, which is the weight of
the regularization in the cost function. The smaller the values of λ, the smaller
the weight of the ℓ2 regularization. The algorithm underfits (respectively, overfits)
the data when the value of λ is too large (respectively, low)

42 Johann Faouzi and Olivier Colliot

As in ordinary least squares regression, there exists a closed formula
for the optimal solution:

w⋆ = X⊤ X þ λIð Þ-1
X⊤ y

• Linear regression with the ℓ1 penalty is also known as lasso [8]:

min
w

ky -Xwk2 2 þ λkwk1
• Linear regression with the elastic-net penalty is also known as

elastic-net [9]:

min
w

ky -Xwk2 2 þ λαkwk1 þ λð1- αÞkwk2 2

The penalties can also be added in other models such as logistic
regression, support vector machines, artificial neural networks, etc.

8 Support Vector Machine

Linear and logistic regression take into account every training
sample in order to find the best line, which is due to their
corresponding loss functions: the squared error is zero only if the
true and predicted outputs are equal, and the logistic loss is always
positive. One could argue that the training samples whose outputs
are “easily” well predicted are not relevant: only the training sam-
ples whose outputs are not “easily” well predicted or are wrongly
predicted should be taken into account. The support vector
machine (SVM) is based on this principle (please see Box 4 for an
overview of the SVM).

Box 4: Support Vector Machine

• Main idea: hyperplane (i.e., line) that maximizes the margin
(i.e., the distance between the hyperplane and the closest
inputs to the hyperplane).

• Support vectors: only the misclassified inputs and the inputs
well classified but with low confidence are taken into account.

• Non-linearity: decision function can be non-linear with the
use of non-linear kernels.

• Regularization: ℓ2 penalty.

8.1 Original

Formulation

The original support vector machine was invented in 1963 and was
a linear binary classification method [10]. Figure 9 illustrates the
main concept of its original version. When both classes are linearly

separable, there exist an infinite number of hyperplanes that sepa-
rate both classes. The SVM finds the hyperplane that maximizes the
margin, that is, the distance between the hyperplane and the closest
points of both classes to the hyperplane, while linearly separating
both classes.

Classic Machine Learning Methods 43

Fig. 9 Support vector machine classifier with linearly separable classes. When
two classes are linearly separable, there exist an infinite number of hyperplanes
separating them (left). The decision function of the support vector machine
classifier is the hyperplane that maximizes the margin, that is, the distance
between the hyperplane and the closest points to the hyperplane (right). Support
vectors are highlighted with a black circle surrounding them

The SVM was later updated to non-separable classes [11]. Fig-
ure 10 illustrates the role of the margin in this case. The dashed
lines correspond to the hyperplanes defined by the equations
x⊤ w=+1 and x⊤ w=-1. The margin is the distance between
both hyperplanes and is equal to 2=kwk2 2. It defines which samples
are included in the decision function of the model: a sample is
included if and only if it is inside the margin or outside the margin
and misclassified. Such samples are called support vectors and are
illustrated in Fig. 10 with a black circle surrounding them. In this
case, the margin can be seen a regularization term: the larger the
margin is, the more support vectors are included in the decision
function, the more regularized the model is.

The loss function for the SVM is called the hinge loss and is
defined as:

ℓhingeðy, f ðxÞÞ= max ð0, 1- yf ðxÞÞ
Figure 11 illustrates the curves of the logistic and hinge losses. The
logistic loss is always positive, even when the point is accurately
classified with high confidence (i.e., when yf(x)≫0), whereas the
hinge loss is equal to zero when the point is accurately classified
with good confidence (i.e., when yf(x)≥1). One can see that a
sample (x, y) is a support vector if and only if yf(x)≥1, that is, if
and only if ℓhinge(y, f(x))=0.

44 Johann Faouzi and Olivier Colliot

(‖w‖2
2)

−1

(‖w‖2
2)

−1

x�w = +1

x�w = −1

Fig. 10 Decision function of a support vector machine classifier with a linear
kernel when both classes are not strictly linearly separable. The support vectors
are the training points within the margin of the decision function and the
misclassified training points. The support vectors are highlighted with a black
circle surrounding them

−4 −3 −2 −1 0 1 2 3 4
yf(x)

0

2

4

6

�(
y
,f

(x
))

Logistic loss: �logistic(y, f(x)) = log(1 + exp(yf(x)))/ log(2)

Hinge loss: �hinge(y, f(x)) = max(0, 1 − yf(x))

Fig. 11 Binary classification losses. The logistic loss is always positive, even
when the point is accurately classified with high confidence (i.e., when
yf(x)≫ 0), whereas the hinge loss is equal to zero when the point is accurately
classified with good confidence (i.e., when yf(x)≥ 1)

Classic Machine Learning Methods 45

The optimal w coefficients for the original version are estimated
by minimizing an objective function consisting of the sum of the
hinge loss values and a ℓ2 penalty term (which is inversely propor-
tional to the margin):

min
w

n

i =1

maxð0, 1- yðiÞxðiÞ⊤wÞ þ 1
2C

kwk2 2

8.2 General

Formulation with

Kernels

The SVM was later updated to non-linear decision functions with
the use of kernels [12].

In order to have a non-linear decision function, one could map
the input space I into another space (often called the feature space),
denoted by G, using a function denoted by ϕ:

ϕ : I → G

x ↦ϕðxÞ
The decision function would still be linear (with a dot product), but
in the feature space:

f ðxÞ=ϕðxÞ⊤ w

Unfortunately, solving the corresponding minimization problem is
not trivial:

min
w

n

i =1

max 0, 1- yðiÞϕðxðiÞÞ⊤
w þ 1

2C
kwk2 2 ð3Þ

Nonetheless, two mathematical properties make the use of
non-linear transformations in the feature space possible: the kernel
trick and the representer theorem.

The kernel trick asserts that the dot product in the feature space
can be computed using only the points from the input space and a
kernel function, denoted by K:

8x, x ′∈ I , ϕðxÞ⊤ ϕðx ′ Þ=K ðx, x ′ Þ
The representer theorem [13, 14] asserts that, under certain

conditions on the kernel K and the feature space G associated with
the function ϕ, any minimizer of Eq. 3 admits the following form:

f =
n

i =1

αiKð�, xðiÞÞ

where α solves:

min
α

n

i =1

maxð0, 1- yðiÞ½Kα�iÞ þ 1
2C

α⊤ Kα

s

46 Johann Faouzi and Olivier Colliot

where K is the n×n matrix consisting of the evaluations of the
kernel on all the pairs of training samples: 8i, j∈{1, . . ., n},
Kij=K(x(i) , x(j)).

Because the hinge loss is equal to zero if and only if yf(x) i
greater than or equal to 1, only the training samples (x(i) , y(i)) such
that y(i) f(x(i))<1 have a nonzero αi coefficient. These points are the
so-called support vectors, and this is why they are the only training
samples contributing to the decision function of the model:

SV = fi∈f1, . . . ,ng j αi ≠0g

f ðxÞ=
n

i =1

αiK ðx, xðiÞÞ=
i∈SV

αiKðx, xðiÞÞ

The kernel trick and the representer theorem show that it is
more practical to work with the kernel K instead of the mapping
function ϕ. Popular kernel functions include:

• The linear kernel:

K ðx, x ′ Þ= x⊤x ′

• The polynomial kernel:

Kðx, x 0Þ= ðγ x⊤ x 0 þ c0Þd with γ >0, c0 ≥0, d∈�

• The sigmoid kernel:

Kðx, x ′ Þ= tanh γ x⊤x ′ þ c0ð Þ with γ >0, c0 ≥0

• The radial basis function (RBF) kernel:

Kðx, x ′ Þ= exp - γ kx - x ′ k2 2 with γ >0

The linear kernel yields a linear decision function and is actually
identical to the original formulation of the SVM (one can show that
there is a mapping between the α and w coefficients). Non-linear
kernels allow for non-linear, more complex, decision functions.
This is particularly useful when the data is not linearly separable,
which is the most common use case. Figure 12 illustrates the
decision function and the margin of a SVM classification model
for four different kernels.

The SVM was also extended to regression tasks with the use of
the ε-insensitive loss. Similar to the hinge loss, which is equal to zero
for points that are correctly classified and outside the margin, the ε-
insensitive loss is equal to zero when the error between the true
target value and the predicted value is not greater than ε:

ℓε- insensitiveðy, f ðxÞÞ= max ð0, jy - f ðxÞj- εÞ

Classic Machine Learning Methods 47

Linear kernel Polynomial kernel

RBF kernel Sigmoid kernel

Fig. 12 Impact of the kernel on the decision function of a support vector machine
classifier. A non-linear kernel allows for a non-linear decision function

The objective function for the SVM regression method combines
the values of ε-insensitive loss of the training points and the
ℓ2 penalty:

min
w

n

i =1

max 0, yðiÞ -ϕðxðiÞÞ⊤
w - ε þ 1

2C
kwk2 2

Figure 13 illustrates the curves of three regression losses. The
squared error loss takes very small values for small errors and very
high values for high errors, whereas the absolute error loss takes
small values for small errors and high values for high errors. Both
losses take small but nonzero values when the error is small. On the
contrary, the ε-insensitive loss is null when the error is small and
otherwise equal to the absolute error loss minus ε.

48 Johann Faouzi and Olivier Colliot

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
y − ŷ

0

1

2

3

4

�(
y
, ŷ
)

−ε +ε

Mean squared error (MSE): �MSE(y, ŷ) = (y − ŷ)2
Mean absolute error (MAE): �MAE(y, ŷ) = |y − ŷ|
ε-insensitive loss: �ε-insensitive(y, ŷ) = max(0, |y − ŷ| − ε)

Fig. 13 Regression losses. The squared error loss takes very small values for
small errors and very large values for large errors, whereas the absolute error
loss takes small values for small errors and large values for large errors. Both
losses take small but nonzero values when the error is small. On the contrary,
the ε-insensitive loss is null when the error is small and otherwise equal the
absolute error loss minus ε. When computed over several samples, the squared
and absolute error losses are often referred to as mean squared error (MSE) and
mean absolute error (MAE), respectively

9 Multiclass Classification

The classification methods that we presented so far, logistic regres-
sion and support vector machines, are binary classifiers: they can
only be used when there are only two possible outcomes. However,
in practice, it is common to have more than two possible outcomes.
For instance, differential diagnosis of brain disorders is often
between several, and not only two, diseases.

Several strategies have been proposed to extend any binary
classification method to multiclass classification tasks. They all rely
on transforming the multiclass classification task into several binary
classification tasks. In this section, we present the most commonly
used strategies: one-vs-rest, one-vs-one, and error correcting output
code [15]. Figure 14 illustrates the main ideas of these approaches.
But first, we present a natural extension of logistic regression to
multiclass classification tasks which is often referred to as multino-
mial logistic regression [5].

Classic Machine Learning Methods 49

One-vs-rest

{1} vs. {2, 3, 4, 5}

{2} vs. {1, 3, 4, 5}

{3} vs. {1, 2, 4, 5}

{4} vs. {1, 2, 3, 5}

{5} vs. {1, 2, 3, 4}

One-vs-one

{1} vs. {2}

{1} vs. {3}

{1} vs. {4}

{1} vs. {5}

{2} vs. {3}

{2} vs. {4}

{2} vs. {5}

{3} vs. {4}

{3} vs. {5}

{4} vs. {5}

Output code

{1, 3} vs. {2, 4, 5}

{1, 4, 5} vs. {2, 3}

{2} vs. {1, 3, 4, 5}

{1, 2, 3} vs. {4, 5}

{2, 5} vs. {1, 3, 4}

{2, 3, 4} vs. {1, 5}

{4} vs. {1, 2, 3, 5}
...

...
...

Fig. 14 Main approaches to convert a multiclass classification task into several
binary classification tasks. In the one-vs-rest approach, each class is associated
with a binary classification model that is trained to separate this class from all
the other classes. In the one-vs-one approach, a binary classifier is trained on
each pair of classes. In the error correcting output code approach, the classes
are (randomly) split into two groups, and a binary classifier is trained for each
split

9.1 Multinomial

Logistic Regression

For binary classification, logistic regression is characterized by a
hyperplane: the signed distance to the hyperplane is mapped into
the probability of belonging to the positive class using the sigmoid
function. However, for multiclass classification, a single hyperplane
is not enough to characterize all the classes. Instead, each class C k is
characterized by a hyperplane wk, and, for any input x, one can
compute the signed distance x⊤ wk between the input x and the
hyperplane wk. The signed distances are mapped into probabilities
using the softmax function, defined as

softmax x1, . . ., xq =
exp x1ð Þ
q

j = 1
exp xjð Þ , . . .,

exp xqð Þ
q

j =1
exp xjð Þ , as follows:

8k∈f1, . . ., qg, Pðy= C kjx= xÞ=
exp x⊤wkð Þ

q
j =1 exp x

⊤wj

The coefficients (wk)1≤k≤q are still estimated by maximizing the
likelihood function:

Lðw1, . . .,wqÞ= ∏
n

i =1
∏
q

k=1
P y= C kjx= xðiÞ 1yðiÞ = Ck

which is equivalent to minimizing the negative log-likelihood:

50 Johann Faouzi and Olivier Colliot

- log ðLðw1, . . .,wqÞÞ

= -
n

i =1

q

k=1

1yðiÞ = C k
log P y= C kjx= xðiÞ

=
n

i =1

-
q

k=1

1yðiÞ = C k
log

exp xðiÞ⊤ wk
q

j =1
exp xðiÞ⊤wjð Þ

=
n

i =1

ℓcross�entropy y
ðiÞ, softmax xðiÞ⊤w1, . . ., x

ðiÞ⊤wq

where ℓcross entropy is known as the cross-entropy loss and is defined,
for any label y and any vector of probabilities (π1, . . ., πq), as:

ℓcross- entropyðy, ðπ1, . . . , πqÞÞ= -
q

k=1

1y = C k
logπk

This loss is commonly used to train artificial neural networks on
classification tasks and is equivalent to the logistic loss in the
binary case.

Figure 15 illustrates the impact of the strategy used to handle a
multiclass classification task on the decision function.

9.2 One-vs-Rest A strategy to transform a multiclass classification task into several
binary classification tasks is to fit a binary classifier for each class: the
positive class is the given class, and the negative class consists of all
the other classes merged into a single class. This strategy is known
as one-vs-rest. The advantage of this strategy is that each class is
characterized by a single model, so that it is possible to gain deeper
knowledge about the class by inspecting its corresponding model.
A consequence is that the predictions for new samples take into
account the confidence of the models: the predicted class for a new
input is the class for which the corresponding model is the most
confident that this input belongs to its class. The one-vs-rest strat-
egy is the most commonly used strategy and usually a good default
choice.

9.3 One-vs-One Another strategy is to fit a binary classifier for each pair of classes:
this strategy is known as one-vs-one. The advantage of this strategy is
that the classes in each binary classification task are “pure”, in the
sense that different classes are never merged into a single class.
However, the number of binary classifiers that needs to be trained
is larger for the one-vs-one strategy (1 2 qðq-1Þ) than for the one-
vs-rest strategy (q). Nonetheless, for the one-vs-one strategy, the
number of training samples in each binary classification task is
smaller than the total number of samples, which makes training
each binary classifier usually faster. Another drawback is that this
strategy is less interpretable compared to the one-vs-rest strategy, as
the predicted class corresponds to the class obtaining the most

votes (i.e., winning the most one-vs-one matchups), which does
not take into account the confidence in winning each matchup.1

For instance, winning a one-vs-one matchup with 0.99 probability
gives the same result as winning the same matchup with 0.51
probability, i.e., one vote.

Classic Machine Learning Methods 51

Multinomial One-vs.-rest

One-vs.-one Output code

Fig. 15 Illustration of the impact of the strategy used to handle a multiclass
classification task on the decision function of a logistic regression model

9.4 Error Correcting

Output Code

A substantially different strategy, inspired by the theory of error
correction code, consists in merging a subset of classes into one
class and the other subset into the other class, for each binary
classification task. This data is often called the code book and can
be represented as a matrix whose rows correspond to the classes and
whose columns correspond to the binary classification tasks. The
matrix consists only of -1 and + 1 values that represent the
corresponding label for each class and for each binary task.2 For

1 The confidences are actually taken into account but only in the event of a tie.
2 The values are 0 and 1 when the classifier does not return scores but only probabilities.

any input, each binary classifier returns the score (or probability)
associated with the positive class. The predicted class for this input
is the class whose corresponding vector is the most similar to the
vector of scores, with similarity being assessed with the Euclidean
distance (the lower, the more similar). There exist advanced strate-
gies to define the code book, but it has been argued than a random
code book usually gives as good results as a sophisticated one [16].

52 Johann Faouzi and Olivier Colliot

10 Decision Functions with Normal Distributions

Normal distributions are popular distributions because they are
commonly found in nature. For instance, the distribution of
heights and birth weights of human beings can be approximated
using normal distributions. Moreover, normal distributions are
particularly easy to work with from a mathematical point of view.
For these reasons, a common model consists in assuming that the
training input vectors are independently sampled from normal
distributions.

A possible classification model consists in assuming that, for
each class, all the corresponding inputs are sampled from a normal
distribution with mean vector μk and covariance matrix Σk:

8i such that yðiÞ = C k, x
ðiÞ � N ðμk,ΣkÞ

Using the probability density function of a normal distribution, one
can compute the probability density of any input x associated with
the distribution N ðμk,ΣkÞ of class C k:

pxjy= C k
ðxÞ=

1

ð2πÞpjΣkj
exp -

1
2
½x - μk�⊤ Σ-1

k ½x - μk�

With such a probabilistic model, it is easy to compute the
probability that a sample belongs to class C k using Bayes rule:

Pðy= C kjx= xÞ=
pxjy= C k

ðxÞPðy= C kÞ
pxðxÞ

With normal distributions, it is mathematically easier to work with
log-probabilities:

Þ

Classic Machine Learning Methods 53

logPðy= C kjx= xÞ
= log pxjy= C k

ðxÞþ logPðy= C kÞ- log pxðxÞ
= -

1
2
½x - μk�⊤ Σ-1

k ½x - μk�- 1
2
logjΣkjþ logPðy= C kÞ

-
p
2
logð2πÞ- log pxðxÞ

= -
1
2
x⊤Σ-1

k x þ x⊤Σ-1
k μk

-
1
2
μ⊤
k Σ

-1
k μk -

1
2
logjΣkjþ logPðy= C kÞ

-
p
2
logð2πÞ- log pxðxÞ

ð4Þ
It is also possible to make further assumptions on the covari-

ance matrices that lead to different models. In this section, we
present the most commonly used ones: naive Bayes, linear discrimi-
nant analysis, and quadratic discriminant analysis. Figure 16 illus-
trates the covariance matrices and the decision functions for these
models in the two-dimensional case.

10.1 Naive Bayes The naive Bayes model assumes that, conditionally to each class C k,
the features are independent and have the same variance σ2 k :

8k, Σk = σ2 kI p

Equation 4 can thus be further simplified:

logPðy= C kjx= xÞ
= -

1

2σ2 k
x⊤ x þ 1

σ2 k
x⊤ μk -

1

2σ2 k
μ⊤
k μk - log σk þ logPðy= C kÞ

-
p
2
logð2πÞ- log pxðxÞ

= x⊤W kx þ x⊤wk þ w0k þ s
w

•

here:

W k = - 1
2σ2

I p is the matrix of the quadratic term for class C k.

•
k

wk = 1
σ2
μk is the vector of the linear term for class C k.

•
k

w0k = - 1
2σ2

k

μ⊤
k μk - log σk þ logPðy= C kÞ is the intercept for

class C k.

• s = - p
2 logð2πÞ- log pxðxÞ is a term that does not depend on

class C k.

Therefore, naive Bayes is a quadratic model. The probabilities for
input x to belong to each class C k can then easily be computed:

Pðy= C kjx= xÞ=
exp x⊤W kx þ x⊤wk þ w0kð

k
j =1 exp x

⊤W jx þ x⊤wj þ w0j

54 Johann Faouzi and Olivier Colliot

Naive Bayes
(different conditional variances)

Naive Bayes
(identical conditional variances)

Linear discriminant analysis Quadratic discriminant analysis

Fig. 16 Illustration of decision functions with normal distributions. A
two-dimensional covariance matrix can be represented as an ellipse. In the
naive Bayes model, the features are assumed to be independent and to have the
same variance conditionally to the class, leading to covariance matrices being
represented as circles. When the covariance matrices are assumed to be
identical, the decision functions are linear instead of quadratic

With the naive Bayes model, it is relatively common to have the
conditional variances σ2 k to all be equal:

8k,Σk = σ2 kI p = σ2 I p

In this case, Eq. 4 can be even further simplified:

logPðy= C kjx= xÞ
= -

1

2σ2
x⊤ x þ 1

σ2
x⊤ μk -

1

2σ2
μ⊤
k μk - log σk þ logPðy= C kÞ

-
p
2
logð2πÞ- log pxðxÞ

= x⊤wk þ w0k þ s

Classic Machine Learning Methods 55

w

•

here:

wk = 1 σ2 μk is the vector of the linear term for class C k.

• w0k = - 1
2σ2 μ

⊤
k μk þ logPðy= C kÞ is the intercept for class C k.

• s = - 1
2σ2 x

⊤x - log σ- p
2 logð2πÞ- log pxðxÞ is a term that

does not depend on class C k.

In this case, naive Bayes becomes a linear model.

10.2 Linear

Discriminant Analysis

Linear discriminant analysis (LDA) makes the assumption that all
the covariance matrices are identical but otherwise arbitrary:

8k, Σk =Σ

Therefore, Eq. 4 can be further simplified:

logPðy= C kjx= xÞ
= -

1
2
½x - μk�⊤ Σ-1½x - μk�- 1

2
logjΣjþ logPðy= C kÞ

-
p
2
logð2πÞ- log pxðxÞ

= -
1
2

x⊤Σ-1 x - x⊤Σ-1 μk - μ⊤
k Σ

-1 x þ μ⊤
k Σ

-1 μk

-
1
2
logjΣjþ logPðy= C kÞ- p

2
logð2πÞ- log pxðxÞ

= - x⊤Σ-1 μk -
1
2
x⊤Σ-1 x -

1
2
μ⊤
k Σ

-1 μk þ logPðy= C kÞ- 1
2
logjΣj

-
p
2
logð2πÞ- log pxðxÞ

= x⊤wk þ w0k þ s
w

•

here:

wk= Σ-1 μk is the vector of coefficients for class C k.

• w0k = - 1
2 μ

⊤
k Σ

-1 μk þ logPðy= C kÞ is the intercept for class C k.

• s = - 1
2 x

⊤Σ-1 x - - 1
2 logjΣj- p

2 logð2πÞ- log pxðxÞ is a term
that does not depend on class C k.

Therefore, linear discriminant analysis is a linear model. When Σ is
diagonal, linear discriminant analysis is identical to naive Bayes with
identical conditional variances.

The probabilities for input x to belong to each class C k can then
easily be computed:

Pðy= C kjx= xÞ=
exp x⊤wk þ w0kð Þ

k
j =1 exp x

⊤wj þ w0j

10.3 Quadratic

Discriminant Analysis

Quadratic discriminant analysis makes no assumption on the covari-
ance matrices Σk that can all be arbitrary. Equation 4 can be
written as:

Þ

56 Johann Faouzi and Olivier Colliot

logPðy= C kjx= xÞ
= -

1
2
x⊤Σ-1

k x þ x⊤Σ-1
k μk -

1
2
μ⊤
k Σ

-1
k μk -

1
2
logjΣkj

þ logPðy= C kÞ- p
2
logð2πÞ- log pxðxÞ

= x⊤W kx þ x⊤wk þ w0k þ s
w

•

here:

W k = - 1
2Σ

-1
k is the matrix of the quadratic term for class C k.

• wk =Σ-1
k μk is the vector of the linear term for class C k.

• w0k = - 1
2 μ

⊤
k Σ

-1
k μk -

1
2 logjΣkjþ logPðy= C kÞ is the intercept

for class C k.

• s = - p
2 logð2πÞ- log pxðxÞ is a term that does not depend on

class C k.

Therefore, quadratic discriminant analysis is a quadratic model.
The probabilities for input x to belong to each class C k can then

easily be computed:

Pðy= C kjx= xÞ=
exp x⊤W kx þ x⊤wk þ w0kð

k
j =1 exp x

⊤W jx þ x⊤wj þ w0j

11 Tree-Based Methods

11.1 Decision Tree Binary decisions based on conditional statements are frequently
used in everyday life because they are intuitive and easy to under-
stand. Figure 17 illustrates a general approach when someone is ill.
Depending on conditional statements (severity of symptoms, abil-
ity to quickly consult a specialist), the decision (consult your gen-
eral practitioner or a specialist, or call for emergency services) is
different. Models with such an architecture are often used in
machine learning and are called decision trees.

A decision tree is an algorithm containing only conditional
statements and can be represented with a tree [17]. This graph
consists of:

• Decision nodes for all the conditional statements

• Branches for the potential outcomes of each decision node

• Leaf nodes for the final decision

Figure 18 illustrates a decision tree and its corresponding decision
function. For a given sample, the final decision is obtained by
following its corresponding path, starting at the root node.

A decision tree recursively partitions the feature space in order
to group samples with the same labels or similar target values. At
each node, the objective is to find the best (feature, threshold) pair
so that both subsets obtained with this split are the most pure, that

is, homogeneous. To do so, the best (feature, threshold) pair is
defined as the pair that minimizes an impurity criterion.

Classic Machine Learning Methods 57

Severity of symptoms

Consult your
general practitioner

M
ild

Can you quickly
consult a specialist?

Consult a specialist

Ye
s

Call for
emergency services

No

Severe

Fig. 17 A general thought process when being ill. Depending on conditional
statements (severity of symptoms, ability to quickly consult a specialist), the
decision (consult your general practitioner or a specialist, or call for emergency
services) is different

x1 > −6.26

ŷ = +1

Ye
s

YY

x1 > −4.23

x2 > 3.34

ŷ = +1

Ye
s

YY

ŷ = −1

No

Ye
s

YY

ŷ = −1

No

No

−15 −10 −5 0 5
x1

−10

−5

0

5

10
x
2
−6.26 −4.23

3.34

Fig. 18 A decision tree: (left) the rules learned by the decision tree and (right) the
corresponding decision function

Let S ⊆ X be a subset of training samples. For classification
tasks, the distribution of the classes, that is, the proportion of
each class, is used to measure the purity of the subset. Let pk be
the proportion of samples from class C k in a given partition:

pk =
1
jSj

y∈S

1y = C k

Po

•

pular impurity criteria for classification tasks include:

Gini index: ∑ kpk(1- pk)

• Entropy: - pk logðpkÞ
•

k
Misclassification: 1-maxkpk

y∈S

58 Johann Faouzi and Olivier Colliot

0.0 0.2 0.4 0.6 0.8 1.0
pk

0.0

0.1

0.2

0.3

Im
pu

ri
ty

Gini index
Entropy

Fig. 19 Illustration of Gini index and entropy. The entropy function takes larger
values than the Gini index, especially for pk< 0.8, which thus is more discrimi-
native against heterogeneous subsets (when most classes only represent only a
small proportion of the samples) than Gini index

Figure 19 illustrates the values of the Gini index and the entropy
for a single class C k and for different proportions of samples pk. One
can see that the entropy function takes larger values than the Gini
index, especially for pk<0.8. Since the sum of the proportions is
equal to 1, most classes only represent a small proportion of the
samples. Therefore, a simple interpretation is that entropy is more
discriminative against heterogeneous subsets than the Gini index.
Misclassification only takes into account the proportion of the most
common class and tends to be even less discriminative against
heterogeneous subsets than both entropy and Gini index.

For regression tasks, the mean error from a reference value
(such as the mean or the median) is often used as the impurity
criterion:

• Mean squared error: 1 jSj ðy - yÞ2 with y = 1 jSj y

•
y∈S y∈S

Mean absolute error: 1 jSj jy -medianSðyÞj
Theoretically, a tree can grow until every leaf node is perfectly

pure. However, such a tree would have a lot of branches and would
be very complex, making it prone to overfitting. Several strategies
are commonly used to limit the size of the tree. One approach
consists in growing the tree with no restriction and then pruning
the tree, that is, replacing subtrees with nodes [17]. Other popular
strategies to limit the complexity of the tree are usually applied
while the tree is grown and include setting:

• A maximum depth for the tree

• A minimum number of samples required to be at an internal
node

•

Classic Machine Learning Methods 59

• A minimum number of samples required to split a given
partition

• A maximum number of leaf nodes

• A maximum number of features considered (instead of all the
features) to find the best split

• A minimum impurity decrease to split an internal node

11.2 Random Forest One limitation of decision trees is their simplicity. Decision trees
tend to use a small fraction of the features in their decision function.
In order to use more features in the decision tree, growing a larger
tree is required, but large trees tend to suffer from overfitting, that
is, having a low bias but a high variance. One solution to decrease
the variance without much increasing the bias is to build an ensem-
ble of trees with randomness, hence the name random forest
[18]. An overview of random forests can be found in Box 5.

In a bid to have trees that are not perfectly correlated (thus
building actually different trees), each tree is built using only a
subset of the training samples obtained with random sampling.
Moreover, for each decision node of each tree, only a subset of
the features are considered to find the best split.

The final prediction is obtained by averaging the predictions of
each tree. For classification tasks, the predicted class is either the
most commonly predicted class (hard-voting) or the one with the
highest mean probability estimate (soft-voting) across the trees.
For regression tasks, the predicted value is usually the mean of the
predicted values across the trees.

Box 5: Random Forest

• Random forest: ensemble of decision trees with randomness
introduced to build different trees

• Decision tree: algorithm containing only conditional state-
ments and represented with a tree

Regularization: maximum depth for each tree, minimum
number of samples required to split a given partition, etc.

11.3 Extremely

Randomized Trees

Even though random forests involve randomness in sampling
both the samples and the features, trees inside a random forest
tend to be correlated, thus limiting the variance decrease. In order
to decrease even more the variance of the model (while possibly
increasing its bias) by growing less correlated trees, extremely
randomized trees introduce more randomness [19]. Instead of
looking for the best split among all the candidate (feature,

threshold) pairs, one threshold is drawn at random for each
candidate feature, and the best of these randomly generated
thresholds is chosen as the splitting rule.

60 Johann Faouzi and Olivier Colliot

12 Clustering

So far, we have presented classic machine learning methods for
classification and regression, which are the main components of
supervised learning. Each input x(i) had an associated output y(i) . In
this section, we present clustering, which is an unsupervised
machine learning task. In unsupervised learning, only the inputs
x(i) are available, with no associated outputs. As the ground truth is
not available, the objective is to extract information from the input
data without supervising the learning process with the output data.

Clustering consists in finding groups of samples such that:

• Samples from the same group are similar.

• Samples from different groups are different.

For instance, clustering can be used to identify disease subtypes for
heterogeneous diseases such as Alzheimer’s disease and Parkinson’s
disease.

In this section, we present two of the most common clustering
methods: the k-means algorithm and the Gaussian mixture model.

12.1 k-means The k-means algorithm divides a set of n samples, denoted by X,
into a set of k disjoint clusters, each denoted by X j, such that
X = fX1, . . ., X kg.

Figure 20 illustrates the concept of this algorithm. Each cluster
X j is characterized by its centroid, denoted by μj, that is, the mean of

the samples in this cluster:

−10 −5 0 5 10

−5

0

5

10

k-means

Cluster 1
Centroid of cluster 1
Cluster 2
Centroid of cluster 2
Cluster 3
Centroid of cluster 3

Fig. 20 Illustration of the k-means algorithm. The objective of the algorithm is to
find the centroids that minimize the within-cluster sum-of-squares criterion. In
this example, the inertia is approximately equal to 184.80 and is the lowest
possible inertia, meaning that the represented centroids are optimal

R

I

w

|X |
x ∈Xj

Classic Machine Learning Methods 61

μj =
1
jX j j

xðiÞ∈X j

xðiÞ

The centroids fully define the set of clusters because each sample is
assigned to the cluster whose centroid is the closest.

The k-means algorithm aims at finding centroids that minimize
the inertia, also known as within-cluster sum-of-squares criterion:

min
fμ1, ..., μkg

k

j =1 xðiÞ∈X j

kxðiÞ - μjk2 2

The original algorithm used to find the centroids is often referred
to as Lloyd’s algorithm [20] and is presented in Algorithm 1. After
initializing the centroids, a two-step loop is repeated until conver-
gence (when the centroids are identical for two consecutive itera-
tions) consisting of:

1. The assignment step, where the clusters are updated based on
the current centroids

2. The update step, where the centroids are updated based on the
current clusters

When clusters are well-defined, a point from a given cluster is likely
to stay in this cluster. Therefore, the assignment step can be sped up
thanks to the triangle inequality by keeping track of lower and
upper bounds for distances between points and centers, at the
cost of higher memory usage [21].

Algorithm 1 Lloyd’s algorithm (aka naive k-means algorithm)

esult: Centroids {μ1, . . . ,μk}
nitialize the centroids {μ1, . . . ,μk} ;
hile not converged do

Assignment step: Compute the clusters (i.e., assign each
sample to its nearest centroid):

∀j ∈ {1, . . . , k}, Xj = {x(i) ∈ X | ‖x(i)−μj‖2
2 = min

l
‖x(i)−μl‖2

2}

Update step: Compute the centroids of the updated clusters:

∀j ∈ {1, . . . , k}, μj =
1
j

∑

(i)

x(i)

62 Johann Faouzi and Olivier Colliot

Even though the k-means algorithm is one of the simplest and
most used clustering methods, it has several downsides that should
be kept in mind.

First, the number of clusters k is a hyperparameter. Setting a
value much different from the actual number of clusters may yield
poor clusters.

Second, the inertia is not a convex function. Although Lloyd’s
algorithm is guaranteed to converge, it may converge to a local
minimum that is not a global minimum. Figure 21 illustrates the
convergence to such centroids. Several strategies are often applied
to address this issue, including sophisticated centroid initialization
[22] and running the algorithm numerous times and keeping the
best run (i.e., the one yielding the lowest inertia).

Inertia = 184.80

Inertia = 623.67 Inertia = 953.91

Inertia = 952.08 Inertia = 613.62

Fig. 21 Illustration of the convergence of the k-means algorithm to bad local
minima. In the upper figure, the algorithm converged to a global minimum
because the inertia is equal to the minimum possible value (184.80); thus, the
obtained clusters are optimal. In the four other figures, the algorithm converged
to a local minima that are not global minima because the inertias are higher than
the minimum possible value; thus, the obtained clusters are suboptimal

Classic Machine Learning Methods 63

Third, inertia makes the assumption that the clusters are convex
and isotropic. The k-means algorithm may yield poor results when
this assumption does not hold, such as with elongated clusters or
manifolds with irregular shapes.

Fourth, the Euclidean distance tends to be inflated (i.e., the
ratio of the distances of the nearest and farthest neighbors to a
given target is close to 1) in high-dimensional spaces, making
inertia a poor criterion in such spaces [23]. One can alleviate this
issue by running a dimensionality reduction method such as princi-
pal component analysis prior to the k-means algorithm.

12.2 Gaussian

Mixture Model

A mixture model makes the assumption that each sample is gener-
ated from a mixture of several independent distributions.

Let k be the number of distributions. Each distribution Fj is
characterized by its probability of being picked, denoted by πj, and
its density pj with parameters θj, denoted by pj(�; θj). Let Δ= (Δ1,
. . ., Δk) be a vector-valued random variable such that:

k

j =1

Δj =1 and 8j∈f1, . . ., kg, PðΔj =1Þ=1-PðΔj =0Þ= πj

and (x1, . . ., xk) be independent random variables such that xj�Fj.
The samples are assumed to be generated from a random variable x
with density px such that:

x=
k

j =1

Δjxj

8x∈X, pxðx, θÞ=
k

j =1

πj pj ðx; θj Þ

A Gaussian mixture model is a particular case of a mixture
model in which each distribution Fj is a Gaussian distribution
with mean vector μj and covariance matrix Σj:

8j∈f1, . . ., kg, F j = N ðμj ,Σj Þ
Figure 22 illustrates the learned distributions from a Gaussian
mixture model.

The objective is to find the parameters θ that maximize the
likelihood, with θ= fμjgk j =1

, fΣjgk j =1
, fπjgk j =1

:

LðθÞ= ∏
n

i =1
pX ðxðiÞ; θÞ

For computational reasons, it is easier to maximize the
log-likelihood:

64 Johann Faouzi and Olivier Colliot

−10 −5 0 5 10

−5

0

5

10

Gaussian mixture model

Cluster 1
Mean vector of distribution 1
Covariance of distribution 3
Cluster 2
Mean vector of distribution 2
Covariance of distribution 1
Cluster 3
Mean vector of distribution 3
Covariance of distribution 2

Fig. 22 Gaussian mixture model. For each estimated distribution, the mean
vector and the ellipsis consisting of all the points within one standard deviation
of the mean are plotted

logðLðθÞÞ=
n

i =1

logðpX ðxðiÞ; θÞÞ=
n

i =1

log
k

j =1

πj pj ðx; θj Þ

Because the density pX(�; θ) is a weighted sum of Gaussian densities,
the expression cannot be further simplified.

In order to solve this maximization problem, an algorithm
called expectation-maximization (EM) is often applied [24]. Algo-
rithm 2 describes the main concepts of this algorithm. After initi-
alizing the parameters of each distribution, a two-step loop is
repeated until convergence (when the parameters are stable over
consecutive loops):

• The expectation step, in which the probability for each sample x(i)

to have been generated from distribution Fj is computed

• The maximization step, in which the probability and the para-
meters of each distribution are updated

Because it is impossible to know which samples have been gener-
ated by each distribution, it is also impossible to directly maximize
the log-likelihood, which is why we compute its expected value
using the posterior probabilities, hence the name expectation step.
The second step simply consists in maximizing the expected
log-likelihood, hence the name maximization step.

R

I

w

∀ ∈ { }
n

i=1

Classic Machine Learning Methods 65

Algorithm 2 Expectation-maximization algorithm for Gauss-
ian mixture models

esult: Mean vectors {μj}k
j=1, covariance matrices {Σj}k

j=1 and
probabilities {πj}k

j=1

nitialize the mean vectors {μj}k
j=1, covariance matrices {Σj}k

j=1

and probabilities {πj}k
j=1 ;

hile not converged do

E-step: Compute the posterior probability γi(j) for each sample
x(i) to have been generated from distribution Fj:

∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . , k}, γi(j) =
πjpj(x(i);θj,Σj)∑k
l=1 πlpj(x(i);θl,Σl)

M-step: Update the parameters of each distribution Fj:

∀j ∈ {1, . . . , k}, μj =
∑n

i=1 γi(j)x(i)
∑n

i=1 γi(j)

∀j ∈ {1, . . . , k}, Σj =
∑n

i=1 γi(j)[x(i) − μj][x(i) − μj]�∑n
i=1 γi(j)

j 1, . . . , k , πj =
1 n∑

γi(j)

Lloyd’s and EM algorithms have a lot of similarities. In the first
step, the assignment step assigns each sample to its closest cluster,
whereas the expectation step computes the probability for each
sample to have been generated from each distribution. In the
second step, the update step computes the centroid of each cluster
as the mean of the samples in a given cluster, while the maximiza-
tion step updates the probability and the parameters of each distri-
bution as a weighted average over all the samples. For these reasons,
the k-means algorithm is often referred to as a hard-voting cluster-
ing method, as opposed to the Gaussian mixture model which is
referred to as a soft-voting clustering method.

The Gaussian mixture model has several advantages over the k-
means algorithm.

First, the use of normal distribution densities instead of Euclid-
ean distances dwindles the inflation issue in high-dimensional
spaces. Second, the Gaussian mixture model includes covariance
matrices, allowing for clusters with elliptical shapes, while the k-
means algorithm only includes centroids, forcing clusters to have
circular shapes.

66 Johann Faouzi and Olivier Colliot

Nonetheless, the Gaussian mixture model also has several draw-
backs, sharing a few with the k-means algorithm.

First, the number of distributions k is a hyperparameter. Setting
a value much different from the actual number of clusters may yield
poor clusters. Second, the log-likelihood is not a concave function.
Like Lloyd’s algorithm, the EM algorithm is guaranteed to con-
verge, but it may converge to a local maximum that is not a global
maximum. Several strategies are often applied to address this issue,
including sophisticated centroid initialization [22] and running the
algorithm numerous times and keeping the best run (i.e., the one
yielding the highest log-likelihood). Third, the Gaussian mixture
model has more parameters than the k-means algorithm. Therefore,
it usually requires more samples to accurately estimate its para-
meters (in particular the covariance matrices) than the k-means
algorithm.

13 Dimensionality Reduction

Dimensionality reduction consists in finding a good mapping from
the input space into a space of lower dimension. Dimensionality
reduction can either be unsupervised or supervised.

13.1 Principal

Component Analysis

For exploratory data analysis, it may be interesting to investigate
the variances of the p features and the 1 2 pðp-1Þ covariances or
correlations. However, as the value of p increases, this process
becomes growingly tedious. Moreover, each feature may explain a
small proportion of the total variance. It may be more desirable to
have another representation of the data where a small number of
features explain most of the total variance, in other words to have a
coordinate system adapted to the input data.

Principal component analysis (PCA) consists in finding a repre-
sentation of the data through principal components [25]. The prin-
cipal components are a sequence of unit vectors such that the ith
vector is the best approximation of the data (i.e., maximizing the
explained variance) while being orthogonal to the first i-1 vectors.

Figure 23 illustrates principal component analysis when the
input space is two-dimensional. On the upper figure, the training
data in the original space is plotted. Both features explain about the
same amount of the total variance, although one can clearly see that
both features are strongly correlated. Principal component analysis
identifies a new Cartesian coordinate system based on the input
data. On the lower figure, the training data in the new coordinate
system is plotted. The first dimension explains much more variance
than the second dimension.

Classic Machine Learning Methods 67

Feature 1 (52.49%)

Fe
at
ur
e
2
(4
7.
51
%
)

Dimension 1 (94.55%)

D
im

en
si
on

 2
 (
5.
45
%
)

Fig. 23 Illustration of principal component analysis. On the upper figure, the training data in the original space
(blue points with black axes) is plotted. Both features explain about the same amount of the total variance,
although one can clearly see a linear pattern. Principal component analysis learns a new Cartesian coordinate
system based on the input data (red axes). On the lower figure, the training data in the new coordinate system
is plotted (green points with red axes). The first dimension explains much more variance than the second
dimension

13.1.1 Full

Decomposition

Mathematically, given an input matrix X∈n × p that is centered
(i.e., the mean value of each column X:,j is equal to zero), the
objective is to find a matrix W∈p × p such that:

• W is an orthogonal matrix, i.e., its columns are unit vectors and
orthogonal to each other.

• The new representation of the input data, denoted by T, consists
of the coordinates in the Cartesian coordinate system induced by
W (whose columns form an orthogonal basis of p with the
Euclidean dot product):

T =XW

• Each column of W maximizes the explained variance.

68 Johann Faouzi and Olivier Colliot

Each column wi= W:,i is a principal component. Each input vector
x is transformed into another vector t using a linear combination of
each feature with the weights from the W matrix:

t = x⊤W

The first principal component w(1) is the unit vector that max-
imizes the explained variance:

w1 = arg max
kwk=1

f
n

i =1

xðiÞ⊤ wk
= arg max

kwk=1

fkXwkg
= arg max

kwk=1

fw⊤ X⊤ Xwkg

w1 = arg max
w∈p

w⊤X⊤ Xw

w⊤w

As X⊤ X is a positive semi-definite matrix, a well-known result from
linear algebra is that w(1) is the eigenvector associated with the
largest eigenvalue of X⊤ X.

The kth component is found by subtracting the first k-1
principal components from X:

X̂ k =X -
k-1

s =1

XwðsÞwðsÞ⊤

and then finding the unit vector that explains the maximum vari-
ance from this new data matrix:

wk = arg max
kwk=1

fk X̂ kwkg= arg max
w∈p

w⊤ X̂
⊤
k X̂ kw

w⊤w

One can show that the eigenvector associated with the kth largest
eigenvalue of the X⊤ X matrix maximizes the quantity to be
maximized.

Therefore, the matrix W is the matrix whose columns are the
eigenvectors of the X⊤ X matrix, sorted by descending order of
their associated eigenvalues.

13.1.2 Truncated

Decomposition

Since each principal component iteratively maximizes the remain-
ing variance, the first principal components explain most of the
total variance, while the last ones explain a tiny proportion of the
total variance. Therefore, keeping only a subset of the ordered
principal components usually gives a good representation of the
input data.

Mathematically, given a number of dimensions l, the new rep-
resentation is obtained by truncating the matrix of principal com-
ponents W to only keep the first l columns, resulting in the
submatrix W:,:l:

Classic Machine Learning Methods 69

−3 −2 −1 0 1 2 3 4

Dimension 1 (92.46%)

−1.0

−0.5

0.0

0.5

1.0

1.5

D
im

en
si
on

 2
 (
5.
31

%
)

Setosa
Versicolor
Virginica

Fig. 24 Illustration of principal component analysis as a dimensionality reduction
technique. The Iris flower dataset consists of 50 samples for each of 3 iris
species (setosa, versicolor, and virginica) for which 4 features were measured,
the length and the width of the sepals and petals, in centimeters. The projection
of each sample on the first two principal components is shown in this figure. The
first dimension explains most of the variance (92.46%)

T
~

=XW :,:l

Figure 24 illustrates the use of principal component analysis as
dimensionality reduction. The Iris flower dataset consists of 50 sam-
ples for each of 3 iris species (setosa, versicolor, and virginica) for
which 4 features were measured, the length and the width of the
sepals and petals, in centimeters. The projection of each sample on
the first two principal components is shown in this figure.

13.2 Linear

Discriminant Analysis

In Subheading 10, we introduced linear discriminant analysis
(LDA) as a classification method. However, it can also be used as
a supervised dimensionality reduction method. LDA fits a multi-
variate normal distribution for each class C k, so that each class is
characterized by its mean vector μk∈p and has the same covariance
matrix Σ∈p × p . However, a set of k points lies in a space of
dimension at most k-1. For instance, a set of 2 points lies on a
line, while a set of 3 points lies on a plane. Therefore, the subspace
induced by the k mean vectors μk can be used as dimensionality
reduction.

There exists another formulation of linear discriminant analysis
which is equivalent and more intuitive for dimensionality reduc-
tion. Linear discriminant analysis aims to find a linear projection so
that the classes are separated as much as possible (i.e., projections of

samples from a same class are close to each other, while projections
of samples from different classes are far from each other).

70 Johann Faouzi and Olivier Colliot

Mathematically, the objective is to find the matrix W∈p × l

(with l≤ k-1) that maximizes the between-class scatter while also
minimizing the within-class scatter:

max
W

tr W⊤ SwWð Þ-1
W⊤ SbWð Þ

The within-class scatter matrix Sw summarizes the diffusion
between the mean vector μk of class C k and all the inputs x(i)

belonging to class C k, over all the classes:

Sw =
q

k=1 yðiÞ = C k

½xðiÞ - μk�½xðiÞ - μk�⊤

The between-class scatter matrix Sb summarizes the diffusion
between all the mean vectors:

Sb =
q

k=1

nk½μk - μ�½μk - μ�⊤

where nk is the proportion of samples belonging to class C k and

μ= q
k=1nkμk = 1 n

n
i =1x

ðiÞ is the mean vector over all the input

vectors.
One can show that the W matrix consists of the first

l eigenvectors of the matrix S -1
w Sb with the corresponding eigen-

values being sorted in descending order. Just as in principal com-
ponent analysis, the corresponding eigenvalues can be used to
determine the contribution of each dimension. However, the crite-
rion for linear discriminant analysis is different from the one from
principal component analysis: it is to maximizing the separability of
the classes instead of maximizing the explained variance.

Figure 25 illustrates the use of linear discriminant analysis as a
dimensionality reduction technique. We use the same Iris flower
dataset as in Fig. 24 illustrating principal component analysis. The
projection of each sample on the learned two-dimensional space is
shown, and one can see that the first (horizontal) axis is more
discriminative of the three classes with linear discriminant analysis
than with principal component analysis.

14 Kernel Methods

Kernel methods allow for generalizing linear models to non-linear
models with the use of kernel functions.

As mentioned in Subheading 8, the main idea of kernel meth-
ods is to first map the input data from the original input space to a
feature space and then perform dot products in this feature space.

Under certain assumptions, an optimal solution of the minimiza-
tion problem of the cost function admits the following form:

Classic Machine Learning Methods 71

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5

Dimension 1 (99.12%)

4

5

6

7

8

9

D
im

en
si
on

 2
 (
0.
88
%
)

Setosa
Versicolor
Virginica

Fig. 25 Illustration of linear discriminant analysis as a dimensionality reduction
technique. The Iris flower dataset consists of 50 samples for each of 3 iris
species (setosa, versicolor, and virginica) for which 4 features were measured,
the length and the width of the sepals and petals, in centimeters. The projection
of each sample on the learned two-dimensional space is shown in this figure

f =
n

i =1

αiKð�, xðiÞÞ

where K is the kernel function which is equal to the dot product in
the feature space:

8x, x ′∈ I , Kðx, x ′ Þ=ϕðxÞ⊤ ϕðx ′ Þ
As this term frequently appears, we denote by K the n ×n symmet-
ric matrix consisting of the evaluations of the kernel on all the pairs
of training samples:

8i, j∈f1, . . .,ng, Kij =KðxðiÞ, xðjÞÞ
In this section, we present the extension of two models previ-

ously introduced in this chapter, ridge regression and principal
component analysis, with kernel functions.

14.1 Kernel Ridge

Regression

Kernel ridge regression combines ridge regression with the kernel
trick and thus learns a linear function in the space induced by the
respective kernel and the training data [2]. For non-linear kernels,
this corresponds to a non-linear function in the original input
space.

72 Johann Faouzi and Olivier Colliot

Mathematically, the objective is to find the function f with the
following form:

f =
n

i =1

αiKð�, xðiÞÞ

that minimizes the sum of squared errors with a
ℓ2 penalization term:

min
f

n

i =1

yðiÞ - f ðxðiÞ 2 þ λkf k2

The cost function can be simplified using the specific form of the
possible functions:

n

i =1

ðyðiÞ - f ðxðiÞÞ2 þ λkf k2

=
n

i =1

yðiÞ -
n

j =1

αj kðxðjÞ, xðiÞÞ
2

þ λ
n

i =1

αiK ð�, xðiÞÞ
2

=
n

i =1

yðiÞ -α⊤K :,i
2 þ λα⊤Kα

= ky -Kαk2 2 þ λα⊤Kα

Therefore, the minimization problem is:

min
α

ky -Kαk2 2 þ λα⊤Kα

for which a solution is given by:

α⋆ = K þ λIð Þ-1 y

Figure 8 illustrates the prediction function of a kernel ridge
regression method with a radial basis function kernel. The predic-
tion function is non-linear as the kernel is non-linear.

14.2 Kernel Principal

Component Analysis

As mentioned in Subheading 13, principal component analysis
consists in finding the linear orthogonal subspace in the original
input space such that each principal component explains the most
variance. The optimal solution is given by the first eigenvectors of
X⊤ X with the corresponding eigenvalues being sorted in descend-
ing order.

With kernel principal component analysis, the objective is to
find the linear orthogonal subspace in the feature space such that
each principal component in the feature space explains the most
variance [26]. The solution is given by the first l eigenvectors
(αk)1≤k≤l of the K matrix with the corresponding eigenvalues
being sorted in descending order. The eigenvectors are normalized
in order to be unit vectors in the feature space.

Classic Machine Learning Methods 73

Training data

Projection with principal component analysis

Projection with kernel principal component analysis

Fig. 26 Illustration of kernel principal component analysis. Some non-linearly
separable training data is plotted (top). The projected training data using
principal component analysis remains non-linearly separable (middle). The
projected training data using kernel principal component analysis (with a
non-linear kernel) becomes linearly separable (bottom)

Finally, the projection of any input x in the original space on the
kth component can be computed as:

ϕðxÞ⊤ αk =
n

i =1

αkiKðx, xðiÞÞ

Figure 26 illustrates the projection of some non-linearly separable
classification data with principal component analysis and with ker-
nel principal component analysis with a non-linear kernel. The
projected input data becomes linearly separable using kernel prin-
cipal component analysis, whereas the projected input data using
(linear) principal component analysis remains non-linearly
separable.

74 Johann Faouzi and Olivier Colliot

15 Conclusion

In this chapter, we described the main classic machine learning
methods. Due to space constraints, the description of some of
them was brief. The reader who seeks more details can refer to
[5, 6]. All these approaches are implemented in the scikit-learn
Python library [27]. A common point of the approaches presented
in this chapter is that they use as input a set of given or pre-extracted
features. On the contrary, deep learning approaches often provide
an end-to-end learning setup within which the features are learned.
These techniques are covered in Chaps. 3–6.

Acknowledgements

The authors would like to thank Hicham Janati for his fruitful
remarks. The authors would like to acknowledge the extensive
documentation of the scikit-learn Python package, in particular its
user guide, for the relevant information and references provided.
We used the NumPy [28], matplotlib [29], and scikit-learn [27]
Python packages to generate all the figures. This work was sup-
ported by the French government under management of Agence
Nationale de la Recherche as part of the “Investissements d’avenir”
program, reference ANR-19-P3IA-0001 (PRAIRIE 3IA Institute)
and reference ANR-10-IAIHU-06 (Agence Nationale de la
Recherche-10-IA Institut Hospitalo-Universitaire-6), and by the
European Union H2020 program (grant number 826421, project
TVB-Cloud).

References

1. Goodfellow I, Bengio Y, Courville A (2016)
Deep learning. MIT Press, Cambridge,
MA. http://www.deeplearningbook.org

2. Murphy KP (2012) Machine learning: a prob-
abilistic perspective. The MIT Press,
Cambridge, MA

3. Bentley JL (1975) Multidimensional binary
search trees used for associative searching.
Commun ACM 18(9):509–517

4. Omohundro SM (1989) Five balltree con-
struction algorithms. Tech. rep., International
Computer Science Institute

5. Bishop CM (2006) Pattern recognition and
machine learning. Springer, Berlin

6. Hastie T, Tibshirani R, Friedman J (2009) The
elements of statistical learning: data mining,
inference, and prediction, 2nd edn. Springer
series in statistics. Springer, New York

7. Tikhonov AN, Arsenin VY, John F (1977)
Solutions of Ill posed problems. Wiley,
Washington, New York

8. Tibshirani R (1996) Regression shrinkage and
selection via the lasso. J R Stat Soc Series B
(Methodological) 58(1):267–288

9. Zou H, Hastie T (2005) Regularization and
variable selection via the elastic net. J R Stat
Soc Series B (Statistical Methodology) 67(2):
301–320

10. Vapnik VN, Lerner A (1963) Pattern recogni-
tion using generalized portrait method. Autom
Remote Control 24:774–780

11. Cortes C, Vapnik V (1995) Support-vector
networks. Mach Learn 20(3):273–297

12. Boser BE, Guyon IM, Vapnik VN (1992) A
training algorithm for optimal margin
classifiers. In: Proceedings of the fifth annual

Classic Machine Learning Methods 75

workshop on computational learning theory.
Association for Computing Machinery, Pitts-
burgh, Pennsylvania, USA, COLT ’92, pp
144–152

13. Aizerman MA, Braverman EA, Rozonoer L
(1964) Theoretical foundations of the poten-
tial function method in pattern recognition
learning. In: Automation and remote control,
25, pp 821–837

14. Schölkopf B, Herbrich R, Smola AJ (2001) A
generalized representer theorem. In: Compu-
tational learning theory. Springer, Berlin, pp
416–426

15. Aly M (2005) Survey on multiclass classifica-
tion methods

16. James G, Hastie T (1998) The error coding
method and PICTs. J Comput Graph Stat
7(3):377–387

17. Breiman L, Friedman J, Stone CJ, Olshen RA
(1984) Classification and regression trees. Tay-
lor & Francis, London

18. Breiman L (2001) Random forests. Mach
Learn 45(1):5–32

19. Geurts P, Ernst D, Wehenkel L (2006)
Extremely randomized trees. Mach Learn
63(1):3–42

20. Lloyd S (1982) Least squares quantization in
PCM. IEEE Trans Inform Theory 28(2):
129–137

21. Elkan C (2003) Using the triangle inequality to
accelerate k-means. In: Proceedings of the
twentieth international conference on interna-
tional conference on machine learning, pp
147–153

22. Arthur D, Vassilvitskii S (2007) k-means+ +:
the advantages of careful seeding. In: Proceed-
ings of the eighteenth annual ACM-SIAM
symposium on discrete algorithms, pp
1027–1035

23. Aggarwal CC, Hinneburg A, Keim DA (2001)
On the surprising behavior of distance metrics
in high dimensional space. In: International
conference on database theory. Springer, Ber-
lin, pp 420–434

24. Dempster AP, Laird NM, Rubin DB (1977)
Maximum likelihood from incomplete data via
the EM algorithm. J R Stat Soc Series B (Meth-
odological) 39(1):1–38

25. Jolliffe IT (2002) Principal component analy-
sis, 2nd edn. Springer, Berlin

26. Schölkopf B, Smola AJ, Müller KR (1999) Ker-
nel principal component analysis. In: Advances
in kernel methods: support vector learning,
MIT Press, Cambridge, MA, pp 327–352

27. Pedregosa F, Varoquaux G, Gramfort A,
Michel V, Thirion B, Grisel O, Blondel M,
Prettenhofer P, Weiss R, Dubourg V et al.
(2011) Scikit-learn: machine learning in
python. J Mach Learn Res 12:2825–2830

28. Harris CR, Millman KJ, van der Walt SJ,
Gommers R, Virtanen P, Cournapeau D,
Wieser E, Taylor J, Berg S, Smith NJ et al.
(2020) Array programming with numpy.
Nature 585(7825):357–362

29. Hunter JD (2007) Matplotlib: a 2d graphics
environment. Comput Sci Eng 9(03):90–95

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made. The images or other
third party material in this chapter are included in the chapter’s Creative Commons license, unless indicated
otherwise in a credit line to the material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.

Chapter 3

Deep Learning: Basics and Convolutional Neural Networks
(CNNs)

Maria Vakalopoulou, Stergios Christodoulidis, Ninon Burgos,
Olivier Colliot, and Vincent Lepetit

Abstract

Deep learning belongs to the broader family of machine learning methods and currently provides state-of-
the-art performance in a variety of fields, including medical applications. Deep learning architectures can be
categorized into different groups depending on their components. However, most of them share similar
modules and mathematical formulations. In this chapter, the basic concepts of deep learning will be
presented to provide a better understanding of these powerful and broadly used algorithms. The analysis
is structured around the main components of deep learning architectures, focusing on convolutional neural
networks and autoencoders.

Key words Perceptrons, Backpropagation, Convolutional neural networks, Deep learning, Medical
imaging

1 Introduction

Recently, deep learning frameworks have become very popular,
attracting a lot of attention from the research community. These
frameworks provide machine learning schemes without the need
for feature engineering, while at the same time they remain quite
flexible. Initially developed for supervised tasks, they are nowadays
extended to many other settings. Deep learning, in the strict sense,
involves the use of multiple layers of artificial neurons. The first
artificial neural networks were developed in the late 1950s with the
presentation of the perceptron [1] algorithms. However, limita-
tions related to the computational costs of these algorithms during
that period, as well as the often-miscited claim of Minsky and
Papert [2] that perceptrons are not capable of learning non-linear
functions such as the XOR, caused a significant decline of interest
for further research on these algorithms and contributed to the
so-called artificial intelligence winter. In particular, in their book
[2], Minsky and Papert discussed that single-layer perceptrons are

Olivier Colliot (ed.), Machine Learning for Brain Disorders, Neuromethods, vol. 197, https://doi.org/10.1007/978-1-0716-3195-9_3,
© The Author(s) 2023

77

only capable of learning linearly separable patterns. It was often
incorrectly believed that they also presumed this is the case for
multilayer perceptron networks. It took more than 10 years for
research on neural networks to recover, and in [3], some of these
issues were clarified and further discussed. Even if during this
period there was not a lot of research interest for perceptrons,
very important algorithms such as the backpropagation algorithm
[4–7] and recurrent neural networks [8] were introduced.

78 Maria Vakalopoulou et al.

After this period, and in the early 2000s, publications by Hin-
ton, Osindero, and Teh [9] indicated efficient ways to train multi-
layer perceptrons layer by layer, treating each layer as an
unsupervised restricted Boltzmann machine and then using super-
vised backpropagation for the fine-tuning [10]. Such advances in
the optimization algorithms and in hardware, in particular graphics
processing units (GPUs), increased the computational speed of
deep learning systems and made their training easier and faster.
Moreover, around 2010, the first large-scale datasets, with Ima-
geNet [11] being one of the most popular, were made available,
contributing to the success of deep learning algorithms, allowing
the experimental demonstration of their superior performance on
several tasks in comparison with other commonly used machine
learning algorithms. Finally, another very important factor that
contributed to the current popularity of deep learning techniques
is their support by publicly available and easy-to-use libraries such
as Theano [12], Caffe [13], TensorFlow [14], Keras [15], and
PyTorch [16]. Indeed, currently, due to all these publicly available
libraries that facilitate collaborative and reproducible research and
access to resources from large corporations such as Kaggle, Google
Colab, and Amazon Web Services, teaching and research about
these algorithms have become much easier.

This chapter will focus on the presentation and discussion of
the main components of deep learning algorithms, giving the
reader a better understanding of these powerful models. The chap-
ter is meant to be readable by someone with no background in deep
learning. The basic notions of machine learning will not be
included here; however, the reader should refer to Chap. 2 (reader
without a background in engineering or computer science can also
refer to Chap. 1 for a lay audience-oriented presentation of these
concepts). The rest of this chapter is organized as follows. We will
first present the deep feedforward networks focusing on percep-
trons, multilayer perceptrons, and the main functions that they are
composed of (Subheading 2). Then, we will focus on the optimiza-
tion of deep neural networks, and in particular, we will formally
present the topics of gradient descent, backpropagation, as well as
the notions of generalization and overfitting (Subheading 3). Sub-
heading 4 will focus on convolutional neural networks discussing in
detail the basic convolution operations, while Subheading 5 will
give an overview of the autoencoder architectures.

Deep Learning: Basics and CNN 79

2 Deep Feedforward Networks

In this section, we will present the early deep learning approaches
together with the main functions that are commonly used in deep
feedforward networks. Deep feedforward networks are a set of
parametric, non-linear, and hierarchical representation models
that are optimized with stochastic gradient descent. In this defini-
tion, the term parametric holds due to the parameters that we need
to learn during the training of these models, the non-linearity due
to the non-linear functions that they are composed of, and the
hierarchical representation due to the fact that the output of one
function is used as the input of the next in a hierarchical way.

2.1 Perceptrons The perceptron [1] was originally developed for supervised binary
classification problems, and it was inspired by works from neuros-
cientists such as Donald Hebb [17]. It was built around a
non-linear neuron, namely, the McCulloch-Pitts model of a neu-
ron. More formally, we are looking for a function f(x;w, b) such that
f ð:;w, bÞ : x∈p → fþ1, -1g where w and b are the parameters
of f and the vector x= [x1, . . ., xp]

⊤ is the input. The training set is
{(x(i) , y(i))}. In particular, the perceptron relies on a linear model for
performing the classification:

f ðx;w, bÞ=
þ1 if w⊤x þ b ≥0

-1 otherwise
: ð1Þ

Such a model can be interpreted geometrically as a hyperplane
that can appropriately divide data points that are linearly separable.
Moreover, one can observe that, in the previous definition, a per-
ceptron is a combination of a weighted summation between the
elements of the input vector x combined with a step function that
performs the decision for the classification. Without loss of gener-
ality, this step function can be replaced by other activation functions
such as the sigmoid, hyperbolic tangent, or softmax functions (see
Subheading 2.3); the output simply needs to be thresholded to
assign the + 1 or -1 class. Graphically, a perceptron is presented in
Fig. 1 on which each of the elements of the input is described as a
neuron and all the elements are combined by weighting with the
models’ parameters and then passed to an activation function for
the final decision.

During the training process and similarly to the other machine
learning algorithms, we need to find the optimal parameters w and
b for the perceptron model. One of the main innovations of Rosen-
blatt was the proposition of the learning algorithm using an itera-
tive process. First, the weights are initialized randomly, and then
using one sample (x(i) , y(i)) of the training set, the prediction of the

perceptron is calculated. If the prediction is correct, no further
action is needed, and the next data point is processed. If the
prediction is wrong, the weights are updated with the
following rule: the weights are increased in case the prediction is
smaller than the ground-truth label y(i) and decreased if the predic-
tion is higher than the ground-truth label. This process is repeated
until no further errors are made for the data points. A pseudocode
of the training or convergence algorithm is presented in
Algorithm 1 (note that in this version, it is assumed that the data
is linearly separable).

80 Maria Vakalopoulou et al.

x1

x2

xp

1

� ŷ

wp

w2

w1

b

Fig. 1 A simple perceptron model. The input elements are described as neurons
and combined for the final prediction ŷ . The final prediction is composed of a
weighted sum and an activation function

Algorithm 1 Train perceptron

procedure Train({(x(i), y(i))})
Initialization: initialize randomly the weights w and bias b
while ∃i ∈ {1, . . . , n}, f(x(i);w, b) �= y(i) do

Pick i randomly
error = y(i) − f(x(i);w, b)
if error �= 0 then

w ← w + error · x(i)

b b + error

Originally, the perceptron has been proposed for binary classi-
fication tasks. However, this algorithm can be generalized for the
case of multiclass classification, fc(x;w, b), where c∈{1, . . ., C} are
the different classes. This can be easily achieved by adding more
neurons to the output layer of the perceptron. That way, the
number of output neurons would be the same as the number of
possible outputs we need to predict for the specific problem. Then,
the final decision can be made by choosing the maximum of the
different output neurons f n = max f cðx;w, bÞ.

c∈f1, ...,CgFinally, in the following, we will integrate the bias b in the
weights w (and thus add 1 as the first element of the input vector
x= [1, x1, . . ., xp]

⊤). The model can then be rewritten as f(x;w) such
that f ð:;wÞ : x∈pþ1 → fþ1, -1g.

Deep Learning: Basics and CNN 81

2.2 Multilayer

Perceptrons

The limitation of perceptrons to linear problems can be overcome
by using multilayer perceptions, often denoted as MLP. An MLP
consists of at least three layers of neurons: the input layer, a hidden
layer, and an output layer. Except for the input neurons, each
neuron uses a non-linear activation function, making it capable of
distinguishing data that is not linearly separable. These layers can
also be called fully connected layers since they connect all the
neurons of the previous and of the current layer. It is absolutely
crucial to keep in mind that non-linear functions are necessary for
the network to find non-linear separations in the data (otherwise,
all the layers could simply be collapsed together into a single
gigantic linear function).

2.2.1 A Simple Multilayer

Network

Without loss of generality, an MLP with one hidden layer can be
defined as:

zðxÞ= gðW 1 xÞ
ŷ = f ðx;W 1 ,W 2Þ=W 2 zðxÞ

, ð2Þ

where gðxÞ :  →denotes the non-linear function (which can be
applied element-wise to a vector), W1 the matrix of coefficients of
the first layer, and W2 the matrix of coefficients of the second layer.

Equivalently, one can write:

yc =
d1

j =1

W 2
ðc,jÞgðW 1⊤

ðjÞxÞ, ð3Þ

where d1 is the number of neurons for the hidden layer which
defines the width of the network, W 1

ðjÞ denotes the first column
of the matrix W1 , and W 2

ðc,jÞ denotes the c, j element of the matrix
W2 . Graphically, a two-layer perceptron is presented in Fig. 2 on

x1

x2

xp

z3

z2

z1

zd 1

1

W 1 W 2

ŷ

2 ŷ

Fig. 2 An example of a simple multilayer perceptron model. The input layer is fed
into a hidden layer (z), which is then combined for the last output layer providing
the final prediction

which the input neurons are fed into a hidden layer whose neurons
are combined for the final prediction.

82 Maria Vakalopoulou et al.

There were a lot of research works indicating the capacity of
feedforward neural networks with a single hidden layer of finite size
to approximate continuous functions. In the late 1980s, the first
proof was published [18] for sigmoid activation functions (see
Subheading 2.3 for the definition) and was generalized to other
functions for feedforward multilayer architectures [19–21]. In par-
ticular, these works prove that any continuous function can be
approximated under mild conditions as closely as wanted by a
three-layer network. As N →1, any continuous function f can
be approximated by some neural network f̂ , because each compo-
nent gðW T

ðjÞxÞ behaves like a basis function and functions in a
suitable space admit a basis expansion. However, since N may
need to be very large, introducing some limitations for these
types of networks, deeper networks, with more than one hidden
layer, can provide good alternatives.

2.2.2 Deep Neural

Network

The simple MLP networks can be generalized to deeper networks
with more than one hidden layer that progressively generate
higher-level features from the raw input. Such networks can be
written as:

z1ðxÞ= gðW 1 xÞ
. . .

zkðxÞ= gðWk zk-1ðxÞÞ
. . .

ŷ = f ðx;W 1 , . . .,W K Þ= zK ðzK -1ð. . .ðz1ðxÞÞÞÞ

, ð4Þ

where K denotes the number of layers for the neural network,
which defines the depth of the network. In Fig. 3, a graphical
representation of the deep multilayer perceptron is presented.
Once again, the input layer is fed into the different hidden layers
of the network in a hierarchical way such that the output of one
layer is the input of the next one. The last layer of the network
corresponds to the output layer, which makes the final prediction of
the model.

As for networks with one hidden layer, they are also universal
approximators. However, the approximation theory for deep net-
works is less understood compared with neural networks with one
hidden layer. Overall, deep neural networks excel at representing
the composition of functions.

So far, we have described neural networks as simple chains of
layers, applied in a hierarchical way, with the main considerations
being the depth of the network (the number of layers K) and the

width of each k layer (the number of neurons dk). Overall, there are
no rules for the choice of the K and dk parameters that define the
architecture of the MLP. However, it has been shown empirically
that deeper models perform better. In Fig. 4, an overview of
2 different networks with 3 and 11 hidden layers is presented
with respect to the number of parameters and their accuracy. For
each architecture, the number of parameters varies by changing the
number of neurons dk. One can observe that, empirically, deeper
networks achieve better performance using approximately the same
or a lower number of parameters. Additional evidence to support
these empirical findings is a very active field of research [22, 23].

Deep Learning: Basics and CNN 83

x1

x2

xp

zk ,3

zk ,2

zk ,1

zk ,d k

╳ ╳╳╳

1 ŷ

2 ŷ

Fig. 3 An example of a deep neural network. The input layer, the kth layer of the deep neural network, and the
output layer are presented in the figure

Fig. 4 Comparison of two different networks with almost the same number of parameters, but different
depths. Figure inspired by Goodfellow et al. [24]

Neural networks can come in a variety of models and architec-
tures. The choice of the proper architecture and type of neural
network depends on the type of application and the type of data.

2 j =0 j
are homogeneously, linearly separable.

Most of the time, the best architecture is defined empirically. In the
next section, we will discuss the main functions used in neural
networks.

84 Maria Vakalopoulou et al.

2.3 Main Functions A neural network is a composition of different functions also called
modules. Most of the times, these functions are applied in a sequen-
tial way. However, in more complicated designs (e.g., deep residual
networks), different ways of combining them can be designed. In
the following subsections, we will discuss the most commonly used
functions that are the backbones of most perceptrons and multi-
layer perceptron architectures. One should note, however, that a
variety of functions can be proposed and used for different deep
learning architectures with the constraint to be differentiable –
almost – everywhere. This is mainly due to the way that deep neural
networks are trained, and this will be discussed later in the chapter.

2.3.1 Linear Functions One of the most fundamental functions used in deep neural net-
works is the simple linear function. Linear functions produce a
linear combination of all the nodes of one layer of the network,
weighted with the parameters W. The output signal of the linear
function is Wx, which is a polynomial of degree one. While it is easy
to solve linear equations, they have less power to learn complex
functional mappings from data. Moreover, when the number of
samples is much larger than the dimension of the input space, the
probability that the data is linearly separable comes close to zero
(Box 1). This is why they need to be combined with non-linear
functions, also called activation functions (the name activation has
been initially inspired by biology as the neuron will be active or not
depending on the output of the function).

Box 1: Function Counting Theorem
The so-called Function Counting Theorem (Cover [25])
counts the number of linearly separable dichotomies of
n points in general position in p . The theorem shows that,
out of the total 2n dichotomies, only Cðn, pÞ=

p n-1

When n>> p, the probability of a dichotomy to be line-
arly separable converges to zero. This indicates the need for
the integration of non-linear functions into our modeling and
architecture design. Note that n>> p is a typical regime in
machine learning and deep learning applications where the
number of samples is very large.

Deep Learning: Basics and CNN 85

Tanh Sigmoid ReLU

(a) (b) (c)

Fig. 5 Overview of different non-linear functions (in green) and their first-order derivative (blue). (a) Hyperbolic
tangent function (tanh), (b) sigmoid, and (c) rectified linear unit (ReLU)

2.3.2 Non-linear

Functions

One of the most important components of deep neural networks is
the non-linear functions, also called activation functions. They
convert the linear input signal of a node into non-linear outputs
to facilitate the learning of high-order polynomials. There are a lot
of different non-linear functions in the literature. In this subsec-
tion, we will discuss the most classical non-linearities.

Hyperbolic Tangent

Function (tanh)

One of the most standard non-linear functions is the hyperbolic
tangent function, aka the tanh function. Tanh is symmetric around
the origin with a range of values varying from-1 to 1. The biggest
advantage of the tanh function is that it produces a zero-centered
output (Fig. 5a), thereby supporting the backpropagation process
that we will cover in the next section. The tanh function is used
extensively for the training of multilayer neural networks. Formally,
the tanh function, together with its gradient, is defined as:

g = tanh ðxÞ=
ex - e - x

ex þ e - x

∂g
∂x

=1- tanh 2ðxÞ
: ð5Þ

One of the downsides of tanh is the saturation of gradients that
occurs for large or small inputs. This can slow down the training of
the networks.

Sigmoid Similar to tanh, the sigmoid is one of the first non-linear functions
that were used to compose deep learning architectures. One of the
main advantages is that it has a range of values varying from 0 to
1 (Fig. 5b) and therefore is especially used for models that aim to
predict a probability as an output. Formally, the sigmoid function,
together with its gradient, is defined as:

g = σðxÞ=
1

1þ e - x

∂g
∂x

= σðxÞð1- σðxÞÞ
: ð6Þ

86 Maria Vakalopoulou et al.

Note that this is in fact the logistic function, which is a special
case of the more general class of sigmoid function. As it is indicated
in Fig. 5b, the sigmoid gradient vanishes for large or small inputs
making the training process difficult. However, in case it is used for
the output units which are not latent variables and on which we
have access to the ground-truth labels, sigmoid may be a good
option.

Rectified Linear Unit (ReLU) ReLU is considered among the default choice of non-linearity.
Some of the main advantages of ReLU include its efficient calcula-
tion and better gradient propagation with fewer vanishing gradient
problems compared to the previous two activation functions
[26]. Formally, the ReLU function, together with its gradient, is
defined as:

g = max ð0, xÞ
∂g
∂x

=
0, if x ≤0

1, if x >0

: ð7Þ

As it is indicated in Fig. 5c, ReLU is differentiable anywhere
else than zero. However, this is not a very important problem as the
value of the derivative at zero can be arbitrarily chosen to be 0 or
1. In [27], the authors empirically demonstrated that the number
of iterations required to reach 25% training error on the CIFAR-10
dataset for a four-layer convolutional network was six times faster
with ReLU than with tanh neurons. On the other hand, and as
discussed in [28], ReLU-type neural networks which yield a piece-
wise linear classifier function produce almost always high confi-
dence predictions far away from the training data. However, due
to its efficiency and popularity, many variations of ReLU have been
proposed in the literature, such as the leaky ReLU [29] or the
parametric ReLU [30]. These two variations both address the
problem of dying neurons, where some ReLU neurons die for all
inputs and remain inactive no matter what input is supplied. In such
a case, no gradient flows from these neurons, and the training of the
neural network architecture is affected. Leaky ReLU and parametric
ReLU change the g(x)=0 part, by adding a slope and extending
the range of ReLU.

Swish The choice of the activation function in neural networks is not
always easy and can greatly affect performance. In [31], the authors
performed a combination of exhaustive and reinforcement
learning-based searches to discover novel activation functions.
Their experiments discovered a new activation function that is
called Swish and is defined as:

n

Deep Learning: Basics and CNN 87

g = x � σðβxÞ
∂g
∂x

= βgðxÞ þ σðβxÞð1- βgðxÞÞ
, ð8Þ

where σ is the sigmoid function and β is either a constant or a
trainable parameter. Swish tends to work better than ReLU on
deeper models, as it has been shown experimentally in [31] i
different domains.

Softmax Softmax is often used as the last activation function of a neural
network. In practice, it normalizes the output of a network to a
probability distribution over the predicted output classes. Softmax
is defined as:

SoftmaxðxiÞ=
ex i
C
j e

x
j

: ð9Þ

The softmax function takes as input a vector x of C real num-
bers and normalizes it into a probability distribution consisting of
C probabilities proportional to the exponentials of the input num-
bers. However, a limitation of softmax is that it assumes that every
input x belongs to at least one of the C classes (which is not the case
in practice, i.e., the network could be applied to an input that does
not belong to any of the classes).

2.3.3 Loss Functions Besides the activation functions, the loss function (which defines
the cost function) is one of the main elements of neural networks. It
is the function that represents the error for a given prediction. To
that purpose, for a given training sample, it compares the prediction
f(x(i) ;W) to the ground truth y(i) (here we denote for simplicity as
W all the parameters of the network, combining all the W1 , . . ., WK

in the multilayer perceptron shown above). The loss is denoted as
ℓ(y, f(x;W)). The average loss across the n training samples is called
the cost function and is defined as:

J ðW Þ=
1
n

n

i =1

ℓ yðiÞ, f ðxðiÞ;W Þ , ð10Þ

where {(x(i) , y(i))}i=1..n composes the training set. The aim of the
training will be to find the parameters W such that J(W) is mini-
mized. Note that, in deep learning, one often calls the cost function
the loss function, although, strictly speaking, the loss is for a given
sample, and the cost is averaged across samples. Besides, the objec-
tive function is the overall function to minimize, including the cost
and possible regularization terms. However, in the remainder of
this chapter, in accordance with common usage in deep learning,
we will sometimes use the term loss function instead of cost
function.

88 Maria Vakalopoulou et al.

In neural networks, the loss function can be virtually any func-
tion that is differentiable. Below we present the two most common
losses, which are, respectively, used for classification or regression
problems. However, specific losses exist for other tasks, such as
segmentation, which are covered in the corresponding chapters.

Cross-Entropy Loss One of the most basic loss functions for classification problems
corresponds to the cross-entropy between the expected values and
the predicted ones. It leads to the following cost function:

J ðW Þ= -
n

i =1

log P y= yðiÞjx= xðiÞ;W , ð11Þ

where P y= yðiÞjx= xðiÞ;W is the probability that a given sample is
correctly classified.

The cross-entropy can also be seen here as the negative
log-likelihood of the training set given the predictions of the net-
work. In other words, minimizing this loss function corresponds to
maximizing the likelihood:

J ðW Þ= ∏
n

i =1

P y= yðiÞjx= xðiÞ;W : ð12Þ

Mean Squared Error Loss For regression problems, the mean squared error is one of the most
basic cost functions, measuring the average of the squares of the
errors, which is the average squared difference between the pre-
dicted values and the real ones. The mean squared error is
defined as:

J ðW Þ=
n

i =1

jj yðiÞ - f ðxðiÞ;W Þ jj 2 : ð13Þ

3 Optimization of Deep Neural Networks

Optimization is one of the most important components of
neural networks, and it focuses on finding the parameters W that
minimize the loss function J(W). Overall, optimization is a difficult
task. Traditionally, the optimization process is performed by care-
fully designing the loss function and integrating its constraints to
ensure that the optimization process is convex (and thus, one can
be sure to find the global minimum). However, neural networks are
non-convex models, making their optimization challenging, and, in
general, one does not find the global minimum but only a local one.
In the next sections, the main components of their optimization
will be presented, giving a general overview of the optimization
process, its challenges, and common practices.

Deep Learning: Basics and CNN 89

Fig. 6 The gradient descent algorithm. This first-order optimization algorithm is
finding a local minimum by taking steps toward the opposite direction of the
gradient

3.1 Gradient Descent Gradient descent is an iterative optimization algorithm that is
among the most popular and basic algorithms in machine learning.
It is a first-order1 optimization algorithm, which is finding a local
minimum of a differentiable function. The main idea of gradient
descent is to take iterative steps toward the opposite direction of the
gradient of the function that needs to be optimized (Fig. 6).

That way, the parameters W of the model are updated by:

W tþ1 ←W t - η
∂J ðW t Þ
∂W t , ð14Þ

where t is the iteration and η, called learning rate, is the hyperpara-
meter that indicates the magnitude of the step that the algorithm
will take.

Besides its simplicity, gradient descent is one of the most com-
monly used algorithms. More sophisticated algorithms require
computing the Hessian (or an approximation) and/or its inverse
(or an approximation). Even if these variations could give better
optimization guarantees, they are often more computationally
expensive, making gradient descent the default method for
optimization.

In the case of convex functions, the optimization problem can
be reduced to the problem of finding a local minimum. Any local
minimum is then guaranteed to be a global minimum, and gradient
descent can identify it. However, when dealing with non-convex
functions, such as neural networks, it is possible to have many local
minima making the use of gradient descent challenging. Neural
networks are, in general, non-identifiable [24]. A model is said to
be identifiable if it is theoretically possible, given a sufficiently large
training set, to rule out all but one set of the model’s parameters.
Models with latent variables, such as the hidden layers of neural
networks, are often not identifiable because we can obtain equiva-
lent models by exchanging latent variables with each other.

1 First-order means here that the first-order derivatives of the cost function are used as opposed to second-order
algorithms that, for instance, use the Hessian.

However, all these minima are often almost equivalent to each
other in cost function value. In that case, these local minima are
not a problematic form of non-convexity. It remains an open ques-
tion whether there exist many local minima with a high cost that
prevent adequate training of neural networks. However, it is cur-
rently believed that most local minima, at least as found by modern
optimization procedures, will correspond to a low cost (even
though not to identical costs) [24].

90 Maria Vakalopoulou et al.

For W� to be a local minimum, we need mainly two conditions
to be fulfilled:

• ∂J
∂W

ðW �Þ =0.

• All the eigenvalues of ∂2 J

∂W 2 ðW �Þ to be positive.

For random functions in n dimensions, the probability for the
eigenvalues to be all positive is 1 n. On the other hand, the ratio of the
number of saddle points to localminima increases exponentiallywith
n [32]. A saddle point, or critical point, is a point where the deriva-
tives are zero without being a minimum of the function. Such points
could result in a high error making the optimization with gradient
descent challenging. In [32], this issue is discussed, and an optimi-
zation algorithm that leverages second-order curvature information
is proposed to deal with this issue for deep and recurrent networks.

3.1.1 Stochastic Gradient

Descent

Gradient descent efficiency is not enough when it comes to
machine learning problems with large numbers of training samples.
Indeed, this is the case for neural networks and deep learning which
often rely on hundreds or thousands of training samples. Updating
the parameters W after calculating the gradient using all the
training samples would lead to a tremendous computational com-
plexity of the underlying optimization algorithm [33]. To deal with
this problem, the stochastic gradient descent (SGD) algorithm is a
drastic simplification. Instead of computing the ∂J ðW Þ

∂W
exactly, each

iteration estimates this gradient on the basis of a small set of
randomly picked examples, as follows:

W tþ1 ←W t - ηtGðW tÞ, ð15Þ
where

GðW tÞ=
1
K

K

k=1

∂J ðikÞW
t

∂W
, ð16Þ

where J ik
is the loss function at training sample ik,

fðxðikÞ, yðikÞÞgk=1...K is the small subset of K training samples
(K<<N). This subset of K samples is called a mini-batch or
sometimes a batch.2 In such a way, the iteration cost of stochastic

2 Note that, as often in deep learning, the terminology can be confusing. In isolation, the term batch is usually a
synonym of mini-batch. On the contrary, batch gradient descent means computing the gradient using all training
samples and not only a mini-batch [24].

gradient descent will be OðKÞ and for gradient descent OðN Þ. The
ideal choice for the batch size is a debated question. First, an upper
limit for the batch size is often simply given the available GPU
memory, in particular when the size of the input data is large (e.g.,
3D medical images). Besides, choosing K as a power of 2 often
leads to more efficient computations. Finally, small batch sizes tend
to have a regularizing effect which can be beneficial [24]. In any
case, the ideal batch size usually depends on the application, and it
is not uncommon to try different batch sizes. Finally, one calls an
epoch a complete pass over the whole training set (meaning that
each training sample has been used once). The number of epochs is
the number of full passes over the whole training set. It should not
be confused with the number of iterations which is the number of
mini-batches that have been processed.

Deep Learning: Basics and CNN 91

Note that various improvements over traditional SGD have
been introduced, leading to more efficient optimization methods.
These state-of-the-art optimization methods are presented in
Subheading 3.4.

Box 2: Convergence of SGD Theorem

In [34], the authors prove that stochastic gradient
descent converges if the network is sufficiently overpara-
metrized. Let (x(i) , y(i))1≤i≤n be a training set satisfying
mini,j:i ≠ jkx(i)-x(j)k2> δ> 0. Consider fitting the data
using a feedforward neural network with ReLU activa-
tions. Denote by D (resp. W) the depth (resp. width) of
the network. Suppose that the neural network is suffi-
ciently overparametrized, i.e.:

W ≫ polynomial n,D,
1
δ

: ð17Þ

Then, with high probability, running SGD with some random
initialization and properly chosen step sizes ηt yields J(W

t)
< E in t / log 1 ε.

3.2 Backpropagation The training of neural networks is performed with backpropaga-
tion. Backpropagation computes the gradient of the loss function
with respect to the parameters of the network in an efficient and
local way. This algorithm was originally introduced in 1970. How-
ever, it started becoming very popular after the publication of [6],
which indicated that backpropagation works faster than other
methods that had been proposed back then for the training of
neural networks.

3.3 Generalization

and Overfitting

Þ

92 Maria Vakalopoulou et al.

Fig. 7 A multilayer perceptron with one hidden layer

The backpropagation algorithm works by computing the gra-
dient of the loss function (J) with respect to each weight by the
chain rule, computing the gradient one layer at a time, and iterating
backward from the last layer to avoid redundant calculations of
intermediate terms in the chain rule. In Fig. 7, an example of a
multilayer perceptron with one hidden layer is presented. In such a
network, the backpropagation is calculated as:

∂J ðW Þ
∂w2

=
∂J ðW Þ

∂ŷ
×

∂ŷ
∂w2

∂J ðW Þ
∂w1

=
∂J ðW Þ

∂ŷ
×

∂ŷ
∂w1

=
∂J ðW Þ

∂ŷ
×

∂ŷ
∂z1

×
∂z1
∂w1

: ð18Þ

Overall, backpropagation is very simple and local. However,
the reason why we can train a highly non-convex machine with
many local minima, like neural networks, with a strong local
learning algorithm is not really known even today. In practice,
backpropagation can be computed in different ways, including
manual calculation, numerical differentiation using finite difference
approximation, and symbolic differentiation. Nowadays, deep
learning frameworks such as [14, 16] use automatic differentiation
[35] for the application of backpropagation.

Similar to all the machine learning algorithms (discussed in
Chapter 2), neural networks can suffer from poor generaliza-
tion and overfitting. These problems are caused mainly by the
optimization of the parameters of the models performed in the
{(xi, yi)}i=1,. . .,n training set, while we need the model to per-
form well on other unseen data that are not available during the
training. More formally, in the case of cross-entropy, the loss
that we would like to minimize is:

J ðW Þ= - log ∏ðx, yÞ∈T T
P y= yjx= x;Wð , ð19Þ

where TT is the set of any data, not available during training. In
practice, a small validation set TV is used to evaluate the loss on
unseen data. Of course, this validation set should be distinct from
the training set. It is extremely important to keep in mind that the
performance obtained on the validation set is generally biased
upward because the validation set was used to perform early stop-
ping or to choose regularization parameters. Therefore, one should
have an independent test set that has been isolated at the

beginning, has not been used in any way during training, and is
only used to report the performance (see Chap. 20 for details). In
case one cannot have an additional independent test set due to a
lack of data, one should be aware that the performance may be
biased and that this is a limitation of the specific study.

Deep Learning: Basics and CNN 93

To avoid overfitting and improve the generalization perfor-
mance of the model, usually, the validation set is used to monitor
the loss during the training of the networks. Tracking the training
and validation losses over the number of epochs is essential and
provides important insights into the training process and the
selected hyperparameters (e.g., choice of learning rate). Recent
visualization tools such as TensorBoard3 or Weights & Biases4

make this tracking easy. In the following, we will also mention
some of the most commonly applied optimization techniques that
help with preventing overfitting.

Early Stopping Using the reported training and validation errors,
the best model in terms of performance and generalization power is
selected. In particular, early stopping, which corresponds to select-
ing a model corresponding to an earlier time point than the final
epoch, is a common way to prevent overfitting [36]. Early stopping
is a form of regularization for models that are trained with an
iterative method, such as gradient descent and its variants. Early
stopping can be implemented with different criteria. However,
generally, it requires the monitoring of the performance of the
model on a validation set, and the model is selected when its
performance degrades or its loss increases. Overall, early stopping
should be used almost universally for the training of neural net-
works [24]. The concept of early stopping is illustrated in Fig. 8.

Weight Regularization Similar to other machine learning meth-
ods (Chap. 2), weight regularization is also a very commonly used
technique for avoiding overfitting in neural networks. More specif-
ically, during the training of the model, the weights of the network
start growing in size in order to specialize the model to the training
data. However, large weights tend to cause sharp transitions in the
different layers of the network and, that way, large changes in the
output for only small changes in the inputs [37]. To handle this
problem, during the training process, the weights can be updated in
such a way that they are encouraged to be small, by adding a penalty
to the loss function, for instance, the ℓ2 norm of the parameters
λkWk2 , where λ is a trade-off parameter between the loss and the
regularization. Since weight regularization is quite popular in

3 https://www.tensorflow.org/tensorboard.
4 https://wandb.ai/site.

neural networks, different optimizers have integrated them into
their optimization process in the form of weight decay.

94 Maria Vakalopoulou et al.

Validation

Training

Loss

Time (epochs)

Underfitting Overfitting

Fig. 8 Illustration of the concept of early stopping. The model that should be selected corresponds to the
dashed bar which is the point where the validation loss starts increasing. Before this point, the model is
underfitting. After, it is overfitting

Weight Initialization The way that the weights of neural net-
works will be initialized is very important, and it can determine
whether the algorithm converges at all, with some initial points
being so unstable that the algorithm encounters numerical difficul-
ties and fails altogether [24]. Most of the time, the weights are
initialized randomly from a Gaussian or uniform distribution.
According to [24], the choice of Gaussian or uniform distribution
does not seem to matter very much; however, the scale does have a
large effect both on the outcome of the optimization procedure
and on the ability of the network to generalize. Nevertheless, more
tailored approaches have been developed over the last decade that
have become the standard initialization points. One of them is the
Xavier Initialization [38] which balances between all the layers to
have the same activation variance and the same gradient variance.
More formally the weights are initialized as:

Wi,j � Uniform -
6

m þ n ,
6

m þ n , ð20Þ

where m is the number of inputs and n the number of outputs of
matrix W. Moreover, the biases b are initialized to 0.

Drop-out There are other techniques to prevent overfitting, such
as drop-out [39], which involves randomly destroying neurons
during the training process, thereby reducing the complexity of

the model. Drop-out is an ensemble method that does not need to
build the models explicitly. In practice, at each optimization itera-
tion, random binary masks on the units are considered. The proba-
bility of removing a unit (p) is defined as a hyperparameter during
the training of the network. During inference, all the units are
activated; however, the obtained parameters W are multiplied
with this probability p. Drop-out is quite efficient and commonly
used in a variety of neural network architectures.

Deep Learning: Basics and CNN 95

Fig. 9 Examples of data transformations applied in the MNIST dataset. Each of these generated samples is
considered additional training data

Data Augmentation Since neural networks are data-driven meth-
ods, their performance depends on the training data. To increase
the amount of data during the training, data augmentation can be
performed. It generates slightly modified copies of the existing
training data to enrich the training samples. This technique acts as
a regularizer and helps reduce overfitting. Some of the most com-
monly used transformations applied during data augmentation
include random rotations, translations, cropping, color jittering,
resizing, Gaussian blurring, and many more. In Fig. 9, examples
of different transformations on different digits (first column) of the
MNIST dataset [40] are presented. For medical images, the
TorchIO library allows to easily perform data augmentation [41].

Batch Normalization To ensure that the training of the networks
will be more stable and faster, batch normalization has been pro-
posed [42]. In practice, batch normalization re-centers and
re-scales the layer’s input, mitigating the problem of internal

covariate shift which changes the distribution of the inputs of each
layer affecting the learning rate of the network. Even if the method
is quite popular, its necessity and use for the training have recently
been questioned [43].

96 Maria Vakalopoulou et al.

3.4 State-of-the-Art

Optimizers

Over the years, different optimizers have been proposed and widely
used, aiming to provide improvements over the classical stochastic
gradient descent. These algorithms are motivated by challenges
that need to be addressed with stochastic gradient descent and are
focusing on the choice of the proper learning rate, its dynamic
change during training, as well as the fact that it is the same for all
the parameter updates [44]. Moreover, a proper choice of opti-
mizer could speed up the convergence to the optimal solution. In
this subsection, we will discuss some of the most commonly used
optimizers nowadays.

3.4.1 Stochastic Gradient

Descent with Momentum

One of the limitations of the stochastic gradient descent is that
since the direction of the gradient that we are taking is random, it
can heavily oscillate, making the training slower and even getting
stuck in a saddle point. To deal with this problem, stochastic
gradient descent with momentum [45, 46] keeps a history of the
previous gradients, and it updates the weights taking into account
the previous updates. More formally:

gt ← ρgt -1 þ ð1- ρÞGðW tÞ
ΔW t ← - ηt g

t

W tþ1 ←W t þ ΔW t

, ð21Þ

where gt is the direction of the update of the weights in time-step
t and ρ∈ [0, 1] is a hyperparameter that controls the contribution
of the previous gradients and current gradient in the current
update. When ρ=0, it is the same as the classical stochastic gradient
descent. A large value of ρ will mean that the update is strongly
influenced by the previous updates.

The momentum algorithm accumulates an exponentially
decaying moving average of the past gradients and continues to
move in their direction [24]. Momentum increases the speed of
convergence, while it is also helpful to not get stuck in places where
the search space is flat (saddle points with zero gradient), since the
momentum will pursue the search in the same direction as before
the flat region.

3.4.2 AdaGrad To facilitate and speed up, even more, the training process, optimi-
zers with adaptive learning rates per parameter have been proposed.
The adaptive gradient (AdaGrad) optimizer [47] is one of them. It
updates each individual parameter proportionally to their compo-
nent (and momentum) in the gradient. More formally:

Deep Learning: Basics and CNN 97

gt ←GðW tÞ
rt ← rt -1 þ gt gt

ΔW t ← -
η

δþ rt
p gt

W tþ1 ←W t þ ΔW t

, ð22Þ

where gt is the gradient estimate vector in time-step t, rt is the term
controlling the per parameter update, and δ is some small quantity
that is used to avoid the division by zero. Note that rt constitutes of
the gradient’s element-wise product with itself and of the previous
term rt-1 accumulating the gradients of the previous terms.

This algorithm performs very well for sparse data since it
decreases the learning rate faster for the parameters that are more
frequent and slower for the infrequent parameters. However, since
the update accumulates gradients of the previous steps, the updates
could decrease very fast, blocking the learning process. This limita-
tion is mitigated by extensions of the AdaGrad algorithm as we
discuss in the next sections.

3.4.3 RMSProp Another algorithm with adaptive learning rates per parameter is the
root mean squared propagation (RMSProp) algorithm, proposed
by Geoffrey Hinton. Despite its popularity and use, this algorithm
has not been published. RMSProp is an extension of the AdaGrad
algorithm dealing with the problem of radically diminishing
learning rates by being less influenced by the first iterations of the
algorithm. More formally:

gt ←GðW t Þ
rt ← ρrt -1 þ ð1- ρÞgt gt

ΔW t ← -
η

δþ rt
p gt

W tþ1 ←W t þ ΔW t

, ð23Þ

where ρ is a hyperparameter that controls the contribution of the
previous gradients and the current gradient in the current update.
Note that RMSProp estimates the squared gradients in the same
way as AdaGrad, but instead of letting that estimate continually
accumulate over training, we keep a moving average of it, integrat-
ing the momentum. Empirically, RMSProp has been shown to be
an effective and practical optimization algorithm for deep neural
networks [24].

3.4.4 Adam The effectiveness and advantages of the AdaGrad and RMSProp
algorithms are combined in the adaptive moment estimation
(Adam) optimizer [48]. The method computes individual adaptive
learning rates for different parameters from estimates of the first
and second moments of the gradients. More formally:

a

98 Maria Vakalopoulou et al.

gt ←GðW tÞ
s t ← ρ1s

t -1 þ ð1- ρ1Þgt

rt ← ρ2r
t -1 þ ð1- ρ2Þgt gt

ŝ t ←
s t

1- ðρ1Þt

r̂ t ←
rt

1- ðρ2Þt
ΔW t ← -

λ

δþ r̂ t
p ŝ t

W tþ1 ←W t þ ΔW t

, ð24Þ

where st is the gradient with momentum, rt accumulates the
squared gradients with momentum as in RMSProp, and ŝ t and r̂ t

are smaller than st and rt , respectively, but they converge toward
them. Moreover, δ is some small quantity that is used to avoid the
division by zero, while ρ1 and ρ2 are hyperparameters of the algo-
rithm. The parameters ρ1 and ρ2 control the decay rates of each
moving average, respectively, and their value is close to 1. Empirical
results demonstrate that Adam works well in practice and compares
favorably to other stochastic optimization methods, making it the
go-to optimizer for deep learning problems.

3.4.5 Other Optimizers The development of efficient (in terms of speed and stability)
optimizers is still an active research direction. RAdam [49] is
variant of Adam, introducing a term to rectify the variance of the
adaptive learning rate. In particular, RAdam leverages a dynamic
rectifier to adjust the adaptive momentum of Adam based on the
variance and effectively provides an automated warm-up custom-
tailored to the current dataset to ensure a solid start to training.
Moreover, LookAhead [50] was inspired by recent advances in the
understanding of loss surfaces of deep neural networks and pro-
vides a breakthrough in robust and stable exploration during the
entirety of the training. Intuitively, the algorithm chooses a search
direction by looking ahead at the sequence of fast weights gener-
ated by another optimizer. These are only some of the optimizers
that exist in the literature, and depending on the problem and the
application, different optimizers could be selected and applied.

4 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a specific category of
deep neural networks that employ the convolution operation in
order to process the input data. Even though the main concept
dates back to the 1990s and is greatly inspired by neuroscience [51]
(in particular by the organization of the visual cortex), their wide-
spread use is due to a relatively recent success on the ImageNet
Large Scale Visual Recognition Challenge of 2012 [27]. In contrast

to the deep fully connected networks that have been already dis-
cussed, CNNs excel in processing data with a spatial or grid-like
organization (e.g., time series, images, videos, etc.) while at the
same time decreasing the number of trainable parameters due to
their weight sharing properties. The rest of this section is first
introducing the convolution operation and the motivation behind
using it as a building block/module of neural networks. Then, a
number of different variations are presented together with exam-
ples of the most important CNN architectures. Lastly, the impor-
tance of the receptive field – a central property of such networks –
will be discussed.

Deep Learning: Basics and CNN 99

4.1 The Convolution

Operation

The convolution operation is defined as the integral of the product
of the two functions (f, g)5 after one is reversed and shifted over the
other function. Formally, we write:

hðtÞ=
1

-1
f ðt - τÞgðτÞ dτ: ð25Þ

Such an operation can also be denoted with an asterisk (�), so it
is written as:

hðtÞ= ðf � gÞðtÞ: ð26Þ
In essence, the convolution operation shows how one function

affects the other. This intuition arises from the signal processing
domain, where it is typically important to know how a signal will be
affected by a filter. For example, consider a uni-dimensional con-
tinuous signal, like the brain activity of a patient on some electro-
encephalography electrode, and a Gaussian filter. The result of the
convolution operation between these two functions will output the
effect of a Gaussian filter on this signal which will, in fact, be a
smoothed version of the input.

A different way to think of the convolution operation is that it
shows how the two functions are related. In other words, it shows
how similar or dissimilar the two functions are at different relative
positions. In fact, the convolution operation is very similar to the
cross-correlation operation, with the subtle difference being that in
the convolution operation, one of the two functions is inverted. In
the context of deep learning specifically, the exact differences
between the two operations can be of secondary concern; however,
the convolution operation has more properties than correlation,
such as commutativity. Note also that when the signals are symmet-
ric, both operations will yield the same result.

In order to deal with discrete and finite signals, we can expand
the definition of the convolution operation. Specifically, given two

5 Note that f and g have no relationship to their previous definitions in the chapter. In particular, f is not the deep
learning model.

discrete signals f[k] and g[k], with k∈, the convolution operation
is defined by:

100 Maria Vakalopoulou et al.

0 1 1 1 0 0 0

0 0 1 1 1 0 0

0 0 0 1 1 1 0

0 0 0 1 1 0 0

0 0 1 1 0 0 0

0 1 1 0 0 0 0

1 1 0 0 0 0 0
I

∗
1 0 1

0 1 0

1 0 1

K

=

1 4 3 4 1

1 2 4 3 3

1 2 3 4 1

1 3 3 1 1

3 3 1 1 0

I ∗ K

1 0 1

0 1 0

1 0 1

×1 ×0 ×1

×0 ×1 ×0

×1 ×0 ×1

Fig. 10 A visualization of the discrete convolution operation in 2D

h½k�=
n
f ½k-n�g ½n�: ð27Þ

Lastly, the convolution operation can be extended for multidi-
mensional signals similarly. For example, we can write the convolu-
tion operation between two discrete and finite two-dimensional
signals (e.g., I[i, j], K[i, j]) as:

H ½i, j �=
m n

I ½i-m, j -n�K ½m,n�: ð28Þ

Very often, the first signal will be the input of interest (e.g., a
large size image), while the second signal will be of relatively small
size (e.g., a 3 ×3 or 4×4 matrix) and will implement a specific
operation. The second signal is then called a kernel. In Fig. 10, a
visualization of the convolution operation is shown in the case of a
2D discrete signal such as an image and a 3 ×3 kernel. In detail, the
convolution kernel is shifted over all locations of the input, and an
element-wise multiplication and a summation are utilized to calcu-
late the convolution output at the corresponding location. Exam-
ples of applications of convolutions to an image are provided in
Fig. 11. Finally, note that, as in multilayer perceptrons, a convolu-
tion will generally be followed by a non-linear activation function,
for instance, a ReLU (see Fig. 12 for an example of activation
applied to a feature map).

In the following sections of this chapter, any reference to the
convolution operation will mostly refer to the 2D discrete case. The

extension to the 3D case, which is often encountered in medical
imaging, is straightforward.

Deep Learning: Basics and CNN 101

1 0 -1

1 0 -1

1 0 -1

1 1 1

0 0 0

-1 -1 -1

Original image Vertical edge detection Horizontal edge detection

Fig. 11 Two examples of convolutions applied to an image. One of the filters acts as a vertical edge detector
and the other one as a horizontal edge detector. Of course, in CNNs, the filters are learned, not predefined, so
there is no guarantee that, among the learned filters, there will be a vertical/horizontal case detector, although
it will often be the case in practice, especially for the first layers of the architecture

Fig. 12 Example of application of a non-linear activation function (here a ReLU) to an image

4.2 Properties of the

Convolution Operation

In the case of a discrete domain, the convolution operation can be
performed using a simple matrix multiplication without the need of
shifting one signal over the other one. This can be essentially
achieved by utilizing the Toeplitz matrix transformation. The Toe-
plitz transformation creates a sparse matrix with repeated elements
which, when multiplied with the input signal, produces the convo-
lution result. To illustrate how the convolution operation can be
implemented as a matrix multiplication, let’s take the example of a
3× 3 kernel (K) and a 4 ×4 input (I):

K =

k00 k01 k02 0

0 k00 k01 k

0 0 0 0

0 0 0 0

I = i00 i01 i02 i½

102 Maria Vakalopoulou et al.

K =

k00 k01 k02

k10 k11 k12

k20 k21 k22

and I =

i00 i01 i02 i03

i10 i11 i12 i13

i20 i21 i22 i23

i30 i31 i32 i33

:

Then, the convolution operation can be computed as a matrix
multiplication between the Toepliz transformed kernel:

k10 k11 k12 0 k20 k21 k22 0 0 0 0 0

02 0 k10 k11 k12 0 k20 k21 k22 0 0 0 0

k00 k01 k02 0 k10 k11 k12 0 k20 k21 k22 0

0 k00 k01 k02 0 k10 k11 k12 0 k20 k21 k22

and a reshaped input:

03 i10 i11 i12 i13 i20 i21 i22 i23 i30 i31 i32 i33 �⊤ :
The produced output will need to be reshaped as a 2×2 matrix

in order to retrieve the convolution output. This matrix multiplica-
tion implementation is quite illuminating on a few of the most
important properties of the convolution operation. These proper-
ties are the main motivation behind using such elements in deep
neural networks.

By transforming the convolution operation to a matrix multi-
plication operation, it is evident that it can fit in the formalization of
the linear functions, which has already been presented in Subhead-
ing 2.3. As such, deep neural networks can be designed in a way to
utilize trainable convolution kernels. In practice, multiple convolu-
tion kernels are learned at each convolutional block, while several of
these trainable convolutional blocks are stacked on top of each
other forming deep CNNs. Typically, the output of a convolution
operation is called a feature map or just features.

Another important aspect of the convolution operation is that
it requires much fewer parameters than the fully connected
MLP-based deep neural networks. As it can also be seen from the

K matrix, the exact same parameters are shared across all locations.
Eventually, rather than learning a different set of parameters for the
different locations of the input, only one set is learned. This is
referred to as parameter sharing or weight sharing and can greatly
decrease the amount of memory that is required to store the
network parameters. An illustration of the process of weight sharing
across locations, together with the fact that multiple filters (result-
ing in multiple feature maps) are computed for a given layer, is
illustrated in Fig. 13. The multiple feature maps for a given layer are
stored using another dimension (see Fig. 14), thus resulting in a 3D

array when the input is a 2D image (and a 4D array when the input
is a 3D image).

Deep Learning: Basics and CNN 103

Fig. 13 For a given layer, several (usually many) filters are learned, each of them being able to detect a
specific characteristic in the image, resulting in several feature/filter maps. On the other hand, for a given
filter, the weights are shared across all the locations of the image

Fig. 14 The different feature maps for a given layer are arranged along another dimension. The feature maps
will thus be a 3D array when the input is a 2D image (and a 4D array when the input is a 3D image)

Convolutional neural networks have proven quite powerful in
processing data with spatial structure (e.g., images, videos, etc.).
This is effectively based on the fact that there is a local connectivity
of the kernel elements while at the same time the same kernel is
applied at different locations of the input. Such processing grants a
quite useful property called translation equivariance enabling the

4.3 Functions and

Variants

network to output similar responses at different locations of the
input. An example of the usefulness of such a property can be
identified on an image detection task. Specifically, when training a
network to detect tumors in an MR image of the brain, the model
should respond similarly regardless of the location where the anom-
aly can be manifested.

104 Maria Vakalopoulou et al.

Lastly, another important property of the convolution opera-
tion is that it decouples the size of the input with the trainable
parameters. For example, in the case of MLPs, the size of the weight
matrix is a function of the dimension of the input. Specifically, a
densely connected layer that maps 256 features to 10 outputs
would have a size of W∈10 ×256 . On the contrary, in convolu-
tional layers, the number of trainable parameters only depends on
the kernel size and the number of kernels that a layer has. This
eventually allows the processing of arbitrarily sized inputs, for
example, in the case of fully convolutional networks.

An observant reader might have noticed that the convolution
operation can change the dimensionality of the produced output.
In the example visualized in Fig. 10, the image of size 7× 7, when
convolved with a kernel of size 3× 3, produces a feature map of size
of 5× 5. Even though dimension changes can be avoided with
appropriate padding (see Fig. 15 for an illustration of this process)
prior to the convolution operation, in some cases, it is actually
desired to reduce the dimensions of the input. Such a decrease
can be achieved in a number of ways depending on the task at
hand. In this subsection, some of the most typical functions that
are utilized in CNNs will be discussed.

Fig. 15 The padding operation, which involves adding zeros around the image, allows to obtain feature maps
that are of the same size as the original image

Deep Learning: Basics and CNN 105

Max pooling with
2×2 filter and stride 2

Input feature map

Pooled feature map

Fig. 16 Effect of a pooling operation. Here, a maximum pooling of size 2 × 2 with a stride of 2

Downsampling Operations (i.e., Pooling Layers) In many
CNN architectures, there is an extensive use of downsampling
operations that aim to compress the size of the feature maps and
decrease the computational burden. Otherwise referred to as pool-
ing layers, these processing operations are aggregating the values of
their input depending on their design. Some of the most common
downsampling layers are the maximum pooling, average pooling, or
global average pooling. In the first two, either the maximum or the
average value is used as a feature for the output across
non-overlapping regions of a predefined pooling size. In the case
of the global average pooling, the spatial dimensions are all repre-
sented with the average value. An example of pooling is provided in
Fig. 16.

Strided Convolution The strided convolution refers to the spe-
cific case in which, instead of applying the convolution operation
for every location using a step size (or stride, s) of 1, different step
sizes can be considered (Fig. 17). Such an operation will produce a
convolution output with much fewer elements. Convolutional
blocks with s>1 can be found on CNN architectures as a way to
decrease the feature sizes in intermediate layers.

Atrous or Dilated Convolution Dilated, also called atrous, con-
volution is the convolution with kernels that have been dilated by
inserting zero holes (à trous in French) between the non-zero
values of a kernel. In this case, an additional parameter (d) of the
convolution operation is added, and it is changing the distance
between the kernel elements. In essence, it is increasing the reach
of the kernel but keeping the number of trainable parameters the
same. For example, a dilated convolution with a kernel size of 3 ×3
and a dilation rate of d=2 would be sparsely arranged on a
5× 5 grid.

106 Maria Vakalopoulou et al.

Fig. 17 Stride operation, here with a stride of 2

Transposed Convolution In certain circumstances, one needs
not only to downsample the spatial dimensions of the input but
also, usually at a later stage of the network, apply an upsample
operation. The most emblematic case is the task of image segmen-
tation (see Chap. 13), in which a pixel-level classification is
expected, and therefore, the output of the neural network should
have the same size as the input. In such cases, several upsampling
operations are typically applied. The upsampling can be achieved by
a transposed convolution operation that will eventually increase the
size of the output. In details, the transposed convolution is per-
formed by dilating the input instead of the kernel before applying a
convolution operation. In this way, an input of size 5 ×5 will reach a
size of 10×10 after being dilated with d=2. With proper padding
and using a kernel of size 3× 3, the output will eventually double
in size.

4.4 Receptive Field

Calculation

In the context of deep neural networks and specifically CNNs, the
term receptive field is used to define the proportion of the input
that produces a specific feature. For example, a CNN that takes an
image as input and applies only a single convolution operation with
a kernel size of 3 ×3 would have a receptive field of 3 ×3. This
means that for each pixel of the first feature map, a 3× 3 region of
the input would be considered. Now, if another layer were to be
added, with again 3 ×3 size, then the receptive field of the new
feature map with respect to the CNN’s input would be 5× 5. In
other words, the proportion of the input that is used to calculate
each element of the feature map of the second convolution layer
increases.

Calculating the receptive field at different parts of a CNN is
crucial when trying to understand the inner workings of a specific
architecture. For instance, a CNN that is designed to take as an
input an image of size 256× 256 and that requires information

4.5 Classical

Convolutional Neural

Network Architectures

from all parts of it should have a receptive field close to the size of
the input. The receptive field can be influenced by all the different
convolution parameters and down-/upsampling operations
described in the previous section. A comprehensive presentation
of mathematical derivations for calculating receptive fields for
CNNs is given in [52].

Deep Learning: Basics and CNN 107

In the last decades, a variety of convolutional neural network archi-
tectures have been proposed. In this chapter, we cover only a few
classical architectures for classification and regression. Note that
classification and regression can usually be performed with the
same architecture, just changing the loss function (e.g., cross-
entropy for classification, mean squared error for regression).
Architectures for other tasks can be found in other chapters.

A Basic CNN Architecture Let us start with the most simple
CNN, which is actually very close to the original one proposed by
LeCun et al. [53], sometimes called “LeNet.” Such architecture is
typically composed of two parts: the first one is based on convolu-
tion operations and learns the features for the image and the second
part flattens the features and inputs them to a set of fully connected
layers (in other words, a multilayer perceptron) for performing the
classification/regression (see illustration in Fig. 18). Note that, of
course, the whole network is trained end to end: the two parts are
not trained independently. In the first part, one combines a series of
blocks composed of a convolution operation (possibly strided
and/or dilated), a non-linear activation function (for instance, a
ReLU), and a pooling operation. It is often a good idea to include a
drawing of the different layers of the chosen architecture.

Input image Convolution
+

Non-linearity

Pooling Convolution
+

Non-linearity

Pooling

Feature learning

Fully
connected

Flatten

Classification

Fig. 18 A basic CNN architecture. Classically, it is composed of two main parts. The first one, using
convolution operations, performs feature learning. The features are then flattened and fed into a set of fully
connected layers (i.e., a multilayer perceptron), which performs the classification or the regression task

Unfortunately, there is no harmonized format for such a descrip-
tion. An example is provided in Fig. 19.

108 Maria Vakalopoulou et al.

Fig. 19 A drawing describing a CNN architecture. Classically, it is composed of two main parts. Here
16@3 × 3 × 3 means that 16 features with a 3 × 3 × 3 convolution kernel will be computed. For the pooling
operation, the kernel size is also mentioned (2 × 2). Finally, the stride is systematically indicated

One of the first CNN architectures that follow this paradigm is
the AlexNet architecture [54]. AlexNet was one of the first papers
that empirically indicated that the ReLU activation function makes
the convergence of CNNs faster compared to other non-linearities
such as the tanh. Moreover, it was the first architecture that
achieved a top 5 error rate of 18.2% on the ImageNet dataset,
outperforming all the other methods on this benchmark by a
huge margin (about 10%). Prior to AlexNet, best-performing
methods were using (very sophisticated) pre-extracted features
and classical machine learning. After this advance, deep learning
in general and CNNs, in particular, became very active research
directions to address different computer vision problems. This
resulted in the introduction of a variety of architectures such as
VGG16 [55] that reported a 7.3% error rate on ImageNet, intro-
ducing some changes such as the use of smaller kernel filters.
Following these advances, and even if there were a lot of different
architectures proposed during that period, one could mention the
Inception architecture [56], which was one of the deepest archi-
tectures of that period and which further reduced the error rate on
ImageNet to 6.7%. One of the main characteristics of this architec-
ture was the inception modules, which applied multiple kernel
filters of different sizes at each level of the architecture. To solve
the problem of vanishing gradients, the authors introduced auxil-
iary classifiers connected to intermediate layers, expecting to
encourage discrimination in the lower stages in the classifier,
increasing the gradient signal that gets propagated back, and
providing additional regularization. During inference, these classi-
fiers were completely discarded.

In the following section, some other recent and commonly
used CNN architectures, especially for medical applications, will
be presented.

Deep Learning: Basics and CNN 109

ResNet One of the most commonly used CNN architectures, even
today, is the ResNet [57]. ResNet reduced the error rate on Ima-
geNet to 3.6%, while it was the first deep architecture that proposed
novel concepts on how to gracefully go deeper than a few dozen of
layers. In particular, the authors introduced a deep residual learning
framework. The main idea of this residual learning is that instead of
learning the desired underlying mapping of each network level,
they learn the residual mapping. More formally, instead of learning
the H(x) mapping after the convolutional and non-linear layers,
they fit another mapping of F(x)=H(x)- x on which the original
mapping is recast into F(x) + x. Feedforward neural networks can
realize this mapping with “shortcut connections” by simply
performing identity mapping, and their outputs are added to the
outputs of the stacked layers. Such identity connections add neither
additional complexity nor parameters to the network, making such
architectures extremely powerful.

Different ResNet architectures have been proposed even in the
original paper. Even though the depth of the network is increased
with the additional convolutions, especially for the 152-layer
ResNet (11.3 billion floating point operations), it still has lower
complexity (i.e., fewer parameters) than VGG16/VGG19 net-
works. Currently, different layered-size ResNet architectures
pre-trained on ImageNet are used as backbones for various pro-
blems and applications, including medical imaging. Pre-trained
ResNet models, even if they are 2D architectures, are commonly
used on histopathology [58, 59], chest X-ray [60], or even brain
imaging [61, 62], while the way that such pre-trained networks
work for medical applications gathered the attention of different
studies such as [63]. However, it should be noted that networks
pre-trained on ImageNet are not always efficient for medical imag-
ing tasks, and there are cases where they perform poorly, much
lower than simpler CNNs trained from scratch [64]. Nevertheless,
a pre-trained ResNet is very often a good idea to use for a first try in
a given application. Finally, there was an effort from the medical
community to train 3D variations of ResNet architectures on a
large amount of 3D medical data and release the pre-trained mod-
els. Such an effort is presented in [65] in which the authors trained
and released different 3D ResNet architectures trained on different
publicly available 3D datasets, including different anatomies such as
the brain, prostate, liver, heart, and pancreas.

EfficientNet A more recent CNN architecture that is worth men-
tioning in this section is the recently presented EfficientNet
[66]. EfficientNets are a family of neural networks that are balanc-
ing all dimensions of the network (width/depth/resolution) auto-
matically. In particular, the authors propose a simple yet effective
compound scaling method for obtaining these hyperpameters. In
particular, the main compound coefficient ϕ uniformly scales

network width, depth, and resolution in a principled way: depth =
αϕ , width = βϕ , resolution = γϕ s.t. α � β2 � γ2 ≈2, α≥1, β≥1, γ ≥1.
In this formulation, the parameters α, β, γ are constants, and a small
grid search can determine them. This grid search resulted in eight
different architectures presented in the original paper. EfficientNet
is used more and more for medical imaging tasks, as can be seen in
multiple recent studies [67–69].

110 Maria Vakalopoulou et al.

5 Autoencoders

An autoencoder is a type of neural network that can learn a com-
pressed representation (called the latent space representation) of
the training data. As opposed to the multilayer perceptrons and
CNNs seen until now that are used for supervised learning, auto-
encoders have widely been used for unsupervised learning, with a
wide range of applications. The architecture of autoencoders is
composed of a contracting path (called the encoder), which will
transform the input into a lower-dimensional representation, and
an expanding path (called the decoder), which will aim at recon-
structing the input as well as possible from the lower-dimensional
representation (see Fig. 20).

The loss is usually the ℓ2 loss and the cost function is then:

J ðθ,ϕÞ=
n

i =1

jj xðiÞ -DθðEϕðxðiÞÞÞk2 2, ð29Þ

where Eϕ is the encoder (and ϕ its parameters) and Dθ is the
decoder (and θ its parameters). Note that, in Fig. 20, Dθ(Eϕ(x)) is
denoted as x̂. More generally, one can write:

J ðθ,ϕÞ=x�μxref d x,DθðEϕðxÞÞ , ð30Þ
where μref is the reference distribution that one is trying to approx-
imate and d is the reconstruction function. When μref is the

Fig. 20 The general principle of a denoising autoencoder. It aims at learning of a
low-dimensional representation (latent space) z of the training data. The
learning is done by aiming to provide a faithful reconstruction x̂ of the input
data x̂

empirical distribution of the training set and d is the ℓ2 norm,
Eq. 30 is equivalent to Eq. 29.

Deep Learning: Basics and CNN 111

Many variations of autoencoders exist, to prevent autoencoders
from learning the identity function and to improve their ability to
capture important information and learn richer representations.
Among them, sparse autoencoders offer an alternative method for
introducing an information bottleneck without requiring a reduc-
tion in the number of nodes at the hidden features. This is done by
constructing the loss function such that it penalizes activations
within a layer. This is achieved by enforcing sparsity in the network
and encouraging it to learn an encoding and decoding which relies
only on activating a small number of neurons. This sparsity is
enforced in two main ways, an ℓ1 regularization on the parameters
of the network and a Kullback-Leibler divergence, which is a mea-
sure of the difference between two probability distributions. More
information about sparse autoencoders could be found in
[70]. Moreover, a quite common type of autoencoders is the
denoising autoencoders [71], on which the model is tasked with
reproducing the input as closely as possible while passing through
some sort of information bottleneck (Fig. 20). This way, the model
is not able to simply develop a mapping that memorizes the training
data but rather learns a vector field for mapping the input data
toward a lower-dimensional manifold. One should note here that
the vector field is typically well-behaved in the regions where the
model has observed data during training. In out-of-distribution
data, the reconstruction error is both large and does not always
point in the direction of the true distribution. This observation
makes these networks quite popular for anomaly detection in med-
ical data [72]. Additionally, contractive autoencoders [73] are other
variants of this type of models, adding the contractive regulariza-
tion loss to the standard autoencoder loss. Intuitively, it forces very
similar inputs to have a similar encoding, and in particular, it
requires the derivative of the hidden layer activations to be small
with respect to small changes in the input. The denoising autoen-
coders can be understood as a variation of the contractive autoen-
coder. In the limit of small Gaussian noise, the denoising
autoencoders make the reconstruction error resistant to finite-
sized input perturbations, while the contractive autoencoders
make the extracted features resistant to small input perturbations.

Depending on the input type, different autoencoder architec-
tures could be designed. In particular, when the inputs are images,
the encoder and the decoder are classically composed of convolu-
tional blocks. The decoder uses, for instance, transposed convolu-
tions to perform the expansion. Finally, the addition of skip
connections has led to the U-Net [74] architectures that are com-
monly used for segmentation purposes. Segmentation architectures
will be more extensively described in Chap. 13. Finally, variational
autoencoders, which rely on a different mathematical formulation,

are not covered in the present chapter and are presented, together
with other generative models, in Chap. 5.

112 Maria Vakalopoulou et al.

6 Conclusion

Deep learning is a very fast evolving field, with numerous still
unanswered theoretical questions. However, deep learning-based
models have become the state-of-the-art methods for a variety of
fields and tasks. In this chapter, we presented the basic principles of
deep learning, covering both perceptrons and convolutional neural
networks. All architectures were feedforward and recurrent net-
works are covered in Chap. 4. Generative adversarial networks are
covered in Chap. 5, along with other generative models. Chapter 6
presents a recent class of deep learning methods, which does not
use convolutions, and that are called transformers. Finally, through-
out the other chapters of the book, different deep learning archi-
tectures are presented for various types of applications.

Acknowledgements

This work was supported in part by the French government under
management of Agence Nationale de la Recherche as part of the
“Investissements d’avenir” program, reference ANR-19-P3IA-
0001 (PRAIRIE 3IA Institute), reference ANR-10-IAIHU-06
(Institut Hospitalo-Universitaire ICM), and ANR-21-CE45-0007
(Hagnodice).

References

1. Rosenblatt F (1957) The perceptron, a perceiv-
ing and recognizing automaton Project Para.
Cornell Aeronautical Laboratory, Buffalo

2. Minsky M, Papert S (1969) Perceptron: an
introduction to computational geometry.
MIT Press, Cambridge, MA

3. Minsky ML, Papert SA (1988) Perceptrons:
expanded edition. MIT Press, Cambridge, MA

4. Linnainmaa S (1976) Taylor expansion of the
accumulated rounding error. BIT Numer Math
16(2):146–160

5. Werbos PJ (1982) Applications of advances in
nonlinear sensitivity analysis. In: System mod-
eling and optimization. Springer, Berlin, pp
762–770

6. Rumelhart DE, Hinton GE, Williams RJ
(1986) Learning representations by back-
propagating errors. Nature 323(6088):
533–536

7. Le Cun Y (1985) Une procédure d’apprentis-
sage pour réseau à seuil assymétrique. Cogni-
tiva 85:599–604

8. Hochreiter S, Schmidhuber J (1997) Long
short-term memory. Neural Comput 9(8):
1735–1780

9. Hinton GE, Osindero S, Teh YW (2006) A fast
learning algorithm for deep belief nets. Neural
Comput 18(7):1527–1554

10. Hinton GE (2007) Learning multiple layers of
representation. Trends Cogn Sci 11(10):
428–434

11. Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei
L (2009) ImageNet: a large-scale hierarchical
image database. In: 2009 IEEE conference on
computer vision and pattern recognition.
IEEE, pp 248–255

12. Bergstra J, Bastien F, Breuleux O, Lamblin P,
Pascanu R, Delalleau O, Desjardins G, Warde-
Farley D, Goodfellow I, Bergeron A et al

Deep Learning: Basics and CNN 113

(2011) Theano: deep learning on GPUs with
Python. In: NIPS 2011, Big learning work-
shop, Granada, Spain, vol 3. Citeseer, pp 1–48

13. Jia Y, Shelhamer E, Donahue J, Karayev S,
Long J, Girshick R, Guadarrama S, Darrell T
(2014) Caffe: convolutional architecture for
fast feature embedding. In: Proceedings of the
22nd ACM international conference on Multi-
media, pp 675–678

14. Abadi M, Agarwal A, Barham P, Brevdo E,
Chen Z, Citro C, Corrado GS, Davis A,
Dean J, Devin M et al (2016) TensorFlow:
large-scale machine learning on heterogeneous
distributed systems. arXiv preprint
arXiv:160304467

15. Chollet F et al (2015) Keras. https://github.
com/fchollet/keras

16. Paszke A, Gross S, Massa F, Lerer A,
Bradbury J, Chanan G, Killeen T, Lin Z,
Gimelshein N, Antiga L et al (2019) PyTorch:
an imperative style, high-performance deep
learning library. In: Advances in neural infor-
mation processing systems, vol 32

17. Hebb DO (1949) The organization of behav-
ior: a psychological theory. Wiley, New York

18. Cybenko G (1989) Approximations by super-
positions of a sigmoidal function. Math Con-
trol Signals Syst 2:183–192

19. Hornik K, Stinchcombe M, White H (1989)
Multilayer feedforward networks are universal
approximators. Neural Netw 2(5):359–366

20. Mhaskar HN (1996) Neural networks for opti-
mal approximation of smooth and analytic
functions. Neural Comput 8(1):164–177

21. Pinkus A (1999) Approximation theory of the
MLP model in neural networks. Acta Numer 8:
143–195

22. Poggio T, Mhaskar H, Rosasco L, Miranda B,
Liao Q (2017) Why and when can deep-but
not shallow-networks avoid the curse of
dimensionality: a review. Int J Autom Comput
14(5):503–519

23. Rolnick D, Tegmark M (2017) The power of
deeper networks for expressing natural func-
tions. arXiv preprint arXiv:170505502

24. Goodfellow I, Bengio Y, Courville A (2016)
Deep learning. MIT Press, Cambridge, MA

25. Cover TM (1965) Geometrical and statistical
properties of systems of linear inequalities with
applications in pattern recognition. IEEE
Trans Electron Comput 3:326–334

26. Glorot X, Bordes A, Bengio Y (2011) Deep
sparse rectifier neural networks. In: Proceed-
ings of the fourteenth international conference
on artificial intelligence and statistics, JMLR
workshop and conference proceedings, pp
315–323

27. Krizhevsky A, Sutskever I, Hinton GE (2012)
ImageNet classification with deep convolu-
tional neural networks. In: Advances in neural
information processing systems, vol 25

28. Hein M, Andriushchenko M, Bitterwolf J
(2019) Why ReLU networks yield high-
confidence predictions far away from the train-
ing data and how to mitigate the problem. In:
Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp
41–50

29. Maas AL, Hannun AY, Ng AY et al (2013)
Rectifier nonlinearities improve neural network
acoustic models. In: Proc. ICML, Atlanta,
Georgia, vol 30. p 3

30. He K, Zhang X, Ren S, Sun J (2015) Delving
deep into rectifiers: surpassing human-level
performance on ImageNet classification. In:
Proceedings of the IEEE international confer-
ence on computer vision, pp 1026–1034

31. Ramachandran P, Zoph B, Le QV (2017)
Searching for activation functions. arXiv pre-
print arXiv:171005941

32. Dauphin YN, Pascanu R, Gulcehre C, Cho K,
Ganguli S, Bengio Y (2014) Identifying and
attacking the saddle point problem in high-
dimensional non-convex optimization. In:
Advances in neural information processing sys-
tems, vol 27

33. Bottou L (2010) Large-scale machine learning
with stochastic gradient descent. In: Proceed-
ings of COMPSTAT’2010. Springer, Berlin,
pp 177–186

34. Allen-Zhu Z, Li Y, Song Z (2019) A conver-
gence theory for deep learning via over-
parameterization. In: International conference
on machine learning, PMLR, pp 242–252

35. Baydin AG, Pearlmutter BA, Radul AA, Siskind
JM (2018) Automatic differentiation in
machine learning: a survey. J Mach Learn Res
18:1–43

36. Prechelt L (1998) Early stopping-but when? In:
Neural networks: tricks of the trade. Springer,
Berlin, pp 55–69

37. Reed R, MarksII RJ (1999) Neural smithing:
supervised learning in feedforward artificial
neural networks. MIT Press, Cambridge, MA

38. Glorot X, Bengio Y (2010) Understanding the
difficulty of training deep feedforward neural
networks. In: Proceedings of the thirteenth
international conference on artificial intelli-
gence and statistics, JMLR workshop and con-
ference proceedings, pp 249–256

39. Srivastava N, Hinton G, Krizhevsky A,
Sutskever I, Salakhutdinov R (2014) Dropout:
a simple way to prevent neural networks from

114 Maria Vakalopoulou et al.

overfitting. J Mach Learn Res 15(1):
1929–1958

40. Deng L (2012) The MNIST database of hand-
written digit images for machine learning
research. IEEE Signal Process Mag 29(6):
141–142

41. Pérez-Garcı́a F, Sparks R, Ourselin S (2021)
TorchIO: a Python library for efficient loading,
preprocessing, augmentation and patch-based
sampling of medical images in deep learning.
Comput Methods Programs Biomed 208:
106236

42. Ioffe S, Szegedy C (2015) Batch normaliza-
tion: accelerating deep network training by
reducing internal covariate shift. In: Interna-
tional conference on machine learning,
PMLR, pp 448–456

43. Brock A, De S, Smith SL, Simonyan K (2021)
High-performance large-scale image recogni-
tion without normalization. In: International
conference on machine learning, PMLR, pp
1059–1071

44. Ruder S (2016) An overview of gradient
descent optimization algorithms. arXiv pre-
print arXiv:160904747

45. Polyak BT (1964) Some methods of speeding
up the convergence of iteration methods.
USSR Comput Math Math Phys 4(5):1–17

46. Qian N (1999) On the momentum term in
gradient descent learning algorithms. Neural
Netw 12(1):145–151

47. Duchi J, Hazan E, Singer Y (2011) Adaptive
subgradient methods for online learning and
stochastic optimization. J Mach Learn Res
12(7)

48. Kingma DP, Ba J (2014) Adam: a method for
stochastic optimization. arXiv preprint
arXiv:14126980

49. Liu L, Jiang H, He P, Chen W, Liu X, Gao J,
Han J (2019) On the variance of the adaptive
learning rate and beyond. arXiv preprint
arXiv:190803265

50. Zhang M, Lucas J, Ba J, Hinton GE (2019)
LookAhead optimizer: k steps forward, 1 step
back. Adv Neural Inf Process Syst 32

51. Fukushima K, Miyake S (1982) Neocognitron:
a self-organizing neural network model for a
mechanism of visual pattern recognition. In:
Competition and cooperation in neural nets.
Springer, Berlin, pp 267–285

52. Araujo A, Norris W, Sim J (2019) Computing
receptive fields of convolutional neural net-
works. Distill https://doi.org/10.23915/dis
till.00021

53. LeCun Y, Boser B, Denker JS, Henderson D,
Howard RE, Hubbard W, Jackel LD (1989)
Backpropagation applied to handwritten zip

code recognition. Neural Comput 1(4):
541–551

54. Krizhevsky A, Sutskever I, Hinton GE (2012)
ImageNet classification with deep convolu-
tional neural networks. In: Pereira F,
Burges C, Bottou L, Weinberger K (eds)
Advances in neural information processing sys-
tems, vol 25. Curran Associates. https://
proceedings.neurips.cc/paper/2012/file/c3
99862d3b9d6b76c8436e924a68c45b-
Paper.pdf

55. Simonyan K, Zisserman A (2014) Very deep
convolutional networks for large-scale image
recognition. arXiv preprint arXiv:14091556

56. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S,
Anguelov D, Erhan D, Vanhoucke V, Rabino-
vich A (2015) Going deeper with
convolutions. In: Proceedings of the IEEE
conference on computer vision and pattern
recognition, pp 1–9

57. He K, Zhang X, Ren S, Sun J (2016) Deep
residual learning for image recognition. In:
Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pp
770–778

58. Lu MY, Williamson DF, Chen TY, Chen RJ,
Barbieri M, Mahmood F (2021) Data-efficient
and weakly supervised computational pathol-
ogy on whole-slide images. Nat Biomed Eng
5(6):555–570

59. Benkirane H, Vakalopoulou M,
Christodoulidis S, Garberis IJ, Michiels S,
Cournède PH (2022) Hyper-AdaC: adaptive
clustering-based hypergraph representation of
whole slide images for survival analysis. In:
Machine learning for health, PMLR, pp
405–418

60. Horry MJ, Chakraborty S, Paul M, Ulhaq A,
Pradhan B, Saha M, Shukla N (2020) X-ray
image based COVID-19 detection using
pre-trained deep learning models. Engineering
Archive, Menomonie

61. Li JP, Khan S, Alshara MA, Alotaibi RM,
Mawuli C et al (2022) DACBT: deep learning
approach for classification of brain tumors
using MRI data in IoT healthcare environ-
ment. Sci Rep 12(1):1–14

62. Nandhini I, Manjula D, Sugumaran V (2022)
Multi-class brain disease classification using
modified pre-trained convolutional neural net-
works model with substantial data augmenta-
tion. J Med Imaging Health Inform 12(2):
168–183

63. Raghu M, Zhang C, Kleinberg J, Bengio S
(2019) Transfusion: understanding transfer
learning for medical imaging. In: Advances in
neural information processing systems, vol 32

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International
License (), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made. The images or other
third party material in this chapter are included in the chapter’s Creative Commons license, unless indicated
otherwise in a credit line to the material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Deep Learning: Basics and CNN 115

64. Wen J, Thibeau-Sutre E, Diaz-Melo M, Sam-
per-González J, Routier A, Bottani S,
Dormont D, Durrleman S, Burgos N, Colliot
O (2020) Convolutional neural networks for
classification of Alzheimer’s disease: overview
and reproducible evaluation. Med Image Anal
63:101694

65. Chen S, Ma K, Zheng Y (2019) Med3D: trans-
fer learning for 3D medical image analysis.
arXiv preprint arXiv:190400625

66. Tan M, Le Q (2019) EfficientNet: rethinking
model scaling for convolutional neural
networks. In: International conference on
machine learning, PMLR, pp 6105–6114

67. Wang J, Liu Q, Xie H, Yang Z, Zhou H (2021)
Boosted EfficientNet: detection of lymph node
metastases in breast cancer using convolutional
neural networks. Cancers 13(4):661

68. Oloko-Oba M, Viriri S (2021) Ensemble of
EfficientNets for the diagnosis of tuberculosis.
Comput Intell Neurosci 2021:9790894

69. Ali K, Shaikh ZA, Khan AA, Laghari AA (2021)
Multiclass skin cancer classification using
EfficientNets—a first step towards preventing
skin cancer. Neurosci Inform 2(4):100034

70. Ng A et al (2011) Sparse autoencoder. CS294A
Lecture Notes 72(2011):1–19

71. Vincent P, Larochelle H, Bengio Y, Manzagol
PA (2008) Extracting and composing robust
features with denoising autoencoders. In: Pro-
ceedings of the 25th international conference
on machine learning, pp 1096–1103

72. Baur C, Denner S, Wiestler B, Navab N, Albar-
qouni S (2021) Autoencoders for unsupervised
anomaly segmentation in brain MR images: a
comparative study. Med Image Anal 69:
101952

73. Salah R, Vincent P, Muller X, et al (2011)
Contractive auto-encoders: explicit invariance
during feature extraction. In: Proceedings of
the 28th international conference on machine
learning, pp 833–840

74. Ronneberger O, Fischer P, Brox T (2015)
U-net: convolutional networks for biomedical
image segmentation. In: International Confer-
ence on Medical image computing and
computer-assisted intervention. Springer, Ber-
lin, pp 234–241

Chapter 4

Recurrent Neural Networks (RNNs): Architectures, Training
Tricks, and Introduction to Influential Research

Susmita Das, Amara Tariq, Thiago Santos, Sai Sandeep Kantareddy,
and Imon Banerjee

Abstract

Recurrent neural networks (RNNs) are neural network architectures with hidden state and which use
feedback loops to process a sequence of data that ultimately informs the final output. Therefore, RNN
models can recognize sequential characteristics in the data and help to predict the next likely data point in
the data sequence. Leveraging the power of sequential data processing, RNN use cases tend to be
connected to either language models or time-series data analysis. However, multiple popular RNN
architectures have been introduced in the field, starting from SimpleRNN and LSTM to deep RNN, and
applied in different experimental settings. In this chapter, we will present six distinct RNN architectures and
will highlight the pros and cons of each model. Afterward, we will discuss real-life tips and tricks for training
the RNN models. Finally, we will present four popular language modeling applications of the RNN
models –text classification, summarization, machine translation, and image-to-text translation– thereby
demonstrating influential research in the field.

Key words Recurrent neural network (RNN), LSTM, GRU, Bidirectional RNN (BRNN), Deep
RNN, Language modeling

1 Introduction

Recurrent neural network (RNN) is a specialized neural network
with feedback connection for processing sequential data or time-
series data in which the output obtained is fed back into it as input
along with the new input at every time step. The feedback connec-
tion allows the neural network to remember the past data when
processing the next output. Such processing can be defined as a
recurring process, and hence the architecture is also known as
recurring neural network.

RNN concept was first proposed by Rumelhart et al. [1] in a
letter published by Nature in 1986 to describe a new learning
procedure with a self-organizing neural network. Another impor-
tant historical moment for RNNs is the (re-)discovery of Hopfield

Olivier Colliot (ed.), Machine Learning for Brain Disorders, Neuromethods, vol. 197, https://doi.org/10.1007/978-1-0716-3195-9_4,
© The Author(s) 2023

117

networks which is a special kind of RNN with symmetric connec-
tions where the weight from one node to another and from the
latter to the former are the same (symmetric). The Hopfield net-
work [2] is fully connected, so every neuron’s output is an input to
all the other neurons, and updating of nodes happens in a binary
way (0/1). These types of networks were specifically designed to
simulate the human memory.

118 Susmita Das et al.

The other types of RNNs are input-output mapping networks,
which are used for classification and prediction of sequential data.
In 1993, Schmidhuber et al. [3] demonstrated credit assignment
across the equivalent of 1,200 layers in an unfolded RNN and
revolutionized sequential modeling. In 1997, one of the most
popular RNN architectures, the long short-term memory
(LSTM) network which can process long sequences, was proposed.

In this chapter, we summarize the six most popular contempo-
rary RNN architectures and their variations and highlight the pros
and cons of each. We also discuss real-life tips and tricks for training
the RNN models, including various skip connections and gradient
clipping. Finally, we highlight four popular language modeling
applications of the RNN models –text classification, summariza-
tion, machine translation, and image-to-text translation– thereby
demonstrating influential research in each area.

2 Popular RNN Architectures

In addition to the SimpleRNN architecture, many variations were
proposed to address different use cases. In this section, we will
unwrap some of the popular RNN architectures like LSTM,
GRU, bidirectional RNN, deep RNN, and attention models and
discuss their pros and cons.

2.1 SimpleRNN SimpleRNN architecture, which is also known as SimpleRNN,
contains a simple neural network with a feedback connection. It
has the capability to process sequential data of variable length due
to the parameter sharing which generalizes the model to process
sequences of variable length. Unlike feedforward neural networks
which have separate weights for each input feature, RNN shares the
same weights across several time steps. In RNN, the output of a
present time step depends on the previous time steps and is
obtained by the same update rule which is used to obtain the
previous outputs. As we will see, the RNN can be unfolded into a
deep computational graph in which the weights are shared across
time steps.

The RNN operating on an input sequence x(t) with a time step
index t ranging from 1 to τ is illustrated in Fig. 1. The time step
index t may not necessarily refer to the passage of time in the real
world; it can refer to the position in the sequence. The cycles in the

computational graph represent the impact of the past value of a
variable on the present time step. The computational graph has a
repetitive structure that unfolds the recursive computation of the
RNN which corresponds to a chain of events. It shows the flow of
the information, forward in the time of computing the outputs and
losses and backward when computing the gradients. The unfolded
computational graph is shown in Fig. 1. The equation
corresponding to the computational graph is h(t) = f(h(t-1) , x(t) ;
W), where h is the hidden state of the network, x is the input, t is
the time step, and W denotes the weights of the network connec-
tions comprising of input-to-hidden, hidden-to-hidden, and
hidden-to-output connection weights.

RNN Architectures and Research 119

o

h

x

Unfold
h(....) h(....)h(t-1) h(t) h(t+1)

x(t-1) x(t) x(t+1)

o(t-1) o(t) o(t+1)

Fig. 1 (Left) Circuit diagram for SimpleRNN with input x being incorporated into hidden state h with a feedback
connection and an output o. (Right) The same SimpleRNN network shown as an unfolded computational graph
with nodes at every time step

2.1.1 Training

Fundamentals

Training is performed by gradient computation of the loss function
with respect to the parameters involved in forward propagation
from left to right of the unrolled graph followed by back-
propagation moving from right to left through the graph. Such
gradient computation is an expensive operation as the runtime
cannot be reduced by parallelism because the forward propagation
is sequential in nature. The states computed in the forward pass are
stored until they are reused in the back-propagation. The back-
propagation algorithm applied to RNN is known as back-propa-
gation through time (BPTT) [4].

The following computational operations are performed in
RNN during the forward propagation to calculate the output and
the loss.

aðtÞ = b þ Whðt -1Þ þ UxðtÞ

hðtÞ = tanhðaðtÞÞ
oðtÞ = c þ VhðtÞ

ŷðtÞ = σðoðtÞÞ

120 Susmita Das et al.

where b and c are the biases and U, V , and W are the weight matrix
for input-to-hidden connections, hidden-to-output connection,
and hidden-to-hidden connections respectively, and σ is a sigmoid
function. The total loss for a sequence of x values and its
corresponding y values is obtained by summing up the losses over
all time steps.

τ

t =1

LðtÞ =Lððxð1Þ, , xðτÞÞ, ðyð1Þ, , yðτÞÞÞ
To minimize the loss, the gradient of the loss function is

calculated with respect to the parameters associated with it. The
parameters associated with the nodes of the computational graph
are U, V , W, b, c, x(t) , h(t) , o(t) , and L(t) . The output o(t) is the
argument to the softmax to obtain the vector ŷ of probabilities over
the output. During back-propagation, the gradient for each node is
calculated recursively starting with the nodes preceding the final
loss. It is then iterated backward in time to back-propagate gradi-
ents through time. tanh is a popular choice for activation function
as it tends to avoid vanishing gradient problem by retaining
non-zero value longer through the back-propagation process.

2.1.2 SimpleRNN

Architecture Variations

Based on Parameter

Sharing

Variations of SimpleRNN can be designed depending upon the
style of graph unrolling and parameter sharing [5]:

• Connection between hidden units. The RNN produces outputs at
every time step, and the parameters are passed between hidden-
to-hidden units (Fig. 2a). This corresponds to the standard
SimpleRNN presented above and is widely used.

• Connection between outputs to hidden units. The RNN produces
outputs at every time step, and the parameters are passed from
an output at a particular time step to the hidden unit at the next
time step (Fig. 2b).

• Sequential input to single output. The RNN produces a single
output at the end after reading the entire sequence and has
connections between the hidden units at every time step
(Fig. 2c).

2.1.3 SimpleRNN

Architecture Variations

Based on Inputs and

Outputs

Different variations also exist depending on the number of inputs
and outputs:

• One-to-one: The traditional RNN has one-to-one input to out-
put mapping at each time step t as shown in Fig. 3a.

• One-to-many: One-to-many RNN has one input at a time step
for which it generates a sequence of outputs at consecutive time
steps as shown in Fig. 3b. This type of RNN architecture is often
used for image captioning.

RNN Architectures and Research 121

h(....) h(....)h(t-1) h(t) h(t+1)

x(t-1) x(t) x(t+1)

o(t-1) o(t) o(t+1)

h(....) h(....)h(t-1) h(t) h(t+1)

x(t-1) x(t) x(t+1)

o(t-1)o(....) o(t) o(t+1)

h(....) h(....)h(t-1) h(t) h(t+1)

x(t-1) x(t) x(t+1)

o

(a) (b)

(c)

Fig. 2 Types of SimpleRNN architectures based on parameter sharing: (a) SimpleRNN with connections
between hidden units, (b) SimpleRNN with connections from output to hidden units, and (c) SimpleRNN with
connections between hidden units that read the entire sequence and produce a single output

• Many-to-one: Many-to-one RNN has many inputs and one out-
put, at each time step as shown in Fig. 3c. This type of RNN
architecture is used for text classification.

• Many-to-many: Many-to-many RNN architecture can be
designed in two ways. First, the input is taken by the RNN and
the corresponding output is given at the same time step as
illustrated in Fig. 3d. This type of RNN is used for named entity
recognition. Second, the input is taken by the RNN at each time
step and the output is given by the RNN at the next time step
depending upon all the input sequence as illustrated in
Fig. 3e. Popular uses of this type of RNN architecture are in
machine translation.

2.1.4 Challenges of

Long-Term Dependencies

in SimpleRNN

SimpleRNN works well with the short-term dependencies, but
when it comes to long-term dependencies, it fails to remember
the long-term information. This problem arises due to the vanish-
ing gradient or exploding gradient [6]. When the gradients are
propagated over many stages, it tends to vanish most of the times
or sometimes explodes. The difficulty arises due to the exponen-
tially smaller weight assigned to the long-term interactions com-
pared to the short-term interactions. It takes very long time to learn
the long-term dependencies as the signals from these dependencies
tend to be hidden by the small fluctuations arising from the short-
term dependencies.

122 Susmita Das et al.

h(t) h(t+1) h(t+2)

x(t)

o(t)

h(t)

x(t)

o(t) o(t+1) o(t+2)

h(t) h(t+1) h(t+2)

x(t+1) x(t+2) x(t)

o(t) o(t+1) o(t+2)

h(t–2) h(t–1) h(t)

x(t–1) x(t) x(t–2)

o(t)

h(t–2) h(t–1) h(t)

x(t–1) x(t) x(t–2)

o(t)

h(t+1)

o(t+1)

h(t+2)

o(t+2)

(a)

(d) (e)

(b) (c)

Fig. 3 (a) One-to-one RNN. (b) One-to-many RNN. (c) Many-to-one RNN. (d) Many-to-many RNN. (e) Many-to-
many RNN. x represents the input and o represents the output

2.2 Long Short-Term

Memory (LSTM)

To address this long-term dependency problem, gated RNNs were
proposed. Long short-term memory (LSTM) is a type of gated
RNN which was proposed in 1997 [7]. Due to the property of
remembering the long-term dependencies, LSTM has been a suc-
cessful model in many applications like speech recognition,
machine translation, image captioning, etc. LSTM has an inner
self loop in addition to the outer recurrence of the RNN. The
gradients in the inner loop can flow for longer duration and are
conditioned on the context rather than being fixed. In each cell, the
input and output is the same as that of ordinary RNN but has a
system of gating units to control the flow of information. Figure 4
shows the flow of the information in LSTM with its gating units.

There are three gates in the LSTM—the external input gate,
the forget gate, and the output gate. The forget gate at time t and
state si (f

ðtÞ
i) decides which information should be removed from

the cell state. The gate controls the self loop by setting the weight
between 0 and 1 via a sigmoid function σ. When the value is near to
1, the information of the past is retained, and if the value is near to

0, the information is discarded. After the forget gate, the internal
state s

ðtÞ
i is updated. Computation for external input gate (gt

i) is
similar to that of forget gate with a sigmoid function to obtain a
value between 0 and 1 but with its own parameters. The output
gate of the LSTM also has a sigmoid unit which determines
whether to output the value or to shut off the value ht i via the
output gate qt i .

RNN Architectures and Research 123

X

ot

ht

ct

ht

xt

h(t–1)

s s s

c(t–1)

X

X

tanh

tanh

+

Fig. 4 Long short-term memory with cell state ct , hidden state ht , input xt , and output ot

f
ðtÞ
i = σ

j

U f
i , jx

t
j þ

j

W f
i , jh

ðt -1Þ
j þ bf i

s
ðtÞ
i = f t i s

ðt -1Þ
i þ gt iσ bi þ

j

U i, jx
t
j þ

j

W i, jh
ðt -1Þ
j

g t
i = σ bg i þ

j

U g
i , jx

t
j þ

j

W g
i , jh

ðt -1Þ
j

ht i = tanhðst i Þqt i
qt i = σ bo i þ

j

U o
i , jx

t
i þ W o

i , jh
ðt -1Þ
j

xt is the input vector at time t, h(t) is the hidden layer vector, bi
denote the biases, and Ui and Wi represent the input weights and
the recurrent weights, respectively.

124 Susmita Das et al.

X

X

1–Reset
gate

Update
gate

X

+

ht

xt

s s

h(t–1)

tanh

Fig. 5 Gated recurrent neural network (GRU) with input xt and hidden unit ht

2.3 Gated Recurrent

Unit (GRU)

In LSTM, the computation time is large as there are a lot of
parameters involved during back-propagation. To reduce the com-
putation time, gated recurrent unit (GRU) was proposed in the
year 2014 by Cho et al. with less gates than in LSTM [8]. The
functionality of the GRU is similar to that of LSTM but with a
modified architecture. The representation diagram for GRU can be
found in Fig. 5. Like LSTM, GRU also solves the vanishing and
exploding gradient problem by capturing the long-term dependen-
cies with the help of gating units. There are two gates in GRU, the
reset gate and the update gate. The reset gate determines how
much of the past information it needs to forget, and the update
gate determines how much of the past information it needs to carry
forward.

The computation at the reset gate (rt i) and the update gate (u
t
i),

as well as hidden state (ht i) and the at time t, can be represented by the
following:

r
ðtÞ
i = σðbr i þ

j

U r
i,jx

ðtÞ
j þ

j

W r
i,jh

ðtÞ
j Þ

u
ðtÞ
i = σðbu i þ

j

Uu
i,jx

ðtÞ
j þ

j

W u
i,jh

ðtÞ
j Þ

h
ðtÞ
i =u

ðt -1Þ
i h

ðt -1Þ
i þ ð1-uiÞ

× σðbi þ
j

U i,jx
ðt -1Þ
j þ

j

W i,j r
ðt -1Þ
j h

ðt -1Þ
j Þ

where bi denotes biases and Ui and Wi denote initial and recurrent
weights, respectively.

RNN Architectures and Research 125

When the reset gate value is close to 0, the previous hidden
state value is discarded and reset with the present value. This
enables the hidden state to forget the past information that is
irrelevant for future. The update gate determines how much of
the relevant past information to carry forward for future.

The property of the update gate to carry forward the past
information allows it to remember the long-term dependencies.
For short-term dependencies, the reset gate will be frequently
active to reset with current values and remove the previous ones,
while, for long-term dependencies, the update gate will be often
active for carrying forward the previous information.

2.3.1 Advantage of LSTM

and GRU over SimpleRNN

The LSTM and GRU can handle the vanishing gradient issue of
SimpleRNN with the help of gating units. The LSTM and GRU
have the additive feature that they retain the past information by
adding the relevant past information to the present state. This
additive property makes it possible to remember a specific feature
in the input for longer time. In SimpleRNN, the past information
loses its relevance when new input is seen. In LSTM and GRU, any
important feature is not overwritten by new information. Instead, it
is added along with the new information.

2.3.2 Differences

Between LSTM and GRU

There are a few differences between LSTM and GRU in terms of
gating mechanism which in turn result in differences observed in
the content generated. In LSTM unit, the amount of the memory
content to be used by other units of the network is regulated by the
output gate, whereas in GRU, the full content that is generated is
exposed to other units. Another difference is that the LSTM com-
putes the new memory content without controlling the amount of
previous state information flowing. Instead, it controls the new
memory content that is to be added to the network. On the other
hand, the GRU controls the flow of the past information when
computing the new candidate without controlling the candidate
activation.

2.4 Bidirectional

RNN (BRNN)

In SimpleRNN, the output of a state at time t only depends on the
information of the past x(1) ,, x(t-1) and the present input x(t) .
However, for many sequence-to-sequence applications, the present
state output depends on the whole sequence information. For
example, in language translation, the correct interpretation of the
current word depends on the past words as well as the next words.
To overcome this limitation of SimpleRNN, bidirectional RNN
(BRNN) was proposed by Schuster and Paliwal in the year
1997 [9].

Bidirectional RNNs combine an RNN which moves forward
with time, beginning from the start of the sequence, with another
RNN that moves backward through time, beginning from the end
of the sequence. Figure 6 illustrates a bidirectional RNN with h(t)

the state of the sub-RNN that moves forward through time and g(t)

the state of the sub-RNN that moves backward with time. The
output of the sub-RNN that moves forward is not connected to
the inputs of sub-RNN that moves backward and vice versa. The
output o(t) depends on both past and future sequence data but is
sensitive to the input values around t.

126 Susmita Das et al.

o(t–1)

g(...) g(...)

o(t+1)o(t)

g(t–1) g(t+1)g(t)

h(...) h(...)h(t–1) h(t+1)h(t)

x(t–1) x(t+1)x(t)

Fig. 6 Bidirectional RNN with forward sub-RNN having ht hidden state and
backward sub-RNN having gt hidden state

2.5 Deep RNN Deep models are more efficient than their shallow counterparts,
and, with the same hypothesis, deep RNN was proposed by
Pascanu et al. in 2014 [10]. In “shallow” RNN, there are generally
three blocks for computation of parameters: the input state, the
hidden state, and the output state. These blocks are associated with
a single weight matrix corresponding to a shallow transformation
which can be represented by a single-layer multilayer perceptron
(MLP). In deep RNN, the state of the RNN can be decomposed
into multiple layers. Figure 7 shows in general a deep RNN with
multiple deep MLPs. However, different types of depth in an RNN
can be considered separately like input-to-hidden, hidden-to-
hidden, and hidden-to-output layer. The lower layer in the hierar-
chy can transform the input into an appropriate representation for
higher levels of hidden state. In hidden-to-hidden state, it can be
constructed with a previous hidden state and a new input. This
introduces additional non-linearity in the architecture which
becomes easier to quickly adapt changing modes of the input. By
introducing deep MLP in hidden-to-output state makes the layer
compact which helps in summarizing the previous inputs and helps
in predicting the output easily. Due to the deep MLP in the RNN
architecture, the learning becomes slow and optimization is
difficult.

RNN Architectures and Research 127

o1 o2 o3 ot

h1
(n) h2

(n) h3
(n) ht

(n)

h1
(2) h2

(2) h3
(2) ht

(2)

h1
(1) h2

(1) h3
(1) ht

(1)

x1 x2 x3 xt

Fig. 7 Deep recurrent neural network

2.6 Encoder–
Decoder

Encoder–decoder architecture was proposed by Cho et al. (2014)
[8] to map a variable length input sequence to a variable length
output sequence. Therefore, it is also known as sequence-to-
sequence architecture. Before encoder–decoder was introduced,
there were RNN models which were used for sequence-to-
sequence applications, but they had limitations as the input and
output sequences had to have the same length. Encoder–decoder
was used for addressing variable length sequence-to-sequence pro-
blems such as machine translation or speech recognition where the
input sequence and output sequence lengths may not be the same
in most of the cases. Encoder and decoder are both RNNs where
the encoder RNN encodes the whole input X = xð1Þ, . . . ::, xðnxÞ

into a context vector c and outputs the context vector c which is
fed as an input to the decoder RNN. The decoder RNN generates
an output sequence Y = yð1Þ, . . . ::, yðny Þ. In the encoder–decoder
model, the input length xðnxÞ and the output length yðny Þ can be
different unlike the previous RNN models. The number of hidden
layers in encoder and decoder are not necessarily be the same. The
limitation of this architecture is that it fails to properly summarize a

long sequence if the context vector is too small. This problem was
solved by Bahdanau et al. (2015) [11] by making the context vector
a variable length sequence with added attention mechanism.

128 Susmita Das et al.

2.7 Attention Models

(Transformers)

Due to the sequential learning mechanism, the context vector
generated by the encoder (see Subheading 2.6) is more focused
on the later part of the sequence than on the earlier part. An
extension to the encoder–decoder model was proposed by
Bahdanau et al. [11] for machine translation where the model
generates each word based on the most relevant information in
the source sentence and previously generated words. Unlike the
previous encoder–decoder model where the whole input sequence
is encoded into a single context vector, this extended encoder–
decoder model learns to give attention to the relevant words pres-
ent in the source sequence regardless of the position in the
sequence by encoding the input sequence into sequences of vectors
and chooses selectively while decoding each word. This mechanism
of paying attention to the relevant information that are related to
each word is known as attention mechanism.

Although this model solves the problem for fixed-length con-
text vectors, the sequential decoding problem still persists. To
decode the sequence in less time by introducing parallelism, self-
attention was proposed by Google Brain team, Ashish Vaswani et al.
[12]. They invented the Transformer model which is based on self-
attention mechanism and was designed to reduce the computation
time. It computes the representation of a sequence that relates to
different positions of the same sequence. The self-attention mech-
anism was embedded in the Transformer model. The Transformer
model has a stack of six identical layers each for encoding the
sequence and decoding the sequence as illustrated in Fig. 8. Each
layer of the encoder and decoder has sub-layers comprising multi-
head self-attention mechanisms and position-wise fully connected
layers. There is a residual connection around the two sub-layers
followed by normalization. In addition to the two sub-layers, there
is a third layer in the decoder that performs multi-head attention
over the output of the encoder stack. In the decoder, the multi-
head attention is masked to prevent the position from attending the
later part of the sequence. This ensures that the prediction for a
position p depends only on the positions less than p in the sequence.
The attention function can be described as mapping a query and
key-value pairs to an output. All the parameters involved in the
computation are all vectors. To calculate the output, scalar
dot product operation is performed on the query and all keys,
and divide each key by dk

p
(where dk is the dimension on

the keys). Finally, the softmax is applied to it to obtain the
weights on the values. The computation of attention function
can be represented by the following equation:

AttentionðQ ,K ,V Þ= sof tmaxð QKT

dk

p ÞV , where Q, K, and V are

all matrices corresponding to query, keys, and values, respectively. A
more in-depth coverage of Transformers is provided in Chap. 6.

RNN Architectures and Research 129

Encoder

Encoder

Encoder

Encoder

Encoder

Encoder

Input

Decoder

Decoder

Decoder

Decoder

Decoder

Decoder

Output

Fig. 8 Transformer with six layers of encoders and six layers of decoders

3 Tips and Tricks for RNN Training

As previously stated, the vanishing gradient and exploding gradient
problems are well-known concerns when it comes to properly
training RNN models [13, 14]. The fundamental challenge arises
from the fact that RNNs can be naturally unfolded, allowing their
recurrent connections to perform feedforward calculations, which
result in an RNN with the same number of layers as the number of
elements in the sequence. Two major issues arise as a result:

130 Susmita Das et al.

• Gradient vanishing problem. It becomes difficult to effectively
learn long-term dependencies in sequences due to the gradient
vanishing problem [6]. As a result, a prospective model predic-
tion will be essentially unaffected by earlier layers.

• Exploding gradient problem. Adding more layers to the network
amplifies the effect of large gradients, increasing the risk of a
learning derailment since significant changes to the network
weights can be performed at each step, potentially causing the
gradients to blow out exponentially. In fact, weights that are
closer to the input layer will obtain larger updates than weights
that are closer to the output layer, and the network may become
unable to learn correlations between temporally distant events.

To overcome these limitations, we need to create solutions so
that the RNN model can work on various time scales, with some
sections operating on fine-grained time scales and handling small
details and others operating on coarse time scales and efficiently
transferring information from the distant past to the present. In this
section, we discuss several popular strategies to tackle these issues.

3.1 Skip Connection The practice of skipping layers effectively simplifies the network by
using fewer direct connected layers in the initial training stages.
This speeds learning by reducing the impact of vanishing gradients,
as there are fewer layers to propagate through. As the network
learns the feature space during the training phase, it gradually
restores the skipped layers. Lin et al. [15] proposed the use of
such skip connections, which follows from the idea of incorporating
delays in feedforward neural networks from Lang et al. [16]. Con-
ceptually, skip connections are a standard module in deep architec-
tures and are commonly referred to as residual networks, as
described by He et al. [17]. They are responsible to skip layers in
the neural network and feeding the output of one layer as the input
to the next layers. This technique is used to allow gradients to flow
through a network directly, without passing through non-linear
activation functions, and it has been empirically proven that these
additional steps are often beneficial for the model convergence
[17]. Skip connections can be used through the non-sequential
layer in two fundamental ways in neural networks:

• Additive Skip Connections. In this type of design, the data
from early layers is transported to deeper layers via matrix addi-
tion, causing back-propagation to be done via addition
(Fig. 9b). This procedure does not require any additional para-
meters because the output from the previous layer is added to
the layer ahead. One of the most common techniques used in
this type of architecture is to stack the skip residual blocks
together and use an identity function to preserve the gradient
[18]. The core concept is to use a vector addition to back-

� �

RNN Architectures and Research 131

Fig. 9 Skip connection residual architectures: (a) concatenate output of previous layer and skip connection; (b)
sum of the output of previous layer and skip connection

propagate through the identity function. The gradient is then
simply multiplied by one, and its value is preserved in the earlier
layers.

• Concatenative Skip Connections. Another way for establish-
ing skip connections is to concatenate previous feature maps.
The aim of concatenation is to leverage characteristics acquired
in prior layers to deeper layers. In addition, concatenating skip
connections provides an alternate strategy for assuring feature
reusability of the same dimensionality from prior layers without
the need to learn duplicate maps. Figure 9(a) illustrates a dia-
gram example of how the architecture looks like. The primary
concept of the architecture is to allow subsequent layers to reuse
intermediary representations, allowing them to maintain more
information and enhance long-term dependency performance.

3.2 Leaky Units One of the major challenges when training RNNs is capturing
long-term dependencies and efficiently transferring information
from distant past to present. An effective method to obtain coarse
time scales is to employ leaky units [19], which are hidden units
with linear self-connections and a weight on the connections that is
close to one. In a leaky RNN, hidden units are able to access values
from prior states and can be utilized to obtain temporal representa-
tions. Formula ht= α ht-1 + (1- α) ht expresses the state update

rule of a leaky unit, where α∈ (0, 1) is an example of a linear self-
connection from ht-1 to ht, and it is a parameter to be learned
during the training stage. Essentially, α controls the information
flow in the state. When α is near one, the state is almost unchanged,
and information about the past is retained for a long time, and
when α is close to zero, the information about the past is rapidly
discarded, and the state is largely replaced by a new state ht.

132 Susmita Das et al.

3.3 Clipping

Gradients

Gradient clipping is a technique that tries to overcome the explod-
ing gradient problem in RNN training, by constraining gradient
norms (element-wise) to a predetermined minimum or maximum
threshold value since the exploding gradients are clipped and the
optimization begins to converge to the minimum point. Gradient
clipping can be used in two fundamental ways:

• Clipping-by-value. Using this technique, we define a minimum
clip value and a maximum clip value. If a gradient exceeds the
threshold value, we clip the gradient to the maximum threshold.
If the gradient is less than the lower limit of the threshold, we
clip the gradient to the minimum threshold.

• Clipping-by-norm. The idea behind this technique is very
similar to clipping-by-value. The key difference is that we clip
the gradients by multiplying the unit vector of the gradients with
the threshold. Gradient descent will be able to behave properly
even if the loss landscape of the model is irregular since the
weight updates will also be rescaled. This significantly reduces
the likelihood of an overflow or underflow of the model.

4 RNN Applications in Language Modeling

Language modeling is the process of learning meaningful vector
representations for language or text using sequence information
and is generally trained to predict the next token or word given the
input sequence of tokens or words. Bengio et al. [20] proposed a
framework for neural network-based language modeling. RNN
architecture is particularly suited to processing free-flowing natural
language due to its sequential nature. As described by Mikolov et al.
[21], RNNs can learn to compress a whole sequence as opposed to
feedforward neural networks that compress only a single input
item. Language modeling can be an independent task or be part
of a language processing pipeline with downstream prediction or
classification task. In this section, we will discuss applications of
RNN for various language processing tasks.

RNN Architectures and Research 133

4.1 Text

Classification

Many interesting real-world applications concerning language data
can be modeled as text classification. Examples include sentiment
classification, topic or author identification, and spam detection
with applications ranging from marketing to query-answering
[22, 23]. In general, models for text classification include some
RNN layers to process sequential input text [22, 23]. The embed-
ding of the input learnt by these layers is later processed through
varying classification layers to predict the final class label. Many-to-
one RNN architectures are often employed for text classification.

As a recent technical innovation, RNNs have been combined
with convolutional neural networks (CNNs), thus combining the
strengths of two architectures, to process textual data for classifica-
tion tasks. LSTMs are popular RNN architecture for processing
textual data because of their ability to track patterns over long
sequences, while CNNs have the ability to learn spatial patterns
from data with two or more dimensions. Convolutional LSTM
(C-LSTM) combines these two architectures to form a powerful
architecture that can learn local phrase-level patterns as well as
global sentence-level patterns [24]. While CNN can learn local
and position-invariant features and RNN is good at learning global
patterns, another variation of RNN has been proposed to introduce
position-invariant local feature learning into RNN. This variation is
called disconnected RNN (DRNN) [25]. Information flow
between tokens/words at the hidden layer is limited by a hyper-
parameter called window size, allowing the developer to choose the
width of the context to be considered while processing text. This
architecture has shown better performance than both RNN and
CNN on several text classification tasks [25].

4.2 Text

Summarization

Text summarization approaches can be broadly categorized into
(1) extractive and (2) abstractive summarization. The first approach
relies on selection or extraction of sentences that will be part of the
summary, while the latter generates new text to build a summary.
RNN architectures have been used for both types of summarization
techniques.

4.2.1 Extractive Text

Summarization

Extractive summarization frameworks use many-to-one RNN as a
classifier to distinguish sentences that should be part of the sum-
mary. For example, a two-layer RNN architecture is presented in
[26] where one layer processes words in one sentence and the other
layer processes many sentences as a sequence. The model generates
sentence-level labels indicating whether the sentence should be part
of the summary or not, thus producing an extractive summary of
the input document. Xu et al. have presented a more sophisticated
extractive summarization model that not only extracts sentences to
be part of the summary but also proposes possible syntactic com-
pressions for those sentences [27]. Their proposed architecture is a

combination of CNN and bidirectional LSTM, while a neural
classifier evaluates possible syntactic compressions in the context
of the sentence as well as the broader context of the document.

134 Susmita Das et al.

4.2.2 Abstractive Text

Summarization

Abstractive summarization frameworks expect the RNN to process
input text and generate a new sequence of text that is the summary
of input text, effectively using many-to-many RNN as a text gener-
ation model. While it is relatively straightforward for extractive
summarizers to achieve basic grammatical correctness as correct
sentences are picked from the document to generate a summary,
it has been a major challenge for abstractive summarizers. Gram-
matical correctness depends on the quality of the text generation
module. Grammatical correctness of abstractive text summarizers
has improved recently due to developments in contextual text
processing, language modeling, as well as availability of computa-
tional power to process large amounts of text.

Handling of rare tokens/words is a major concern for modern
abstractive summarizers. For example, proper nouns such as specific
names of people and places occur less frequently in the text; how-
ever, generated summaries are incomplete and incomprehensible if
such tokens are ignored. Nallapati et al. proposed a novel solution
composed of GRU-RNN layers with attention mechanism by
including switching decoder in their abstractive summarizer archi-
tecture [28] where the text generator module has a switch which
can enable the module to choose between two options: (1) generate
a word from the vocabulary and (2) point to one of the words in the
input text. Their model is capable of handling rare tokens by
pointing to their position in the original text. They also employed
large vocabulary trick which limits the vocabulary of the generator
module to tokens of the source text only and then adds frequent
tokens to the vocabulary set until its size reaches a certain thresh-
old. This trick is useful in limiting the size of the network.

Summaries have latent structural information, i.e., they convey
information following certain linguistic structures such as “What-
Happended” or “Who-Action-What.” Li et al. presented a recur-
rent generative decoder based on variational auto-encoder (VAE)
[29]. VAE is a generative model that takes into account latent
variables, but is not inherently sequential in nature. With the his-
torical dependencies in latent space, it can be transformed into a
sequential model where generative output is taking into account
history of latent variables, hence producing a summary following
latent structures.

4.3 Machine

Translation

Neural machine translation (NMT) models are trained to process
input sequence of text and generate an output sequence which is
the translation of the input sequence in another language. As
mentioned in Subheading 2.6, machine translation is a classic
example of conversion of one sequence to another using encoder–

decoder architecture where lengths of both sequences may be
different. In 2014, many-to-many RNN-based encoder–decoder
architecture was proposed where one RNN encodes the input
sequence of text to a fixed-length vector representation, while
another RNN decodes the fixed-length vector to the target trans-
lated sequence [30]. Both RNNs are jointly trained to maximize
the conditional probability of the target sequence given the input
sequence. Later, attention-based modeling was added to vanilla
encoder–decoder architecture for machine translation. Luong
et al. discussed two types of attention mechanism in their work
on NMT: (i) global and (ii) local attention [31]. In global atten-
tion, a global context vector is estimated by learning variable length
alignment and attention scores for all source words. In local atten-
tion, the model predicts a single aligned position for the current
target word and then computes a local context vector from atten-
tion predicted for source words within a small window of the
aligned position. Their experiments show significant improvement
in translation performance over models without attention. Local
attention mechanism has the advantage of being computationally
less expensive than global attention mechanism.

RNN Architectures and Research 135

4.4 Image-to-Text

Translation

Image-to-text translation models are expected to convert visual
data (i.e., images) into textual data (i.e., words). In general, the
image input is passed through some convolutional layers to gener-
ate a dense representation of the visual data. Then, the embedded
representation of the visual data is fed to an RNN to generate a
sequence of text. Many-to-one RNN architectures are popular for
this task.

In 2015, Karpathy et al. [32] presented their influential work
on training region convolutional neural network (RCNN) to gen-
erate representation vectors for image regions and bidirectional
RNN to generate representation vectors for corresponding caption
in semantic alignment with each other. They also proposed novel
multi-modal RNN to generate a caption that is semantically aligned
with the input image. Image regions were selected based on the
ranked output of an object detection CNN.

Xu et al. proposed an attention-based framework to generate
image caption that was inspired by machine translation models
[33]. They used image representations generated by lower convo-
lutional layers from a CNN model rather than the last fully
connected layer and used an LSTM to generate words based on
hidden state, last generated word, and context vector. They defined
the context vector as a dynamic representation of the image gener-
ated by applying an attention mechanism on image representation
vectors from lower convolutional layers of CNN. Attention mech-
anism allowed the model to dynamically select the region to focus
on while generating a word for image caption. An additional
advantage of their approach was intuitive visualization of the

model’s focus for generation of each word. Their visualization
experiments showed that their model was focused on the right
part of the image while generating each important word.

136 Susmita Das et al.

Such influential works in the field of automatic image caption-
ing were based on image representations generated by CNNs
designed for object detection. Some recently proposed captioning
models have sought to change this trend. Biten et al. proposed a
captioning model for images used to illustrate new articles
[34]. Their caption generation LSTM takes into account both
CNN-generated image features and semantic embeddings to the
text of corresponding new articles to generate a template of a
caption. This template contains spaces for the names of entities
like organizations and places. These places are filled in using atten-
tion mechanism on the text of the corresponding article.

4.5 ChatBot for

Mental Health and

Autism Spectrum

Disorder

ChatBots are automatic conversation tools that have gained vast
popularity in e-commerce and as digital personal assistants like
Apple’s Siri and Amazon’s Alexa. ChatBots represent an ideal appli-
cation for RNN models as conversations with ChatBots represent
sequential data. Questions and answers in a conversation should be
based on past iterations of questions and answers in that conversa-
tion as well as patterns of sequences learned from other conversa-
tions in the dataset.

Recently, ChatBots have found application in screening and
intervention for mental health disorders such as autism spectrum
disorder (ASD). Zhong et al. designed a Chinese-language Chat-
Bot using bidirectional LSTM in sequence-to-sequence framework
which showed great potential for conversation-mediated interven-
tion for children with ASD [35]. They used 400,000 selected
sentences from chatting histories involving children in many
cases. Rakib et al. developed similar sequence-to-sequence model
based on Bi-LSTM to design a ChatBot to respond empathetically
to mentally ill patients [36]. A detailed survey of medical ChatBots
is presented in [37]. This survey includes references to ChatBots
built using NLP techniques, knowledge graphs, as well as modern
RNN for a variety of applications including diagnosis, searching
through medical databases, dialog with patients, etc.

5 Conclusion

Due to the sequential nature of their architecture, RNNs are
applied for ordinal or temporal problems, such as language transla-
tion, text summarization, and image captioning, and are
incorporated into popular applications such as Siri, voice search,
and Google Translate. In addition, they are also often used to
analyze longitudinal data in medical applications (i.e., cases where
repeated observations are available at different time points for each

patient of a dataset). While research in RNN is still an evolving area
and new architectures are being proposed, this chapter summarizes
fundamentals of RNN including different traditional architectures,
training strategies, and influential work. It may serve as a stepping
stone for exploring sequential models using RNN and provides
reference pointers.

RNN Architectures and Research 137

References

1. Rumelhart DE, Hinton GE, Williams RJ
(1986) Learning representations by back-
propagating errors. Nature 323(6088):
533–536

2. Hopfield JJ (1982) Neural networks and phys-
ical systems with emergent collective computa-
tional abilities. Proc Natl Acad Sci 79(8):
2554–2558

3. Schmidhuber J (1993) Netzwerkarchitekturen,
Zielfunktionen und Kettenregel (Network
architectures, objective functions, and chain
rule), Habilitation thesis, Institut für Informa-
tik, Technische Universitüt München

4. Mozer MC (1995) A focused backpropagation
algorithm for temporal. Backpropag Theory
Architect Appl 137

5. Goodfellow I, Bengio Y, Courville A (2016)
Deep learning. MIT Press, Cambridge

6. Hochreiter S (1998) The vanishing gradient
problem during learning recurrent neural nets
and problem solutions. Int J Uncertainty Fuzz-
iness Knowledge Based Syst 6(02):107–116

7. Hochreiter S, Schmidhuber J (1997) Long
short-term memory. Neural Comput 9(8):
1735–1780

8. Cho K, Van Merriënboer B, Gulcehre C,
Bahdanau D, Bougares F, Schwenk H, Bengio
Y (2014) Learning phrase representations
using RNN encoder-decoder for statistical
machine translation. Preprint. arXiv:14061078

9. Schuster M, Paliwal KK (1997) Bidirectional
recurrent neural networks. IEEE Trans Signal
Process 45(11):2673–2681

10. Pascanu R, Gulcehre C, Cho K, Bengio Y
(2013) How to construct deep recurrent neu-
ral networks. Preprint. arXiv:13126026

11. Bahdanau D, Cho K, Bengio Y (2014) Neural
machine translation by jointly learning to align
and translate. Preprint. arXiv:14090473

12. Vaswani A, Shazeer N, Parmar N, Uszkoreit J,
Jones L, Gomez AN, Kaiser Ł, Polosukhin I
(2017) Attention is all you need. In: Advances
in neural information processing systems, pp
5998–6008

13. Bengio Y, Simard P, Frasconi P (1994)
Learning long-term dependencies with gradi-
ent descent is difficult. IEEE Trans Neural
Netw 5(2):157–166. https://doi.org/10.110
9/72.279181

14. Pascanu R, Mikolov T, Bengio Y (2013) On
the difficulty of training recurrent neural
networks. In: Dasgupta S, McAllester D (eds)
Proceedings of the 30th international confer-
ence on machine learning, PMLR, Atlanta, vol
28, pp 1310–1318

15. Berger AL, Pietra VJD, Pietra SAD (1996) A
maximum entropy approach to natural lan-
guage processing. Comput Linguist 22(1):
39–71

16. Becker S, Hinton G (1992) Self-organizing
neural network that discovers surfaces in
random-dot stereograms. Nature 355:161–
163. https://doi.org/10.1038/355161a0

17. He K, Zhang X, Ren S, Sun J (2016) Deep
residual learning for image recognition. In:
2016 IEEE conference on computer vision
and pattern recognition (CVPR), pp
770–778. https://doi.org/10.1109/CVPR.
2016.90

18. Wu H, Zhang J, Zong C (2016) An empirical
exploration of skip connections for sequential
tagging. Preprint. arXiv:161003167

19. Jaeger H (2002) Tutorial on training recurrent
neural networks, covering BPPT, RTRL, EKF
and the echo state network approach.
GMD-Forschungszentrum
Informationstechnik 5

20. Bengio Y, Ducharme R, Vincent P (2001) A
neural probabilistic language model. In:
Advances in neural information processing sys-
tems, pp 932–938

21. Mikolov T, Karafiát M, Burget L et al (2010)
Recurrent neural network based language
model. In: INTERSPEECH 2010. Citeseer

22. Jain G, Sharma M, Agarwal B (2019) Optimiz-
ing semantic lstm for spam detection. Int J
Inform Technol 11(2):239–250

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International
License (), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

138 Susmita Das et al.

23. Bagnall D (2015) Author identification using
multi-headed recurrent neural networks. Pre-
print. arXiv:150604891

24. Zhou C, Sun C, Liu Z, Lau F (2015) A
C-LSTM neural network for text classification.
Preprint. arXiv:151108630

25. Wang B (2018) Disconnected recurrent neural
networks for text categorization. In: Proceed-
ings of the 56th annual meeting of the associa-
tion for computational linguistics (volume 1:
long papers), pp 2311–2320

26. Nallapati R, Zhai F, Zhou B (2017) Summar-
unner: a recurrent neural network based
sequence model for extractive summarization
of documents. In: Thirty-first AAAI conference
on artificial intelligence

27. Xu J, Durrett G (2019) Neural extractive text
summarization with syntactic compression.
Preprint. arXiv:190200863

28. Nallapati R, Zhou B, dos Santos C, Gulcehre
Ç , Xiang B (2016) Abstractive text summariza-
tion using sequence-to-sequence rnns and
beyond. In: Proceedings of the 20th SIGNLL
conference on computational natural language
learning, pp 280–290

29. Li P, Lam W, Bing L, Wang Z (2017) Deep
recurrent generative decoder for abstractive
text summarization. In: Proceedings of the
2017 conference on empirical methods in nat-
ural language processing, pp 2091–2100

30. Cho K, van Merrienboer B, Gülçehre Ç,
Bahdanau D, Bougares F, Schwenk H, Bengio
Y (2014) Learning phrase representations
using RNN encoder-decoder for statistical
machine translation. In: The 2014 conference
on empirical methods in natural language pro-
cessing (EMNLP)

31. Luong MT, Pham H, Manning CD (2015)
Effective approaches to attention-based neural
machine translation. Preprint.
arXiv:150804025

32. Karpathy A, Fei-Fei L (2015) Deep visual-
semantic alignments for generating image
descriptions. In: Proceedings of the IEEE con-
ference on computer vision and pattern recog-
nition, pp 3128–3137

33. Xu K, Ba J, Kiros R, Cho K, Courville A,
Salakhudinov R, Zemel R, Bengio Y (2015)
Show, attend and tell: neural image caption
generation with visual attention. In: Interna-
tional conference on machine learning, PMLR,
pp 2048–2057

34. Biten AF, Gomez L, Rusinol M, Karatzas D
(2019) Good news, everyone! context driven
entity-aware captioning for news images. In:
Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp
12466–12475

35. Zhong H, Li X, Zhang B, Zhang J (2020) A
general chinese chatbot based on deep learning
and its’ application for children with ASD. Int J
Mach Learn Comput 10:519–526. https://
doi.org/10.18178/ijmlc.2020.10.4.967

36. Rakib AB, Rumky EA, Ashraf AJ, Hillas MM,
Rahman MA (2021) Mental healthcare chatbot
using sequence-to-sequence learning and
bilstm. In: Brain informatics, springer interna-
tional publishing, pp 378–387

37. Tjiptomongsoguno ARW, Chen A, Sanyoto
HM, Irwansyah E, Kanigoro B (2020) Medical
chatbot techniques: a review. In: Silhavy R,
Silhavy P, Prokopova Z (eds) Software engi-
neering perspectives in intelligent systems.
Springer International Publishing, Cham, pp
346–356

Chapter 5

Generative Adversarial Networks and Other Generative
Models

Markus Wenzel

Abstract

Generative networks are fundamentally different in their aim and methods compared to CNNs for classifi-
cation, segmentation, or object detection. They have initially been meant not to be an image analysis tool
but to produce naturally looking images. The adversarial training paradigm has been proposed to stabilize
generative methods and has proven to be highly successful—though by no means from the first attempt.
This chapter gives a basic introduction into the motivation for generative adversarial networks (GANs)

and traces the path of their success by abstracting the basic task and working mechanism and deriving the
difficulty of early practical approaches. Methods for a more stable training will be shown, as well as typical
signs for poor convergence and their reasons.

Though this chapter focuses on GANs that are meant for image generation and image analysis, the
adversarial training paradigm itself is not specific to images and also generalizes to tasks in image analysis.
Examples of architectures for image semantic segmentation and abnormality detection will be acclaimed,
before contrasting GANs with further generative modeling approaches lately entering the scene. This will
allow a contextualized view on the limits but also benefits of GANs.

Key words Generative models, Generative adversarial networks, GAN, CycleGAN, StyleGAN,
VQGAN, Diffusion models, Deep learning

1 Introduction

Generative adversarial networks are a type of neural network archi-
tecture, in which one network part generates solutions to a task and
another part compares and rates the generated solutions against a
priori known solutions. While at first glimpse this does not sound
much different from any loss function, which essentially also com-
pares a generated solution with the gold standard, there is one
fundamental difference. A loss function is static, but the “judge”
or “discriminator” network part is trainable (Fig. 1). This means
that it can be trained to distinguish the generated from the true
solutions and, as long as it succeeds in its task, a training signal for
the generative part can be derived. This is how the notion of
adversaries came into the name GAN. The discriminator part is

Olivier Colliot (ed.), Machine Learning for Brain Disorders, Neuromethods, vol. 197, https://doi.org/10.1007/978-1-0716-3195-9_5,
© The Author(s) 2023

139

trained to distinguish true from generated solutions, while the
generative part is trained to arrive at the most realistic-appearing
solutions, making them adversaries with regard to their aims.

140 Markus Wenzel

Fig. 1 The fundamental GAN setup for image generation consisting of a genera-
tor and a discriminator network; here, CNNs

Generative adversarial networks are now among the most pow-
erful tools to create naturally looking images from many domains.
While they have been created in the context of image generation,
the original publication describes the general idea of how to make
two networks learn by competing, regardless of the application
domain. This key idea can be applied to generative tasks beyond
image creation, including text generation, music generation, and
many more.

The research interest skyrocketed in the years after the first
publication proposing an adversarial training paradigm [1]. Look-
ing at the number of web searches for the topic “generative adver-
sarial networks” shows how the interest in the topic has rapidly
grown but also the starting decline of the last years. Authors since
2014 have cast all kinds of problems into the GAN framework, to
enable this powerful training mechanism for a variety of tasks,
including image analysis tasks as well. This is surprising at first,
since there is no immediate similarity between a generative task
and, for example, a segmentation or detection task. Still, as evi-
denced by the success in these application areas, the adversarial
training approach can be applied with benefits. Clearly, the decline
in interest can to some degree be attributed to the emergence of
best practices and proven implementations, while simultaneously
the scientific interest has recently shifted to successor approaches.
However, similar to the persistent relevance of CNN architectures
like ResNets for classification, Mask R-CNNs for detection, or basic
transformer architectures for sequence processing, GANs will

remain an important tool for image creation and image analysis.
The adversarial training paradigm has become an ingredient to
models apart from generative aims, providing flexible ways to -
custom-tailor loss components for given tasks (compare Figs. 2
and 3).

GANs and Beyond 141

Fig. 2 Google web search-based interest estimate for “generative adversarial networks” since 2014. Relative
scale

Fig. 3 Some of the most-starred shared GAN code repositories on Github, until 2018. Ranking within this
selection in brackets

2 Generative Models

Generative processes are fundamentally hard to grasp computation-
ally. Their nature and purpose is to create something “meaningful”
out of something less meaningful (even random). The first question
to ask therefore is how this can even be possible for a computer
program since, intuitively, creation requires an inventive spirit—call
it creativity, to use the term humans tend to associate with this. To
introduce some of the terminology and basic concepts that we will
use in the remainder of this section, some remarks on human
creativity will set the scene.

In fact, creative human acts are inherently limited by our con-
cepts of the world, acquired by learning and experience through the

sensory means we have available, and by the available expressive
means (tools, instruments, . . .) with which we can even conceive of
creating something. This is true for any kind of creative act, includ-
ing writing, painting, wood carving, or any other art, and similarly
also for computer programming, algorithm development, or sci-
ence in general. Our limited internal representation of the world
around us frames our creative scope.

142 Markus Wenzel

This is very comparable to the way computerized, pro-
grammed, or learned generative processes create output. They
have either an in-build mechanism, or a way to acquire such a
mechanism, that represents the tools by which creation is possible,
as well as a model of the world that defines the scope of outputs.
Practically, a CNN-based generative process uses convolutions as
the in-built tool and is by this tool geared to produce image-like
outputs. The convolutional layers, if not a priori defined, will
represent a set of operations defined by a training process and
limited in their expressiveness by the training material—by the
fraction of the world that was presented. This will lead us to the
fundamental notion of how to capture the variability of the “frac-
tion of the world” that is interesting and how to make a neural
network represent this partial world knowledge. It is interesting to
note at this point that neither for human creative artists nor for
neural networks the ability to (re)create convincing results implies
an understanding of the way the templates (in the real world) have
come into existence. Generating convincing artifacts does not
imply understanding nature. Therefore, GANs cannot explain the
parts of nature they are able to generate.

2.1 The Language of

Generative Models:

Distributions, Density

Estimation, and

Estimators

Understanding the principles of generative models requires a basic
knowledge of distributions. The reason is that—as already hinted at
in the previous section—the “fraction of the world” is in fact
something that can be thought of as a distribution in a parameter
space. If you were to describe a part of the world in a computer-
interpretable way, you would define descriptive parameters. To
describe persons, you could characterize them by simple measures
like age, height, weight, hair and eye color, and many more. You
could add blood pressure, heart rate, muscle mass, maximum
strength, and more, and even a whole-genome sequencing result
might be a parameter. Each of the parameters individually can be
collected for the world population, and you will obtain a picture of
how this parameter is “distributed” worldwide. In addition, para-
meters will be in relation with each other, for example, age and
maximum strength. Countless such relationships exist, of which the
majority are and probably will remain unknown. Those interrela-
tionships are called a joint distribution. Would you know the joint
distribution, you could “create” a plausible parameter combination
of a nonexisting human. Let us formalize these thoughts now.

�

d)

GANs and Beyond 143

2.1.1 Distributions A distribution describes the frequency of particular observations
when watching a random process. Plotting the number of occur-
rences over an axis of all possible observations creates a histogram.
If the possible observations can be arranged on a continuous scale,
one can see that observations cluster in certain areas, and we say
that they create a “density” or are “dense” there. Hence, when
trying to describe where densities are in parameter space, this is
associated with the desire to reproduce or sample from distribu-
tions, like we want to do it to generate instances from a domain.
Before being able to reproduce the function that generates obser-
vations, estimating where the dense areas are is required. This will
in the most general sense be called density estimation.

Sometimes, the shape of the distribution follows an analytical
formula, for example, the normal distribution. If such a closed-
form description of the distribution can be given, for instance, the
normal distribution, this distribution generalizes the shape of the
histogram of observations and makes it possible to produce new
observations very easily, by simply sampling from the distribution.
When our observations follow a normal distribution, we mean that
we expect to observe instances more frequently around the mean of
the normal distribution than toward the tails. In addition, the
standard deviation quantifies how much more likely observations
close to the mean are compared to observations in the tails. We
describe our observations with a parametric description of the
observed density.

In the remainder of this section, rather than providing a rigor-
ous mathematical definition and description of the mathematics of
distributions and (probability) density estimation, we will intro-
duce the basic concepts and terminology in an intuitive way (also
compare Box 1). Readers with the wish for a more in-depth treat-
ment can find tutoring material in the references [2–6].

Box 1: Probability Distributions: Terminology

Several common terms regarding distributions have intuitive
interpretations which are given in the following. Let a be an
event from the probability distribution A, written as a�A,
and b B an event from another probability distribution.

In a medical example, A might be the distribution of
possible neurological diseases and B the distribution of all
possible variations of smoking behavior.

Conditional Probability P(A|B) The conditional probability
of a certain a�A, for exam-
ple, a stroke, might depend
on the concrete smoking
history of a person,

(continue

Box 1 (continued)
described by b�B. The
conditional probability is
written as p(a|b) for the
concrete instances or P(A|
B) if talking about the
entire probability distribu-
tions A and B.

Joint Probability P(A, B) The probability of seeing
instantiations of A and
B together is termed the
joint probability. Notably,
if expanded, this will lead
to a large table of probabil-
ities, joining each possible
a�A (e.g., stroke, demen-
tia, Parkinson’s disease,
etc.) with each possible
b�B (casual smoker, fre-
quent smoker, nonsmoker,
etc.).

Marginal Probability The marginal probabilities
of A and B (denoted,
respectively, P(A) and
P(B)) are the probabilities
of each possible outcome
across (and independent
of) all of the possible out-
comes of the other distribu-
tion. For example, it is the
probability of seeing non-
smokers across all neuro-
logical diseases or seeing a
specific disease regardless of
smoking status. It is said to
be the probability of one
distribution marginalized
over the other probability
distributions.

144 Markus Wenzel

2.1.2 Density Estimation We assume in the following that our observations have been pro-
duced by a function or process that is not known to us and that
cannot be guessed from an arrangement of the observations. In a
practical example, the images from a CT or MRI scanner are pro-
duced by such a function. Notably, the concern is less about the
intractability of the imaging physics but about the appearance of the
human body. The imaging physics might be modeled analytically
up to a certain error. But the outer shape and inner structure of the

human body and its organs depend on a large amount of mutually
influencing factors. Some of these factors are known and can even
be modeled, but many are not. In particular, the interdependence
of factors must be assumed to be intractable. What we can accumu-
late is measured data providing information about the body, its
shape, and its function. While many measurement instruments
exist in medicine, for this chapter, we will be concerned with images
as our observations. In the following thought experiment, we will
explore a naı̈ve way to model the distribution and try to generate
images.

GANs and Beyond 145

The first step is to examine the gray value distribution or, in
other words, estimate the density of values. The most basic way for
estimating a density is plotting a histogram. Let the value on the x
axis be the image gray value of the medical image in question (in CT
expressed in Hounsfield units (HU) and in arbitrary units for
MRI). Two plots show histograms of a head MRI (Fig. 4) and an
abdominal CT (Fig. 5). While the brain MRI suggests three or four
major “bumps” of the histogram at about values 25, 450, and
600, the abdominal CT doesn’t lend itself to such a description.

In the next step, we want to describe the histograms through
analytical functions, to make them amenable for computational

Fig. 4 Brain MRI (left) and histogram of gray values for one slice of a brain MRI

2200

2000

1800

1600

1400

1200

C
ou

nt

1000

800

600

400

200

0
0 100 200 300 400 500 600 700 800

Voxel value
900 1000 1100 1200 1300 1400 1500

Fig. 5 Abdominal CT (left) and histogram of gray values for one slice of an abdominal CT

ends. This means we will aim to estimate an analytical description of
the observations.

146 Markus Wenzel

Expectation maximization (EM; see Box 2) is an algorithm
suitable for this task. EM enables us to perform maximum likeli-
hood estimation in the presence of unobserved (“latent) variables
and incomplete data—this being the default assumption when
dealing with real data. Maximum likelihood estimation (MLE) is
the process of finding parameters of a parametric distribution to
most accurately match the distribution to the observations. In
MLE, this is achieved by adapting the parameters steered by an
error metric that indicates the closeness of the fit; in short, a
parameter optimization algorithm.

Box 2: Expectation Maximization—Example
Focusing on our density estimate of the MRI data, we want to
use expectation maximization (EM) to optimize the para-
meters of a fixed number of Gaussian functions adding up to
the closest possible fit to the empirical shape of the histogram.

In our data, we observe “bumps” of the histogram. We
can by image analysis determine that certain organs imaged by
MRI lead to certain bumps in the histogram, since they are of
different material and create different signal intensities. This,
however, is unknown to EM—the so-called “latent” variables.

The EM algorithm has two parts, the expectation step and
the maximization step. They can, with quite far-reaching
omission of details, be sketched as follows:

Expectation takes each point (or a number of sampled
points) of the distribution and estimates the
expectation to which of the parameterized dis-
tribution to assign it to. Figuring out this
assignment is the step of dealing with the
“latent” variable of the observations.

Maximization iterates over all parameterized distributions
and adjusts their parameters to match the
assigned points as well as possible.

This process is iterated until a fitting error cannot be
improved anymore.

A short introductory treatment of EM with examples and
applications is presented in [7]. The standard reference for the
algorithm is [8].

GANs and Beyond 147

0.012

0.010

0.008

0.006

1. Gaussian
2. Gaussian
3. Gaussian
4. Gaussian
Gaussian Mixture

0.004

0.002

0.000
0 250 500 750 1000 1250 1500 1750 2000

Fig. 6 A Gaussian mixture model (GMM) of four Gaussians was fit to the brain MRI data we have visualized as a
histogram in Fig. 4

In Fig. 6, a mixture of four Gaussian distributions has been fit
to the brain MRI voxel value data seen before.

It is tempting to model even more complex observations by
mixing simple analytical distributions (e.g., Gaussian mixture mod-
els (GMMs)), but in general this will be intractable for two reasons.
Firstly, realistic joint distributions will have an abundance of mixed
maxima and therefore require a vast number of basic distributions
to fit. Even basic normal distributions in high-dimensional param-
eter spaces are no longer functions with two parameters (μ, σ), but
with a vector of means and a covariance matrix. Secondly, it is no
longer trivial to sample from such high-dimensional joint distribu-
tions, and while some methods, among others Markov chain
Monte Carlo methods, allow to sample from them, such numerical
approaches are of such high computational complexity that it makes
their use difficult in the context of deep neural network parameter
estimation.

We will learn about alternatives. In principle, there are different
approaches for density (distribution) estimation, direct distribution
estimation, distribution approximation, or even more indirectly, by

using a simple surrogate distribution that is made to resemble the
unknown distribution as good as possible through a mapping
function. We will see this in the further elaboration of generative
modeling approaches.

148 Markus Wenzel

2.1.3 Estimators and the

Expected Value

Assume we have found suitable mean values and standard devia-
tions for three normal distributions that together approximate the
shape of the MRI data density estimate to our satisfaction. Such a
combination of normal (Gaussian) distributions is called a Gaussian
mixture model (GMM), and sampling from such a GMM is
straightforward. We are thus able to sample single pixels in any
number, and over time we will sample them such that their density
estimate or histogram will look similar to the one we started with.

However, if we want to generate a brain MRI image using a
sampling process from our closed-form GMM representation of the
distribution, we will notice that a very important notion wasn’t
respected in our approach. We start with one slice of 512×512
voxels and therefore randomly draw the required number of voxel
values from the distribution. However, this will not yield an image
that resembles one slice of a brain MRI, but will almost look like
random noise, because we did not model the spatial relation of the
gray values with respect to each other. Since the majority of voxels
of a brain MRI are not independent of each other, drawing one new
voxel from the distribution needs to depend on the spatial locations
and gray values of all voxels drawn before. Neighboring voxels will
have a higher likelihood of similar gray values than voxels far apart
from each other, for example. More crucially, underneath the inter-
dependence lies the image generation process: the image values
observed in a real brain MRI stem from actual tissue—and this is
what defines their interdependence. This means the anatomy of the
brain indirectly reflects itself in the rules describing the dependency
of gray values of one another.

For the modeling process, this implies that we cannot argue
about single-voxel values and their likelihood, but we need to
approach the generative process differently. One idea for a genera-
tive process has been implied in the above description already: pick
a random location of the to-be-generated image and predict the
gray value depending on all existing voxel values. Implemented
with the method of mixture models, this results in unfathomably
many distributions to be estimated, as for each possible “next
voxel” location, any possible combination of already existing
voxel numbers and positions needs to be considered. We will see
in Subheading 5.1 on diffusion models how this general approach
to image generation can still be made to work.

A different sequential approach to image generation has also
been attempted, in which pixels are generated in a defined order,
starting at the top left and scanning the image row by row across
the columns. Again, the knowledge about the already produced

pixels is memorized and used to predict the next voxel. This has
been dubbed the PixelRNN (Pixel Recurrent Neural Network),
which lends its general idea from text processing networks [9].

GANs and Beyond 149

Lastly, a direct approach to image generation could be formu-
lated by representing or approximating the full joint distribution of
all voxels in one distribution that is tangible and to sample all voxels
at once from this. The full joint distribution in this approach
remains implicit, and we use a surrogate. This will actually be the
approach implemented in GANs, though not in a naı̈ve way.

Running the numbers of what a likelihood-based naı̈ve
approach implies, the difficulties of making it work will become
obvious. Consider an MRI image as the joint distribution of
512×512 voxels (one slice of our brain MRI), where we approxi-
mated the gray value distribution of one voxel with a GMM with six
parameters. This results in a joint distribution of 512×512×6=1,
572, 864 parameters. Conceptually, this representation therefore
spans a 1,572,864-dimensional space, in which every one brain
MRI slice will be one data point. Referring back to the histograms
of CT and MRI images in the figures above, we have seen continu-
ous lines with densities because we have collected all voxels of an
entire medical image, which are many million. Still, we only covered
one single dimension out of the roughly 1.5 million. Searching for
the density in the 1,572,864-dimensional MRI-slice-space that is
given by all collected brain MRI slices is the difficult task any
generative algorithm has to solve. In this vastly large space, the
brain MRI slices “live” in a very tiny region that is extremely hard to
find. We say the images occupy a low-dimensional manifold within
the high-dimensional space.

Consider the maximum likelihood formulation

θ̂ = argmax
θ

x�Pdata
logQ θðxjθÞ ð1Þ

where Pdata is the unknown data distribution and Qθ the distribu-
tion generated by the model which is parameterized by θ. θ can, for
example, be the weights and biases of a deep neural network.1 In
other words, the result of maximum likelihood estimation is para-
meters θ̂ so that the product of two terms, out of which only the
second depends on the choice of θ, is maximal. The first term is the
expectation of x with regard to the real data distribution. The
second term is the (log of) the conditional probability (likelihood)
of seeing the example x given the choice of θ under the model Qθ.
Hence, maximizing the likelihood function means maximizing the
probability that x is seen in Qθ, which will be the case when
Q matches P as closely as possible given the parametric form of Q.

1 We will use θ when referring to parameters of models in general but designate parameters of neural networks
with w in accordance with literature.

150 Markus Wenzel

The maximum likelihood mechanism is very nicely illustrated in
[10]. Here, it is also visually shown how finding the maximum
likelihood estimate of parameters of the distribution can be done
by working with partial derivatives of the likelihood function with
respect to μ and σ2 and seeking their extrema. The partial deriva-
tives are called the score function and will make a reappearance
when we discuss score-based and diffusion models later in Sub-
heading 5.1 on advanced generative models.

2.1.4 Sampling from

Distributions

When a distribution is a model of how observed values occur, then
sampling from this distribution is the process of generating random
new values that could have been observed, with a probability similar
to the probability to observe this value in reality. There are two
basic approaches to sampling from distributions: generating a ran-
dom number from the uniform distribution (this is what a random
number generator is always doing underneath) and feeding this
number through the inverse cumulative density function (iCDF)
of the distribution, which is the function that integrates the proba-
bility density function (PDF) of the distribution. This can only be
achieved if the CDF is given in closed form. If it is not, the second
approach to sampling can be used, which is called acceptance
(or rejection) sampling. With f being the PDF, two random num-
bers x and y are drawn from the uniform distribution. The random
x is accepted, if f(x)> y, and rejected otherwise.

Our use case, as we have seen, involves not only high-
dimensional (multivariate) distributions but even more their joints,
and they are not given in closed form. In such scenarios, sampling
can be done still, using Markov chain Monte Carlo (MCMC)
sampling, which is a framework using rejection sampling with
added mechanisms to increase efficiency. While MCMC has favor-
able theoretic properties, it is still computationally very demanding
for complex joint distributions, which leads to important difficul-
ties in the context of sampling from distributions we are facing in
the domain of image analysis and generation.

We are therefore at this point facing two problems: we can
hardly hope to be able to estimate the density, and even if we
could, we could practically not sample from it.

3 Generative Adversarial Networks

3.1 Generative vs.

Discriminative Models

To emphasize the difficulty that generative models are facing, com-
pare them to discriminative models. Discriminative models solve
tasks like classification, detection, and segmentation, to name some
of the most prominent examples. How classification models are in
the class of discriminative models is obvious: discriminating exam-
ples is exactly classifying them. Detection models are also discrimi-
native models, though in a broader sense, in that they classify the

detection proposals into accepted object detections or rejected
proposals, and even the bounding box estimation, which is often
solved through bounding box regression, typically involves the
discriminative prediction of template boxes. Segmentation, on the
other hand, for example, using a U-Net, is only the extension of
classic discriminative approaches into a fast framework that avoids
pixel-wise inference through the model. It is common to all these
models that they yield output corresponding to their input, in the
sense that they extract information from the input image (e.g., an
organ segmentation, a classification, or even a textual description of
the image content) or infer additional knowledge about it (e.g., a
volume measurement or an assessment or prediction of a treatment
success given the appearance of the image).

GANs and Beyond 151

Generative models are fundamentally different, in that they
generate output potentially without any concrete input, out of
randomness. Still, they are supposed to generate output that con-
forms to certain criteria. In the most general form and intuitive
formulation, their output should “look natural.” We want to fur-
ther formalize the difference between the models in the following
by using the perspective of distributions again. Figure 7 shows how
discriminative and generative models have to construct differently
complex boundaries in the representation space of the domain to
accomplish their tasks.

Discriminative models take one example and map it to a label—
e.g., the class. This is also true for segmentation models: they do
this for each image voxel. The conceptual process is that the model
has to estimate the probabilities that the example (or the voxel)
comes from the distribution of the different available classes. The
distributions of all possible appearances of objects of all classes do

Fig. 7 The discriminative task compared to the generative task. Discriminative models only need to find the
separating line between classes, while generative models need to delineate the part of space covering the
classes (figure inspired by: https://developers.google.com/machine-learning/gan/generative)

not need to be modeled analytically for this to be successful. It is
only important to know them locally—for example, it is sufficient
to delineate their borders or overlaps with other distributions of
other classes, but not all boundaries are important.

152 Markus Wenzel

Generative models, on the other hand, are tasked to produce an
example that is within a desired distribution. For this to work, the
network has to learn the complete shape of this distribution. This is
immensely complex, since all domains of practical importance in
medical imaging are extremely high-dimensional and the distribu-
tions defining examples of interest within these domains are very
small and hard to find. Also, they are neither analytically given nor
normally distributed in their multidimensional space. But they have
as many parameters as the output image of interest has voxels.

As already remarked, different other approaches were devised
to generate output before GANs entered the scene. Among the
trainable ones, approaches comprised (restricted) Boltzmann
machines, deep belief networks, or generative stochastic networks,
variational autoencoders, and others. Some of them involved feed-
back loops in the inference process (the prediction of a generated
example) and were therefore unstable to train using
backpropagation.

This was solved with the adversarial net framework proposed in
2014 by Goodfellow et al. [1]. They tried to solve the downsides
like computational intractability or instability of such previous gen-
erative models by introducing the adversarial training framework.

To understand how GANs relate to one of the closest prede-
cessors, the variational autoencoder, we will review their basic
layout next. We will learn how elegantly the GAN paradigm turns
the previously unsupervised approach to generative modeling into a
supervised one, with the benefit of much more control over the
training process.

3.2 Before GANs:

Variational

Autoencoders

Generative adversarial networks (GANs) haven’t been the first or
only attempt at generating realistically looking images (or any type
of output, generally speaking). Apart from GANs, a related neural
network-based approach to generative modeling is the variational
autoencoder, which will be treated in more details below. Among
other generative models with different approaches are as follows:

Flow-based models This category of generative models attempt
to model the data-generating distribution
explicitly through an iterative process
known as the normalizing flow [11], in
which through repeated changes of variables
a sequence of differentiable basis distribu-
tions is stacked to model the target distribu-
tion. The process is fully invertible, yielding
models with desirable properties, since an

analytical solution to the data-generating dis-

GANs and Beyond 153

tribution allows to directly estimate densities
to predict the likelihood of future events,
impute missing data points, and of course
generate new samples. Flow-based models
are computation-intensive. They can be cate-
gorized as a method that returns an explicit,
tractable density. Another method in this
category is, for example, the PixelRNN [9]
or the PixelCNN [12] which also serves for
conditional image generation. RealNVP [13]
also uses a chain of invertible functions.

Boltzmann machines work fundamentally differently. They also
return explicit densities but this time only
approximate the true target distribution. In
this regard, they are similar to variational
autoencoders, though their method is based
on Markov chains, and not a variational
approach. Deep Boltzmann machines have
been proposed already in 2009, uniting a
Markov chain-based loss component with a
maximum likelihood-based component and
showing good results on, at that time, highly
complex datasets. [14] Boltzmann machines
are very attractive but harder to train and use
than other comparably powerful alternatives
that exist today. This might change with
future research, however.

Variational autoencoders (VAE) are a follow-up development
of plain autoencoders, autoregressive models that in their essence
try to reconstruct their input after transforming it, usually into a
low-dimensional representation (see Fig. 8). This low-dimensional

Fig. 8 Schematic of an autoencoder network. The encoder, for images, for
example, a CNN with a number of convolutional and pooling layers, condenses
the defining information of the input image into the variables of the latent space.
The decoder, again convolutions, but this time with upsampling layers, recreates
a representation in image space. Input and output images are compared in the
loss function, which drives the gradient descent

representation is often termed the “latent space,” implying that
here hidden traits of the data-generating process are coded, which
are essential to the reconstruction process. This is very akin to the
latent variables estimated by EM. In the autoencoder, the encoder
will learn to code its input in terms of these latent variables, while
the decoder will learn to represent them again in the source
domain. In the following, we will be discussing the application to
images though, in principle, both autoencoders and their varia-
tional variant are general mechanisms working for any domain.

154 Markus Wenzel

We will later be interested in a behind-the-scene understanding
of their modeling approach, which will be related to the employed
loss function. We will then look at VAEs more extensively from the
same vantage point: to understand their loss function—which is
closest to the loss formulation of early GANs, the Kullback-Leibler
divergence or KL divergence, DKL.

With this tool in hand, we will examine how to optimize (train)
a network with regard to KL divergence as the loss and understand
key problems with this particular loss function. This will lead us to
the motivation for a more powerful alternative.

3.2.1 From AE to VAE VAEs are an interesting subject to study to emphasize the limits a
loss function like KL divergence may place on a model. We will
begin with a recourse to plain autoencoders to introduce the con-
cept of learning a latent representation. We will then proceed to
modify the autoencoder into a variational formulation which brings
about the switch to a divergence measure as a loss function. From
these grounds, we will then show how GANs again modified the
loss function to succeed in high-quality image generation.

Figure 8 shows the schematic of a plain autoencoder (AE). As
indicated in the sketch, input and output are of potentially very
high dimensionality, like images. In between the encoder and
decoder networks lies a “bottleneck” representation, which is, for
example, a convolutional layer of orders of magnitude lower
dimensionality (represented, for example, by a convolutional layer
with only a few channels or a dense layer with a given low number
of weights), which forces the network to find an encoding that
preserves all information required for reconstruction.

A typical loss function to use when training the autoencoder is,
for example, cross entropy, which is applicable for sigmoid activa-
tion functions, or simply the mean squared error (MSE). Any loss
shall essentially force the AE to learn the identity function between
input and output.

Let us introduce the notation for this. Let X be the input image
tensor and X′ the output image tensor. With fw being the encoder
function given as a neural network parameterized by weights and
biases w and gv the decoder function parameterized by v, the loss
hence works to make X=X′= gv(fw(X)).

ð j Þ

GANs and Beyond 155

In a variational autoencoder,2 things work differently. Auto-
encoders like before use a fixed (deterministic) latent code to map
the input to, while variational autoencoders will replace this with a
distribution. We can call this distribution pw, indicating the param-
eterization by w. It is crucial to understand that a choice was made
here that imposes conditions on the latent code. It is meant to
represent the input data in a variational way: in a way following
Bayes’ laws. Our mapping of the input image tensor X to the latent
variable z is by this choice defined by

• The prior probability pw(z)

• The likelihood (conditional probability) pw(X|z)

• The posterior probability pw(z|X)

Therefore, once we have obtained the correct parameters ŵ by
training the VAE, we can produce a new output X′ by sampling a
z(i) from the prior probability pŵðzÞ and then generate the example
from the conditional probability through X ðiÞ = pŵ X z= zðiÞ .

Obtaining the optimal parameters, however, isn’t possible
directly. The searched optimal parameters are those that maximize
the probability that the generated example X′ looks real. This
probability can be rewritten as the aggregated conditional
probabilities:

pwðX ðiÞÞ= pwðX ðiÞjzÞpwðzÞdz:

This, however, does not make the search any easier since we
need to enumerate and sum up all z. Therefore, an approximation is
made through a surrogate distribution, parameterized by another
set of parameters, qv . Weng [15] shows in her explanation of the
VAE the graphical model highlighting how qv is a stand-in for the
unknown searched pw (see Fig. 9).

The reason to introduce this surrogate distribution actually
comes from our wish to train neural networks for the decoding/
encoding functions, and this requires us to back-propagate through
the random variable, z, which of course cannot be done. Instead, if
we have control over the distribution, we can select it such that the
reparameterization trick can be employed. We define qv to be a
multivariate Gaussian distribution with means and a covariance
matrix that can be learned and a stochastic element multiplied to
the covariance matrix for sampling [15, 16]. With this, we can back-
propagate through the sampling process.

2 Though variational autoencoders are in general not necessarily neural networks, in our context, we restrict
ourselves to this implementation and stick to the notation with parameters w and v, where in many publications
they are denoted θ and ϕ.

156 Markus Wenzel

Fig. 9 The graphical model of the variational autoencoder. In a VAE, the variational decoder is pw(X|z), while
the variational encoder is qv(z|X) (Figure after [15])

At this point, the two distributions need to be made to match:
qv should be as similar to pw as possible. Measuring their similarity
can be done in a variety of ways, of which Kulback-Leibler diver-
gence (KL divergence or KLD) is one.

3.2.2 KL Divergence A divergence can be thought of as an asymmetric distance function
between two probability distributions, P and Q, measuring the
similarity between them. It is a statistical distance which is not
symmetric, which means it will not yield the same value if measured
from P to Q or the other way around:

DKLðPkQ Þ≠DKLðQ kPÞ

This can be seen when looking at the definition of KL
divergence:

DKLðPkQ Þ=
x
PðxÞ log PðxÞ

Q ðxÞ ð2Þ

Sometimes, the measure DKL is also called the relative entropy
or information gain of P over Q, which also indicates the
asymmetry.

To give the two distributions more meaning, let us associate
them with a use case. P is usually the probability distribution of the
example data, which can be our real images we wish to model, and
is assumed to be unknown and high-dimensional. Q, on the other
hand, is the modeled distribution, for example, parameterized by θ,
similar to Eq. 1. Hence, Q is the distribution we can play with
(in our case, optimize its parameters) to make them more similar to
P. This means Q will get more informative with respect to the true
P when we approach the optimal parameters.

GANs and Beyond 157

Box 3: Example: Calculating DKL

When comparing the two distributions given in Fig. 10, the
calculation of the Kullback-Leibler divergence, DKL, can
explicitly be given by reading off the y values of the nine
elements (columns) from Fig. 11 and inserting them into
Eq. 2.

The result of this calculation is for

DKLðPkQ Þ=
x
PðxÞ log PðxÞ

Q ðxÞ

=0:02 � log
:02
:01

þ 0:04 � log
:04
:12

þ � � � þ 0:02 � log
:02
:022

=0:004- 0:01 þ � � �- 0:0002

=0:0801

which we call “forward KL” as it calculates in the direction
from the actual distribution P to the model distribution Q and
for

DKLðQ kPÞ =
x
Q ðxÞ log Q ðxÞ

PðxÞ

=0:01 � log
0:01
0:02

þ 0:12 � log
0:12
0:04

þ � � � þ 0:022 � log
0:022
0:02

= -0:002-0:05þ � � � þ 0:0002
=0:0899

which we call “reverse KL.”

Note that in the example in Box 3, there is both a P(X= xi) and
Q(X= xi) for each i∈{0, 1, . . ., 8}. This is crucial for KL divergence
to work as a loss function.

3.2.3 Optimizing the KL

Divergence

Examine what happens in forward and reverse KL if this condition
is not satisfied for some i. If in forward KL P has values everywhere
but Q has not (or extremely small values), the quotient in the log

Fig. 10 Two distributions P and Q, here scaled to identical height

function will tend to infinity by means of the division by almost
zero, and the term will be very large.

158 Markus Wenzel

Fig. 11 The distributions P and Q, scaled to unit density, with added labels

Fig. 12 The distributions P (solid) and Qθ (dashed), in the initial configuration and after minimizing reverse KL
DKL(Qθ|P). This time, in the initial configuration, Qθ has values greater than 0 where P has not (marked with
green shading)

In Fig. 12, we assume Qθ to be a unimodal normal distribution,
i.e., a Gaussian, while P is any empirical distribution. In the left
plots of the figure, we show a situation before minimizing the
forward/reverse KL divergence between P and Qθ, in the right
plots, the resulting shape of the Gaussian after minimization.

When in the minimization of forward KL DKL(P|Qθ) Qθ is zero
where P has values greater zero, KL goes to infinity in these regions
(marked area in the start configuration of the top row in Fig. 12),
since the denominator in the log function goes to zero. This, in
turn, drives the parameters of Qθ to broaden the Gaussian to cover
these areas, thereby removing the large loss contributions. This is
known as the mean-seeking behavior of forward KL.

Conversely, in reverse KL (bottom row in Fig. 12), in the
marked areas of the initial configuration, P is zero in regions
where Qθ has values greater than zero. This yields high-loss

contributions from the log denominator, in this case driving the
Gaussian to remove these areas from Qθ. Since we assumed a
unimodal Gaussian Q, the minimization will focus on the largest
mode of the unknown P. This is known as the mode-seeking behav-
ior of reverse KL.

GANs and Beyond 159

Forward KL tends to overestimate the target distribution,
which is exaggerated in the right plot in Fig. 12. In contrast, reverse
KL tends to underestimate the target distribution, for example, by
dropping some of its modes. Since underestimation is the more
desirable property in practical settings, reverse KL is the loss func-
tion of choice, for example, in variational autoencoders. The down-
side is that as soon as target distribution P and model distribution
Qθ have no overlap, KL divergence evaluates to infinity and is
therefore uninformative. One countermeasure to take is to add
noise to Qθ, so that there is guaranteed overlap. This noise, how-
ever, is not desirable in the model distribution Qθ since it disturbs
the generated output.

Another way to remedy the problem of KL going to infinity is
to adjust the calculation of the divergence, which is done in Jensen-
Shannon divergence (JS divergence, DJS) defined as

DJS =
1
2
ðDKLðPkM Þ þ DKLðQ θkM ÞÞ, ð3Þ

where M = PþQ θ
2 . In the case of nonoverlapping P and Qθ, this

evaluates to constant log 2, which is still not providing information
about the closeness but is computationally much friendlier and does
not require the addition of a noise term to achieve numerical
stability.

3.2.4 The Limits of VAE In the VAE, reverse KL is used. Our optimization goal is maximiz-
ing the likelihood to produce realistic looking examples—ones with
a high pw(x). Simultaneously, we want to minimize the difference
between the real and estimated posterior distributions qv and pw .
This can only be achieved through a reformulation of reverse KL
[15]. After some rearranging of reverse KL, the loss of the varia-
tional autoencoder becomes

LVAEðw, vÞ = - log pwðX Þ þ DKLðqvðzjX ÞkpwðzjX ÞÞ
= -z�qvðzjX Þ log pwðX jzÞ þ DKLðqvðzjX ÞkpwðzÞÞ

ð4Þ
ŵ and v̂ are the parameters maximizing the loss.

We have seen how mode-seeking reverse KL divergence limits
the generative capacity of variational autoencoders through the
potential underrepresentation of all modes of the original
distribution.

160 Markus Wenzel

KL divergence and minimizing the ELBO also have a second
fundamental downside: there is no way to find out how close our
solution is to the obtainable optimum. We measure the similarity to
the target distribution up to the KL divergence, but since the true
pŵð:Þ is unknown, the stopping criterion in the optimization has to
be set by another metric, e.g., to a maximum number of iterations
or corresponding to an improvement of the loss below some ε.

The original presentation of the variational autoencoder was
given as one example of the general framework called the autoen-
coding variational Bayes. This publication presented the above
ideas in a thorough mathematical formulation, starting from a
directed graphical model that poses the abstract problem. The
authors also develop the seminal “reparameterization trick” to
make the loss formulation differentiable and with this to make the
search for the autoencoder parameters amenable to gradient
descent optimizers [16]. The details are beyond this introductory
treatment.

3.3 The Fundamental

GAN Approach

At the core of the adversarial training paradigm is the idea to create
two players competing in a minimax game. In such games, both
players have access to the same variables but have opposing goals, so
that they will manipulate the variables in different directions.

Referring to Fig. 13, we can see the generative part in orange
color, where random numbers are drawn from the latent space and,
one by one, converted into a set of “fake images” by the generator

Fig. 13 Schematic of a GAN network. Generator (orange) creates fake images based on random numbers
drawn from a latent space. These together with a random sample of real images are fed into the discriminator
(blue, right). The discriminator looks at the batch of real/fake images and tries to assign the correct label (“0”
for fake, “1” for real)

ð ð ð ÞÞÞ

network, in the figure implemented by a CNN. Simultaneously,
from a database of real images, a matching number of examples are
randomly drawn. The real and fake images are composed into one
batch of images which are fed into the discriminator. On the right
side, the discriminator CNN is indicated in blue. It takes the batch
of real and fake images and decides for each if it appears real
(yielding a value close to “1”) or fake (“0”).

GANs and Beyond 161

The error signal is computed from the number of correct
assignments the discriminator can do on the batch of generated
and real images. Both the generator and the discriminator can then
update their parameters based on this same error signal. Crucially,
the generator has the aim to maximize the error, since this signifies
that it has successfully fooled the discriminator into taking the fake
images for real, while the discriminator weights are updated to
minimize the same error, indicating its success in telling true and
fake examples apart. This is the core of the competitive game
between generator and discriminator.

Let us introduce some abbreviations to designate GAN com-
ponents. We will denote the generator and discriminator networks
with G and D, respectively. The objective of GAN training is a game
between generator and discriminator, where both affect a common
loss function J, but in opposed directions. Formally, this can be
written as

min
G

max
D

J ðG,DÞ,

with the GAN objective function

J ðG,DÞ=x�pdata ½logDðxÞ� þ z�pG ½1- logDðGðzÞÞ� ð5Þ
D will attempt to maximize J by maximizing the probability to
assign the correct labels to real and generated examples: this is the
case if D(x)=1, maximizing the first loss component, and if
D(G(z))=0, maximizing the second loss component. The genera-
tor G, instead, will attempt to generate realistic examples that the
discriminator labels with “1,” which corresponds to a minimization
of log 1-D G z .

3.4 Why Early GANs

Were Hard to Train

GANs with this training objective implicitly use JS divergence for
the loss, which can be seen by examining the GAN training objec-
tive. Consider the ideal discriminator D for a fixed generator. Its
loss is minimal for the optimal discriminator given by [1]

D̂ðxÞ=
pdataðxÞ

pdataðxÞ þ pGðxÞ
: ð6Þ

Substituting D̂ in Eq. 5 yields (without proof) the implicit use
of the Jensen-Shannon divergence if the above training objective is
employed:

ð ð ð ÞÞÞ

162 Markus Wenzel

J ðG, D̂Þ=2DJSðpdatakpGÞ- log 4: ð7Þ
This theoretical result shows that a minimum in the GAN

training can be found when the Jensen-Shannon divergence is
zero. This is achieved for identical probability distributions pdata
and pG or, equivalently, when the generator perfectly matches the
data distribution [17].

Unfortunately, it also shows that this loss is, like KL divergence,
only helpful when target distribution (i.e., data distribution) and
model distribution have overlapping support. Therefore, added
noise can be required to approximate the target distribution. In
addition, the training criterion saturates if the discriminator in the
early phase of training perfectly distinguishes between fake and real
examples. The generator will therefore no longer obtain a helpful
gradient to update its weights. An approach thought to prevent this
was proposed by Goodfellow et al. [1]. The generator loss was
turned from the minimization problem into a maximization prob-
lem that has the same fixed point in the overall minimax game but
prevents saturation: instead of minimizing logð1-DðGðzÞÞÞ, one
maximizes log D G z [1].

3.5 Improving GANs GAN training has quickly become notorious for the difficulties it
posed upon the researchers attempting to apply the mechanism to
real-world problems. We have qualitatively attributed a part of these
problems to the inherently difficult task of density estimation and
motivated the intuition that while fewer samples might suffice to
learn a decision boundary in a discriminative task, many more
examples are required to build a powerful generative model.

In the following, some more light shall be shed on the reasons
why GAN training might fail. Typical GAN problems comprise the
following:

Mode dropping is the phenomenon in forward KL caused by
regions of the data distribution not being
covered by the generator distribution, which
implies large probabilities of samples coming
from Pdata and very small probabilities of ori-
ginating from PG. This drives forward KL
toward infinity and punishes the generator
for not covering the entire data distribution
[18]. If all modes but one are dropped, one
can call this mode collapse: the generator only
generates examples from one mode of the
distribution.

Poor convergence can be caused by a discriminator learning to
distinguish real and fake examples very early—
which is also very likely to happen throughout
the GAN training. This is rooted in the

observation that by the generative process

GANs and Beyond 163

that projects from a low-dimensional latent
space into the high-dimensional pG, the sam-
ples in pG are not close to each other but
rather inhabit “islands” [18]. The discrimina-
tor can learn to find them and thereby differ-
entiate between true and false samples easily,
which causes the gradients driving generator
optimization to vanish [17].

Poor sample quality despite a high log likelihood of the model is a
consequence of the practical independence of
sample quality and model log likelihood.
Theis et al. [19] show that neither does a
high log likelihood imply generated sample
fidelity nor do visually pleasing samples
imply a high log likelihood. Therefore, train-
ing a GAN with a loss function that effectively
implements maximizing a log likelihood term
is not an ideal choice—but exactly corre-
sponds to KL minimization.

Unstable training is a consequence of reformulating the genera-
tor loss into maximizing logDðGðzÞÞ. It can
be shown [18] that this choice effectively
makes the generator struggle between a
reverse KL divergence favoring mode-seeking
behavior and a negative JS divergence actually
driving the generator into examples different
from the real data distribution.

There have been many subsequent authors touching these
topics, but already Arjovsky and Bottou [18] have shown best
practices of how to overcome these problems.

Among the solutions proposed for GAN improvements are
some that prevent the generator from producing only too similar
samples in one batch, some that keep the discriminator insecure
about the true labels of real and fake examples, and more, which
Creswell et al. [17] have summarized in their GAN overview. A
collection of best practices compiled from these sources is pre-
sented in Box 4. It is almost impossible to write a cookbook for
successful, converging, stable GAN training. For almost every tip,
there is a caveat or situation where it cannot be applied. The
suggestions below therefore are to be taken with a grain of salt
but have been used by many authors successfully.

164 Markus Wenzel

Box 4: Best Practices for Stable GAN Training

General measures. GAN training is sensitive to hyperpara-
meters, most importantly the learning rate. Mode collapse
might already be mitigated by a lower learning rate. Also,
different learning rates for generator and discriminator
might help. Other typical measures are batch normalization
(or instance normalization in case of small batch sizes; mind
however that batch normalization can taint the randomness of
latent vector sampling and in general should not be used in
combination with certain GAN loss functions), use of trans-
posed convolutions instead of parameter-free upsampling,
and strided convolutions instead of down-sampling.

Feature matching. One typical observation is that nei-
ther discriminator nor generator converges. They play their
“cat-and-mouse” game too effectively. The generator pro-
duces a good image, but the discriminator learns to figure it
out, and the generator shifts to another good image, and
so on.

A remedy for this is feature matching, where the ℓ2 dis-
tance between the average feature vectors of real and fake
examples is computed instead of a cross-entropy loss on the
logits. Because per batch the feature vectors change slightly,
this introduces randomness that helps to prevent discrimina-
tor overconfidence.

Minibatch discrimination. When the generator only
produces very convincing but extremely similar images, this
is an indication for mode collapse.

This can be counteracted by calculating a similarity metric
between generated samples and penalizing the generator for
too little variation. Minibatch discrimination is considered to
be superior in performance to feature matching.

One-sided label smoothing. Deep classification models
often suffer from overconfidence, focusing on only very few
features to classify an image. If this happens in a GAN, the
generator might figure this out and only produce the feature
the discriminator uses to decide for a real example.

A simple measure to counteract this is to provide not a
“1” as a label for the real images in the batch but a lower
value. This way, the discriminator is penalized for overconfi-
dence (when it returns a value close to “1”).

Cost function selection. Several sources list possible
GAN cost functions. Randomly trying them one by one
might work, but often some of the above measures, in partic-
ular learning rate and hyperparameter tuning, might be more
successful first steps.

GANs and Beyond 165

Besides these methods, one area of discussion concerned the
question if there is a need of balancing discriminator and generator
learning and convergence at all. The argument was that a converged
discriminator will as well yield a training signal to the generator as a
non-converged discriminator. Practically, however, many authors
described carefully designed update schedules, e.g., updating the
generator once per a given number of discriminator updates.

Many more ideas exist: weight updating in the generator using
an exponential moving average of previous weights to avoid “for-
getting,” different regularization and conditioning techniques, and
injecting randomness into generator layers anew. Some we will
encounter later, as they have proven to be useful in more recent
GAN architectures.

Despite the recent advances in stabilizing GAN training, even
the basic method described so far, with the improvements made in
the seminal DCGAN publication [20], finds application until
today, e.g., for the de novo generation of PET color images
[21]. The usefulness of an approach as presented in their publica-
tion might be doubted, since the native PET data is obviously not
colored. The authors use 2D histograms of the three-color channel
combinations to compare true and fake examples. As we have
discussed earlier, this is likely a poor metric since it does not allow
insights into the high-dimension joint probability distribution
underlying the data-generating process. Figure 14 shows an exam-
ple comparison of some generated examples compared to original
PET images.

Fig. 14 PET images generated from random noise using a DCGAN architecture. Image taken from [21]
(CC-BY4.0)

166 Markus Wenzel

To address many of the GAN training dilemmas, Arjovsky and
Bottou [18] have proposed to employ the Wasserstein distance as a
replacement for KL or JS divergence already in their examination of
the root causes of poor GAN training results and have later
extended this into their widely anticipated approach we will focus
on next [22, 23]. We will also see more involved and recent
approaches to stabilize and speed up GAN training in later sections
of this chapter (Subheading 4).

3.6 Wasserstein

GANs

Wasserstein GANs were appealing to the deep learning and GAN
scene very quickly after Arjovsky et al.’s [22] seminal publication
because of a number of traits their inventors claimed they’d have.
For one, Wasserstein GANs are based on the theoretical idea that
the change of the loss function to the Wasserstein distance should
lead to improved results. This combined with the reported bench-
mark performance would already justify attention. But Wasserstein
GANs additionally were reported to train much more stably,
because, as opposed to previous GANs, the discriminator would
be trained to convergence in every iteration, instead of demanding
a carefully and heuristically found update schedule for generator
and discriminator. In addition, the loss was directly reported to
correlate with visual quality of generated results, instead of being
essentially meaningless in a minimax game.

Wasserstein GANs are therefore worth an in-depth treatment in
the following sections.

3.6.1 The Wasserstein

(Earthmover) Distance

The Wasserstein distance figuratively measures how, with an opti-
mal transport plan, mass can be moved from one configuration to
another configuration with minimal work. Think, for example, of
heaps of earth. Figure 15 shows two heaps of earth, P and
Q (discrete probability distributions), both containing the same
amount of earth in total, but in different concrete states x and
y out of all possible states.

Work is defined as the shovelfuls of earth times the distance it is
moved. In the three rows of the figure, earth is moved (only within
one of P or Q, not from one to the other), in order to make the
configuration identical. First, one shovelful of earth is moved one
pile further, which adds one to the Wasserstein distance. Then, two
shovelfuls are moved three piles, adding six to the final Wasserstein
distance of DW=7.

Note that in an alternative plan, it would have been possible to
move two shovelfuls of earth from p4 to p1 (costing six) and one
from p4 to p3, which is the inverse transport plan of the above,
executed on P, and leading to the same Wasserstein distance. The
Wasserstein distance is in fact a distance, not a divergence, because
it yields the same result regardless of the direction. Also note that

we implicitly assumed that P and Q share their support,3 but that in
case of disjunct support, only a constant term would have to be
added, which grows with the distance between the support regions.

GANs and Beyond 167

Fig. 15 One square is one shovel full of earth. Transporting the earth shovel-wise
from pile to pile amasses performed work: the Wasserstein (earthmover) dis-
tance. The example shows a Wasserstein distance of DW= 7

Many other transport plans are possible, and others can be
equally cheap (or even cheaper—it is left to the reader to try this
out). Transport plans need not modify only one of the stocks but
can modify both to reach the optimal strategy to make them
identical. Algorithmically, the optimal solution to the question of
the optimal transport plan can be found by formulating it as a linear
programming problem. However, enumerating all transport plans
and computing the linear programming algorithm are intractable
for larger and more complex “heaps of earth.” Any nontrivial GAN
will need to estimate transport of such complex “heaps,” so they

3 The support, graphically, is the region where the distribution is not equal to zero.

suffer this intractability problem. Consequently, in practice, a dif-
ferent approach must be taken, which we will sketch below.4

168 Markus Wenzel

Formalizing the search for the optimal transport plan, we look
at all possible joint distributions of our P and Q, forming the set of
all possible transport plans, and denote this set Π(P, Q), implying
that for all γ ∈Π(P, Q), P and Q will be their marginal distribu-
tions.5 This, in turn, means that by definition ∑xγ(x, y)=P(y) and
∑yγ(x, y)=Q(x).

For one concrete transport plan γ that works between a state
x in P and a state y in Q, we are interested in the optimal transport
plan γ(x, y). Let kx- yk be the Euclidian distance to shift earth
between x and y, and then multiplying this with every value of γ (the
amount of earth shifted) leads to

DWðP ,Q Þ= inf
γ∈Π x, y

kx - ykγðx, yÞ,

which can be rewritten to obtain

DWðP ,Q Þ= inf
γ�ΠðP,Q Þ

ðx,yÞ�γkx- yk: ð8Þ

It measures both the distance of two distributions with disjunct
support and the difference between distributions with perfectly
overlapping support because it includes both, the shifting of earth
and the distance to move it.

Practically, though, this result cannot be used directly, since the
Linear Programming problem scales exponentially with the num-
ber of dimensions of the domain of P and Q, which are high for
images. To our disadvantage, we additionally need to differentiate
the distance function if we want to use it for deep neural network
training using backpropagation. However, we cannot obtain a
derivative from our distance function in the given form, since, in
the linear programming (LP) formulation, our optimized distribu-
tion (as well as the target distribution) end up as constraints, not
parameters.

Fortunately, we are not interested in the transport plan γ itself,
but only in the distance (of the optimal transport plan). We can
therefore use the dual form of the LP problem, in which the
constraints of the primal form become parameters. With some
clever definitions, the problem can be cast into the dual form, finally
yielding

4 An extensive treatment of Wasserstein distance and optimal transport in general is given in the 1.000-page
treatment of Villani’s book [24], which is freely available for download.
5 This section owes to the excellent blog post of Vincent Herrmann, at https://vincentherrmann.github.io/
blog/wasserstein/. Also recommended is the treatment of the “Wasserstein GAN” paper by Alex Irpan at https://
www.alexirpan.com/2017/02/22/wasserstein-gan.html. An introductory treatment of Wasserstein distance is
also found in [25, 26].

GANs and Beyond 169

DWðP ,Q Þ= kf kL ≤1sup x�P f ðxÞ-x�Q f ðxÞ
with a function f that has to adhere to a constraint called the
1-Lipschitz continuity constraint, which requires f to have a slope
of at most magnitude 1 everywhere. f is the neural network, and
more specifically for a GAN, the discriminator network.
1-Lipschitzness can be achieved trivially by clipping the weights
to a very small interval around 0.

3.6.2 Implementing

WGANs

To implement the distance as a loss function, we rewrite the last
result again as

DWðP ,Q Þ= max
w∈W

x�P ½DwðxÞ�-z�Q ½DwðGwðzÞÞ�: ð9Þ
Note that in opposition to other GAN losses we have seen

before, there is no logarithm anymore, because, this time, the
“discriminator” is no longer a classification network that should
learn to discriminate true and fake samples but rather serves as a
“blank” helper function that during training learns to estimate the
Wasserstein distance between the sets of true and fake samples.

Box 5: Spectral Normalization

Spectral normalization is applied to the weight matrices of a
neural network to ensure a boundedness of the error function
(e.g., Lipschitzness of the discriminator network in the
WGAN context). This helps convergence like any other nor-
malization method, as it provides a guaranty that gradient
directions are stable around the current point, allowing larger
step widths.

The spectral norm (or matrix norm) measures how far a
matrix A can stretch a vector x:

jjAjj= max
x ≠0

jjAxjj
jjxjj

The numerical value of the spectral norm of A can be
shown to be just its maximum singular value. To compute the
maximum singular value, an algorithmic idea helps: the power
iteration method, which yields the maximal eigenvector.

Power iteration uses the fact that any matrix will rotate a
random vector toward its largest eigenvector. Therefore, by
iteratively calculating AX

jAxj, the largest eigenvector is obtained
eventually.

In practice, it is observed that a single iteration is already
sufficient to achieve the desired normalizing behavior.

170 Markus Wenzel

Consequently, the key ingredient is the Lipschitzness con-
straint of the discriminator network,6 and how to enforce this in a
stable and regularized way. It soon turned out that weight clipping
is not an ideal choice. Rather, two other methods have been pro-
posed: the gradient penalty approach and normalizing the weights
with the spectral norm of the weight matrices.

Both have been added to the standard catalogue of
performance-boosting measures in GAN training ever since,
where in particular spectral normalization (cf. Box 5) is attractive
as it can be implemented very efficiently, has a sound theoretical and
mathematical foundation, and ensures stable and efficient training.

3.6.3 Example

Application: Brain

Abnormality Detection

Using WGAN

One of the first applications of Wasserstein GANs in a practical use
case was presented in the medical domain, specifically in the context
of attributing visible changes of a diseased patient with respect to a
normal control to locations in the images [27]. The way this
detection problem was cast into a GAN approach (and then solved
with a Wasserstein GAN) was to delineate the regions that make the
images of a diseased patient look “diseased,” i.e., find the residual
region, that, if subtracted from the diseased-looking image, would
make it look “normal.”

Figure 16 shows the construction of the VA-GAN architecture
with images from a mocked dataset for illustration. For the authors’
results, see their publication and code repository.7

For their implementation, the authors note that neither batch
normalization nor layer normalization helped convergence and
hypothesize that the difference between real and generated exam-
ples may be a reason that in particular batch normalization may in
fact have an adverse effect especially during the early training phase.
Instead, they impose an ℓ1 norm loss component on the U-Net-
generated “visual (feature) attribution” (VA) map to ensure it to be
a minimal change to the subject. This serves to prevent the genera-
tor from changing the subject into some “average normal” image
that it may otherwise learn. They employ an update regime that
trains the critic network for more iterations than the generator, but
doesn’t train it to convergence as proposed in the original WGAN
publications. Apart from these measures, in their code repository,
the authors give several practical hints and heuristics that may
stabilize the training, e.g., using a tanh activation for the generator
or exploring other dropout settings and in general using a large
enough dataset. They also point out that the Wasserstein distance
isn’t suited for model selection since it is too unstable and not
directly correlated to the actual usefulness of the trained model.

6 The discriminator network in the context of continuous generator loss functions like the Wasserstein-based loss
is called a “critique” network, as it no longer discriminates but yields a metric. For ease of reading, this chapter
sticks to the term “discriminator.”
7 https://github.com/baumgach/vagan-code.

GANs and Beyond 171

Fig. 16 An image of a diseased patient is run through a U-Net with the goal to yield a map that, if added to the
input image, results in a modified image that fools the discriminator (“critique”) network into classifying it as a
“normal” control. The map can be interpreted as the regions attributed to appear abnormal, giving rise to the
name of the architecture: visual attribution GAN (VA-GAN)

This is one more reason to turn in the next section to an
important topic in the context of validation for generative models:
How to quantify their results?

3.7 GAN

Performance Metrics

One imminent question has so far been postponed, though it
implicitly plays a crucial role in the quest for “better” GANs:
How to actually measure the success of a GAN or the performance
in terms of result quality?

GANs can be adapted to solve image analysis tasks like segmen-
tation or detection (cf. Subheading 3.6.3). In such cases, the qual-
ity and success can be measured in terms of task-related
performance (Jaccard/Dice coefficient for segmentation, overlap
metrics for detection etc.).

Performance assessment is less trivial if the GAN is meant to
generate unseen images from random vectors. In such scenarios,
the intuitive criterion is how convincing the generated results are.
But convincing to whom? One could expose human observers to
the real and fake images, ask them to tell them apart, and call a GAN
better than a competing GAN if it fools the observer more consis-
tently.8 Since this is practically infeasible, metrics were sought that
provide a more objective assessment.

8 In fact, there is only very little research on the actual performance of GANs in fooling human observers, though
guides exist on how to spot “typical” GAN artifacts in generated images. These are older than the latest GAN
models, and it can be hypothesized that the lack of such literature is indirect confirmation of the overwhelming
capacity of GANs to fool human observers.

172 Markus Wenzel

The most widely used way to assess GAN image quality is the
Fréchet inception distance (FID). This distance is conceptually
related to the Wasserstein distance. It has an analytical solution to
calculate the distance of Gaussian (normal) distributions. In the
multivariate case, the Fréchet distance between two distributions
X and Y is given by the squared distance of their means μX (resp.
μY) and a term depending on the covariance matrix describing their
variances ΣX (resp. ΣY):

dðX ,Y Þ= jjμX - μY jj2 þ TrðΣX þ ΣY -2 ΣXΣY

p Þ: ð10Þ
The way this distance function is being used is often the score,

which is computed as follows:

• Take two batches of images (real/fake, respectively).

• Run them through a feature extraction or embedding model.
For FID, the inception model is used, pretrained on ImageNet.
Retain the embeddings for all examples.

• Fit each one multivariate normal distribution to the embedded
real/fake examples.

• Calculate their Fréchet distance according to the analytical for-
mula in Eq. 10.

This metric has a number of downsides. Typically, if computed
for a larger batch of images, it decreases, although the same model
is being evaluated. This bias can be remedied, but FID remains the
most used metric still. Also, if the inception network cannot capture
the features of the data FID should be used on, it might simply be
uninformative. This is obviously a grave concern in the medical
domain where imaging features look much different from natural
images (although, on the other hand, transfer learning for medical
classification problems proved to work surprisingly well, so that
apparently convolutional filters trained on photographs also extract
applicable features from medical images). In any case, the selection
of the pretrained embedding model brings a bias into the validation
results. Lastly, the assumption of a multivariate normal distribution
for the inception features might not be accurate, and only describ-
ing it through their means and covariances is a severe reduction of
information. Therefore, a qualitative evaluation is still required.

One obvious additional question arises: If the ultimate metric
to judge the quality of the generator is given by, for example, the
FID, why can’t it be used as the optimization goal instead of
minimizing a discriminator loss? In particular, as the Fréchet dis-
tance is a variant of the Wasserstein distance, an answer to this
question is not obvious. In fact, feature matching as described in
Box 4 exactly uses this type of idea, and likewise, it has been
partially adopted in recent GAN architectures to enhance the sta-
bility of training with a more fine-grained loss component than a
pure categorical cross-entropy loss on the “real/fake” classification
of the discriminator.

GANs and Beyond 173

Related recent research is concerned with the question how
generated results can automatically be detected to counteract
fraudulent authors. So-called forensic algorithms detect patterns
that point out generated images. This research puts up the question
how to detect fake images reliably. Solutions based on different
analysis directions encompass image fingerprinting and frequency-
domain analysis [28–31].

4 Selected GAN Architectures You Should Know

In the following, we will examine some GAN architectures and
GAN developments that were taken up by the medical community
or that address specific needs that might make them appealing, e.g.,
for limited data scenarios.

4.1 Conditional GAN GANs cannot be told what to produce—at least that was the case
with early implementations. It was obvious, though, that a properly
trained GAN would imprint the semantics of the domain onto its
latent space, which was evidenced by experiments in which the
latent space was traversed and images of certain characteristics
could be produced by sampling accordingly. Also, it was found
that certain dimensions of the latent space can correspond to
certain features of the images, like hair color or glasses, so that
modifying them alone can add or take away such visible traits.

With the improved development of conditional GANs [32]
following a number of GANs that modeled the conditioning
input more explicitly, another approach was introduced that was
based on the U-Net architecture as a generator and a favorable
discriminator network that values local style over a full-image
assessment.

Technically, the formulation of a conditional GAN is straight-
forward. Recalling the value function (learning objective) of GANs
from Eq. 5,

J ðG,DÞ=x�pdata ½logDðxÞ� þ z�pG ½1- logDðGðzÞÞ�,
We now want to condition the generation on some additional

knowledge or input. Consequently, both the generator G and the
discriminator D will receive an additional “conditioning” input,
which we call x. This can be a class label but also any other asso-
ciated information. Very commonly, the additional input will be an
image, as, for example, for image translation application (e.g.,
transforming from one image modality to another such as, for
instance, MRI to CT). The result is the cGAN objective function:

J cGANðG,DÞ=x�pdata ½logDðxjyÞ� þ z�pG ½1- logDðGðzjyÞÞ�
ð11Þ

174 Markus Wenzel

Fig. 17 A possible architecture for a cGAN. Left: the generator network takes the base images x as input and
generates a translated image ŷ . The discriminator receives either this pair of images or a true pair x, y (right).
The additional generator reconstruction loss (often a ℓ1 loss) is calculated between y and ŷ

Isola et al. [32] describe experiments with MNIST handwritten
digits, where a simple generator with two layers of fully connected
neurons was used, and similarly for the discriminator. x was set to
be the class label. In a second experiment, a CNN creates a feature
representation of images, and the generator is trained to generate
textual labels (choosing from a vocabulary of about 250.000
encoded terms) for the images conditioned on this feature
representation.

Figure 17 shows a possible architecture to employ a cGAN
architecture for image-to-image translation. In this diagram, the
conditioning input is the target image that the trained network shall
be able to produce based on some image input. The generator
network therefore is a U-Net. The discriminator network can be
implemented, for example, by a classification network. This net-
work always receives two inputs: the conditioning image (x in
Fig. 17) and either the generated output ŷ or the true paired
image y.

k�k

GANs and Beyond 175

Fig. 18 Input and output of a pix2pix experiment. Online demo at https://affinelayer.com/pixsrv/

Note that the work of Isola et al. [32] introduces an additional
loss term on the generator that measures the ℓ1 distance between
the generated and ground truth image, which is (with variables as in
Eq. 11)

J ℓ1ðGÞ=x;y;zky -Gðx, zÞk1,
where 1 is the ℓ1 norm.

The authors do not further justify this loss term apart from
stating that ℓ1 is preferred over ℓ2 to encourage less blurry results. It
can be expected that this loss component provides a good training
signal to the generator when the discriminator loss doesn’t, e.g., in
the beginning of the training with little or no overlap of target and
parameterized distributions. The authors propose to give the ℓ1 loss
orders of magnitudes more weight than the discriminator loss
component to value accurate translations of images over “just”
very plausible images in the target domain.

The cGAN, namely, in the configuration with a U-Net serving
as the generative network, was very quickly adopted by artists and
scientists, thanks to the free implementation pix2pix.9 One example
created with pix2pix is given in Fig. 18, where the cGAN was
trained to produce cat images from line drawings.

One application in the medical domain was proposed, for
example, by Senaras et al. [33]. The authors used a U-Net as a
generator to produce a stained histopathology image from a label
image that has two distinct labels for two kinds of cell nuclei. Here,
the label image is the conditioning input to the network. Conse-
quently, the discriminator network, a classification CNN tailored to

9 https://github.com/phillipi/pix2pix.

the patch-based classification of slides, receives two inputs: the
histopathology image and a label image.

176 Markus Wenzel

Another example employed an augmented version of the con-
ditional GAN to translate CT to MR images of the brain, including
a localized uncertainty estimate about the image translation suc-
cess. In this work, a Bayesian approach to model the uncertainty
was taken by including dropout layers in the generator model [34].

Lastly, a 3D version of the pix2pix approach with a 3D U-Net
as a generative network was devised to segment gliomas in multi-
modal brain MRI using data from the 2020 International Multi-
modal Brain Tumor Segmentation (BraTS) challenge [35]). The
authors called their derived model vox2vox, alluding to the exten-
sion to 3D data [36].

More conditioning methods have been developed over the
years, some of which will be sketched further on. It is common to
this type of GANs that paired images are required to train the
network.

4.2 CycleGAN While cGANs require paired data for the gold standard and condi-
tioning input, this is often hard to come by, in particular in medical
use cases. Therefore, the development of the CycleGAN set a
milestone as it alleviates this requirement and allows to train
image-to-image translation networks without paired input samples.

The basic idea in this architecture is to train two mapping
functions between two domains and to execute them in sequence
so that the resulting output is considered to be in the origin domain
again. The output is compared against the original input, and their
ℓ1 or ℓ2 distance establishes a novel addition to the otherwise usual
adversarial GAN loss. This might conceptually remind one of the
autoencoder objectives: reproduce the input signal after encoding
and decoding; only this time, there is no bottleneck but another
interpretable image space. This can be exploited to stabilize the
training, since the sequential concatenation of image translation
functions, which we will call G and F, can be reversed. Figure 19
shows a schematic of the overall process (left) and one incarnation
of the cycle, here from image domain X to Y and back (middle).

CycleGANs employ several loss terms in training: two adver-
sarial losses JðG,DY Þ and JðF ,DX Þ and two cycle consistency
losses, of which one J cycðG, F Þ is indicated rightmost in Fig. 19.
Zhu et al. [37] presented the initial publication with a participation
of the cGAN author Isola [37]. The cycle consistency losses are ℓ1
losses in their implementation, and the GAN losses are least square
losses instead of negative log likelihood, since more stable training
was observed with this choice.

Almahairi et al. [38] provided an augmented version [38],
noting that the original implementation suffers from the inability
to generate stochastic results in the target domain Y but rather
learns a one-to-one mapping between X and Y and vice versa. To

alleviate this problem, the generators are conditioned on one latent
space each for both directions, so that, for the same input
x∈X, G will now produce multiple generated outputs in Y
depending on the sample from the auxiliary latent space (and
similarly in reverse). Still, F has to recreate a x̂ minimizing the
cycle consistency loss for each of these samples. This also remedies a
second criticism brought forward against vanilla CycleGANs: these
networks can learn to hide information in the (intermediate) target
image domain that fool the discriminator but help the backward
generator to minimize the cycle consistency loss more efficiently
[39]. Chu et al. [39] use adaptive histogram equalization to show
that in visually empty regions of the intermediate images informa-
tion is present. This is a finding reminiscent of adversarial attacks,
which the authors elaborate on in their publication.

GANs and Beyond 177

Fig. 19 Cycle GAN. Left: image translation functions G and F convert between two domains. Discriminators DX
and DY give adversarial losses in both domains. Middle: for one concrete translation of an image x, the
translation to Y and back to X is depicted. Right: after the translation cycle, the original and back-translated
result are compared in the cycle consistency loss

Zhang et al. [40] show a medical application. In their work, a
CycleGAN has been used to train image translation and segmenta-
tion models on unpaired images of the heart, acquired with MRI
and CT and with gold standard expert segmentations available for
both imaging datasets. The authors proposed to learn more pow-
erful segmentation models by enriching both datasets with artifi-
cially generated data. To this end, MRIs are converted into CT
contrast images and vice versa using GANs. Segmentation models
for MRI and CT are then trained on dataset consisting of original
images and their expert segmentations and augmented by the con-
verted images, for which expert segmentations can be carried over
from their original domain. To achieve this, it is of importance that
the converted (translated) images accurately depict the shape of the
organs as expected in the target domain, which is enforced using
the shape consistency loss.

In the extended setup of the CycleGAN with shape and cycle
consistency, three different loss types instead of the original two are
combined during training:

Adversarial GAN losses JGAN. This loss term is the same as
defined, e.g., in Eq. 5.

cyc 1

original CycleGAN authors dis-
cussed above.

Shape consistency losses J shape. The shape consistency loss is a new
addition proposed by the authors.
A cross-correlation loss takes into
account two segmentations, the
first being the gold standard seg-
mentation mx for an x∈X and one
segmentation produced by a seg-
menter network S that was trained
on domain Y and receives the
translated image ŷ =GðxÞ.

178 Markus Wenzel

Fig. 20 Cycle GAN with shape consistency loss (rightmost part of figure). Note that the figure shows only one
direction to ease readability

Cycle consistency losses J . This is the ℓ loss presented by the

Figure 20 depicts the three loss components, of which the first
two are known already from Fig. 19.

Note that the description as well as Fig. 20 only show one
direction for cycle and shape consistency loss. Both are duplicated
into the other direction and combined into the overall training
objective, which then consists of six components.

In several other works, the CycleGAN approach was extended
and combined with domain adaption methods for various segmen-
tation tasks and also extended to volumetric data [41–43].

4.3 StyleGAN and

Successor

One of the most powerful image synthesis GANs to date is the
successor of StyleGAN, StyleGAN2 [44, 45]. The authors, at the
time of writing researching at Nvidia, deviate from the usual GAN
approach in which an image is generated from a randomly sampled
vector from a latent space. Instead, they use a latent space that is
created by a mapping function f which is in their architecture
implemented as a multilayer perceptron which maps from a
512-dimensional space Z into a 512-dimensional space W. The
second major change consisted of the so-called adaptive instance
normalization layer, AdaIN, which implements a normalization to
zero-mean and unit variance of each feature map, followed by a
multiplicative factor and an additive bias term. This serves to

reweight the importance of feature maps in one layer. To ensure the
locality of the reweighting, the operation is followed by the non-
linearity. The scaling and bias are two components of y= (ys, yb),
which is the result of a learnable affine transformation A applied to a
sample from W.

GANs and Beyond 179

Fig. 21 StyleGAN architecture, after [44]. Learnable layers and transformations are shown in green, the AdaIN
function in blue

In their experiments, Karras et al. [44] recognized that after
these changes, the GAN actually no longer depended on the input
vector drawn from W itself, so the random latent vector was
replaced by a static vector fed into the GAN. The y, which they
call styles, remained to be results from a vector randomly sampled
from the new embedding space W.

Lastly, noise is added in each layer, which serves to allow the
GAN to produce more variation without learning to produce it
from actual image content. The noise, like the latent vector, is fed
through learnable transformations B, before it is added to the
unnormalized feature maps. The overall architecture is sketched
in Fig. 21.

In the basic setup, one sample is drawn from W and fed
through per-layer learned A to gain per-layer different interpreta-
tions of the style, y= (ys, yb). This can be changed, however, and the
authors show how using one random sample w1 in some of the layer
blocks and another sample w2 in the remaining; the result will be a
mixture of styles of both individual samples. This way, the coarse
attributes of the generated image can stem from one sample and the
fine detail from another. Applied to a face generator, for example,
pose and shape of the face are determined in the coarse early layers
of the network, while hair structure and skin texture are the fine

details of the last layers. The architecture and results gained wide-
spread attention through a website,10 which recently was followed
up by further similar pages. Results are depicted in Fig. 22.

180 Markus Wenzel

Fig. 22 Images created with StyleGAN; https://this{person—artwork—cat—horse—chemical}doesnotexist.
com. Last accessed: 2022-01-14

The crucial finding in StyleGAN was that the mapping function
F transforming the latent space vector from Z to W serves to ensure
a disentangled (flattened) latent space. Practically, this means that if
interpolating points zi between two points z1 and z2 drawn from Z
and reconstructing images from these interpolated points zi,
semantic objects might appear (in a StyleGAN-generating faces,
for example, a hat or glasses) that are neither part of the generated
images from the first point z1 nor the second point z2 between
which it has been interpolated. Conversely, if interpolating in W ,
this “semantic discontinuity” is no longer the case, as the authors
show with experiments in which they measure the visual change of
resulting images when traversing both latent spaces.

In their follow-up publications, the same authors improve the
performance even further. They stick to the basic architecture but
redesign the generative network pertaining to the AdaIN function.
In addition, they add their metric from [44] that was meant to
quantify the entanglement of the latent space as a regularizer. The
discriminator network was also enhanced, and the mechanisms of
StyleGAN that implement the progressive growing have been suc-
cessively replaced by more performance-efficient setups. In their
experiments, they show a growth of visual and measured quality
and removal of several artifacts reported for StyleGAN [45].

4.4 Stabilized GAN

for Few-Shot Learning

GAN training was very demanding both regarding GPU power, in
particular for high-performance architectures like StyleGAN and
StyleGAN2, and, as importantly, availability of data. StyleGAN2,
for example, has typical training times of about 10 days on a Nvidia
8-GPU Tesla V100. The datasets comprised at least tens of
thousands of images and easily orders of magnitude more. Particu-
larly in the medical domain, such richness of data is typically hard
to find.

10 https://thispersondoesnotexist.com/.

GANs and Beyond 181

Fig. 23 The FastGAN generator network. Shortcut connections through feature map weighting layers (called
skip-layer excitation, SLE) transport information from low-resolution feature maps into high-resolution feature
maps. For details regarding the blocks, see text

The authors of [46] propose simple measures to stabilize the
training of a specific GAN architecture, which they design from
scratch using a replacement for residual blocks, arranged in an
architecture with very few convolutional layers, and a loss that
drives the discriminator to be less certain when it gets closer to
convergence. In sum, this achieves very fast training and yields
results competitive with prior GANs [46] and outperforming
them in low-data situations.

The key ingredients to the architecture are shortcut connec-
tions in the generator model that rescale feature maps of higher
resolution with learnable weights derived from low resolutions.
The effect is to make fine details simultaneously more independent
of direct predecessor feature maps and yet ensure consistency across
scales.

A random seed vector of length 256 enters the first block (“Up
Conv”), where it is upscaled to a 256× 4× 4 tensor. In Fig. 23, the
further key blocks of the architecture are “upsample” and “SLE”
blocks.

Upsample blocks consist of a nearest-neighbor upsampling fol-
lowed by a 3×3 convolution, batch normalization, and
nonlinearity.

SLE blocks (seen in the top right inset in the architecture
diagram) don’t touch the incoming high-resolution
input (entering from top into the block) but comprise a
pooling layer that in each SLE block is set up to yield a

4 ×4 stack of feature maps, followed by a convolution to
reduce to a 1 ×1 tensor, which is then in a 1×1 convo-
lution brought to the same number of channels as the
high-resolution input. This vector is then multiplied to
the channels of the high-resolution input.

182 Markus Wenzel

Fig. 24 The FastGAN self-supervision mechanism of the discriminator network. Self-supervision manifests
through the loss term indicated by the curly bracket between reconstructions from feature maps and
resampled/cropped versions of the original real image, J recon

Secondly, the architecture introduces a self-supervision feature
in the discriminator network. The discriminator network (see
Fig. 24) is a simple CNN with strided convolutions in each layer,
halving resolution in each feature map. In the latest (coarsest)
feature maps, simple up-scaling convolutional networks are
attached that generate small images, which are then compared in
loss functions (J recon in Fig. 24) to down-sampled versions of the
real input image. This self-supervision of the discriminator is only
performed for real images, not for generated ones.

The blocks in the figure spell out as follows:

Down Conv Block consists of two convolutional layers with strided
4 ×4 convolutions, effectively reducing the res-
olution from 10242 to 2562 .

Residual Blocks have two sub-items, “Conv Block A” being a
strided 4×4 convolution to half resolution,
followed by a padded 3×3 convolution.
“Conv Block B” consists of a strided 2×2 aver-
age pooling that quarters resolution, followed
by a 1 ×1 convolution, so that both blocks
result in identically shaped tensors, which are
then added.

� ½ ð ð ÞÞ�

4 ×4 convolution without strides or padding,
so that the incoming 82 feature map is reduced
to 52 .

Decoder The decoder networks are four blocks of
upsampling layers each followed by 3 ×3
convolutions.

GANs and Beyond 183

Fig. 25 FastGAN as implemented by the authors has been used to train a CT slice generative model. Images
are not cherry-picked, but arranged by similar anatomical regions

Conv Block C consists of a 1 ×1 convolution followed by a

The losses employed in the model are the discriminator loss
consisting of the hinge version of the usual GAN loss, with the
added regularizing reconstruction loss between original real sam-
ples and their reconstruction, and the generator loss plainly being
JG =z Z D G z .

The model is easy to train on modest hardware and little data,
as evidenced by own experiments on a set of about 30 chest CTs
(about 2500 image slices, converted to RGB). Figure 25 shows
randomly picked generated example slices, roughly arranged by
anatomical content. It is to be noted that organs appear mirrored
in some images. On the other hand, no color artifacts are visible, so
that the model has learned to produce only gray scale images.
Training time for 50,000 iterations on a Nvidia TitanX GPU was
approximately 10 hours.

184 Markus Wenzel

Fig. 26 The VQGAN+CLIP combination creates images from text inputs, here: “A
child drawing of a dark garden full of animals”

4.5 VQGAN In a recent development, a team of researchers combined techni-
ques for text interpretation with a dictionary of elementary image
elements feeding into a generative network. The basic architecture
component that is employed goes back to vector quantization
variational autoencoders (VQ-VAE), where the latent space is no
longer allowed to be continuous, but is quantized. This allows to
use the latent space vectors in a look-up table: the visual elements.

Figure 26 was created using code available online, which
demonstrates how images of different visual styles can be created
using the combination of text-based conditioning and a powerful
generative network.

The basis for image generation is the VQGAN (“vector quan-
tization generative adversarial network”) [47], which learns repre-
sentations of input images that can later steer the generative
process, in an adversarial framework. The conditioning is achieved
with the CLIP (“Contrastive Image-Language Pretraining”) model
that learns a discriminator that can judge plausible images for a text
label or vice versa [48].

The architecture has been developed with an observation in
mind that puts the benefits and drawbacks of convolutional and
transformer architectures in relation to each other. While the local-
ity bias of convolutional architectures is inappropriate if overall
structural image relations should be considered, it is of great help
in capturing textural details that can exist anywhere, like fur, hair,
pavement, or grass, but where the exact representation of hair

positions or pavement stones is irrelevant. On the other hand,
image transformers are known to learn convolutional operators
implicitly, posing a severe computational burden without a visible
impact on the results. Therefore, Esser et al. [47] suggest to com-
bine convolutional operators for local detail representation and
transformer-based components for image structure.

GANs and Beyond 185

Since the VQGAN as a whole is no longer a pure CNN but for a
crucial component uses a transformer architecture, this model will
be brought up again briefly in Subheading 5.2.

The VQGAN architecture is derived from the VQ-VAE (vector
quantization variational autoencoder) [49], adding a reconstruc-
tion loss through a discriminator, which turns it into a GAN. At the
core of the architecture is the quantization of estimated codebook
entries. Among the quantized entries in the codebook, the closest
entry to the query vector coding, an image patch is determined.
The found codebook entry is then referred to by its index in the
codebook. This quantization operation is non-differentiable, so for
end-to-end training, gradients are simply copied through it during
backpropagation.

The transformer can then efficiently learn to predict codebook
indices from those comprising the current version of the image, and
the generative part of the architecture, the decoder, produces a new
version of the image. Learning expressive codebook entries is
enforced by a perceptual loss that punishes inaccurate local texture,
etc. Through this, the authors can show that high compression
levels can be achieved—a prerequisite to enable efficient, yet com-
prehensive, transformer training.

5 Other Generative Models

We have already seen how GANs were not the first approach to
image generation but have prevailed for a time when they became
computationally feasible and in consequence have been better
understood and improved to accomplish tasks in image analysis
and image generation with great success. In parallel with GANs,
other fundamentally different generative modeling approaches
have also been under continued development, most of which have
precursors from the “before-GAN” era as well. To give a compre-
hensive outlook, we will sketch in this last section the state of the art
of a selection of these approaches.11

11 The research on the so-called flow-based models, e.g., normalizing flows, has been omitted in this chapter,
though acknowledging their emerging relevance also in the context of image generation. Flow-based models are
built from sequences of invertible transformations, so that they learn data distributions explicitly at the expense of
sometimes higher computational costs due to their sequential architecture. When combined, e.g., with a powerful
GAN, they allow innovative applications, for example, to steer the exploration of a GAN’s latent space to achieve
fine-grained control over semantic attributes for conditional image generation. Interested readers are referred to
the literature [11, 13, 50–52].

186 Markus Wenzel

5.1 Diffusion and

Score-Based Models

Diffusion models take a completely different approach to distribu-
tion estimation. GANs implicitly represent the target distribution
by learning a surrogate distribution. Likelihood-based models like
VAE approximate the target distribution explicitly, not requiring
the surrogate. In diffusion models, however, the gradient of the log
probability density function is estimated, instead of looking at the
distribution itself (which would be the unfathomable integral of the
gradient). This value is known as the Stein score function, leading
to the notion that diffusion models are one variant of score-based
models [53].

The simple idea behind this class of models is to revert a
sequential noising process. Consider some image. Then, perform
a large number of steps. In each step, add a small amount of noise
from a known distribution, e.g., the normal distribution. Do this
until the result is indistinguishable from random noise.

The denoising process is then formulated as a latent variable
model, where T-1 latents successively progress from a noise image
xT � N ðxT ;0, IÞ to the reconstruction that we call x0� q(x0). The
reconstructed image, x0, is therefore obtained by a reverse process
qθ(x0:T). Note that each step in this chain can be evaluated in closed
form [54]. Several model implementations of this approach exist,
one being the deep diffusion probabilistic model (DDPM). Here, a
deep neural network learns to perform one denoising step given the
so-far achieved image and a t∈{1, . . ., T}. Iterative application of
the model to the result of the last iteration will eventually yield a
generated image from noise input.

Autoregressive diffusion models (ARDMs) [55] follow yet
another thought model, roughly reminiscent of PixelRNNs we
have briefly mentioned above (see Subheading 3.2). Both share
the approach to condition the prediction of the next pixel or pixels
on the already predicted ones. Other than in the PixelRNN, how-
ever, the specific ARDM proposed by the authors does not rely on a
predetermined schedule of pixel updates, so that these models can
be categorized as latent variable models.

As of late, the general topic of score-based methods, among
which diffusion models are one variant, received more attention in
the research community, fueled by a growing body of publications
that report image synthesis results that outperform GANs [53, 56,
57]. Score function-based and diffusion models superficially share
the similar concept of sequentially adding/removing noise but
achieve their objective with very different means: where score
function-based approaches are trained by score-matching and
their sampling process uses Langevin dynamics [58], diffusion
models are trained using the evidence lower bound (ELBO) and
sample with a decoder, which is commonly a neural network.
Figure 27 visualizes an example for a score function.

Score function-based (sometimes also score-matching) genera-
tive models have been developed to astounding quality levels, and

the recent works of Yang Song and others provide accessible blog
posts,12 and a comprehensive treatment of the subject in several
publications [53, 58, 59].

GANs and Beyond 187

Fig. 27 The Stein score function can be conceived of as the gradient of the log probability density function,
here indicated by two Gaussians. The arrows represent the score function

In the work of Ho et al. [54], the stepwise reverse (denoising)
process is the basis of the denoising diffusion probabilistic models
(DDPM). The authors emphasize that a proper selection of the
noise schedule is crucial to fast, yet high-quality, results. They point
out that their work is a combination of diffusion probabilistic
models with score-matching models, in this combination also gen-
eralizing and including the ideas of autoregressive denoising mod-
els. In an extension of Ho et al.’s [54] work by Nichol and Dhariwal
[57], an importance sampling scheme was introduced that lets the
denoising process steer the most easy to predict next image ele-
ments. Equipped with this new addition, the authors can show that,
in comparison to GANs, a wider region of the target distribution is
covered by the generative model.

5.2 Transformer-

Based Generative

Models

The basics of how attention mechanisms and transformer architec-
tures work will be covered in the subsequent chapter on this
promising technology (Chapter 6). Attention-based models, pre-
dominantly transformers, have been used successfully for some time
in sequential data processing and are now considered the superior
alternative to recurrent networks like long-short-term memory
(LSTM) networks. Transformers have, however, only recently
made their way into the image analysis and now also the image
generation world. In this section, we will only highlight some
developments in the area of generative tasks.

12 https://yang-song.github.io/blog/.

188 Markus Wenzel

Google Brain/Google AI’s 2018 publication on so-called
image transformers [60], among other tasks, shows successful con-
ditional image generation for low-resolution input images to
achieve super-resolution output images, and for image inpainting,
where missing or removed parts of input images are replaced by
content produced by the image transformer.

OpenAI have later shown that even unmodified language trans-
formers can succeed to model image data, by dealing in sheer
compute power for hand modeling of domain knowledge, which
was the basis for the great success of previous unsupervised image
generation models. They have trained Image GPT (or iGPT for
short), a multibillion parameter language transformer model, and it
excels in several image generation tasks, though only for fairly small
image sizes [61]

In the recent past, StyleSwin has been proposed by Microsoft
Research Asia [62], enabling high-resolution image generation.
However, the approach uses a block-wise attention window,
thereby potentially introducing spatial incoherencies at block
edges, which they have to correct for.

“Taming transformers” [47], another recent publication
already mentioned above, uses what the authors call a learned
template code book of image components, which is combined
with a vector quantization GAN (VQGAN). The VQGAN is struc-
turally modeled after the VQ-VAE but adds a discriminator net-
work. A transformer model in this architecture composes these
code book elements and is interrogated by the GAN variational
latent space, conditioned on a textual input, a label image, or other
possible inputs. The GAN reconstructs the image from the
so-quantized latent space using a combination of a perceptual loss
assessing the overall image structure and a patch-based high-reso-
lution reconstruction loss. By using a sliding attention window
approach, the authors prevent patch border artifacts known from
StyleSwin. Conditioning on textual input makes use of parts of the
CLIP [48] idea (“Contrastive Language-Image Pretraining”),
where a language model was train in conjunction with an image
encoder to learn embeddings of text-image pairs, sufficient to solve
many image understanding tasks with competitive precision, with-
out specific domain adaption.

It is evidenced by the lineup of institutions that training image
transformer models successfully is nothing that can be achieved
with modest hardware or on even a medium-scale image database.
In particular for the medical area, where data is comparatively
scarce even under best assumptions, the power of such models
will only be available in the near future if domain transfer learning
can be successfully achieved. This, however, is a known strength of
transformer architectures.

GANs and Beyond 189

Acknowledgements

I thank my colleague at the Fraunhofer Institute for Digital Medi-
cine MEVIS, Till Nicke, for his thorough review of the chapter and
many valuable suggestions for improvements. I owe many thanks
more to other colleagues for their insights both in targeted discus-
sions and most importantly in everyday work life.

References

[1] Goodfellow IJ, Pouget-Abadie J, Mirza M,
Xu B, Warde-Farley D, Ozair S, Courville A,
Bengio Y (2014) Generative adversarial
nets. In: Proceedings of the 27th interna-
tional conference on neural information pro-
cessing systems - volume, NIPS’14 . MIT
Press, Cambridge, pp 2672–2680

[2] Casella G, Berger RL (2021) Statistical infer-
ence. Cengage Learning, Boston

[3] Grinstead C, Snell LJ (2006) Introduction to
probability. Swarthmore College,
Swarthmore

[4] Severini TA (2005) Elements of distribution
theory, vol 17. Cambridge University Press,
Cambridge

[5] Murphy KP (2012) Machine learning: a prob-
abilistic perspective. MIT Press, Cambridge

[6] Murphy KP (2022) Probabilistic machine
learning: an introduction. MIT Press, Cam-
bridge. http://doi.org/probml.ai

[7] Do CB, Batzoglou S (2008) What is the
expectation maximization algorithm? Nat
Biotechnol 26:8, 26:897–899. https://doi.
org/10.1038/nbt1406. https://www.
nature.com/articles/nbt1406

[8] Dempster AP, Laird NM, Rubin DB (1977)
Maximum likelihood from incomplete data
via the em algorithm. J Roy Statist Soc Ser B
(Methodolog) 39:1–22. https://doi.
org/10.1111/J.2517-6161.1977.TB01
600.X.https://onlinelibrary.wiley.com/doi/
full/10.1111/j.2517-6161.1977.tb01600.x.
https://onlinel ibrar y.wi ley.com/doi/
abs/10.1111/j.2517-6161.1977.tb01600.x.
h t tps ://rss .on l ine l ibrar y.wi ley.com/
doi/10.1111/j.2517-6161.1977.tb01600.x

[9] van den Oord A, Kalchbrenner N, Kavukcuo-
glu K (2016) Pixel recurrent neural networks.
ArXiv abs/1601.06759

[10] Magnusson K (2020) Understanding maxi-
mum likelihood: an interactive visualization.
https://rpsychologist.com/likelihood/

[11] Rezende DJ, Mohamed S (2015) Variational
inference with normalizing flows. In: ICML

[12] van den Oord A, Kalchbrenner N,
Espeholt L, Kavukcuoglu K, Vinyals O,
Graves A (2016) Conditional image genera-
tion with PixelCNN decoders. In: NIPS

[13] Dinh L, Sohl-Dickstein J, Bengio S (2017)
Density estimation using Real NVP. ArXiv
abs/1605.08803

[14] Salakhutdinov R, Hinton G (2009) Deep
Boltzmann machines. In: van Dyk D, Well-
ing M (eds) Proceedings of the twelfth inter-
national conference on artificial intelligence
and statistics, PMLR, hilton clearwater
beach resort, clearwater beach, Florida
USA, Proceedings of Machine Learning
Research, vol 5, pp 448–455. https://
proceedings.mlr.press/v5/salakhutdinov0
9a.html

[15] Weng L (2018) From autoencoder to
Beta-VAE. lilianwenggithubio/lil-log.
http://lilianweng.github.io/lil-log/201
8/08/12/from-autoencoder-to-beta-vae.
html

[16] Kingma DP, Welling M (2014) Auto-
encoding var iat ional bayes . ArXiv
1312.6114

[17] Creswell A, White T, Dumoulin V,
Arulkumaran K, Sengupta B, Bharath AA
(2018) Generative adversarial networks: an
overview. IEEE Signal Process Mag 35(1):
53–65. https://doi.org/10.1109/MSP.
2017.2765202

[18] Arjovsky M, Bottou L (2017) Towards prin-
cipled methods for training generative
adversarial networks. ArXiv
abs/1701.04862

[19] Theis L, van den Oord A, Bethge M (2016)
A note on the evaluation of generative mod-
els. CoRR abs/1511.01844

[20] Radford A, Metz L, Chintala S (2015)
Unsupervised representation learning with

190 Markus Wenzel

deep convolutional generative adversarial
networks. ArXiV http://arxiv.org/abs/1
511.06434

[21] Islam J, Zhang Y (2020) GAN-based syn-
thetic brain PET image generation. Brain
Inform 7:1–12. https://doi.org/10.1186/
S40708-020-00104-2/FIGURES/9.
https://braininformatics.springeropen.
com/ar ticles/10.1186/s40708-020-
00104-2

[22] Arjovsky M, Chintala S, Bottou L (2017)
Wasserstein GAN. ArXiv http://arxiv.org/
abs/1701.07875v3. 1701.07875

[23] Gulrajani I, Ahmed F, Arjovsky M,
Dumoulin V, Courville A (2017) Improved
training of Wasserstein GANs. ArXiV
http://arxiv.org/abs/1704.00028v3. nIPS
camera-ready, 1704.00028

[24] Villani C (2009) Optimal transport, old and
new. Springer, Berlin. https://doi.
org/10.1007/978-3-540-71050-9.
https://www.cedricvillani.org/wp-content/
uploads/2012/08/preprint-1.pdf

[25] Basso G (2015) A Hitchhiker’s guide to
Wasserstein distances. https://homeweb.
unifr.ch/BassoG/pub/A%20Hitchhikers%
20guide%20to%20Wasserstein.pdf

[26] Weng L (2019) From GAN to WGAN.
ArXiv 1904.08994

[27] Baumgartner CF, Koch LM, Tezcan KC,
Ang JX, Konukoglu E (2018) Visual feature
attribution using Wasserstein GANs. In: The
IEEE conference on computer vision and
pattern recognition (CVPR)

[28] Dzanic T, Shah K, Witherden FD (2020)
Fourier spectrum discrepancies in deep net-
work generated images. In: 34th conference
on neural information processing systems
(NeurIPS)

[29] Joslin M, Hao S (2020) Attributing and
detecting fake images generated by known
GANs. In: Proceedings - 2020 IEEE sympo-
sium on security and privacy workshops,
SPW 2020. Institute of Electrical and Elec-
tronics Engineers, Piscataway, pp 8–14.
https://doi.org/10.1109/SPW50608.
2020.00019

[30] Le BM, Woo SS (2021) Exploring the asyn-
chronous of the frequency spectra of
GAN-generated facial images. ArXiv
https://arxiv.org/abs/2112.08050v1.
2112.08050

[31] Goebel M, Nataraj L, Nanjundaswamy T,
Mohammed TM, Chandrasekaran S, Manju-
nath BS, Maya (2021) Detection,

attribution and localization of GAN gener-
ated images. Electron Imag. https://doi.
org/10.2352/ISSN.2470-1173.2021.4.
MWSF-276

[32] Isola P, Zhu JY, Zhou T, Efros AA (2016)
Image-to-image translation with conditional
adversarial networks. ArXiV http://arxiv.
org/abs/1611.07004

[33] Senaras C, Sahiner B, Tozbikian G,
Lozanski G, Gurcan MN (2018) Creating
synthetic digital slides using conditional
generative adversarial networks: application
to Ki67 staining. In: Medical imaging 2018:
digital pathology, society of photo-optical
instrumentation engineers (SPIE) confer-
ence series, vol 10581, p 1058103.
https://doi.org/10.1117/12.2294999

[34] Zhao G, Meyerand ME, Birn RM (2021)
Bayesian conditional GAN for MRI brain
image synthesis. ArXiV 2005.11875

[35] Bakas S, Reyes M, . . ., Menze B (2019)
Identifying the best machine learning algo-
rithms for brain tumor segmentation, pro-
gression assessment, and overall survival
prediction in the BRATS challenge. ArXiV
1811.02629

[36] Cirillo MD, Abramian D, Eklund A (2020)
Vox2Vox: 3D-GAN for brain tumour seg-
mentation. ArXiV 2003.13653

[37] Zhu JY, Park T, Isola P, Efros AA (2017)
Unpaired image-to-image translation using
cycle-consistent adversarial networks. In:
2017 IEEE international conference on
computer vision (ICCV), IEEE, pp
2242–2251. http://ieeexplore.ieee.org/
document/8237506/papers3://publica
tion/doi/10.1109/ICCV.2017.244

[38] Almahairi A, Rajeswar S, Sordoni A,
Bachman P, Courville A (2018) Augmented
CycleGAN: Learning many-to-many map-
pings from unpaired data. ArXiV https://
arxiv.org/pdf/1802.10151.pdf. 1802.101
51

[39] Chu C, Zhmoginov A, Sandler M (2017)
CycleGAN, a master of steganography.
ArXiV http://arxiv.org/abs/1712.02950

[40] Zhang Z, Yang L, Zheng Y (2018) Translat-
ing and segmenting multimodal medical
volumes with cycle- and shape-consistency
generative adversarial network. In: 2018
IEEE/CVF conference on computer vision
and pattern recognition, IEEE, pp
9242–9251. https://doi.org/10.1109/
CVPR.2018.00963. https://ieeexplore.
ieee.org/document/8579061/

GANs and Beyond 191

[41] Hoffman J, Tzeng E, Park T, Zhu JY,
Isola P, Saenko K, Efros AA, Darrell T
(2017) CyCADA: Cycle-consistent adver-
sarial domain adaptation. ArXiV 1
711.03213

[42] Huo Y, Xu Z, Bao S, Assad A, Abramson
RG, Landman BA (2018) Adversarial syn-
thesis learning enables segmentation with-
out target modality ground truth. In: 2018
IEEE 15th international symposium on bio-
medical imaging (ISBI 2018), pp
1217–1220. https://doi.org/10.1109/
ISBI.2018.8363790

[43] Yang D, Xiong T, Xu D, Zhou SK (2020)
Segmentation using adversarial image-to-
image networks. In: Handbook of medical
image computing and computer assisted
intervention, pp 165–182. https://doi.
o r g / 1 0 . 1 0 1 6 / B 9 7 8 - 0 - 1 2 - 8 1 6 1
76-0.00012-0

[44] Karras T, Laine S, Aila T (2018) A style-
based generator architecture for generative
adversarial networks. IEEE Trans Pattern
Analy Mach Intell 43:4217–4228. https://
doi.org/10.1109/TPAMI.2020.2970919.
https://arxiv.org/abs/1812.04948v3

[45] Karras T, Laine S, Aittala M, Hellsten J,
Lehtinen J, Aila T (2020) Analyzing and
improving the image quality of
StyleGAN. In: Proceedings of the IEEE
computer society conference on computer
vision and pattern recognition, pp
8107–8116. https://doi.org/10.1109/
CVPR42600.2020.00813. https://arxiv.
org/abs/1912.04958v2

[46] Liu B, Zhu Y, Song K, Elgammal A (2021)
Towards faster and stabilized GAN training
for high-fidelity few-shot image
synthesis. In: International conference on
l earn ing representat ions . h t tps ://
openreview.net/forum?id=1Fqg133qRaI

[47] Esser P, Rombach R, Ommer B (2021)
Taming transformers for high-resolution
image synthesis. In: 2021 IEEE/CVF con-
ference on computer vision and pattern rec-
ognition (CVPR), pp 12868–12878.
https://doi.org/10.1109/CVPR46437.
2021.01268

[48] Radford A, Kim JW, Hallacy C, Ramesh A,
Goh G, Agarwal S, Sastry G, Askell A,
Mishkin P, Clark J, Krueger G, Sutskever I
(2021) Learning transferable visual models
from natural language supervision. ArXiV
2103.00020

[49] van den Oord A, Vinyals O, Kavukcuoglu K
(2017) Neural discrete representation
learning. CoRR abs/1711.00937. http://
arxiv.org/abs/1711.00937

[50] Weng L (2018) Flow-based deep generative
models. lilianwenggithubio/lil-log. http://
lilianweng.github.io/lil-log/2018/10/13/
flow-based-deep-generative-models.html

[51] Kingma DP, Dhariwal P (2018) Glow: gen-
erative flow with invertible 1x1 convolu-
tions. ArXiv https://doi.org/10.48550/
ARXIV.1807.03039. https://arxiv.org/
abs/1807.03039

[52] Abdal R, Zhu P, Mitra NJ, Wonka P (2021)
StyleFlow: attribute-conditioned explora-
tion of StyleGAN-generated images using
conditional continuous normalizing flows.
ACM Trans Graph 40(3):1–21. https://
doi.org/10.1145/3447648. https://doi.
org/10.1145%2F3447648

[53] Song Y, Sohl-Dickstein J, Kingma DP,
Kumar A, Ermon S, Poole B (2021) Score-
based generative modeling through stochas-
tic differential equations. In: International
conference on learning representations.
h t tps ://openrev iew.net/forum? id=
PxTIG12RRHS

[54] Ho J, Jain A, Abbeel P (2020) Denoising
diffusion probabilistic models. ArXiV 200
6.11239

[55] Hoogeboom E, Gritsenko AA, Bastings J,
Poole B, van den Berg R, Salimans T
(2021) Autoregressive diffusion models.
ArXiV 2110.02037

[56] Dhariwal P, Nichol A (2021) Diffusion
models beat GANs on image synthesis.
ArXiV http://arxiv.org/abs/2105.05233

[57] Nichol A, Dhariwal P (2021) Improved
denoising diffusion probabilistic models.
ArXiV http://arxiv.org/abs/2102.09672

[58] Song Y, Ermon S (2019) Generative model-
ing by estimating gradients of the data
distribution. In: Advances in neural informa-
tion processing systems, pp 11895–11907

[59] Song Y, Garg S, Shi J, Ermon S (2019)
Sliced score matching: a scalable approach
to density and score estimation. In: Proceed-
ings of the thirty-fifth conference on uncer-
tainty in artificial intelligence, UAI 2019,
Tel Aviv, Israel, July 22–25, 2019, p 204.
http://auai.org/uai2019/proceedings/
papers/204.pdf

Open Access This chapter is licensed under the term s of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4. 0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as y ou give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licens e and indicate if changes were made.

The images or other third party material in this chapt er are included in the chapter’s Creative Commons license,
unless indicated otherwise in a credit line to the mat erial. If material is not included in the chapter’s Creative
Commons license and your intended use is not permit ted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the c opyright holder.

192 Markus Wenzel

[60] Parmar N, Vaswani A, Uszkoreit J, Łukasz
Kaiser, Shazeer N, Ku A, Tran D (2018)
Image transformer. ArXiV 1802.05751

[61] Chen M, Radford A, Child R, Wu J, Jun H,
Luan D, Sutskever I (2020) Generative pre-
training from pixels. In: Daumé III H, Singh
A (eds) Proceedings of the 37th interna-
tional conference on machine learning,

PMLR, proceedings of machine learning
research, vol 119, pp 1691–1703. https://
proceedings.mlr.press/v119/chen20s.html

[62] Zhang B, Gu S, Zhang B, Bao J, Chen D,
Wen F, Wang Y, Guo B (2021) StyleSwin:
transformer-based GAN for high-resolution
image generation. ArXiV 2112.10762

Chapter 6

Transformers and Visual Transformers

Robin Courant, Maika Edberg, Nicolas Dufour, and Vicky Kalogeiton

Abstract

Transformers were initially introduced for natural language processing (NLP) tasks, but fast they were
adopted by most deep learning fields, including computer vision. They measure the relationships between
pairs of input tokens (words in the case of text strings, parts of images for visual transformers), termed
attention. The cost is exponential with the number of tokens. For image classification, the most common
transformer architecture uses only the transformer encoder in order to transform the various input tokens.
However, there are also numerous other applications in which the decoder part of the traditional trans-
former architecture is also used. Here, we first introduce the attention mechanism (Subheading 1) and then
the basic transformer block including the vision transformer (Subheading 2). Next, we discuss some
improvements of visual transformers to account for small datasets or less computation (Subheading 3).
Finally, we introduce visual transformers applied to tasks other than image classification, such as detection,
segmentation, generation, and training without labels (Subheading 4) and other domains, such as video or
multimodality using text or audio data (Subheading 5).

Key words Attention, Transformers, Visual transformers, Multimodal attention

1 Attention

Attention is a technique in Computer Science that imitates the way
in which the brain can focus on the relevant parts of the input. In
this section, we introduce attention: its history (Subheading 1.1),
its definition (Subheading 1.2), its types and variations (Subhead-
ings 1.3 and 1.4), and its properties (Subheading 1.5).

To understand what attention is and why it is so useful, con-
sider the following film review:

While others claim the story is boring, I found it fascinating.

Is this film review positive or negative? The first part of the
sentence is unrelated to the critic’s opinion, while the second part
suggests a positive sentiment with the word ‘fascinating’. To a
human, the answer is obvious; however, this type of analysis is not
necessarily obvious to a computer.

Olivier Colliot (ed.), Machine Learning for Brain Disorders, Neuromethods, vol. 197, https://doi.org/10.1007/978-1-0716-3195-9_6,
© The Author(s) 2023

193

1.2 Definition of

Attention

194 Robin Courant et al.

Typically, sequential data require context to be understood. In
natural language, a word has a meaning because of its position in
the sentence, with respect to the other words: its context. In our
example, while “boring” alone suggests that the review is negative,
its contextual relationship with other words allows the reader to
reach the appropriate conclusion. In computer vision, in a task like
object detection, the nature of a pixel alone cannot be identified: we
need to account for its neighborhood, its context. So, how can we
formalize the concept of context in sequential data?

1.1 The History of

Attention

This notion of context is the motivation behind the introduction of
the attention mechanism in 2015 [1]. Before this, language trans-
lation was mostly relying on encoder-decoder architectures: recur-
rent neural networks (RNNs) [2] and in particular long-short-term
memory (LSTMs) networks were used to model the relationship
among words [3]. Specifically, each word of an input sentence is
processed by the encoder sequentially. At each step, the past and
present information are summarized and encoded into a fixed-
length vector. In the end, the encoder has processed every word
and outputs a final fixed-length vector, which summarizes all input
information. This final vector is then decoded and finally translates
the input information into the target language.

However, the main issue of such structure is that all the infor-
mation is compressed into one fixed-length vector. Given that the
sizes of sentences vary and as the sentences get longer, a fixed-
length vector is a real bottleneck: it gets increasingly difficult not to
lose any information in the encoding process due to the vanishing
gradient problem [1].

As a solution to this issue, Bahdanue et al. [1] proposed the
attention module in 2015. The attention module allows the model
to consider the parts of the sentence that are relevant to predicting
the next word. Moreover, this facilitates the understanding of
relationships among words that are further apart.

Given two lists of tokens, X ∈N × dx and Y ∈N × dy , attention
encodes information from Y into X, where N is the length of inputs
X and Y and dx and dy are their respective dimensions. For this, we
first define three linear mappings, query mapping W Q ∈dx × dq ,
key mapping W K ∈dy × dk , and value mapping W V ∈dy × dv ,
where dq, dk, and dv are the embedding dimensions in which the
query, key, and value are going to be computed, respectively.

Then, we define the query Q, key K, and value V [4] as:

Q =XW Q

K =YW K

V =YW V

Transformers and Visual Transformers 195

Next, the attention matrix is defined as:

AðQ ,K Þ= Softmax
QK⊤

dk

p : ð1Þ

This is illustrated in the left part of Fig. 1. The nominator

QKT ∈N ×N represents how each part of the input in X attends
to each part of the input in Y.1 This dot product is then put
through the softmax function to normalize its values and get posi-
tive values that add to 1. However, for large values of dk, this may
result in the softmax to have incredibly small gradients, so it is
scaled down by dk

p
.

The resulting N×N matrix encodes the relationship between X
with respect to Y : it measures how important a token in X is with
respect to another one in Y .

Finally, the attention output is defined as:

AttentionðQ ,K ,V Þ=AðQ ,K ÞV : ð2Þ
Figure 1 displays this. The attention output encodes the infor-

mation of each token by taking into account the contextual infor-
mation. Therefore, through the learnable parameters—queries,
keys, and values—the attention layers learn a token embedding
that takes into account their relationship.

Contextual Relationships How does Eq. 2 encode contextual
relationships? To answer this question, let us reconsider analyzing
the sentiment of film reviews. To encode contextual relationships
into the word embedding, we first want a matrix representation of
the relationship between all words. To do so, given a sentence of
length N, we take each word vector and feed it to two different
linear layers, calling one output “query” and the other output
“key”. We pack the queries into the matrix Q and the keys into
the matrix K, by taking their product (QKT). The result is a N×N
matrix that explains how important the i-th word (row-wise) is to
understand the j-th word (column-wise). This matrix is then scaled
and normalized by the division and softmax. Next, we feed the
word vectors into another linear layer, calling its output “value”.
We multiply these two matrices together. The results of their prod-
uct are attention vectors that encode the meaning of each word, by
including their contextual meaning as well. Given that each of these
queries, keys, and values is learnable parameter, as the attention
layer is trained, the model learns how relationships among words
are encoded in the data.

1 Note that in the literature, there are two main attention functions: additive attention [1] and dot-product
attention (Eq. 1). In practice, the dot product is more efficient since it is implemented using highly optimized
matrix multiplication, compared to the feed-forward network of the additive attention; hence, the dot product is
the dominant one.

196 Robin Courant et al.

Fig. 1 Attention block. Next to each element, we denote its dimensionality.
Figure inspired from [4]

1.3 Types of

Attention

There exist two dominant types of attention mechanisms: self-
attention and cross attention [4]. In self-attention, the queries,
keys, and values come from the same input, i.e., X=Y; in cross
attention, the queries come from a different input than the key and
value vectors, i.e., X≠Y. These are described below in Subheadings
1.3.1 and 1.3.2, respectively.

1.3.1 Self-Attention In self-attention, the tokens of X attend to themselves (X=Y).
Therefore, it is modeled as follows:

SAðX Þ=AttentionðXW Q ,XW K ,XW V Þ: ð3Þ
Self-attention formalizes the concept of context. It learns the

patterns underlying how parts of the input correspond to each
other. By gathering information from the same set, given a
sequence of tokens, a token can attend to its neighboring tokens
to compute its output.

1.3.2 Cross Attention Most real-world data are multimodal—for instance, videos contain
frames, audios, and subtitles, images come with captions, etc.
Therefore, models that can deal with such types of multimodal
information have become essential.

1.4 Variation of

Attention

Transformers and Visual Transformers 197

Cross attention is an attention mechanism designed to handle
multimodal inputs. Unlike self-attention, it extracts queries from
one input source and key-value pairs from another one (X≠Y). It
answers the following question: “Which parts of input X and input
Y correspond to each other?” Cross attention (CA) is defined as:

CAðX ,Y Þ=AttentionðXW Q ,YW K ,YW V Þ: ð4Þ

Attention is typically employed in two ways: (1) multi-head self-
attention (MSA, Subheading 1.4) and (2) masked multi-head
attention (MMA, Subheading 1.4).

Attention Head We call attention head the mechanism presented
in Subheading 1.2, i.e., query-key-value projection, followed by
scaled dot product attention (Eqs. 1 and 2).

When employing an attention-based model, relying only on a
single attention head can inhibit learning. Therefore, the multi-
head attention block is introduced [4].

Multi-head Self-Attention (MSA) MSA is shown in Fig. 2 and is
defined as:

MSAðX Þ =Concatðhead1ðX Þ, . . . , headhðX ÞÞW O ,

headiðX Þ = SAðX Þ , 8i ∈f1, hg, ð5Þ

where Concat is the concatenation of h attention heads and

W O ∈hdv × d is projection matrix. This means that the initial
embedding dimension dx is decomposed into h× dv and the com-
putation per head is carried out independently. The independent
attention heads are usually concatenated and multiplied by a linear
layer to match the desired output dimension. The output dimen-
sion is often the same as the input embedding dimension d. This
allows an easier stacking of multiple blocks.

Multi-head Cross Attention (MCA) Similar to MSA, MCA is
defined as:

MCAðX ,Y Þ =Concatðhead1ðX ,Y Þ, . . . , headhðX ,Y ÞÞW O ,

headiðX ,Y Þ =CAðX ,Y Þ , 8i ∈f1, hg:
ð6Þ

Masked Multi-head Self-Attention (MMSA) The MMSA layer
[4] is another variation of attention. It has the same structure as the
multi-head self-attention block (Subheading 1.4), but all the later
vectors in the target output are masked. When dealing with sequen-
tial data, this can help make training parallel.

198 Robin Courant et al.

Fig. 2 Multi-head self-attention block (MSA). First, the input X is projected to
queries, keys, and values and then passed through h attention blocks. The
h resulting attention outputs are then concatenated together and finally
projected to a d-dimensional output vector. Next to each element, we denote
its dimensionality. Figure inspired from [4]

1.5 Properties of

Attention

While attention encodes contextual relationships, it is permutation
equivalent, as the mechanism does not account for the order of the
input data. As shown in Eq. 2, the attention computations are all
matrix multiplication and normalizations. Therefore, a permuted
input results in a permuted output. In practice, however, this may
not be an accurate representation of the information. For instance,
consider the sentences “the monkey ate the banana” and “the
banana ate the monkey.” They have distinct meanings because of
the order of the words. If the order of the input is important,
various mechanisms, such as the positional encoding, discussed in
Subheading 2.1.2, are used to capture this subtlety.

2 Visual Transformers

The transformer architecture was introduced in [4] and is the first
architecture that relies purely on attention to draw connections
between the inputs and outputs. Since its debut, it revolutionized
deep learning, making breakthroughs in numerous fields, including

2.1 Basic

Transformers

natural language processing, computer vision, chemistry, and biol-
ogy, thus making its way to becoming the default architecture for
learning representations. Recently, the standard transformer [4] has
been adapted for vision tasks [5]. And again, visual transformer has
become one of the central architectures in computer vision.

Transformers and Visual Transformers 199

In this section, we first introduce the basic architecture of
transformers (Subheading 2.1) and then present its advantages
(Subheading 2.2). Finally, we describe the vision transformer (Sub-
heading 2.3).

As shown in Fig. 3, the transformer architecture [4] is an encoder-
decoder model. First, it embeds input tokens X= (x1, . . ., xN) into
a latent space, resulting in latent vectors Z= (z1, . . ., zN), which are
fed to the decoder to output Y = (y1, . . ., yM). The encoder is a
stack of L layers, with each one consisting of two sub-blocks: multi-
head self-attention (MSA) layers and a multilayer perceptron
(MLP). The decoder is also a stack of L layers, with each one
consisting of three sub-blocks: masked multi-head self-attention
(MMSA), multi-head cross attention (MCA), and MLP.

Overview Below, we describe the various parts of the transformer
architecture, following Fig. 3. First, the input tokens are converted
into the embedding tokens (Subheading 2.1.1). Then, the posi-
tional encoding adds a positional token to each embedding token
to denote the order of tokens (Subheading 2.1.2). Then, the
transformer encoder follows (Subheading 2.1.3). This consists of
a stack of L multi-head attention, normalization, and MLP layers
and encodes the input to a set of semantically meaningful features.
After, the decoder follows (Subheading 2.1.4). This consists of a
stack of L masked multi-head attention, multi-head attention, and
MLP layers followed by normalizations and decodes the input
features with respect to the output embedding tokens. Finally, the
output is projected to linear and softmax layers.

2.1.1 Embedding The first step of transformers consists in converting input tokens2

into embedding tokens, i.e., vectors with meaningful features. To
do so, following standard practice [6], each input is projected into
an embedding space to obtain embedding tokens Ze . The embed-
ding space is structured in a way that the distance between a pair of
vectors is relative to the semantic similarity of their associated
words. For the initial NLP case, this means that we get a vector of
each word, such that the vectors that are closer together have
similar meanings.

2 Note the initial transformer architecture was proposed for natural language processing (NLP), and therefore the
inputs were words.

200 Robin Courant et al.

Fig. 3 The transformer architecture. It consists of an encoder (left) and a decoder
(right) block, each one consisting from a series of attention blocks (multi-head
and masked multi-head attention) and MLP layers. Next to each element, we
denote its dimensionality. Figure inspired from [4]

2.1.2 Positional Encoding As discussed in Subheading 1.5, the attention mechanism is posi-
tional agnostic, which means that it does not store the information
on the position of each input. However, in most cases, the order of
input tokens is relevant and should be taken into account, such as
the order of words in a sentence matter as they may change its
meaning. Therefore, [4] introduced the Positional Encoding

PE ∈N × dx , which adds a positional token to each embedding
token Z e ∈N × dx .

Transformers and Visual Transformers 201

Sinusoidal Positional

Encoding

The sinusoidal positional encoding [4] is the main positional
encoding method, which encodes the position of each token with
sinusoidal waves of multiple frequency. For an embedding token

Z e ∈N × dx , its positional encoding PE ∈N × dx is defined as:

PEði, 2jÞ = sin
i

100002j=d

PEði, 2j þ 1Þ = cos
i

100002j=d
, 8i, j ∈½j1,nj�× ½j1, dj�:

ð7Þ

Learnable Positional

Encoding

An orthogonal approach is to let the model learn the positional
encoding. In this case, PE ∈N × dx becomes a learnable parameter.
This, however, increases the memory requirements, without neces-
sarily bringing improvements over the sinusoidal encoding.

Positional Embedding After its computation, either the positional encoding PE is added
to the embedding tokens or they are concatenated as follows:

Z pe =Ze þ PE, or

Z pe =ConcatðZe ,PEÞ,
ð8Þ

where Concat denotes vector concatenation. Note that the concat-
enation has the advantage of not altering the information contained
in Ze , since the positional information is only added to the unused
dimension. Nevertheless, it augments the input dimension, leading
to higher memory requirements. Instead, the addition does pre-
serve the same input dimension while altering the content of the
embedding tokens. When the input dimension is high, this content
altering is trivial, as most of the content is preserved. Therefore, in
practice, for high dimension, summing positional encodings is
preferred, whereas for low dimensions concatenating them prevails.

2.1.3 Encoder Block The encoder block takes as input the embedding and positional
tokens and outputs features of the input, to be decoded by the
decoder block. It consists of a stack of L multi-head self-attention
(MSA) layers and a multilayer perceptron (MLP). Specifically, the
embedding and positional tokens, Z pe

x ∈N × d , go through a
multi-head self-attention block. Then, a residual connection with
layer normalization is deployed. In the transformer, this operation
is performed after each sub-layer. Next, we feed its output to an
MLP and a normalization layer. This operation is performed
L times, and each time the output of each encoder block (of size
N× d) is the input of the subsequent block. In the L-th time, the
output of the normalization is the input of the cross-attention
block in the decoder (Subheading 2.1.4).

o

202 Robin Courant et al.

2.1.4 Decoder Block The decoder has two inputs: first, an input that constitutes the
queries Q ∈N × d of the encoder, and, second, the output of the
encoder that constitutes the key-value K ,V ∈N × d pair. Similar
to Subheadings 2.1.1 and 2.1.2, the first step constitutes encoding
the output token to output embedding token and output positional
token. These tokens are fed into the main part of the decoder,
which consists of a stack of L masked multi-head self-attention
(MMSA) layers, multi-head cross-attention (MCA) layers, and
multilayer perceptron (MLP) followed by normalizations. Specifi-
cally, the embedding and positional tokens, Z pe

y ∈N × d , g
through a MMSA block. Then, a residual connection with layer
normalization follows. Next, an MCA layer (followed by normali-
zation) maps the queries to the encoded key values before forward-
ing the output to an MLP. Finally, we project the output of the
L decoder blocks (of dimension N × dy) through a linear layer and
get output probability through a softmax layer.

2.2 Advantages of

Transformers

Since their introduction, the transformers have had a significant
impact on deep learning approaches.

In natural language processing (NLP), before transformers,
most architectures used to rely on recurrent modules, such as
RNNs [2] and in particular LSTMs [3]. However, recurrent models
process the input sequentially, meaning that, to compute the cur-
rent state, they require the output of the previous state. This makes
them tremendously inefficient, as they are impossible to parallelize.
On the contrary, in transformers, each input is processed indepen-
dent of the others, and the multi-head attention can perform
multiple attention computations at once. This makes transformers
highly efficient, as they are highly parallelizable.

This results in not only exceptional scalability, both in the
complexity of the model and the size of datasets, but also relatively
fast training. Notably, the recent switch transformers [7] was pre-
trained on 34 billion tokens from the C4 dataset [8], scaling the
model to over 1 trillion parameters.

This scalability [7] is the principal reason for the power of the
transformer. While it was originally introduced for translation, it
refrains from introducing many inductive biases, i.e., the set of
assumptions that the user makes about the structure of the model
input. In doing so, the transformer relies on data to learn how they
are structured. Compared to its counterparts with more biases, the
transformer requires much more data to produce comparable
results [5]. However, if a sufficient amount of data is available,
the lack of inductive bias becomes a strength. By learning the
structure of the data from the data, the transformer is able to
learn better without human assumptions hindering [9].

In most tasks involving transformers, the model is first pre-
trained on a large dataset and then fine-tuned for the task at hand
on a smaller dataset. The pretraining phase is essential for

transformers to learn the global structure of the specific input
modality. For fine-tuning, typically fewer data suffice as the model
is already rich. For instance, in natural language processing, BERT
[10], a state-of-the-art language model, is pretrained on a
Wikipedia-based dataset [11], with over 6 million articles and
Book Corpus [12] with over 10,000 books. Then, this model can
be fine-tuned on much more specific tasks. In computer vision, the
vision transformer (ViT) is pretrained on the JFT-300M dataset,
containing over 1 billion labels for 300 million images [5]. Hence,
with a sufficient amount of data, transformers achieve results that
were never possible before in various areas of machine learning.

Transformers and Visual Transformers 203

2.3 Vision

Transformer

Transformers offer an alternative to CNNs that have long held a
stranglehold on computer vision. Before 2020, most attempts to
use transformers for vision tasks were still highly reliant on CNNs,
either by using self-attention jointly with convolutions [13, 14] or
by keeping the general structure of CNNs while using self-attention
[15, 16].

The reason for this is rooted in the two main weaknesses of the
transformers. First, the complexity of the attention operation is
high. As attention is a quadratic operation, the number of para-
meters skyrockets quickly when dealing with visual data, i.e.,
images—and even more so with videos. For instance, in the case
of ImageNet [17], inputting a single image with 256×256=65,
536 pixels in an attention layer would be too heavy computation-
ally. Second, transformers suffer from lack of inductive biases. Since
CNNs were specifically created for vision tasks, their architecture
includes spatial inductive biases, like translation equivariance and
locality. Therefore, the transformers have to be pretrained on a
significantly large dataset to achieve similar performances.

The vision transformer (ViT) [5] is the first systematic
approach that uses directly transformers for vision tasks by addres-
sing both aforementioned issues. It rids the concept of convolu-
tions altogether, using purely a transformer-based architecture. In
doing so, it achieves the state of the art on image recognition on
various datasets, including ImageNet [17] and CIFAR-100 [18].

Figure 4 illustrates the ViT architecture. The input image is first
split into 16×16 patches, flattened, and mapped to the expected
dimension through a learnable linear projection. Since the image
size is reduced to 16× 16, the complexity of the attention mecha-
nism is no longer a bottleneck. Then, ViT encodes the positional
information and attaches a learnable embedding to the front of the
sequence, similarly to BERT’s classification token [10]. The output
of this token represents the entirety of the input—it encodes the
information from each part of the input. Then, this sequence is fed
into an encoder block, with the same structure as in the standard
transformers [4]. The output of the classification token is then fed
into an MLP that outputs class probabilities.

204 Robin Courant et al.

Fig. 4 The vision transformer architecture (ViT). First, the input image is split into patches (bottom), which are
linearly projected (embedding), and then concatenated with positional embedding tokens. The resulting tokens
are fed into a transformer, and finally the resulting classification token is passed through an MLP to compute
output probabilities. Figure inspired from [5]

Due to the lack of inductive biases, when ViT is trained only on
mid-sized datasets such as ImageNet, it scores some percentage
points lower than the state of the art. Therefore, the proposed
model is first pretrained on the JFT-300M dataset [19] and then
fine-tuned on smaller datasets, thereby increasing its accuracy by
13%.

For a complete overview of visual transformers and follow-up
works, we invite the readers to study [9, 20].

3 Improvements over the Vision Transformer

In this section, we present transformer-based methods that
improve over the original vision transformer (Subheading 2.3) in
two main ways. First, we introduce approaches that are trained on
smaller datasets, unlike ViT [5] that requires pretraining on
300 million labeled images (Subheading 3.1). Second, we present
extensions over ViT that are more computational-efficient than
ViT, given that training a ViT is directly correlated to the image
resolution and the number of patches (Subheading 3.2).

3.1 Data Efficiency

Transformers and Visual Transformers 205

As discussed in Subheading 2.3, the vision transformer (ViT) [5] is
pretrained on a massive proprietary dataset (JFT-300M) which
contains 300 million labeled images. This need arises with trans-
formers because we remove the inductive biases from the architec-
ture compared to convolutional-based networks. Indeed,
convolutions contain some translation equivariance. ViT does not
benefit from this property and thus has to learn such biases, requir-
ing more data. JFT-300M is an enormous dataset, and to make ViT
work in practice, better data-efficiency is needed. Indeed, collecting
that amount of data is costly and can be infeasible for most tasks.

Data-Efficient Image Transformers (DeiT) [21] The first work
to achieve an improved data efficiency is DeiT [21] . The main idea
of DeiT is to distil the inductive biases from a CNN into a trans-
former (Fig. 5). DeiT adds another token that works similarly to the
class token. When training, ground truth labels are used to train the
network according to the class token output with a cross-entropy
(CE) loss. However, for the distillation network, the output labels
are compared to the labels provided from a teacher network with a

Fig. 5 The DeiT architecture. The architecture features an extra token, the
distillation token. This token is used similarly to the class token.
Figure inspired from [21]

cross-entropy loss. The final loss for a N-categorical classification
task is defined as follows:

206 Robin Courant et al.

LhardDistill
global =

1
2
ðLCEðΨðZ classÞ, yÞ þ LCEðΨðZ distillÞ, yT ÞÞ,

LCEðŷ, yÞ = -
1
N

N

i =1

yi log ŷ i þ ð1- yiÞ log ð1- ŷ iÞ
ð9Þ

withΨ the softmax function, Zclass the class token output, Zdistill the
class token output, y the ground truth label, and yT the teacher label
prediction.

The teacher network is a Convolutional Neural Network
(CNN). The main idea is that the distillation head will provide
the inductive biases needed to improve the data efficiency of the
architecture. By doing this, DeiT achieves remarkable performance
on the ImageNet dataset, by training “only” on ImageNet-1K
[17], which contains 1.3 million images.

Convit [22] The main disadvantage of DeiT [21] is that it
requires a pretrained CNN, which is not ideal, and it would be
more convenient to not have this requirement. The CNN has a
hard inductive bias constraint that can be a major limitation.
Indeed, if enough data is available, learning the biases from the
data can result in better representations.

Convit [22] overpasses this issue by including the inductive bias
of CNNs into a transformer in a soft way. Specifically, if the induc-
tive bias is limiting the training, the transformer can discard it. The
main idea is to include the inductive bias into the ViT initialization.
Therefore, before beginning training, the ViT is equivalent to a
CNN. Then, the network can progressively learn the needed biases
and diverge from the CNN initialization.

Compact Convolutional Transformer [23], DeiT [21], and
Convit [22] successfully achieve data efficiency at the ImageNet
scale. However, ImageNet is a big dataset with 1.3 million images,
whereas most datasets are significantly smaller.

To reach higher data efficiency, the compact convolutional
transformer [23] uses a CNN operation to extract the patches and
then uses these patches in a transformer network (Fig. 6). The
compact convolutional transformer comes with some modifications
that lead to major improvements. First, by having a more complex
encoding of patches, the system relies on the convolutional induc-
tive biases at the lower scales and then uses a transformer network
to remove the locality constraint of the CNN. Second, the authors
show that discarding the “class” token results in higher efficiency.
Specifically, instead of the class token, the compact convolutional
transformer pools together all the patches token and classifies on
top of this pooled token. These two modifications enable using

3.2 Computational

Efficiency

smaller transformers while improving both the data efficiency and
the computational efficiency. Therefore, these improvements allow
the compact convolutional transformer to be successfully trained
on smaller datasets, such as CIFAR or MNIST.

Transformers and Visual Transformers 207

Fig. 6 Compact convolutional transformers. This architecture features a convolutional-based patch extraction
to leverage a smaller transformer network, leading to higher data efficiency. Figure inspired from [23]

The vision transformer architecture (Subheading 2.3) suffers from
a Oðn2Þ complexity with respect to the number of tokens. When
considering small resolution images or big patch size, this is not a
limitation; for instance, for an image of 224×224 resolution with
16× 16 patches, this amounts to 196 tokens. However, when
needing to process larger images (for instance, 3D images in medi-
cal imaging) or when considering smaller patches, using and train-
ing such models becomes prohibitive. For instance, in tasks such as
segmentation or image generation, it is needed to have more
granular representations than 16× 16 patches; hence, it is crucial
to solve this issue to enable more applications of vision transformer.

Swin Transformer [24] One idea to make transformers more
computation-efficient is the Swin transformer [24]. Instead of
attending every patch in the image, the Swin transformer proposes
to add a locality constraint. Specifically, the patches can only attend
other patches that are limited to a vicinity window K. This restores
the local inductive bias of CNNs. To allow communication across

patches throughout the network, the Swin transformer shifts the
attention windows from one operation to another (Fig. 7). There-
fore, the Swin transformer is quadratic with regard to the size of the
window K but linear with respect to the number of tokens n with
complexityOðnK 2Þ. In practice, however, K is small, and this solves
the quadratic complexity problem of attention.

208 Robin Courant et al.

Fig. 7 Shifting operation in the Swin transformer [24]. Between each attention operation, the attention window
is shifted so that each patch can communicate with different patches than before. This allows the network to
gain more global knowledge with the network’s depth. Figure inspired from [24]

Perceiver [25, 26] Another idea for more computation-efficient
visual transformers is to make a more drastic change to the archi-
tecture. If instead of using self-attention the model uses cross
attention, the problem of the quadratic complexity with regard to
the number of tokens can be solved. Indeed, computing the cross
attention between two sets of length m and n, respectively, has
complexity OðmnÞ. This idea is introduced in the perceiver
[25, 26]. The key idea is to have a smaller set of latent variables
that will be used as queries and that will retrieve information in the
image token set (Fig. 8). Since this solves the quadratic complexity
issue, it also removes the need of using patches; hence, in the case of
transformers, each pixel is mapped to a single token.

4 Vision Transformers for Tasks Other than Classification

Subheadings 1–3 introduce visual transformers for one main appli-
cation: classification. Nevertheless, transformers can be used for
numerous other tasks than classification.

In this section, we present some fundamental vision tasks where
transformers have had a major impact: object detection in images
(Subheading 4.1), image segmentation (Subheading 4.2), training

4.1 Object Detection

with Transformers

visual transformers without labels (Subheading 4.3), and image
generation using generative adversarial networks (GANs) (Sub-
heading 4.4).

Transformers and Visual Transformers 209

Fig. 8 The perceiver architecture [25, 26]. A set of latent tokens retrieve information from the image through
cross attention. Self-attention is performed between the tokens to refine the learned representation. These
operations are linear with respect to the number of image tokens. Figure inspired from [25, 26]

Detection is one of the early tasks that have seen improvements
thanks to transformers. Detection is a combined recognition and
localization problem; this means that a successful detection system
should both recognize whether an object is present in an image and
localize it spatially in the image. Carion et al. [14] is the first
approach that uses transformers for detection.

DEtection TRansformer (DETR) [14] DETR first extracts
visual representations with a convolutional network (Fig. 9).3

Then, the encodings are processed by a transformer network.
Finally, the processed tokens are provided to a transformer decoder.
The decoder uses cross attention between a set of learned tokens
and the image tokens encoded by the encoder and outputs a set of
tokens. Each output token is then passed through a feed-forward
network that predicts if an object is present in an image or not; if
the object is indeed present, the network also predicts the class and
spatial location of the object, i.e., coordinates within the image.

4.2 Image

Segmentation with

Transformers

The goal of image segmentation is to assign to each pixel of an image
the label of the object it belongs to. The segmenter [27] is a purely
ViT approach addressing image segmentation. The idea is to first use
ViT to encode the image. Then, the segmenter learns a token per

3 Note that, in DETR, the transformer is not directly used to extract the visual representation. Instead, it focuses
on refining the visual representation to extract the object information.

4.3 Training

Transformers Without

Labels

semantic label. The encoded patch tokens and the semantic tokens
are then fed to a second transformer. Finally, by computing the scalar
product between the semantic tokens and the image tokens, the
network assigns a label to each patch. Figure 10 displays this.

210 Robin Courant et al.

CNN

Image
Features

Transformer
Encoder

Transformed
Features

Transformer
Decoder

FFNN

FFNN

FFNN

FFNN

Object queries

Class,
Box

No
Object

No
Object

Class,
Box

SeagullSeagull

Fig. 9 The DETR architecture. It refines a CNN visual representation to extract object localization and classes.
Figure inspired from [14]

Fig. 10 The segmenter architecture. It is a purely ViT-based approach to perform semantic segmentation.
Figure inspired from [27]

Visual transformers have initially been trained for classification
tasks. However, this tasks requires having access to massive
amounts of labeled data, which can be hard to obtain
(as discussed in Subheading 3.1). Subheadings 3.1 and 3.2 present
ways to train ViT more efficiently. However, it would also be
interesting to be able to train this type of networks with “cheaper”
data. Therefore, the goal of this part is to introduce unsupervised
learning with transformers, i.e., training transformers without any
labels.

Transformers and Visual Transformers 211

Fig. 11 The DINO training procedure. It consists in matching the outputs between
two networks (p1 and p2) having two different augmentations (X1 and X2) of the
same image as input (X). The parameters of the teacher model are updated with
an exponential moving average (ema) of the student parameters. Figure inspired
from [28]

Self-DIstillation with NO labels (DINO) [28] DINO is one of
the first works that trains a ViT with self-supervised learning
(Fig. 11). The main idea is to have two ViT models following the
teacher-student paradigm: the first model is updated through gra-
dient descent, and the second is an exponential moving average of
the first one. Then, the whole two-stream DINO network is trained
using two augmentations of the same image, which are each passed
to one of the two networks. The goal of the training is to match the
output between the two networks, i.e., no matter the augmenta-
tion in the input data, both networks should produce the same
result. The main finding of DINO is that the ViT is capable of
learning a semantic understanding of the image, as the attention
matrices display some semantic information. Figure 12 visualizes
the attention matrix of the various ViT heads trained with DINO.

Masked Autoencoders (MAE) [29] Another way to train a ViT
without supervision is by using an autoencoder architecture.
Masked autoencoders (MAE) [29] perform a random masking of
the input token and give the task to reconstruct the original image
to a decoder. The encoder learns a representation that performs

4.4 Image

Generation with

Transformers and

Attention

well in a given downstream task. This is illustrated in Fig. 13. One
of the key observations of the MAE work [29] is that the decoder
does not need to be very good for the encoder to achieve good
performance: by using only a small decoder, MAE successfully
trains a ViT in an autoencoder fashion.

212 Robin Courant et al.

Fig. 12 DINO samples. Visualization of the attention matrix of ViT heads trained with DINO. The ViT discovers
the semantic structure of an image in an unsupervised way

Fig. 13 The MAE training procedure. After masking some tokens of an image, the remaining tokens are fed to
an encoder. Then a decoder tries to reconstruct the original image from this representation. Figure inspired
from [29]

Attention and vision transformers have also helped in developing
fresh ideas and creating new architectures for generative models
and in particular for generative adversarial networks (GANs).

GANsformers [30] GANsformers are the most representative
work of GANs with transformers, as they are a hybrid architecture
using both attention and CNNs. The GANsformer architecture is
illustrated in Fig. 14. The model first splits the latent vector of a
GAN into multiple tokens. Then, a cross-attention mechanism is
used to improve the generated feature maps, and at the same time,
the GANsformer architecture retrieves information from the gen-
erated feature map to enrich the tokens. This mechanism allows the
GAN to have better and richer semantic knowledge, which is
showed to be useful for generating multimodal images.

StyleSwin [31] Another approach for generative modeling is to
purely use a ViT architecture like StyleSwin [31]. StyleSwin is a
GAN that leverages a similar type of attention as the Swin trans-
former [24]. This allows to generate high-definition images with-
out having to deal with the quadratic cost problem.

Transformers and Visual Transformers 213

Latents Image

Cross-Attention

Latents

Image

Image

Convolutions

Cross-Attention

Fig. 14 GANsformer architecture. A set of latents contribute to bring information
to a CNN feature map. Figure inspired from [30]

5 Vision Transformers for Other Domains

In this section, we present applications of visual transformers to
other domains. First, we describe multimodal transformers
operating with vision and language (Subheading 5.1), then we
describe video-level attention and video transformers (Subheadings
5.2 and 5.3), and finally we present multimodal video transformers
operating with vision, language, and audio (Subheading 5.4).

5.1 Multimodal

Transformers: Vision

and Language

As transformers have found tremendous success in both natural
language processing and computer vision, their use in vision-
language tasks is also of interest. In this section, we describe some
representative multimodal methods for vision and language: ViL-
BERT (Subheading 5.1.1), DALL-E (Subheading 5.1.3), and
CLIP (Subheading 5.1.2).

5.1.1 ViLBERT Vision-and-language BERT (VilBERT) [32] is an example of archi-
tecture that fuses two modalities. It consists of two parallel streams,
each one working with one modality. The vision stream extracts

bounding boxes from images via an object detection network, by
encoding their position. The language stream embeds word vectors
and extracts feature vectors using the basic transformer encoder
block [4] (Fig. 3 left). These two resulting feature vectors are then
fused together by a cross-attention layer (Subheading 1.3.2). This
follows the standard architecture of the transformer encoder block,
where the keys and values of one modality are passed onto the MCA
block of the other modality. The output of the cross-attention layer
is passed into another transformer encoder block, and these two
layers are stacked multiple times.

214 Robin Courant et al.

The language stream is initialized with BERT trained on Book
Corpus [12] and Wikipedia [11], while the visual stream is initi-
alized with Faster R-CNN [33]. On top of the pretraining of each
stream, the whole architecture is pretrained on the Conceptual
Captions dataset [34] on two pretext tasks.

ViLBERT has been proven powerful for a variety of multimodal
tasks. In the original paper, ViLBERT was fined-tuned to a variety
of tasks, including visual question answering, visual commonsense
reasoning, referring expressions, and caption-based image retrieval.

5.1.2 CLIP Connecting Text and Images (CLIP) [35] is designed to address
two major issues of deep learning models: costly datasets and
inflexibility. While most deep learning models are trained on labeled
datasets, CLIP is trained on 400 million text-image pairs that are
scraped from the Internet. This reduces the labor of having to
manually label millions of images that are required to train powerful
deep learning models. When models are trained on one specific
dataset, they also tend to be difficult to extend to other applica-
tions. For instance, the accuracy of a model trained on ImageNet is
generally limited to its own dataset and cannot be applied to real-
world problems. To optimize training, CLIP models learn to per-
form a wide variety of tasks during pretraining, and this task allows
for zero-shot transfer to many existing datasets. While there are still
several potential improvements, this approach is competitive to
supervised models that are trained on specific datasets.

CLIP Architecture and

Training

CLIP is used to measure the similarity between the text input and
the image generated from a latent vector. At the core of the
approach is the idea of learning perception from supervision
contained in natural language. Methods which work on natural
language can learn passively from the supervision contained in the
vast amount of text on the Internet.

Given a batch of N (image, text) pairs, CLIP is trained to
predict which of the N×N possible (image, text) pairings across a
batch actually occurred. To do this, CLIP learns a multimodal
embedding space by jointly training an image encoder and a text
encoder to maximize the cosine similarity of the image and text

embeddings of the N real pairs in the batch while minimizing the
cosine similarity of the embeddings of the N2-N incorrect pair-
ings. A symmetric cross-entropy loss over these similarity scores is
optimized.

Transformers and Visual Transformers 215

Two different architectures were considered for the image
encoder. For the first, ResNet-50 [36] is used as the base architec-
ture for the image encoder due to its widespread adoption and
proven performance. Several modifications were made to the origi-
nal version of ResNet. For the second architecture, ViT is used with
some minor modifications: first, adding an extra layer normaliza-
tion to the combined patch and position embeddings before the
transformer and, second, using a slightly different initialization
scheme.

The text encoder is a standard transformer [4] (Subheading
2.1) with the architecture modifications described in [35]. As a base
size, CLIP uses a 63M-parameter 12-layer 512-wide model with
eight attention heads. The transformer operates on a lowercased
byte pair encoding (BPE) representation of the text with a 49,152
vocab size [37]. The max sequence length is capped at 76. The text
sequence is bracketed with [SOS] and [EOS] tokens,4 and the
activations of the highest layer of the transformer at the [EOS]
token are treated as the feature representation of the text which is
layer normalized and then linearly projected into the multimodal
embedding space.

5.1.3 DALL-E and

DALL-E 2

DALL-E [38] is another example of the application of transformers
in vision. It generates images from a natural language prompt—
some examples include “an armchair in the shape of an avocado”
and “a penguin made of watermelon.” It uses a decoder-only
model, which is similar to GPT-3 [39]. DALL-E uses 12 billion
parameters and is pretrained on Conceptual Captions [34] with
over 3.3 million text-image pairs. DALL-E 2 [40] is the upgraded
version of DALL-E, based on diffusion models and CLIP (Sub-
heading 5.1.2), and allows better performances with more realistic
and accurate generated images. In addition to producing more
realistic results with a better resolution than DALL-E, DALL-E
2 is also able to edit the outputs. Indeed, with DALL-E 2, one can
add or remove realistically an element in the output and can also
generate different variations of the same output. These two models
clearly demonstrate the powerful nature and scalability of transfor-
mers that are capable of efficiently processing a web-scale amount
of data.

4 [SOS], start of sequence; [EOS], end of sequence

216 Robin Courant et al.

5.1.4 Flamingo Flamingo [41] is a visual language model (VLM) tackling a wide
range of multimodal tasks based on few-shot learning. This is an
adaptation of large language models (LLMs) handling an extra
visual modality with 80B parameters.

Flamingo consists of three main components: a vision encoder,
a perceiver resampler, and a language model. First, to encode
images or videos, a vision convolutional encoder [42] is pretrained
in a contrastive way, using image and text pairs.5 Then, inspired by
the perceiver architecture [25] (detailed in Subheading 1.3.2), the
perceiver resampler takes a variable number of encoded visual fea-
tures and outputs a fixed-length latent code. Finally, this visual
latent code conditions the language model by querying language
tokens through cross-attention blocks. Those cross-attention
blocks are interleaved with pretrained and frozen language model
blocks.

The whole model is trained using three different kinds of
datasets without annotations (text with image content from web-
pages [41], text and image pairs [41, 43], and text and video pairs
[41]). Once the model is trained, it is fine-tuned using few-shot
learning techniques to tackle specific tasks.

5.2 Video Attention Video understanding is a long-standing problem, and despite
incredible computer vision advances, obtaining the best video rep-
resentation is still an active research area. Videos require employing
effective spatiotemporal processing of RGB and time streams to
capture long-range interactions [44, 45] while focusing on impor-
tant video parts [46] with minimum computational resources [47].

Typically, video understanding benefits from 2D computer
vision, by adapting 2D image processing methods to 3D spatio-
temporal methods [48]. And through the Video Vision Trans-
former (ViViT) [49], history repeats itself. Indeed, with the rise
of transformers [4] and the recent advances in image classification
[5], video transformers appear as logical successors of CNNs.

However, in addition to the computationally expensive video
processing, transformers also require a lot of computational
resources. Thus, developing efficient spatiotemporal attention
mechanisms is essential [25, 49, 50].

In this section, we first describe the general principle of video
transformers (Subheading 5.2.1), and then, we detail three differ-
ent attention mechanisms used for video representation (Subhead-
ings 5.2.2, 5.2.3, and 5.2.4).

5 The text is encoded using a pretrained BERT model [10].

o

Transformers and Visual Transformers 217

5.2.1 General Principle Generally, inputs of video transformers are RGB video clips

X ∈F ×H ×W ×3 , with F frames of size H×W.
To begin with, video transformers split the input video clip

X into ST tokens x i ∈K , where S and T are, respectively, the
number of tokens along the spatial and temporal dimension and
K is the size of a token.

To do so, the simplest method extracts nonoverlapping 2D
patches of size P×P from each frame [5], as used in TimeSformer
[50]. This results in S=HW/P2 , T=F, and K=P2 .

However, there exist more elegant and efficient token extrac-
tion methods for videos. For instance, in ViViT [49], the authors
propose to extract 3D volumes from videos (involving T≠F) t
capture spatiotemporal information within tokens. In TokenLear-
ner [47], they propose a learnable token extractor to select the
most important parts of the video.

Once raw tokens xi are extracted, transformer architectures aim
to map them into d-dimensional embedding vectors Z ∈ST × d

using a linear embedding E ∈d ×K :

Z = ½zcls ,Ex1,Ex2, . . .,ExST � þ PE, ð10Þ
where zcls ∈d is a classification token that encodes information
from all tokens of a single sample [10] and PE ∈ST × d is a
positional embedding that encodes the spatiotemporal position of
tokens, since the subsequent attention blocks are permutation
invariant [4].

In the end, embedding vectors Z pass through a sequence of
L transformer layers. A transformer layer ℓ is composed of a series of
multi-head self-attention (MSA) [4], layer normalization
(LN) [51], and MLP blocks:

Y ℓ =MSAðLNðZ ℓÞÞ þ Z ℓ ,

Z ℓþ1 =MLPðLNðY ℓÞÞ þ Y ℓ :
ð11Þ

In this way, as shown in Fig. 2, we denote four different
components in a video transformer layer: the query-key-value
(QKV) projection, the MSA block, the MSA projection, and the
MLP. For a layer with h heads, the complexity of each component is
[4]:

• QKV projection: Oðh:ð2ST ddk þ ST ddvÞ
• MSA: OðhS2 T 2 :ðdk þ dvÞÞ
• MSA projection: OðST hdvdÞ
• MLP: OðST d2Þ

We note that the MSA complexity is the most impacting com-
ponent, with a quadratic complexity with respect to the number of
tokens. Hence, for comprehension and clarity purposes, in the rest
of the section, we consider the global complexity of a video trans-
former with L layers to equal to OðLS2 T 2Þ.

218 Robin Courant et al.

Fig. 15 Full space-time attention mechanism. Embedding tokens at layer ℓ- 1,
Z(ℓ-1) are all fed simultaneously through a unique spatiotemporal attention
block. Finally, the spatiotemporal embedding is passed through an MLP and
normalized to output embedding tokens of the next layer, Zℓ . Figure inspired
from [50]

5.2.2 Full Space-Time

Attention

As described in [49, 50], full space-time attention mechanism is the
most basic and direct spatiotemporal attention mechanism. As
shown in Fig. 15, it consists in computing self-attention across all
pairs of extracted tokens.

This method results in a heavy complexity of OðLS2 T 2Þ
[49, 50]. This quadratic complexity can fast be memory-
consuming, in which it is especially true when considering videos.
Therefore, using full space-time attention mechanism is
impractical [50].

5.2.3 Divided Space-

Time Attention

A smarter and more efficient way to compute spatiotemporal atten-
tion is the divided space-time attention mechanism, first described
in [50].

As shown in Fig. 16, it relies on computing spatial and temporal
attention separately in each transformer layer. Indeed, we first
compute the spatial attention, i.e., self-attention within each tem-
poral index, and then the temporal attention, i.e., self-attention
across all temporal indices.

Transformers and Visual Transformers 219

Fig. 16 Divided space-time attention mechanism. Embedding tokens at layer
ℓ- 1, Z(ℓ-1) are first processed along the temporal dimension through a first
MSA block, and the resulting tokens are processed along the spatial dimension.
Finally, the spatiotemporal embedding is passed through an MLP and normalized
to output embedding tokens of the next layer, Zℓ . Figure inspired from [50]

The complexity of this attention mechanism is OðLST :ðS þ
T ÞÞ [50]. By separating the calculation of the self-attention over
the different dimensions, one tames the quadratic complexity of the
MSA module. This mechanism highly reduces the complexity of a
model with respect to the full space-time complexity. Therefore, it
is reasonable to use it to process videos [50].

5.2.4 Cross-Attention

Bottlenecks

An even more refined way to reduce the computational cost of
attention calculation consists of using cross attention as a bottle-
neck. For instance, as shown in Fig. 17 and mentioned in Subhead-
ing 3.2, the perceiver [25] projects the extracted tokens xi into a

very low-dimensional embedding through a cross-attention block
placed before the transformer layers.

220 Robin Courant et al.

Fig. 17 Attention bottleneck mechanism. Raw input patches and embedding
tokens at layer ℓ- 1, Z(ℓ-1) are fed to a cross-attention block (CA) and then
normalized and projected. Finally, the resulting embedding is passed through a
transformer to output embedding tokens of the next layer, Zℓ . Figure inspired
from [25]

Here, the cross-attention block placed before the L transformer
layers reduce the input dimension from ST to N, where N≪ ST,6

thus resulting in a complexity of OðSTN Þ. Hence, the total com-
plexity of this attention block is OðSTN þ LN 2Þ. It reduces again
the complexity of a model with respect to the divided space-time
attention mechanism. We note that it enables to design deep archi-
tectures, as in the perceiver [25], and then it enables the extraction
of higher-level features.

5.2.5 Factorized Encoder Lastly, the factorized encoder [49] architecture is the most efficient
with respect to the complexity/performance trade-off.

As in divided space-time attention, the factorized encoder aims
to compute spatial and temporal attention separately. Nevertheless,
as shown in Fig. 18, instead of mixing spatiotemporal tokens in
each transformer layer, here, there exist two separate encoders:

6 In practice, N≤512 for perceiver [25], against ST=16×16× (32/2)=4096 for ViViT-L [49]

First, a representation of each temporal index is obtained, thanks to
a spatial encoder with Ls layers. Second, these tokens are passed
through a temporal encoder with Lt layers (i.e., L=Ls +Lt).

Transformers and Visual Transformers 221

Fig. 18 Factorized encoder mechanism. First, a spatial transformer processes input tokens along the spatial
dimension. Then, a temporal transformer processes the resulting spatial embedding along the temporal
dimension. Figure inspired from [25]

Hence, the complexity of a such architecture has two main
components: the spatial encoder complexity of OðLsS

2Þ and the
temporal encoder complexity of OðLtT

2Þ. It results in a global
complexity of OðLsS

2 þ LtT
2Þ. Thus, it leads to very lightweight

models. However, as it first extracts per-frame features and then
aggregates them to a final representation, it corresponds to a late-
fusion mechanism, which can sometimes be a drawback as it does
not mix spatial and temporal information simultaneously [52].

5.3 Video

Transformers

In this section, we present two modern transformer-based archi-
tectures for video classification. We start by introducing the Time-
Sformer architecture in Subheading 5.3.1 and then the ViViT
architecture in Subheading 5.3.2.

5.3.1 TimeSformer TimeSformer [50] is one of the first architectures with space-time
attention that impacted the video classification field. It follows the
same structure and principle described in Subheading 5.2.1.

First, it takes as input an RGB video clip sampled at a rate of
1/32 and decomposed into 2D 16 ×16 patches.

As shown in Fig. 19, the TimeSformer architecture is based on
the ViT architecture (Subheading 2.3), with 12 12-headed MSA
layers. However, the added value compared to the ViT is that
TimeSfomer uses the divided space-time attention mechanism (Sub-
heading 5.2.3). Such attention mechanism enables to capture high-
level spatiotemporal features while taming the complexity of the
model. Moreover, the authors introduce three variants of the archi-
tecture: (i) TimeSformer, the standard version of the model, that
operates on 8 frames of 224×224; (ii) TimeSformer-L, a configu-
ration with high spatial resolution, that operates on 16 frames of
448×448; and (iii) TimeSformer-HR, a long temporal range setup,
that operates on 96 frames of 224× 224.

222 Robin Courant et al.

Fig. 19 TimeSformer architecture. The TimeSformer first projects input to
embedding tokens, which are summed to positional embedding tokens. The
resulting tokens are then passed through L divided space-time attention blocks
and then linearly projected to obtain output probabilities

Finally, the terminal classification token embedding is passed
through an MLP to output a probability for all video classes.
During inference, the final prediction is obtained by averaging the
output probabilities from three different spatial crops of the input
video clip (top left, center, and bottom right).

TimeSformer achieves similar state-of-the-art performances as
the 3D CNNs [53, 54] on various video classification datasets, such
as Kinetics-400 and Kinetics-600 [55]. Note the TimeSformer is
much faster to train (416 training hours against 3840 hours [50]
for a SlowFast architecture [54]) and, also, more efficient (0.59
TFLOPs against 1.97 TFLOPs [50] for a SlowFast architecture
[53]).

5.3.2 ViViT ViViT [49] is the main extension of the ViT [5] architecture
(Subheading 2.3) for video classification.

First, the authors use a 16 tubelet embedding instead of a 2D
patch embedding, as mentioned in Subheading 5.2.1. This alter-
nate embedding method aims to capture the spatiotemporal

information from the tokenization step, unlike standard architec-
tures that fuse spatiotemporal information from the first attention
block.

Transformers and Visual Transformers 223

Fig. 20 ViViT architecture. The ViViT first projects input to embedding tokens,
which are summed to positional embedding tokens. The resulting tokens are first
passed through Ls spatial attention blocks and then through Lt temporal attention
blocks. The resulting output is linearly projected to obtain output probabilities

As shown in Fig. 20, the ViViT architecture is based on factor-
ized encoder architecture (Subheading 5.2.5) and consists of one
spatial and one temporal encoder operating on input clips with
32 frames of 224×224. The spatial encoder uses one of the three
ViT variants as backbone.7 For the temporal encoder, the number

7 ViT-B: 12 12-headed MSA layers; ViT-L: 24 16-headed MSA layers; and ViT-H: 32 16-headed MSA layers.

of layers does not impact much the performance, so that, according
to the performance/complexity trade-off, the number MSA layers
is fixed at 4. The authors show that such architecture reaches high
performances while reducing drastically the complexity.

224 Robin Courant et al.

Finally, as in TimeSformer (Subheading 5.3.1), ViViT outputs
probabilities for all video classes through the last classification token
embedding and averages the obtained probabilities across three
crops of each input clip (top left, center, and bottom right).

ViViT outperforms both 3D CNNs [53, 54] and TimeSformer
[50] on the Kinetics-400 and Kinetics-600 datasets [55]. Note the
complexity of this architecture is highly reduced in comparison to
other state-of-the-art models. For instance, the number of FLOPs
for a ViViT-L/16×16× 2 is 3.89 ×1012 against 7.14 ×1012 for a
TimeSformer-L [50] and 7.14× 1012 for a SlowFast [53]
architecture.

5.4 Multimodal Video

Transformers

Nowadays, one of the main gaps between artificial and human
intelligence is the ability for us to process multimodal signals and
to enrich the analysis by mixing the different modalities. Moreover,
until recently, deep learning models have been focusing mostly on
very specific visual tasks, typically based on a single modality, such as
image classification [5, 17, 18, 56, 57], audio classification [25, 52,
58, 59], and machine translation [10, 60–63]. These two factors
combined have pushed researchers to take up multimodal
challenges.

The default solution for multimodal tasks consists in first cre-
ating an individual model (or network) per modality and then in
fusing the resulting single-modal features together [64, 65]. Yet,
this approach fails to model interactions or correlations among
different modalities. However, the recent rise of attention [4, 5,
49] is promising for multimodal applications, since attention per-
forms very well at combining multiple inputs [25, 52, 66, 67].

Here, we present two main ways of dealing with several
modalities:

1. Concatenating tokens from different modalities into one
vector [25, 66]. The multimodal video transformer
(MM-ViT) [66] combines raw RGB frames, motion features,
and audio spectrogram for video action recognition. To do so,
the authors fuse tokens from all different modalities into a
single-input embedding and pass it through transformer layers.
However, a drawback of this method is that it fails to distin-
guish well one modality to another. To overcome this issue, the
authors of the perceiver [25] propose to learn a modality
embedding in addition to the positional embedding (see Sub-
headings 3.2 and 5.2.1). This allows associating each token

Transformers and Visual Transformers 225

with its modality. Nevertheless, given that (i) the complexity of
a transformer layer is quadratic with respect to the number of
tokens (Subheading 5.2.1) and (ii), with this method, the
number of tokens is multiplied by the number of modalities,
it may lead to skyrocketing computational cost [66].

2. Exploiting cross attention [52, 67, 68]. Several modern
approaches exploit cross attention to mix multiple modalities,
such as [52] for audio and video, [67] for text and video, and
[68] for audio, text, and video. The commonality among all
these methods is that they exploit the intrinsic properties of
cross attention by querying one modality with a key-value pair
from the other one [52, 67]. This idea can be easily generalized
to more than two modalities by computing cross attention
across each combination of modalities [68].

6 Conclusion

Attention is an intuitive and efficient technique that enables
handling local and global cues.

On this basis, the first pure attention architecture, the trans-
former [4], has been designed for NLP purposes. Quickly, the
computer vision field has adapted the transformer architecture for
image classification, by designing the first visual transformer model:
the vision transformer (ViT) [5].

However, even if transformers naturally lead to high perfor-
mances, the raw attention mechanism is a computationally greedy
and heavy technique. For this reason, several enhanced and refined
derivatives of attention mechanisms have been proposed [21–26].

Then, rapidly, a wide variety of other tasks have been con-
quered by transformer-based architectures, such as object detection
[14], image segmentation [27], self-supervised learning [28, 29],
and image generation [30, 31]. In addition, transformer-based
architectures are particularly well suited to handle multidimen-
sional tasks. This is because multimodal signals are easily combined
through attention blocks, in particular vision and language cues
[32, 35, 38] and spatiotemporal signals are also easily tamed, as in
[25, 49, 50].

For these reasons, transformer-based architectures enabled
many fields to make tremendous progresses in the last few years.
In the future, transformers will need to become more and more
computationally efficient, e.g., to be usable on cellphones, and will
play a huge role to tackle multimodal challenges and bridge
together most AI fields.

226 Robin Courant et al.

References

1. Bahdanau D, Cho K, Bengio Y (2015) Neural
machine translation by jointly learning to align
and translate. In: International conference on
learning representations

2. Cho K, van Merriënboer B, Gulcehre C,
Bahdanau D, Bougares F, Schwenk H, Bengio
Y (2014) Learning phrase representations
using RNN encoder–decoder for statistical
machine translation. In: Empirical methods in
natural language processing, association for
computational linguistics, pp 1724–1734

3. Sutskever I, Vinyals O, Le QV (2014)
Sequence to sequence learning with neural
networks. In: Advances in neural information
processing systems, vol 27

4. Vaswani A, Shazeer N, Parmar N, Uszkoreit J,
Jones L, Gomez AN, Kaiser Ł, Polosukhin I
(2017) Attention is all you need. In: Advances
in neural information processing systems,
vol 30

5. Dosovitskiy A, Beyer L, Kolesnikov A,
Weissenborn D, Zhai X, Unterthiner T,
Dehghani M, Minderer M, Heigold G,
Gelly S, Uszkoreit J, Houlsby N (2021) An
image is worth 16×16 words: transformers
for image recognition at scale. In: International
conference on learning representations

6. Press O, Wolf L (2017) Using the output
embedding to improve language models. In:
Proceedings of the 15th conference of the
European chapter of the association for
computational linguistics: volume 2, short
papers, association for computational linguis-
tics, pp 157–163

7. Fedus W, Zoph B, Shazeer N (2021) Switch
transformers: scaling to trillion parameter
models with simple and efficient sparsity. arXiv
preprint arXiv:210103961

8. Raffel C, Shazeer N, Roberts A, Lee K,
Narang S, Matena M, Zhou Y, Li W, Liu PJ
(2020) Exploring the limits of transfer learning
with a unified text-to-text transformer. J Mach
Learn Res 21(140):1–67

9. Khan S, Naseer M, Hayat M, Zamir SW, Khan
FS, Shah M (2021) Transformers in vision: a
survey. ACM Comput Surv 24:200

10. Devlin J, Chang MW, Lee K, Toutanova K
(2019) BERT: pre-training of deep bidirec-
tional transformers for language
understanding. In: Proceedings of the 2019
conference of the north American chapter of
the association for computational linguistics:
human language technologies, volume

1 (long and short papers), association for
computational linguistics, pp 4171–4186

11. Wikimedia Foundation (2019) Wikimedia
downloads. https://dumps.wikimedia.org

12. Zhu Y, Kiros R, Zemel R, Salakhutdinov R,
Urtasun R, Torralba A, Fidler S (2015) Align-
ing books and movies: towards story-like visual
explanations by watching movies and reading
books. In: Proceedings of the international
conference on computer vision, pp 19–27

13. Wang X, Girshick R, Gupta A, He K (2018)
Non-local neural networks. In: Proceedings of
the IEEE conference on computer vision and
pattern recognition, pp 7794–7803

14. Carion N, Massa F, Synnaeve G, Usunier N,
Kirillov A, Zagoruyko S (2020) End-to-end
object detection with transformers. In: Pro-
ceedings of the European conference on com-
puter vision. Springer, Berlin, pp 213–229

15. Ramachandran P, Parmar N, Vaswani A,
Bello I, Levskaya A, Shlens J (2019) Stand-
alone self-attention in vision models. In:
Advances in neural information processing sys-
tems, vol 32

16. Wang H, Zhu Y, Green B, Adam H, Yuille A,
Chen LC (2020) Axial-deeplab: stand-alone
axial-attention for panoptic segmentation. In:
Proceedings of the European conference on
computer vision. Springer, Berlin, pp 108–126

17. Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei
L (2009) Imagenet: a large-scale hierarchical
image database. In: Proceedings of the IEEE
conference on computer vision and pattern
recognition, pp 248–255

18. Krizhevsky A, Hinton G (2009) Learning mul-
tiple layers of features from tiny images. Tech
rep University of Toronto, Toronto, ON

19. Sun C, Shrivastava A, Singh S, Gupta A (2017)
Revisiting unreasonable effectiveness of data in
deep learning era. In: Proceedings of the inter-
national conference on computer vision, pp
843–852

20. Selva J, Johansen AS, Escalera S, Nasrollahi K,
Moeslund TB, Clapés A (2022) Video trans-
formers: a survey. arXiv preprint
arXiv:220105991

21. Touvron H, Cord M, Douze M, Massa F,
Sablayrolles A, Jégou H (2021) Training data-
efficient image transformers & distillation
through attention. In: International confer-
ence on machine learning. PMLR, pp
10347–10357

22.

Transformers and Visual Transformers 227

d’Ascoli S, Touvron H, Leavitt ML, Morcos
AS, Biroli G, Sagun L (2021) Convit: improv-
ing vision transformers with soft convolutional
inductive biases. In: International conference
on machine learning. PMLR, pp 2286–2296

23. Hassani A, Walton S, Shah N, Abuduweili A,
Li J, Shi H (2021) Escaping the big data para-
digm with compact transformers. arXiv pre-
print arXiv:210405704

24. Liu Z, Lin Y, Cao Y, Hu H, Wei Y, Zhang Z,
Lin S, Guo B (2021) Swin transformer: hierar-
chical vision transformer using shifted
windows. In: Proceedings of the international
conference on computer vision

25. Jaegle A, Gimeno F, Brock A, Vinyals O,
Zisserman A, Carreira J (2021) Perceiver: gen-
eral perception with iterative attention. In:
International conference on machine learning.
PMLR, pp 4651–4664

26. Jaegle A, Borgeaud S, Alayrac JB, Doersch C,
Ionescu C, Ding D, Koppula S, Zoran D,
Brock A, Shelhamer E et al (2021)
Perceiver IO: a general architecture for
structured inputs & outputs. arXiv preprint
arXiv:210714795

27. Strudel R, Garcia R, Laptev I, Schmid C
(2021) Segmenter: transformer for semantic
segmentation. In: Proceedings of the interna-
tional conference on computer vision, pp
7262–7272

28. Caron M, Touvron H, Misra I, Jégou H,
Mairal J, Bojanowski P, Joulin A (2021)
Emerging properties in self-supervised vision
transformers. In: Proceedings of the interna-
tional conference on computer vision

29. He K, Chen X, Xie S, Li Y, Dollár P, Girshick R
(2021) Masked autoencoders are scalable
vision learners. arXiv preprint
arXiv:211106377

30. Hudson DA, Zitnick L (2021) Generative
adversarial transformers. In: International con-
ference on machine learning. PMLR, pp
4487–4499

31. Zhang B, Gu S, Zhang B, Bao J, Chen D,
Wen F, Wang Y, Guo B (2022) Styleswin:
transformer-based GAN for high-resolution
image generation. In: Proceedings of the
IEEE conference on computer vision and pat-
tern recognition

32. Lu J, Batra D, Parikh D, Lee S (2019) Vilbert:
Pretraining task-agnostic visiolinguistic repre-
sentations for vision-and-language tasks. In:
Advances in neural information processing sys-
tems, vol 32

33. Ren S, He K, Girshick R, Sun J (2015) Faster
R-CNN: towards real-time object detection
with region proposal networks. In: Advances
in neural information processing systems,
vol 28

34. Sharma P, Ding N, Goodman S, Soricut R
(2018) Conceptual captions: a cleaned, hyper-
nymed, image alt-text dataset for automatic
image captioning. In: Proceedings of ACL

35. Radford A, Kim JW, Hallacy C, Ramesh A,
Goh G, Agarwal S, Sastry G, Askell A,
Mishkin P, Clark J et al (2021) Learning trans-
ferable visual models from natural language
supervision. In: International conference on
machine learning. PMLR, pp 8748–8763

36. He X, Peng Y (2017) Fine-grained image clas-
sification via combining vision and
language. In: Proceedings of the IEEE confer-
ence on computer vision and pattern recogni-
tion, pp 5994–6002

37. Sennrich R, Haddow B, Birch A (2016) Neural
machine translation of rare words with sub-
word units. In: Proceedings of the 54th annual
meeting of the association for computational
linguistics (volume 1: long papers), association
for computational linguistics, pp 1715–1725

38. Ramesh A, Pavlov M, Goh G, Gray S, Voss C,
Radford A, Chen M, Sutskever I (2021) Zero-
shot text-to-image generation. In: Interna-
tional conference on machine learning.
PMLR, pp 8821–8831

39. Brown T, Mann B, Ryder N, Subbiah M,
Kaplan JD, Dhariwal P, Neelakantan A,
Shyam P, Sastry G, Askell A, et al (2020) Lan-
guage models are few-shot learners. In:
Advances in neural information processing sys-
tems, vol 33, pp 1877–1901

40. Ramesh A, Dhariwal P, Nichol A, Chu C, Chen
M (2022) Hierarchical text-conditional image
generation with clip latents. arXiv preprint
arXiv:220406125

41. Alayrac JB, Donahue J, Luc P, Miech A, Barr I,
Hasson Y, Lenc K, Mensch A, Millican K, Rey-
nolds M et al (2022) Flamingo: a visual lan-
guage model for few-shot learning. arXiv
preprint arXiv:220414198

42. Brock A, De S, Smith SL, Simonyan K (2021)
High-performance large-scale image recogni-
tion without normalization. In: International
conference on machine learning. PMLR, pp
1059–1071

43. Jia C, Yang Y, Xia Y, Chen YT, Parekh Z,
Pham H, Le Q, Sung YH, Li Z, Duerig T
(2021) Scaling up visual and vision-language

228 Robin Courant et al.

representation learning with noisy text
supervision. In: International conference on
machine learning. PMLR, pp 4904–4916

44. Epstein D, Vondrick C (2021) Learning goals
from failure. In: Proceedings of the IEEE con-
ference on computer vision and pattern
recognition

45. Marin-Jimenez MJ, Kalogeiton V, Medina-
Suarez P, Zisserman A (2019) Laeo-net: revi-
siting people looking at each other in
videos. In: Proceedings of the IEEE conference
on computer vision and pattern recognition

46. Nagrani A, Yang S, Arnab A, Jansen A,
Schmid C, Sun C (2021) Attention bottlenecks
for multimodal fusion. In: Advances in neural
information processing systems

47. Ryoo M, Piergiovanni A, Arnab A,
Dehghani M, Angelova A (2021) Tokenlear-
ner: Adaptive space-time tokenization for
videos. In: Advances in neural information pro-
cessing systems, vol 34

48. Hara K, Kataoka H, Satoh Y (2018) Can spa-
tiotemporal 3d CNNs retrace the history of 2d
CNNs and imagenet? In: Proceedings of the
IEEE conference on computer vision and pat-
tern recognition, pp 6546–6555

49. Arnab A, Dehghani M, Heigold G, Sun C,
Lučić M, Schmid C (2021) Vivit: a video vision
transformer. In: Proceedings of the interna-
tional conference on computer vision, pp
6836–6846

50. Bertasius G, Wang H, Torresani L (2021) Is
space-time attention all you need for video
understanding? In: International conference
on machine learning

51. Ba JL, Kiros JR, Hinton GE (2016) Layer nor-
malization. arXiv preprint arXiv:160706450

52. Nagrani A, Yang S, Arnab A, Jansen A,
Schmid C, Sun C (2021) Attention bottlenecks
for multimodal fusion. In: Advances in neural
information processing systems, vol 34

53. Feichtenhofer C, Fan H, Malik J, He K (2019)
Slowfast networks for video recognition. In:
Proceedings of the international conference
on computer vision, pp 6202–6211

54. Carreira J, Zisserman A (2017) Quo vadis,
action recognition? A new model and the kinet-
ics dataset. In: Proceedings of the IEEE con-
ference on computer vision and pattern
recognition, pp 6299–6308

55. Kay W, Carreira J, Simonyan K, Zhang B,
Hillier C, Vijayanarasimhan S, Viola F,
Green T, Back T, Natsev P et al (2017) The

kinetics human action video dataset. arXiv pre-
print arXiv:170506950

56. Wu H, Xiao B, Codella N, Liu M, Dai X,
Yuan L, Zhang L (2021) CvT: introducing
convolutions to vision transformers. In: Pro-
ceedings of the international conference on
computer vision, pp 22–31

57. Touvron H, Cord M, Sablayrolles A,
Synnaeve G, Jégou H (2021) Going deeper
with image transformers. In: Proceedings of
the international conference on computer
vision, pp 32–42

58. Gemmeke JF, Ellis DP, Freedman D, Jansen A,
Lawrence W, Moore RC, Plakal M, Ritter M
(2017) Audio set: an ontology and human-
labeled dataset for audio events. In: IEEE
international conference on acoustics, speech
and signal processing (ICASSP). IEEE, pp
776–780

59. Gong Y, Chung YA, Glass J (2021) AST: audio
spectrogram transformer. In: Proceedings of
interspeech 2021, pp 571–575

60. Bojar O, Buck C, Federmann C, Haddow B,
Koehn P, Leveling J, Monz C, Pecina P,
Post M, Saint-Amand H, et al (2014) Findings
of the 2014 workshop on statistical machine
translation. In: Proceedings of the 9th work-
shop on statistical machine translation, pp
12–58

61. Liu X, Duh K, Liu L, Gao J (2020) Very deep
transformers for neural machine translation.
arXiv preprint arXiv:200807772

62. Edunov S, Ott M, Auli M, Grangier D (2018)
Understanding back-translation at scale. In:
Empirical methods in natural language proces-
sing, association for computational linguistics,
pp 489–500

63. Lin Z, Pan X, Wang M, Qiu X, Feng J,
Zhou H, Li L (2020) Pre-training multilingual
neural machine translation by leveraging align-
ment information. In: Empirical methods in
natural language processing, association for
computational linguistics, pp 2649–2663

64. Owens A, Efros AA (2018) Audio-visual scene
analysis with self-supervised multisensory
features. In: Proceedings of the European con-
ference on computer cision, pp 631–648

65. Ramanishka V, Das A, Park DH,
Venugopalan S, Hendricks LA, Rohrbach M,
Saenko K (2016) Multimodal video
description. In: Proceedings of the ACM inter-
national conference on multimedia, pp
1092–1096

Open Access This chapter is licensed under the term s of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4. 0/), which permits use, sharing, adaptation, distribution,
and reproduction in any medium or format, as long as y ou give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licens e, and indicate if changes were made. The images or other
third-party material in this chapter are included in t he chapter’s Creative Commons license, unless indicated
otherwise in a credit line to the material. If material is n ot included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regula tion or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.

Transformers and Visual Transformers 229

66. Chen J, Ho CM (2022) Mm-vit: Multi-modal
video transformer for compressed video action
recognition. In: Proceedings of the IEEE/
CVF winter conference on applications of com-
puter vision, pp 1910–1921

67. Narasimhan M, Rohrbach A, Darrell T (2021)
Clip-it! language-guided video

summarization. In: Advances in neural infor-
mation processing systems, vol 34

68. Liu ZS, Courant R, Kalogeiton V (2022) Fun-
nyNet: Audiovisual Learning of Funny
Moments in Videos. In: Proceedings of the
Asian conference on computer vision. Springer,
Macau, China, pp 3308–3325

Part II

Data

Chapter 7

Clinical Assessment of Brain Disorders

Stéphane Epelbaum and Federica Cacciamani

Abstract

The clinical evaluation of brain diseases strictly depends on patient’s complaint and observation of their
behavior. The specialist, often the neurologist, chooses whether and how to assess cognition, motor system,
sensory perception, and autonomic nervous system. They may also decide to request a more in-depth
examination, such as neuropsychological and language assessments and imaging or laboratory tests. From
the synthesis of all these results, they will be able to make a diagnosis. The neuropsychological assessment in
particular is based on the collection of medical history, on the clinical observation, and on the administra-
tion of standardized cognitive tests validated in the scientific literature. It is therefore particularly useful
when a neurological disease with cognitive and/or behavioral manifestation is suspected. The introduction
of machine learning methods in neurology represents an important added value to the evaluation per-
formed by the clinician to increase the diagnostic accuracy, track disease progression, and assess treatment
efficacy.

Key words Clinical assessment, Neurological examination, Neuropsychology, Cognitive scores

1 Introduction

1.1 What Is a

Disease? Why Are

Clinical Assessments

Important?

A disease is a specific set of processes, often biological or histologi-
cal, that induce symptoms (subjectively felt), which negatively affect
the individual’s normal functioning (e.g., discomfort, pain,
suffering), are often associated with a complaint, and will manifest
by signs (objectively measured), for instance, decreased motor
strength or slowed speech. Symptoms and signs taken together
define a syndrome (e.g., headache, vomiting, stiff neck point to a
meningeal syndrome), and the syndromes are contextually inter-
preted by physicians to hypothesize on a given disease. If, for
instance, the meningeal syndrome appears brutally and is very
intense, the suspected disease will be meningeal hemorrhage. If it
appears subacutely over a few hours and is accompanied by a fever,
the physician will rather surmise a meningitis. Box 1 introduces the
main medical definitions.

Olivier Colliot (ed.), Machine Learning for Brain Disorders, Neuromethods, vol. 197, https://doi.org/10.1007/978-1-0716-3195-9_7,
© The Author(s) 2023

233

234 Stéphane Epelbaum and Federica Cacciamani

A clinical evaluation is therefore requested by the patient him-
self/herself or by a clinician (general practitioner, specialist, psy-
chologist, etc.). The aim is to better characterize the symptoms and
the underlying disease.

Box 1 Main Medical Definitions

Disease Physiological (biological and/or pathological) process
(es) causing pejorative clinical manifestations

Symptom Subjective manifestation of a disease (pain, memory
complaint, nausea, etc.)

Sign Objective manifestation of a disease upon medical
examination (decreased reflex, elevated blood pressure,
etc.)

Syndrome Association of symptoms and signs that can be related to a
set of diseases (e.g., headache, nausea, and neck stiffness
are a meningeal syndrome that can correspond to either
meningitis or meningeal hemorrhage)

Clinical
assessment

Stereotyped interrogation, observation, and examination of
an individual by a trained healthcare provider in order to
collect his/her symptoms and signs to determine a
syndrome and hypothesize a main disease diagnosis and
differential diagnoses

During their studies, physicians learn over a few years a large
quantity of diagnostic and prognostic “decision trees” based on the
co-occurrence of every set of symptoms and signs. The learning is
structured so that frequent and severe diseases are more studied,
while rare or orphan diseases and those considered less severe are
covered more briefly. For instance, the few symptoms described
above will most likely be recognized and diagnosed well by any
physician as well as the degree of urgency they imply. This learning
is based on aggregated knowledge at one point in time which is
always susceptible to change. A clear example of such changes is
Alzheimer’s disease (AD) which was considered a rare form of
dementia of the young from its seminal description in 1906 [1]
until the 1980s when it was finally identified by numerous patho-
logical studies to be the predominant cause of dementia in the
elderly [2]. Importantly, clinical assessment requires tools to be
performed, such as the famous reflex hammer used by neurologists
or cognitive tests used by the neuropsychologist. Machine learning,
and the decision support system that it entails, may be considered as
such a tool, although it has the peculiarity of being harder to
comprehend for most clinicians which may be a specific challenge
for its implementation.

2 The Neurological Examination

Clinical Assessment of Brain Disorders 235

Every clinical assessment, whether conducted in the routine
practice of medicine or in biomedical research, has to adhere to strict
ethical rules that warrant the trust the patient puts in their healthcare
providers. The main rules are that of beneficence; non-maleficence;
respect for any individual notwithstanding their race, gender, reli-
gion, or personal beliefs; and medical confidentiality.

Finally, the current development of digital and information
technologies is rapidly changing the scope of clinical assessments.
Prior to consultation, auto-assessment and patient empowerment
are promoted through the development of specific applications to
explicitly diagnose or monitor a disease [3, 4] and patient education
and access to relevant information [5]. The main issue concerning
this last point is the exponential growth of these digital solutions
and the risk of misinformation that can sometime lead the patient
toward unethical care [6].

1.2 Peculiarities of

Clinical Assessment of

Brain Disorders

The brain has functionally distinct regions, so there is a topograph-
ical correspondence between the location of the lesion in the brain
and the symptom. The characterization of symptoms therefore
allows to trace which brain region is affected. This helps in identify-
ing the underlying disease. The motor and sensory cortices are
perfect examples of this functional topography often depicted as
homunculi [7].

Clinical evaluations for brain disorders thus follow a standar-
dized procedure. In addition to the symptoms and signs appraisal,
the physician often makes an assumption as to where the nervous
system is affected. This often overlaps with the syndromic defini-
tion: “frontotemporal dementia” implies that the lesions are in the
frontotemporal cortices. However, this is not always the case as
some diseases and syndromes still bear the name of the physician
who was the first to describe it. While most neurologists know that
a parkinsonism (or Parkinson syndrome) is due to basal ganglia
lesions, it is not implied in its name.

2.1 General

Information on the

Neurological

Examination

The neurological examination begins with the collection of anam-
nestic data, that is, the complete history recalled and recounted by a
patient or their entourage, including complaint, medical history,
lifestyle, concurrent treatments, etc. During the collection of anam-
nestic data, the clinician also carefully observes patient’s behavior.
The neurologist then proceeds with the examination of brain func-
tion, which is oriented by the complaint, and often includes cogni-
tive screening tests and examination of motor system, sensitivity,
and autonomic nervous system. Usually, this examination has more
formal and structured parts (this can be, for example, a systematic
evaluation of reflexes always in the same order or the use of a
specific scale to assess sensory or cognitive function) and other

Personal and family history with, if necessary, a family tree.

In a formal evaluation, especially in cohort studies and clinical

more informal ones. In fact, the clinician chooses case by case on
the basis of what is required and what is available to the physician at
the time of the said assessment. For example, they may use a lay
journal in their office to ask a patient to describe a complex photo-
graph in order to get a general idea of their visuospatial perception
skills. This is quite time-consuming, and, depending on the
patient’s case, presence of entourage, and thoroughness of the
clinician, an initial visit can take from 0.5 h to 2 h to capture the
essential features necessary to formulate a diagnosis, prognosis, and
care plan. If the neurologists deem it necessary, they may request
additional tests or examinations, such as a neuropsychological eval-
uation, language assessment, laboratory tests, imaging tests, etc.

For applying machine learning techniques, the results of formal

236 Stéphane Epelbaum and Federica Cacciamani

exams are usually more adequate because they offer quantitative
measures. However, this may change over the coming years as
solutions are being developed to analyze informal material. This
may include clinical reports or videos of patient examinations.
Another example is natural language processing tools that may
help in identifying semantic deficits in patients suffering from
incipient dementia [8]. The context of data acquisition is very
important and can greatly impact its quality. Among the different
contexts, we can cite “routine clinical practice,” “retrospective or
prospective observational studies,” and “clinical trials” that have
increasing levels of quality due to the level of standardization of
data acquisition and monitoring.

2.2 Clinical Interview A clinical interview precedes any objective assessment. It is adapted
to the patient’s complaint and as standardized as possible so as not
to forget any question. It consists of:

–

– Lifestyle (including alcohol intake and smoking).

– Past or current treatments.

– As accurate as possible description of the illness made by the
patient and/or their informant. It is important to know the
intensity of the symptoms, their frequency, the chronological
order of their appearance, the explorations already carried out,
and the treatments undertaken as well as their effectiveness.

trials, symptoms can be assessed thanks to different scales, some of
which will be presented in this chapter, depending on the clinical
variable of interest. These scales’ results will also be used to monitor
the disease evolution, notably in order to test new treatments.

The interview process is probably the most important part of
the whole clinical assessment. It will allow delineating the patient’s
medical issue, which in turn will determine the next steps of the
examination and management plan. It also creates a relation of trust
that is essential for the future adhesion of the patient to the physi-
cian’s propositions.

Clinical Assessment of Brain Disorders 237

2.3 Evaluation of

Cognition and

Behavior

The assessment of cognition and behavior can be carried out by the
neurologist using more or less in-depth tests depending on the
situation, or a complete neuropsychological assessment can be
requested and carried out separately by a neuropsychologist (see
Subheading 3 of this chapter). The assessment of cognition is
guided by the cognitive complaint of the patient and/or the infor-
mant [9]. However, on the one hand, it is possible that the patient
is not fully aware of their deficits. This is a symptom called anosog-
nosia (which literally means lack of knowledge of the disease) and is
typical of various forms of dementia, including AD and frontotem-
poral dementia, but also brain damage due, for example, to stroke
in certain regions of the brain. On the other hand, a cognitive
complaint can be due to anxiety, depression, and personality traits
and may have no neurological basis. The medical doctor can use
simple tests in their daily practice such as the Mini-Mental State
Examination (MMSE) [10]. For a more detailed description of the
MMSE, please refer to Subheading 3 of this chapter.

2.4 Evaluation of

Motor System

The examination of motor function starts as soon as the physician
greets their patient in the waiting room. They will immediately
observe the patient’s walk and their bodily movements. Then, in
their office, the observation will continue to search, for example, for
a muscular atrophy or fascicules (i.e., muscular shudder detected by
looking at the skin of the patient). This purely observational phase
is followed by a formal examination, provoking objective signs.

One goal of motor assessment is to assess muscle strength. This
is done segmentally, that is, carried out by evaluating the function
of muscle groups that perform the same action, for example, the
muscles that allow the elbow to flex. The neurologist gives a score
ranging from 0 to 5, where 0 indicates that they did not detect any
movement and 5 indicates normal movement strength.

A second aspect which is assessed is muscle tone. It is explored
by passively mobilizing the patient joints. Hypertonia, or rigidity, is
an increase in the tone. When the neurologist moves the joint, it
may remain rigidly in that position (plastic or parkinsonian hyper-
tonia), or the limb may immediately return to the resting position
as soon as the neurologist stops manipulating it (spastic or elastic
hypertonia). Hypotonia is a reduction of muscle tone, i.e., lack of
tension or resistance to passive movement. This is observed in
cerebellar lesions and chorea.

Another goal of motor assessment is evaluating deep tendon
reflexes. Using a reflex hammer, the neurologist taps the tendons
(e.g., Achilles’ tendon for the Achillean reflex). The deep tendon
reflexes will be categorized as (1) normal, (2) increased and
polykinetic (i.e., a single tap provokes more than one movement),
(3) diminished or abolished (as in peripheral nervous system dis-
eases), and (4) pendular (as in cerebellar syndrome). Often evi-
denced in case of increased reflexes, Babinski’s sign is the lazy and

Box 2 MDS-UPDRS Structures

Part I: Non-motor experiences of Part II: Motor experiences of

Part III: Motor examination Part IV: Motor complications

majestic extension of the big toe followed by the other toes in
response to the scraping of the outer part of the foot plant. It is
pathognomonic (i.e., totally specific) of a pyramidal syndrome,
which is named after the axonal fiber tract that is altered: the
pyramidal fasciculus. Motor assessment also includes evaluation of
tremors and posture.

Once again, specific scales exist to robustly and homogeneously

238 Stéphane Epelbaum and Federica Cacciamani

assess some of these signs such as the Unified Parkinson’s disease
rating scale (UPDRS) in Parkinson’s disease [11]. For more infor-
mation, the Movement Disorder Society UPDRS Revision Task
Force has made the questionnaire available [12]. We report
MDS-UPDRS items in Box 2. There are 65 items, 60 of which
with a score from 0 to 4 (0, normal; 1, slight; 2, mild; 3, moderate;
and 4, severe) and 5 with yes/no responses.

daily living
13 items. Less than 10 min

1. Cognitive impairment
2. Hallucinations and psychosis
3. Depressed mood
4. Anxious mood
5. Apathy
6. Features of dopamine

dysregulation syndrome
7. Nighttime sleep problems
8. Daytime sleepiness
9. Pain and other sensations

10. Urinary problems
11. Constipation problems
12. Lightheadedness on standing
13. Fatigue

daily living
13 items. It does not involve
examiner time; items are answered
by the patient or caregiver
independently.

1. Speech
2. Salivation and drooling
3. Chewing and swallowing
4. Eating tasks
5. Dressing
6. Hygiene
7. Handwriting
8. Doing hobbies and other

activities
9. Turning in bed

10. Tremor
11. Getting out of bed, car, or

deep chair
12. Walking and balance
13. Freezing

33 items (18 items with different
duplicates corresponding to the right
or left side or to different body parts).
15 min

1. Speech
2. Facial expression
3. Rigidity of neck and four

extremities
4. Finger taps
5. Hand movements

Six items. 5 min

1. Time spent with dyskinesia
2. Functional impact of

dyskinesias
3. Time spent in the OFF state
4. Functional impact of

fluctuations
5. Complexity of motor

fluctuations
6. Painful OFF-state dystonia

(continued)

Box 2 (continued)

6. Pronation/supination
7. Toe tapping
8. Leg agility
9. Arising from chair
10. Gait
11. Freezing of gait
12. Postural stability
13. Posture
14. Global spontaneity of

movement
15. Postural tremor of hands
16. Kinetic tremor of hands
17. Rest tremor amplitude
18. Constancy of rest tremor

2.5 Evaluation of Sensitivity is the ability to feel different tactile sensations: normal

very close stimuli.

–
blind prehension. The doctor can also ask the patient if the

–

2.6 Other The physician evaluation will also assess the autonomic nervous

2.7 Summary of the

Neurological

Evaluation

described in the report, and the physician specifies:

– A syndromic group of signs and symptoms

– The presumed location of brain damage

Clinical Assessment of Brain Disorders 239

Sensitivity (or crude) tact, pain, hot, or cold. Once again, it depends on the
anatomical regions and tracts affected by a pathological process.
The anterior spinothalamic tract carries information about crude
touch. The lateral spinothalamic tract conveys pain and tempera-
ture. Assessment includes measuring:

– Epicritic sensitivity: test the patient’s ability to discriminate two

Deep sensitivity: test the direction of position of the joints by the

vibrations of a diapason on joint bones (knee, elbow) are felt.

Discrimination of hot and cold; sensitivity to pain.

Evaluations system which, when impaired, can induce tensile disorders:
hypo-/hypertension, orthostatic hypotension (without compen-
satory acceleration of pulse), diarrhea, sweating disorders, accom-
modation disorders, and sexual disorders. They will also evaluate
cerebellar functions: balance, coordination (which when impaired
causes ataxia), and tremor.

Finally, clinicians will assess cranial nerves’ functions. Cranial
nerves are those coming out of the brainstem and have various
functions including olfaction, vision, eye movements, face sensori-
motricity, and swallowing. They are tested once again in a standar-
dized way from the first one to the twelfth.

At the end of this examination, the signs and symptoms are

3 Neuropsychological

3.1 Generalities on

Neuropsychological

Assessment

Neuropsychology is concerned with how cognitive functions (see
Box) and behavior are correlated with anatomo-physiological
brain mechanisms. Thanks to the scientific-technological advances

3

retains few pieces of information for the time needed to
perform a certain task, using mechanisms such as mental

Episodic memory allows long-term conscious memory of a
potentially infinite number of events (episodes) and

240 Stéphane Epelbaum and Federica Cacciamani

– A main diagnostic hypothesis

– Possibly, secondary hypotheses (differential diagnosis)

– Additional examination strategy through neuroimaging or addi-
tional examinations to refine disease diagnosis

– A therapeutic program

Assessment

made in recent decades and the advent of increasingly sensitive
structural and functional imaging techniques, we have discovered
that human cognition has a modular architecture in which each
module—whose operationalization depends on the reference
framework—corresponds to a specific function [13]. This allowed
us to understand which brain regions or structures we expect to be
damaged when we observe a certain cognitive deficit [14–17]. The
role of the neuropsychologist can be summarized in two core
activities: assessment and intervention. In this chapter, we will
focus on neuropsychological assessment, which produces data
that is typically used by machine learning algorithms.

Neuropsychological assessment includes a clinical interview,
followed by the measurement of cognitive functions using standar-
dized tests and finally the interpretation of the results. This is
applicable in diagnostic settings, to monitor disease progression if
the diagnosis has previously been made or to measure the effective-
ness of a treatment.

Box 3 Main Cognitive Functions

Memory Short-term memory or working memory temporarily

repetition

contexts (time and place) in which they occurred
Semantic memory allows the long-term conscious memory
of a potentially infinite number of facts, concepts, and
vocabulary, which constitute the knowledge that the
individual has of the world

Procedural memory is the memory of how things are done
(e.g., tying shoelaces) and how objects are used

(continued)

Box 3 (contin

Attention

abilities and the objects and between the objects themselves and

Language
phonological, morphological, syntactic, semantic, and

Executive
functions

making, mental flexibility, etc.

Social
cognition

that of others in social situations

Neuropsyc
is first and foremost a branch of psychology. The clinical interview

h
regarding medical history, lifestyle, and familiarity), observes

Clinical Assessment of Brain Disorders 241

ued)

Selective attention is the ability to select relevant
information from the environment

Sustained attention is the ability to persist for a relatively
long time on a certain task

Visuospatial Estimation of spatial relationships between the individual

identification of visual characteristics of a stimulus such
as its orientation

Oral and written production and comprehension, at a

pragmatic level

Superior cognitive functions such as planning,
organization, performance monitoring, decision-

Using information previously learned more or less
explicitly to explain and predict one’s own behavior and

hology is therefore an interdisciplinary discipline. It

that precedes t
disciplines. T

he administration of tests is typical of psychological
e clinician collects anamnestic information (i.e.,

patient behavior, and builds a relationship of trust and collabora-
tion with him/her. All of these are crucial aspects in any type of
psychological interview. In addition, the neuropsychologist must
also be able to understand whether the cognitive complaint or the
deficits detected are linked to brain damage or whether they are
psychogenic. To do this, they assess, qualitatively or quantitatively
depending on the situation, the mood of the patient and the
presence of any anxiety syndromes, psychotic symptoms, etc.

Neuropsychology also has obvious points in common with
neurology, since it is interested in the evaluation and intervention
on the cognitive-behavioral manifestation of pathologies of the
central nervous system. Over the past decades, much knowledge
has been gained on the relationship between cognition and brain,
and many tests have been developed. As a result, neuropsychologi-
cal assessment has split off from neurological examination, assum-
ing a separate role [18].

3.2 Psychometric

Properties of

Neuropsychological

Tests

The use of cognitive tests is the specificity of the neuropsychologi-
cal assessment.

Each new test is developed according to a rigid and rigorous
methodology, trying to minimize all possible sources of error or
bias, and based on scientific evidence. For example, a test that aims

242 Stéphane Epelbaum and Federica Cacciamani

to assess learning skills might include a list of words for the partici-
pant to memorize and then recall. These words will not be ran-
domly selected but carefully chosen based on characteristics such as
frequency of use, length, phonology, etc. The procedures for
administering neuropsychological tests are also standardized. The
situation (i.e., materials, instructions, test conditions, etc.) is the
same for all individuals and dictated by the administration manuals
provided with each test.

All tests, before being published, are validated for their psycho-
metric properties and normed. A normative sample is selected
according to certain criteria which may change depending on the
situation [19]. In most cases, these are large samples of healthy
individuals from the general population, stratified by age, sex,
and/or level of education. In other cases, more specific samples
are preferred. The goal is to identify how the score is distributed in
the normative sample. In this way, we can determine if the score
obtained by a hypothetical patient is normal (i.e., around the
average of the normative distribution) or pathological (i.e., far
from the average). Establishing how far from the average an obser-
vation must be in order to be considered abnormal is a real matter
of debate [20]. Many neuropsychological scores, as well as many
biological or physical attributes, follow a normal distribution in the
general population. The most used metrics to determine pathology
thresholds are z scores and percentiles. For a given patient, the
neuropsychologist usually computes the z score by subtracting the
mean of the normative sample from the raw score obtained by the
patient and then dividing the result by the standard deviation
(SD) of the normative sample. The distribution of z scores will
have a mean of 0 and a SD of 1. We can also easily find the percentile
corresponding to the z score. Most often, a score below the fifth
percentile (or z score = -1.65) or the second percentile (or z-
score =-2) is considered pathological. As an example, intelligence,
or intelligence quotient (IQ), is an attribute that follows a normal
distribution. It is conventionally measured with the Wechsler Adult
Intelligence Scale, also known as WAIS [21], or the Wechsler
Intelligence Scale for Children, also known as WISC [22]. The
distribution of IQs has a mean of 100 and a SD of 15 points.
Around 68% of individuals in the general population achieve an
IQ of 100 ± 15 points. Scores between 85 and 115 are therefore
considered to be average IQs (therefore normal). Ninety-five per-
cent of individuals are in a range within 30 points of 100, thus

between 70 and 130. Scores between 70 and 85 and those between
115 and 130 indicate borderline intelligence and medium-to-
higher intelligence, respectively. Finally, only a little more than 2%
of people are located in the two tails, respectively. An IQ below
70 is therefore considered pathological and indicative of intellectual
disability. An IQ above 130 is indicative of superior intelligence.

Another reason a new test is administered to a normative
sample is to evaluate its psychometric properties to understand
whether it is suitable for clinical or research use [23]. The two
main properties worth mentioning are reliability and validity [24].

Reliability indicates the consistency of a measure or in other
words the proportion of variance in the observed scores attribut-

Clinical Assessment of Brain Disorders 243

able to the actual variance of the measured function, and not to
measurement errors [25]. Reliability may be assessed in various
ways. Internal consistency, for example, indicates whether the
items of a test all measure the same cognitive function. A common
procedure to evaluate it is to randomly divide the test into two
halves and calculate the correlation between them. Test–retest
reliability indicates the ability of a test to provide the same score
consistently over time. No undesirable event, such as a pathological
event, should have occurred between the two assessments and
cause the patient to score worse (or better) on the second one.
Another bias that could undermine test–retest reliability is practice
effect, which refers to a gain in scores that occurs when the respon-
dent is retested with the same cognitive test. This gain does not
reflect a real improvement in the function assessed [26]. Parallel
forms of the same test are often used to avoid these problems.
Another measure of reliability is the consistency between different
examiners (inter-rater reliability). In fact, despite the standardiza-
tion described above, some degree of variance may remain between
examiners [27].

Validity is the capacity of a test to measure what it actually
proposes to measure and not similar constructs [28]. The validity
of a test can be assessed by calculating the correlation between the
score of interest with another measure that is theoretically supposed
to be correlated. The following are some types of validity com-
monly assessed when developing or validating a new
neuropsychological test: content validity (i.e., the test only mea-
sures what it is supposed to measure), substantive validity (i.e., the
test is developed on the basis of theoretical knowledge and empiri-
cal evidence), convergent validity (i.e., individuals belonging to a
certain homogeneous group have a similar score on the same test),
and divergent validity (i.e., individuals belonging to two different
groups have different scores on the same test, e.g., patients versus
controls).

3.3 Realization of a

Neuropsychological

Assessment and

3.4 The Example of a

Cognitive Test: The

Mini-Mental State

During an assessment, the neuropsychologist chooses the most
appropriate tests for the patient, ensures that they are performed
correctly, and interprets their results. Indeed, each neuropsycho-

244 Stéphane Epelbaum and Federica Cacciamani

Interpretation of Its

Results

logical assessment is tailored to the patient’s needs. To assess a
certain cognitive function, the clinician can choose a specific test
depending on the patient’s level of education, the presence of any
sensory deficits (e.g., tests involving verbal material will be pro-
posed to a visually impaired patient), as well as the diagnostic
hypothesis.

Once anamnestic data has been collected and the cognitive
scores have been obtained, the goal is to interpret these results
and define the patient’s cognitive profile. Defining a cognitive
profile means identifying which cognitive functions are preserved
and which are impaired. In the event that one or more impaired
cognitive deficits are detected, it is necessary to specify at what level
the deficit is located and its severity. For example, a patient may
have a memory disorder whose severity can be identified by com-
paring their score to normative data as described above. Depending
on the test used, the neuropsychologist will be able to define
whether this memory disorder is due to difficulties in creating
new memory traces (linked to the medial temporal lobe [14]), or
to difficulties in retrieving existing traces (linked to the prefrontal
lobe [16]), and so on. By describing the impaired and preserved
cognitive mechanisms and by referring to what we know about
brain correlates of cognitive function, the neuropsychologist will
be able to detect a pattern. This may be a cortical syndrome, such as
in the event of alteration of language or visuospatial functions [29];
a subcortico-frontal profile, involving, for example, impaired exec-
utive functions [30]; a subcortical profile, often involving slow
information processing [31]; etc.

It is important to clarify that the aim of the neuropsychological
assessment is not to diagnose a disease, but to describe a cognitive
profile. This is only one of the elements taken into account by a
physician, often a neurologist, to make the diagnosis. The physician
will determine which disease or pathological condition underlies
the cognitive impairment, by combining the evidence from other
tests, such as laboratory tests, imaging, and neurological examina-
tion, as described above.

The Mini-Mental State Examination, also known as MMSE, is one
of the most widely used tools in both clinical practice and research,
validated in many languages and adapted to administration in many

Examination (MMSE) countries. It is a screening tool for adults, which allows assessing
global cognition quickly and easily through a paper–pencil test
lasting 5–10 min.

Temporal orientation [5 points, 1 per item]
The respondent is asked to say the day of the week, the day of the month, the

The MMSE includes 30 questions, each with a binary score

presented in Box . The total score ranges from 0 to 30. AnMMSE4

Box 4 MMSE Questions and Scoring System

Clinical Assessment of Brain Disorders 245

month, the year, and the season

Spatial orientation [5 points, 1 per item]
The respondent is asked to say the floor and the name of the hospital or
practice, district, town, and country.

Short-term memory [3 points, 1 per word]
The examiner names three objects (apple, table, and penny in the English
version), and the respondent repeats them immediately

Attention [5 points, 1 per subtraction]
The respondent subtracts 7 from 100 five times

Verbal learning [3 points, 1 per word]
The respondent recalls the three previously learned words

Denomination [2 points, 1 per object]
The respondent names two objects indicated by the examiner, often a pen
and a watch

Repetition [1 point]
The respondent repeats the sentence “No ifs, ands, or buts”

Listening comprehension [3 points, 1 per task]
The respondent is asked to take a sheet with their right hand, fold it in half,
and throw it on the ground

Written comprehension [1 point]
The respondent executes a written command, often “Close your eyes”

Writing [1 point]
The respondent writes a sentence that contains a verb and a subject

Praxico-constructive and visuospatial skills [1 point]
Copy of two intersecting pentagons showed by the examiner

(0 for wrong answer and 1 for correct answer). More details are

score of 18 or less indicates severe impairment of cognitive func-
tions. A score between 18 and 24 indicates moderate to mild
impairment. A score of 25 is considered borderline. And a score
of 26–30 indicates cognitive normality. Different diagnostic thresh-
olds have been proposed as they depend—mainly—on age, educa-
tion, and setting [32]. In clinical settings, a score below 24 is
commonly considered pathological [33]. In research contexts, it
is more common to use a cut-off of 26 (pathological if <26)
[34]. The MMSE is therefore very useful for getting an idea of
the patient’s cognitive functioning, also facilitating effective com-
munication between professionals.

clinical setting [36]. Lower coefficients may be related to lower

4 Clinical Examinatio

Neurology is a broad branch of medicine that deals with all pathol-
ogies affecting the central and peripheral nervous system, also
including blood vessels and muscles, such as neurodegenerative

4.1 Diversity of Brain

Disorders and Clinical

Evaluation

Neurodegenerative disorders affecting
mostly cognition or behavior

Alzheimer’s disease
Frontotemporal dementia

Movement disorders Parkinson’s disease

Concerning psychometric properties, internal consistency is
reported to vary significantly according to the setting. Alpha coef-
ficient was around 0.30 in the general population [35] and 0.96 in a

246 Stéphane Epelbaum and Federica Cacciamani

variability in community-based samples where the majority of par-
ticipants are healthy and often highly educated. Regarding test–
retest reliability, healthy individuals scored better at retest (about
one point higher) when they repeated the MMSE about 3 months
after the first assessment. Patients with cognitive impairment, on
the contrary, did not show such learning. In [10], the MMSE also
had good validity in discriminating patients with Alzheimer’s
dementia, depression, and schizophrenia.

n by Pathology

diseases, epilepsy, sleep disorders, vascular diseases, headaches,
movement disorders, neuro-oncology, etc. Clinical evaluation is
therefore tailored to the complaint and symptoms. The purpose is
to propose a treatment or follow the evolution of the disease. There
is therefore a need for sensitive clinical tests that allow for early
detection of abnormalities, so that treatment can be administered
more promptly.

As science advances, medicine is getting increasingly specialized.
Although “general neurologists” are the majority in the domain,
the field is segmented in different subspecialties in university hos-
pitals, each with their topic and diseases of interest, and dedicated
tools for innovative studies. We briefly describe these subspecialties
below (see Box 5).

Box 5 Non-exhaustive List of the Main Neurological
Diseases

Lewy body dementia
Primary progressive aphasia

Essential tremor
Dystonia

(continued)

Epilepsy Generalized idiopathic epilepsy
Absence

traumatic, post-stroke, etc.)

Stroke or neurovascular diseases

Neuro-oncology
Oligodendroglioma

Brain metastasis

Peripheral nerve diseases

Headaches Migraine

Sleep disorders

diseases

Myopathies

4.1.1 Neurodegenerative

Disorders Affecting Mostly

Cognition or Behavior

They include Alzheimer’s disease, Lewy body and frontotemporal
dementias, as well rarer conditions
aphasias. This field relies heavily on n
Although progress has been achieved in diagnosis of these condi-

4.1.2 Movement

Disorders

the dopamine levels in the brain (one of the main neurotransmitters

Clinical Assessment of Brain Disorders 247

Partial idiopathic epilepsy
Secondary epilepsy (post-

Ischemic stroke
Brain hemorrhage
Cerebral venous thrombosis

Meningioma

Astrocytoma
Glioblastoma

Mononeuropathy
Polyneuropathy
Radiculopathy
Plexopathy

Tension-type headache

Sleep apnea
Narcolepsy

Inflammatory and demyelinating brain Multiple sclerosis
Sarcoidosis

Neurogenetic diseases Huntington’s chorea
Spinocerebellar ataxia

Neuromuscular disorders Amyotrophic lateral sclerosis
Myasthenia

such as primary progressive
europsychological evaluation.

tions (especially Alzheimer’s disease) these last decades, therapeutic
unmet needs remain high.

These include Parkinson’s disease but also dystonia, myoclonus,
tics, and tremors. Different treatment options have emerged for
this group of diseases in the last years. These include drugs based on

for movement) and deep brain stimulation which requires the
implantation of electrodes to stimulate or inhibit specific regions
of the basal ganglia.

4.1.3 Epilepsy

4.1.4 Stroke or

Neurovascular Diseases

4.1.5 Neuro-oncology

4.1.6 Peripheral Nerve

Diseases

4.1.7 Headaches

4.1.8 Sleep Disorders

This broad term refers to the abnormal electric activity of neurons
in brain regions or in the whole brain inducing seizures. They are

248 Stéphane Epelbaum and Federica Cacciamani

defined by the co-occurrence of symptoms or signs, and these
electric abnormalities are detected by electroencephalography
(EEG). Many anti-epileptic drugs exist to decrease the seizure
frequency in these patients. Some patients present with pharma-
coresistant epilepsy. For such patients, surgery, which aims at
resecting part of the brain in order to suppress seizures, can be a
treatment option.

Acute stroke is managed in stroke emergency units. A stroke can be
either a brain infarction or a hemorrhage. They are not primary
diseases of the brain tissue but of the arteries, capillaries, and veins
that irrigate it. Treatment options range from rapid clot removal in
ischemia (whether by thrombolysis or neuroradiological interven-
tion), anti-aggregating or anticoagulation therapy, and physical or
speech rehabilitation.

This specialty deals with brain tumors, which may be malignant or
benign. There are close connections with neurosurgery units and
neuropathology which play a valuable role in analyzing the micro-
structure of the tumor in order to achieve a precise diagnosis.
Treatments typically rely on a combination of surgery, radiotherapy,
and chemotherapy.

They include all the diseases of the nerves outside of the brain,
brainstem, or spine. These diseases induce motor, sensory, and
autonomous impairments and are diagnosed through a combina-
tion of medical examination and electromyographic (EMG) record-
ings. Treatment options are very dependent on the cause of the
disease which can range from simple mechanic compression of a
nerve requiring mild surgery (carpal syndrome) to hepatic graft in
some rare conditions (TTR mutation causing familial transthyretin
amyloidosis).

Although headaches are highly prevalent, specialists are rare in
university hospital as these conditions (including migraine) are
often cared for in private practice offices, except for the most urgent
causes which are managed by emergency units. Treatments aim to
decrease the frequency of the crisis (preventative treatments) for the
most severe cases or the pain during a given crisis.

Sleep disorders are sometimes managed by neurologists for some
diseases (like narcolepsy) or pneumologists (since sleep apneas are
among the most frequent cause of sleep impairment) or psychia-
trists (tackling insomnia, often associated with psychiatric comor-
bidities). A sleep recording called polysomnography is sometimes

4.1.9 Inflammatory and

Demyelinating Brain

4.1.10 Neurogenetic

Diseases

4.1.11 Neuromuscular

Disorders

4.2 Importance of a

Correct and Timely

required to assess the most complex problems. Physicians can
prescribe continuous positive airway pressure devices which keep
the airways opened during sleep.

The most emblematic of this group is multiple sclerosis in which
the autoimmune system turns against the individual, penetrates the

Clinical Assessment of Brain Disorders 249

Diseases blood–brain barrier, and attacks the myelin which allows the rapid
diffusion of the neuronal electric signal along the axons. This is one
of the most advanced fields of neurology regarding treatment.
Since the start of the twenty-first century, specific therapies pre-
venting the crossing of the blood–brain barrier of lymphocytes
revolutionized the management of multiple sclerosis [37].

Neurogenetic diseases are a group of rare diseases (like Hunting-
ton’s chorea) due to a genetic mutation. These diseases usually
follow a Mendelian mode of inheritance. They have the particular-
ity to be detectable (through genetic testing after a specific
counseling) which gives the opportunity to study them in their
premorbid phase (i.e., before the onset of typical symptoms in a
group of mutation carriers). Innovative gene therapies are actually
being developed in some of these neurogenetic conditions
[38]. Note that there also exist genetic forms of diseases which
are in majority sporadic (e.g., familial forms of Alzheimer’s disease).

These are diseases affecting the motor neurons such as amyotrophic
lateral sclerosis, the neuromuscular synapse like myasthenia, or
specifically the muscles in myopathies. To the exception of myas-
thenia, few treatment options exist in this particular field of
neurology.

Neurologists have a saying: “time is brain.” The correct and timely
identification of a neurological disease is indeed crucial to be able to

Diagnostic

Classification

mitigate and sometimes reverse the signs and symptoms. As such,
machine learning techniques may be very useful tools both in the
context of slow-paced diseases such as Alzheimer’s which are often
diagnosed quite late or not at all [39] and to optimize the patient
flow in emergency care, in case of stroke, for instance. This frame-
work is theoretical as in practice some diseases can interact to
induce symptoms. For instance, dementia is often of mixed origin,
due to the association of degenerative (Alzheimer’s disease) and
vascular alterations. A walking deficit can be due to Parkinson’s
disease but also in part to arthrosis, etc. The correct identification
of a disease is in part probabilistic, and this can lead to heterogene-
ity in the collected data from the clinical assessment.

250 Stéphane Epelbaum and Federica Cacciamani

5 Conclusion

Clinical assessment is central in neurology for the assessment of the
patient because it is the direct reflection of what he/she feels and
experiences. Indeed, according to regulatory agencies, a treatment
is deemed effective if it has an effect on the clinical expression of the
disease (e.g., on cognition, motor skills, sensitivity, autonomy, and
survival) and not on intermediate markers such as imaging, biology,
or others.

Machine learning is bringing clinical evaluation into a new era
because it allows to go beyond the intuitions of the individual
physician and could associate signs that were previously not seen
as part of a disease type or subtype. However, the researcher should
always remember that the best algorithm is only as good as the data
it runs on, which depends on the clinician’s understanding of how
and why these particular data are collected and will be used for. So,
for discovery, validation, and clinical implementation of new
machine learning techniques, basic knowledge of the possible dis-
crepancies and biases one may experience going from research
setting to clinical practice is paramount.

Acknowledgments

The research leading to these results has received funding from the
French government under management of Agence Nationale de la
Recherche as part of the “Investissements d’avenir” program, ref-
erence ANR-10-IAIHU-06 (Agence Nationale de la Recherche-
10-IA Institut Hospitalo-Universitaire-6).

References

1. Lage JMM (2006) 100 years of Alzheimer’s
disease (1906–2006). J Alzheimers Dis 9(s3):
15–26

2. McKhann G, Drachman D, Folstein M et al
(1984) Clinical diagnosis of Alzheimer’s dis-
ease: report of the NINCDS-ADRDA Work
Group under the auspices of Department of
Health and Human Services Task Force on
Alzheimer’s Disease. Neurology 34(7):
939–944. https://doi.org/10.1212/wnl.34.
7.939. [doi]

3. Ö hman F, Hassenstab J, Berron D et al (2021)
Current advances in digital cognitive assess-
ment for preclinical Alzheimer’s disease. Alz-
heimers Dement 13(1):e12217

4. Dillenseger A, Weidemann ML, Trentzsch K
et al (2021) Digital biomarkers in multiple
sclerosis. Brain Sci 11(11):1519

5. Rodrı́guez-Gómez O, Rodrigo A, Iradier F
et al (2019) The MOPEAD project: advancing
patient engagement for the detection of
"hidden" undiagnosed cases of Alzheimer’s
disease in the community. Alzheimers Dement
15(6):828–839

6. Daly T, Mastroleo I, Gorski D et al (2020) The
ethics of innovation for Alzheimer’s disease:
the risk of overstating evidence for metabolic
enhancement protocols. Theor Med Bioeth
41(5–6):223–237

7. Penfield W, Rasmussen T (1950) The cerebral
cortex of man; a clinical study of localization of
function. Macmillan

8. Tsai AC, Hong SY, Yao LH et al (2021) An
efficient context-aware screening system for
Alzheimer’s disease based on neuropsychology
test. Sci Rep 11(1):18570

Clinical Assessment of Brain Disorders 251

9. Cacciamani F, Houot M, Gagliardi G et al
(2021) Awareness of cognitive decline in
patients with Alzheimer’s disease: a systematic
review and meta-analysis. Front Aging
Neurosci 13

10. Folstein MF, Folstein SE, McHugh PR (1975)
"Mini-mental state". A practical method for
grading the cognitive state of patients for the
clinician. J Psychiatr Res 12(3):189–198.
https://doi.org/10.1016/0022-3956(75)
90026-6. [pii]

11. Ramaker C, Marinus J, Stiggelbout AM et al
(2022) Systematic evaluation of rating scales
for impairment and disability in Parkinson’s
disease. Mov Disord 17(5):867–876

12. Goetz CG, Tilley BC, Shaftman SR et al (2008)
Movement Disorder Society-sponsored revi-
sion of the Unified Parkinson’s Disease Rating
Scale (MDS-UPDRS): scale presentation and
clinimetric testing results. Mov Disord
23(15):2129–2170

13. Vallar G (2000) The methodological founda-
tions of human neuropsychology: studies in
brain-damaged patients. In: Boller F, Grafman
J (eds) Handbook of neuropsychology, 2nd
edn. Elsevier, Amsterdam, pp 459–502

14. Preston AR, Eichenbaum H (2013) Interplay
of hippocampus and prefrontal cortex in mem-
ory. Curr Biol 23(17):R764–R773

15. Indefrey P, Levelt WJM (2000) The neural
correlates of language production. In: Gazza-
niga MS (ed) Anonymous the new cognitive
neurosciences, 2nd edn. MIT Press, Cam-
bridge, MA, pp 845–865

16. Robinson H, Calamia M, Gl€ascher J et al
(2014) Neuroanatomical correlates of execu-
tive functions: a neuropsychological approach
using the EXAMINER battery. J Int Neurop-
sychol Soc 20(1):52–63

17. Goodale MA, Milner AD (1992) Separate
visual pathways for perception and action.
Trends Neurosci 15(1):20–25

18. Benton AL (1988) Neuropsychology: past,
present and future. In: Boller F, Grafman J
(eds) Anonymous handbook of neuropsychol-
ogy. Amsterdam, pp 3–27

19. Schmidt S, Pardo Y (2014) Normative data. In:
Michalos AC (ed) Encyclopedia of quality of
life and well-being research. Springer,
Dordrecht

20. Guilmette TJ, Sweet JJ, Hebben N et al (2020)
American Academy of Clinical Neuropsychol-
ogy consensus conference statement on
uniform labeling of performance test scores.
Clin Neuropsychol 34(3):437–453

21. Wechsler D (2008) Wechsler adult intelligence
scale—fourth edition administration and scor-
ing manual. Pearson, San Antonio, TX

22. Wechsler D (2003) The Wechsler intelligence
scale for children—fourth edition. Pearson,
London

23. Portney LG, Watkins MP (2009) Foundations
of clinical research: applications to practice.
Pearson Education, New Jersey

24. Anastasi A, Urbina S (1997) Psychological test-
ing. Prentice Hall, Pearson Education

25. Nunnally JC, Bernstein IH (1994) Psychomet-
ric theory. McGraw-Hill, New York

26. Cacciamani F, Salvadori N, Eusebi P et al
(2017) Evidence of practice effect in CANTAB
spatial working memory test in a cohort of
patients with mild cognitive impairment. Appl
Neuropsychol Adult 22:1–12. https://doi.
org/10.1080/23279095.2017.1286346

27. Hallgren KA (2012) Computing inter-rater
reliability for observational data: an overview
and tutorial. Tutor Quantit Methods Psychol
8(1):23–34

28. Messick S (1989) Validity. In: Linn RL
(ed) Educational measurement American
Council on education and Macmillan,
New York, NY, pp 13–104

29. Huber SJ, Shuttleworth EC, Paulson GW et al
(1986) Cortical vs subcortical dementia: neu-
ropsychological differences. Arch Neurol
43(4):392–394

30. Bonelli RM, Cummings JL (2007) Frontal-
subcortical circuitry and behavior. Dialogues
Clin Neurosci 9(2):141–151

31. Mayeux R, Stern Y (1987) Subcortical demen-
tia. Arch Neurol 44(2):129–131

32. Arevalo-Rodriguez I, Smailagic N, Roqué Fig-
uls M et al (2015) Mini-Mental State Examina-
tion (MMSE) for the detection of Alzheimer’s
disease and other dementias in people with
mild cognitive impairment (MCI). Cochrane
Database Syst Rev 3

33. Crum RM, Anthony JC, Bassett SS et al (1993)
Population-based norms for the Mini-Mental
State Examination by age and educational level.
JAMA 269(18):2386–2391

34. Meiran N, Stuss DT, Guzman DA et al (1996)
Diagnosis of dementia. Methods for interpre-
tation of scores of 5 neuropsychological tests.
Arch Neurol 53(10):1043–1054

35. Hopp GA, Dixon RA, Grut M et al (1997)
Longitudinal and psychometric profiles of two
cognitive status tests in very old adults. J Clin
Psychol 53(7):673–686

38.

Open Access This chapter is licensed under the term s of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4. 0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as y ou give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licens e and indicate if changes were made.

The images or other third party material in this chapt er are included in the chapter’s Creative Commons license,
unless indicated otherwise in a credit line to the mat erial. If material is not included in the chapter’s Creative
Commons license and your intended use is not permit ted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the c opyright holder.

252 Stéphane Epelbaum and Federica Cacciamani

36. Foreman MD (1987) Reliability and validity of
mental status questionnaires in elderly hospita-
lized patients. Nurs Res 36(4):216–220

37. Polman CH, Uitdehaag BM (2003) New and
emerging treatment options for multiple scle-
rosis. Lancet Neurol 2(9):563–566
Hinderer C, Miller R, Dyer C et al (2020)
Adeno-associated virus serotype 1-based gene

therapy for FTD caused by GRN mutations.
Ann Clin Transl Neurol 7(10):1843–1853

39. Epelbaum S, Paquet C, Hugon J et al (2019)
How many patients are eligible for disease-
modifying treatment in Alzheimer’s disease? A
French national observational study over
5 years. BMJ Open 9(6)

	Preface to the Series
	Preface
	Acknowledgements
	Abbreviations
	Contents
	Contributors
	Part I: Machine Learning Fundamentals
	Chapter 1: A Non-technical Introduction to Machine Learning
	1 Introduction
	2 A Bit of History
	3 Main Machine Learning Concepts
	Box 1: Definition of machine learning
	3.1 Types of Learning
	Box 2: Supervised, Unsupervised, and Reinforcement learning
	3.1.1 Supervised Learning
	3.1.2 Unsupervised Learning
	3.1.3 Reinforcement Learning
	3.1.4 Discussion

	3.2 Overview of the Learning Process
	3.3 Inputs and Features
	3.4 Illustration in a Simple Case

	4 Conclusion
	Box 3: Summary of main concepts
	References

	Chapter 2: Classic Machine Learning Methods
	1 Introduction
	Box 1: Main Classic ML Methods
	2 Notations
	3 Nearest Neighbor Methods
	3.1 Metrics
	3.2 Neighborhood
	3.3 Weights
	3.4 Neighbor Search

	4 Linear Regression
	Box 2: Linear Regression
	5 Logistic Regression
	Box 3: Logistic Regression
	6 Overfitting and Regularization
	7 Penalized Models
	7.1 Penalties
	7.1.1 2 Penalty
	7.1.2 1 Penalty
	7.1.3 Elastic-Net Penalty

	7.2 New Optimization Problem

	8 Support Vector Machine
	Box 4: Support Vector Machine
	8.1 Original Formulation
	8.2 General Formulation with Kernels

	9 Multiclass Classification
	9.1 Multinomial Logistic Regression
	9.2 One-vs-Rest
	9.3 One-vs-One
	9.4 Error Correcting Output Code

	10 Decision Functions with Normal Distributions
	10.1 Naive Bayes
	10.2 Linear Discriminant Analysis
	10.3 Quadratic Discriminant Analysis

	11 Tree-Based Methods
	11.1 Decision Tree
	11.2 Random Forest
	Box 5: Random Forest
	11.3 Extremely Randomized Trees

	12 Clustering
	12.1 k-means
	12.2 Gaussian Mixture Model

	13 Dimensionality Reduction
	13.1 Principal Component Analysis
	13.1.1 Full Decomposition
	13.1.2 Truncated Decomposition

	13.2 Linear Discriminant Analysis

	14 Kernel Methods
	14.1 Kernel Ridge Regression
	14.2 Kernel Principal Component Analysis

	15 Conclusion
	References

	Chapter 3: Deep Learning: Basics and Convolutional Neural Networks (CNNs)
	1 Introduction
	2 Deep Feedforward Networks
	2.1 Perceptrons
	2.2 Multilayer Perceptrons
	2.2.1 A Simple Multilayer Network
	2.2.2 Deep Neural Network

	2.3 Main Functions
	2.3.1 Linear Functions
	Box 1: Function Counting Theorem
	2.3.2 Non-linear Functions
	Hyperbolic Tangent Function (tanh)
	Sigmoid
	Rectified Linear Unit (ReLU)
	Swish
	Softmax

	2.3.3 Loss Functions
	Cross-Entropy Loss
	Mean Squared Error Loss

	3 Optimization of Deep Neural Networks
	3.1 Gradient Descent
	3.1.1 Stochastic Gradient Descent
	Box 2: Convergence of SGD Theorem

	3.2 Backpropagation
	3.3 Generalization and Overfitting
	3.4 State-of-the-Art Optimizers
	3.4.1 Stochastic Gradient Descent with Momentum
	3.4.2 AdaGrad
	3.4.3 RMSProp
	3.4.4 Adam
	3.4.5 Other Optimizers

	4 Convolutional Neural Networks
	4.1 The Convolution Operation
	4.2 Properties of the Convolution Operation
	4.3 Functions and Variants
	4.4 Receptive Field Calculation
	4.5 Classical Convolutional Neural Network Architectures

	5 Autoencoders
	6 Conclusion
	References

	Chapter 4: Recurrent Neural Networks (RNNs): Architectures, Training Tricks, and Introduction to Influential Research
	1 Introduction
	2 Popular RNN Architectures
	2.1 SimpleRNN
	2.1.1 Training Fundamentals
	2.1.2 SimpleRNN Architecture Variations Based on Parameter Sharing
	2.1.3 SimpleRNN Architecture Variations Based on Inputs and Outputs
	2.1.4 Challenges of Long-Term Dependencies in SimpleRNN

	2.2 Long Short-Term Memory (LSTM)
	2.3 Gated Recurrent Unit (GRU)
	2.3.1 Advantage of LSTM and GRU over SimpleRNN
	2.3.2 Differences Between LSTM and GRU

	2.4 Bidirectional RNN (BRNN)
	2.5 Deep RNN
	2.6 Encoder-Decoder
	2.7 Attention Models (Transformers)

	3 Tips and Tricks for RNN Training
	3.1 Skip Connection
	3.2 Leaky Units
	3.3 Clipping Gradients

	4 RNN Applications in Language Modeling
	4.1 Text Classification
	4.2 Text Summarization
	4.2.1 Extractive Text Summarization
	4.2.2 Abstractive Text Summarization

	4.3 Machine Translation
	4.4 Image-to-Text Translation
	4.5 ChatBot for Mental Health and Autism Spectrum Disorder

	5 Conclusion
	References

	Chapter 5: Generative Adversarial Networks and Other Generative Models
	1 Introduction
	2 Generative Models
	2.1 The Language of Generative Models: Distributions, Density Estimation, and Estimators
	2.1.1 Distributions
	Box 1: Probability Distributions: Terminology
	2.1.2 Density Estimation
	Box 2: Expectation Maximization-Example
	2.1.3 Estimators and the Expected Value
	2.1.4 Sampling from Distributions

	3 Generative Adversarial Networks
	3.1 Generative vs. Discriminative Models
	3.2 Before GANs: Variational Autoencoders
	3.2.1 From AE to VAE
	3.2.2 KL Divergence
	Box 3: Example: Calculating DKL
	3.2.3 Optimizing the KL Divergence
	3.2.4 The Limits of VAE

	3.3 The Fundamental GAN Approach
	3.4 Why Early GANs Were Hard to Train
	3.5 Improving GANs
	Box 4: Best Practices for Stable GAN Training
	3.6 Wasserstein GANs
	3.6.1 The Wasserstein (Earthmover) Distance
	3.6.2 Implementing WGANs
	Box 5: Spectral Normalization
	3.6.3 Example Application: Brain Abnormality Detection Using WGAN

	3.7 GAN Performance Metrics

	4 Selected GAN Architectures You Should Know
	4.1 Conditional GAN
	4.2 CycleGAN
	4.3 StyleGAN and Successor
	4.4 Stabilized GAN for Few-Shot Learning
	4.5 VQGAN

	5 Other Generative Models
	5.1 Diffusion and Score-Based Models
	5.2 Transformer-Based Generative Models

	References

	Chapter 6: Transformers and Visual Transformers
	1 Attention
	1.1 The History of Attention
	1.2 Definition of Attention
	1.3 Types of Attention
	1.3.1 Self-Attention
	1.3.2 Cross Attention

	1.4 Variation of Attention
	1.5 Properties of Attention

	2 Visual Transformers
	2.1 Basic Transformers
	2.1.1 Embedding
	2.1.2 Positional Encoding
	Sinusoidal Positional Encoding
	Learnable Positional Encoding
	Positional Embedding

	2.1.3 Encoder Block
	2.1.4 Decoder Block

	2.2 Advantages of Transformers
	2.3 Vision Transformer

	3 Improvements over the Vision Transformer
	3.1 Data Efficiency
	3.2 Computational Efficiency

	4 Vision Transformers for Tasks Other than Classification
	4.1 Object Detection with Transformers
	4.2 Image Segmentation with Transformers
	4.3 Training Transformers Without Labels
	4.4 Image Generation with Transformers and Attention

	5 Vision Transformers for Other Domains
	5.1 Multimodal Transformers: Vision and Language
	5.1.1 ViLBERT
	5.1.2 CLIP
	CLIP Architecture and Training

	5.1.3 DALL-E and DALL-E 2
	5.1.4 Flamingo

	5.2 Video Attention
	5.2.1 General Principle
	5.2.2 Full Space-Time Attention
	5.2.3 Divided Space-Time Attention
	5.2.4 Cross-Attention Bottlenecks
	5.2.5 Factorized Encoder

	5.3 Video Transformers
	5.3.1 TimeSformer
	5.3.2 ViViT

	5.4 Multimodal Video Transformers

	6 Conclusion
	References

	Part II: Data
	Chapter 7: Clinical Assessment of Brain Disorders
	1 Introduction
	1.1 What Is a Disease? Why Are Clinical Assessments Important?
	Box 1 Main Medical Definitions
	1.2 Peculiarities of Clinical Assessment of Brain Disorders

	2 The Neurological Examination
	2.1 General Information on the Neurological Examination
	2.2 Clinical Interview
	2.3 Evaluation of Cognition and Behavior
	2.4 Evaluation of Motor System
	Box 2 MDS-UPDRS Structures
	2.5 Evaluation of Sensitivity
	2.6 Other Evaluations
	2.7 Summary of the Neurological Evaluation

	3 Neuropsychological Assessment
	3.1 Generalities on Neuropsychological Assessment
	Box 3 Main Cognitive Functions
	3.2 Psychometric Properties of Neuropsychological Tests
	3.3 Realization of a Neuropsychological Assessment and Interpretation of Its Results
	3.4 The Example of a Cognitive Test: The Mini-Mental State Examination (MMSE)
	Box 4 MMSE Questions and Scoring System

	4 Clinical Examination by Pathology
	4.1 Diversity of Brain Disorders and Clinical Evaluation
	Box 5 Non-exhaustive List of the Main Neurological Diseases
	4.1.1 Neurodegenerative Disorders Affecting Mostly Cognition or Behavior
	4.1.2 Movement Disorders
	4.1.3 Epilepsy
	4.1.4 Stroke or Neurovascular Diseases
	4.1.5 Neuro-oncology
	4.1.6 Peripheral Nerve Diseases
	4.1.7 Headaches
	4.1.8 Sleep Disorders
	4.1.9 Inflammatory and Demyelinating Brain Diseases
	4.1.10 Neurogenetic Diseases
	4.1.11 Neuromuscular Disorders

	4.2 Importance of a Correct and Timely Diagnostic Classification

	5 Conclusion
	References

