LEARNING
pandas

Free unaffiliated eBook created from
Stack Overflow contributors.

Follow me on Facebook for more:

Mukesh Mithrakumar
https://www.facebook.com/adhiraiyan

monou
Typewriter
Follow me on Facebook for more:
 Mukesh Mithrakumar
https://www.facebook.com/adhiraiyan

Table of Contents

A OUL . . 1
Chapter 1: Getting started with pandas......................... 2
RIS . .. 2
Y] £ 2
= 1] 0] [T 3
INSEAllAtiON OF SEIUP.o et e e e e 3
INStall Via @NACONAA.ottt e e e 5
Hello WWOrId. ..ttt e e e e e 5
DS PIIVE SEALIS IS, . .. ettt e e e e 6
Chapter 2: Analysis: Bringing it all together and making decisions... 8
= 1] 0] [T 8
Quintile Analysis: with random data. 8
WAt IS @ faCHOr. . . ot e e e 8
Il ZatiON 8
pd.gcut - Create Quintile Buckets.................. 9
ANAlY SIS . 9
PlOt R EIUINS 9
Visualize Quintile Correlation with scatter_matrixX.............. e 10
Calculate and visualize Maximum Draw DOWN. ... e 11
CalCUIALE STALISTICS.ttt e 13
Chapter 3: Appending to DataFrame........... ... 15
o= 10] 0] (2 15
Appending a New row t0 DataFrame.o 15
Append a DataFrame to another DataFrame. it e e 16
Chapter 4: Boolean indexing of dataframes........................... 18
0T [o 1o o 18
B S . ..o 18
Accessing a DataFrame with a boolean iNndexX. ... e 18
Applying a boolean mask to adataframe. ... 19

Masking data based on column ValUe. o 19

Masking data based on iNdeX ValUe. e 20

Chapter 5: Categorical data..................... 21
o0 0T o o 21
EX APl . .. 21

(0] o] [=To1 03 (=T o] o 1R U 21
Creating large random datasets.ot e e 21

Chapter 6: Computational TOOIS. ... 23

G 1 11] o [TP 23
Find The Correlation Between COIUMNS. oo e 23

Chapter 7: Creating DataFrames. 24
I OdUCTION. . e 24
0 €= 0 1] 0] 5 24

Create a sample DataFrame. i 24
Create a sample DataFrame USiNg NUMDY ottt e 24
Create a sample DataFrame from multiple collections using Dictionary..................ccooiiiiiiiiiiiiiieai... 26
Create a DataFrame from a list Of tUplesS. o e 26
Create a DataFrame from a dictionary of liStS. ... e 26
Create a sample DataFrame with datetime. e 27
Create a sample DataFrame with MUItIINdeX.o e e 29
Save and Load a DataFrame in pickle (.plK) format. 29
Create a DataFrame from a list of diCtionaries.o e i 30

Chapter 8: Cross sections of different axes with Multiindex.. 31

B S . ..o 31
Selection Of CrOSS-SECHONS USING XS . ..\ttt ettt et et et e e e e e e e et 31
USING .10C @Nd SHICEIS. e e e 32

Chapter O: Data TYPESo 34
RIS . 34
€= 0 1]] 5 34

Checking the types Of COIUMNS o e e e e e e e e 35
CaNGING Y PES. . ..ot e 35
Changing the type t0 NUMEKIC. e 36

Changing the type to datetime. 37

Changing the type to timedelta. o 37

Selecting columns bBased ON Aty PE.o 37
SUMMI AN ZING O Y DS . . . ettt ettt e e e e e e e e e e e 38
Chapter 10: Dealing with categorical variables........................... 39
e 1111 o [T 39
One-hot encoding with “get_ dummIes() e e e e 39
Chapter 11: Duplicated data...................o 40
G 1 11] o [TP 40
SeleCt AUPIICALEA. e e e 40
Drop dUpliCatEU. e 40
Counting and getting UNIQUE ElemMENtSo . e e 41

Get unique values from a COIUMN. e e e e 42
Chapter 12: Getting information about DataFrames..............................ooiiii 44
o= 10] 0] (2 44
Get DataFrame information and MEMOIY USBQEottt ettt et 44

List DataFrame COIUMN NAMES. oot e 44
Dataframe's various summary StatiStiCS. e 45
Chapter 13: Gotchas of pandas. 46
RIS . . 46
e 1111 o [TP 46
Detecting missing values With NP.NAN. e e 46
INtEgEr AN N A . e 46
Automatic Data Alignment (index-awared behaviour). ... 47
Chapter 14: Graphs and Visualizations....................... 48
o= 10] 0] (= 48
BasiC Data Grapis. 48
SYliNG the PlOt.o 49
Plot on an existing matplotlib aXiS. 50
Chapter 15: Grouping Data. 51
EX APl . .. 51
BaSIC GrOUPING . ..ottt ettt e 51

GroUp BY ONE COIUMIN . .. e e e e e e e e e e e e e 51

Group by MUItIPIE COIUMNS e e e e e e e e e 51

GrOUPING NMUMIDEIS . ..ottt e e e e e e e e e e e e e e e e e e 52
Column Selection Of @ QrOUP et 53
Aggregating by Size VEIsUS DY COUNL. e e e 54

Yo o] (=To = 1iTaTo I (o 10 o =T 54
Export groups in different filles. 55
using transform to get group-level statistics while preserving the original dataframe............................... 55
Chapter 16: Grouping Time Series Data. ... 57
= 1 4] 0] (= 57
Generate time series of random numbers then down sample. i 57
Chapter 17: Holiday Calendars. 59
= 1] 0] (= 59
Create @ CUSIOM CAlENUAr. ot e 59
USE @ CUSIOM CAlBNUA.ttt ettt 59
Get the holidays betweentwo dates................... 59
Count the number of working days betweentwo dates........................... 60
Chapter 18: Indexing and selecting data........................ 61
EX APl . .. 61
Select column By label. 61
SelECt DY POSIION. .. 61
SlCING WIth TabDEIS . . . 62
Mixed position and label based selection. 63

(2 ToTo] (Y= T TNT o [= (T T 64
Filtering columns (selecting "interesting", dropping unneeded, using RegEX, etC.)..............oooiiiiiiiiii.l 65
generate sample DF 65
show columns containing letter "a'. ... 65
show columns using RegEX filter (b|c|d) -borcord:................... 65
show all columns except those beginning with a (in other word remove / drop all columns sa.....66
Filtering / selecting rows using “.query() method. ... 66
generate random D 66

select rows where values in column A>2 and valuesincolumn B <5.......... . 66

using .query() method with variables for filtering............ 67

Path Dependent SICING.oon e et e e e e e e 67

Get the first/last n rows of @ dataframe.o 69
Select distinCt rows across dataffame.o 70
Filter out rows with missing data (NaN, NONne, NaT). ... e 71
Chapter 19: 10 for Google BigQUEIY 73
E XM S . ..o 73
Reading data from BigQuery with user account credentials. 73
Reading data from BigQuery with service account credentials. o 74
Chapter 20: JSON ... 75
B S . ..o 75
REAT TS ON . .. 75
can either pass string of the json, or a filepath to a file with valid json.................................. 75
Dataframe into nested JSON as in flare.js filesused in D3.jS............... i 75
Read JSON from file.o 76
Chapter 21: Making Pandas Play Nice With Native Python Datatypes................................... 77
E XM S . ..o 77
Moving Data Out of Pandas Into Native Python and Numpy Data Structures....................ccooviiiiiiinn.... 77
Chapter 22: Map ValUBS i 79
REMIAIKS . . 79
= 10] o] (S 79
MaP frOM DICHIONAIYottt ettt e e e e e 79
Chapter 23: Merge, join, and concatenate................. ..o 80
11 3 U 80

P A A B S . 80
= 1] 0] (= 81
75T o = 81
Merging twWo Dat@Frameso 82
N JOIN: . 82
U JOIN . 83

RIGNE JOIN . .. 83

Merging / concatenating / joining multiple data frames (horizontally and vertically).......................... 83
Merge, JOIN and CONCAL. ... 84
What is the difference between join and merge. ... 85
Chapter 24: Meta: Documentation Guidelines........................ 88
RIS . .o 88
= 11] 0] [88
Showing code SNIPPELS and OULPUL. e et ettt 88

£S] 1 = 89
Pandas VEISION SUPPOIT.ttt et e et e e e e e e 89
LIS = (=T 41T | £ O 89
Prefer supporting python 2 and S:. 89
Chapter 25: Missing Data. 90
RIS . ..o 90

E XAl . .. 90
FilliNg MISSING VAIUBS ettt e e e e e e e 90

Fill missing values with a single value:. e 90
Fill missing values with the previous ONesS:. i e 90
Fill With the NeXt ONeS: o 90
Fill using another DataFrame:o e 91
Dropping MISSING VAIUEBSttt e e e e e e e e 91
Drop rows if at least one column hasamissing value.................. . i 91
Drop rows if all values in that row are miSSiNg.............vuiiiii e, 92
Drop columns that don't have at least 3 non-missing values..................... i 92

T a1 0=Tg o T] F= o] o [92
Checking for MiSSiNg ValUES.o e e e e 92
Chapter 26: MUItIINAEX. 94
= 10] 0] (= T 94
Select from MultiindeX DY LeVel. o e 94
Iterate over DataFrame with MUltIINAeX. e 95
Setting and sorting a MUIIINAEX. e e e e e e e e e e 96

How to change Multilndex columns to standard COlUMNS. i e 98

How to change standard columns to MUltIINAEX. o e 98

MUIIINAEX COIUMNS . .. et 98
Displaying all elements in the INAeX. ... o e e 99
Chapter 27: Pandas Datareader. 100
REMIAIKS . . 100
= 1] 0] [J 100
Datareader basic example (Yahoo FINANCE)t e 100
Reading financial data (for multiple tickers) into pandas panel - demo...............c. i, 101
Chapter 28: Pandas IO tools (reading and saving datasets)... 103
REMIAIKS . .. 103
= 1] 0] [T 103
Reading csv file INto DataFrame. 103
Bl 103
CO0B . 103
UL DU . e 103
SOME USETUl argUM NS e 103
BasiC saving t0 @ CSV file.o 105
Parsing dates when reading from CSV.t e e e e 105
Spreadsheet to dict Of DataFrames. o e 105
Read a SpeCifiC SNEEL. 105
QLI 1o T == T [Y 105

LISt COMPIENENSION. . ..ttt e e e e e e e e e e 106
Read IN ChUNKS. ..o e 107
SaAVE 10 OOV Il oo 107
Parsing date columns With rea0_CSV.o e e 108
Read & merge multiple CSV files (with the same structure) intoone DF...... i, 108
Reading cvs file into a pandas data frame when thereisnoheaderrow....................ooiiiiiiiiiiiii... 108
USING HD S Oottt e e e e e e e e e e 109
generate sample DF with various dtypes........... ... 109
make a bigger DF (10 * 100.000 = 1.000.000 rOWS)c.oomimmiri i 109
create (or open existing) HDFStore file.................. 110

ShOW HDFStOre etailS e 110

show indexed COIUMNSo 110
close (flush to disk) our store file................. 111
Read Nginx access log (multiple qUOLEChArS)....... ... e 111
Chapter 29: pd.DataFrame.applyo 112
B S . ..o 112
pandas.DataFrame.apply BasiC USAQe.iiniiii e e 112
Chapter 30: Read MySQL to DataFrame.................... 114
B S . ..o 114
Using sglalchemy and PyMy SO L. e e e e e e e e 114

To read mysql to dataframe, In case of large amountofdata................. ... i 114
Chapter 31: Read SQL Serverto Dataframe... .. 115
= 1011 5 115
USING PYOADC. . ..o 115
Using pyodbc with CONNECLION 100D e e e e 115
Chapter 32: Reading files into pandas DataFrame.........................oooiiiii 117
B AL S . .. 117
Read table iNto DataFrame. o 117
Table file with header, footer, row names, and index CoOlUMN:ot 117
Table file without row NAMES OF INAEX:. e 117
Read GOV File. .. e e e e e e 118
Data with header, separated by semicolons instead of commas............................. i, 118
Table without row names or index and commas as Separators...............oooiiiiiiiiiinenns. 118
Collect google spreadsheet data into pandas dataframe............... i 119
Chapter 33: Resampling...... ... 120
E XM S . .o 120
Downsampling and UpSampPling 120
Chapter 34: Reshaping and pivoting............. ... 122
= 1] 0] [J 122
SIMPIE PIVOTING. . o e 122

Pivoting With @ggregating.t et 123

Stacking and UNSTaCKING e e e 126

Cross TabUIBLION. e e 127
Pandas melt to go from wide t0 IoNg. oo 129
Split (reshape) CSV strings in columns into multiple rows, having one element perrow......................... 130
Chapter 35: Save pandas dataframe toacsvfile................................ . 132
P Al A OIS, . .. 132
= 1] 0] [J 133
Create random DataFrame and WHEE t0 .CSV.ottt e e 133
Save Pandas DataFrame from list to dicts to csv with no index and with data encoding......................... 134
ChaPter 36: SIS 136
= 1] 0] 1 T 136
Simple Series Creation EXamMPIES. e 136
Series WIth datelime. . ..o 136

A few quick tips about SEriesS iN Pandas. ..o 137
APPIYING @ FUNCLION 10 @ SBIES. ... o e e e e e e e 139
Chapter 37: Shifting and Lagging Data. ... 141
= 1] 0] [141
Shifting or lagging values in a dataframe. 141
Chapter 38: Simple manipulation of DataFrames.......................... 142
= 1] 0] [J 142
Delete a column in a DataFrame. o 142
ReENAME @ COIUMNttt e e e e e 143
AddiNg @ NEW COIUMN ettt e et et e e e e e 144
DIrECHY @SS gN oo 144
Add @ CONSEANT COIUMN . ..o e e 144
Column as an expression in other COIUMNS. ... e 144
Create it On the fly.o o 145
add MUIIPIe COIUMNS e 145
add multiple columns on the fly. ... 145
Locate and replace data in @ COIUMN. o e e e e e 146
Adding @ New row t0 DataFrame. o e 146

Delete / drop rows from DataFrame. o e 147

REOIAEr COIUMNS . .. 148

Chapter 39: String manipulation................... 149
B S . ..o 149
REGUIA EXPIESSIONSttt et et 149

Y [Te] o T3 (1o T 149
Checking for contents of @ StriNg. e e e 151
Capitalization Of StNGS. o e 151
Chapter 40: Using .ix, .iloc, .loc, .at and .iat to access a DataFrame................................... 154
= 1] 0] [T 154
USING Ll0C . . o 154
USING OC. . o e 155
Chapter 41: Working with Time Series. ..., 157
B S . ..o 157
Creating TiME SISttt ettt e e e et e e e e e 157
Partial StriNG INAEXING.ottt ettt e e e e e 157
Getting Data.o 157
SUD SO I 157

(04 (=7 [(- 159

C_hapter 1. Getting started with pandas

Remarks

Pandas is a Python package providing fast, flexible, and expressive data structures designed to
make working with “relational” or “labeled” data both easy and intuitive. It aims to be the
fundamental high-level building block for doing practical, real world data analysis in Python.

The official Pandas documentation can be found here.

Versions

Pandas

Version | Release Date

0.19.1 2016-11-03
0.19.0 2016-10-02
0.18.1 2016-05-03
0.18.0 2016-03-13
0.17.1 2015-11-21
0.17.0 2015-10-09
0.16.2 2015-06-12
0.16.1 2015-05-11
0.16.0 2015-03-22
0.15.2 2014-12-12
0.15.1 2014-11-09
0.15.0 2014-10-18
0.14.1 2014-07-11
0.14.0 2014-05-31
0.13.1 2014-02-03

0.13.0 2014-01-03

https://riptutorial.com/

Version | Release Date

0.12.0 2013-07-23

Examples

Installation or Setup

Detailed instructions on getting pandas set up or installed can be found here in the official
documentation.

Installing pandas with Anaconda

Installing pandas and the rest of the NumPy and SciPy stack can be a little difficult for
inexperienced users.

The simplest way to install not only pandas, but Python and the most popular packages that make
up the SciPy stack (IPython, NumPy, Matplotlib, ...) is with Anaconda, a cross-platform (Linux,
Mac OS X, Windows) Python distribution for data analytics and scientific computing.

After running a simple installer, the user will have access to pandas and the rest of the SciPy stack
without needing to install anything else, and without needing to wait for any software to be
compiled.

Installation instructions for Anaconda can be found here.
A full list of the packages available as part of the Anaconda distribution can be found here.

An additional advantage of installing with Anaconda is that you don’t require admin rights to install
it, it will install in the user's home directory, and this also makes it trivial to delete Anaconda at a
later date (just delete that folder).

Installing pandas with Miniconda

The previous section outlined how to get pandas installed as part of the Anaconda distribution.
However this approach means you will install well over one hundred packages and involves
downloading the installer which is a few hundred megabytes in size.

If you want to have more control on which packages, or have a limited internet bandwidth, then
installing pandas with Miniconda may be a better solution.

Conda is the package manager that the Anaconda distribution is built upon. It is a package
manager that is both cross-platform and language agnostic (it can play a similar role to a pip and
virtualenv combination).

Miniconda allows you to create a minimal self contained Python installation, and then use the
Conda command to install additional packages.

First you will need Conda to be installed and downloading and running the Miniconda will do this

https://riptutorial.com/ 3

for you. The installer can be found here.

The next step is to create a new conda environment (these are analogous to a virtualenv but they
also allow you to specify precisely which Python version to install also). Run the following
commands from a terminal window:

conda create —n name_of_my_env python

This will create a minimal environment with only Python installed in it. To put your self inside this
environment run:

source activate name_of_my_env

On Windows the command is:

activate name_of_my_env

The final step required is to install pandas. This can be done with the following command:

conda install pandas

To install a specific pandas version:

conda install pandas=0.13.1

To install other packages, IPython for example:

conda install ipython

To install the full Anaconda distribution:

conda install anaconda

If you require any packages that are available to pip but not conda, simply install pip, and use pip
to install these packages:

conda install pip
pip install django

Usually, you would install pandas with one of packet managers.
pip example:
pip install pandas

This will likely require the installation of a number of dependencies, including NumPy, will require a
compiler to compile required bits of code, and can take a few minutes to complete.

https://riptutorial.com/ 4

Install via anaconda

First download anaconda from the Continuum site. Either via the graphical installer
(Windows/OSX) or running a shell script (OSX/Linux). This includes pandas!

If you don't want the 150 packages conveniently bundled in anaconda, you can install miniconda.
Either via the graphical installer (Windows) or shell script (OSX/Linux).

Install pandas on miniconda using:

conda install pandas

To update pandas to the latest version in anaconda or miniconda use:

conda update pandas

Hello World

Once Pandas has been installed, you can check if it is is working properly by creating a dataset of
randomly distributed values and plotting its histogram.

import pandas as pd # This is always assumed but is included here as an introduction.
import numpy as np
import matplotlib.pyplot as plt

np.random. seed (0)

values = np.random.randn (100) # array of normally distributed random numbers

s = pd.Series(values) # generate a pandas series

s.plot (kind='hist', title='Normally distributed random values') # hist computes distribution
plt.show ()

https://riptutorial.com/

18 T

Normally distributed random values

16

14

e -
[=] I

Frequency
[ue]

Check some of the data's statistics (mean, standard deviation, etc.)

s.describe ()

Output: count 100.000000
mean 0.059808

std 1.012960

min -2.552990

25% -0.643857

50% 0.094096

75% 0.737077

max 2.269755

dtype: floatb64

Descriptive statistics

Descriptive statistics (mean, standard deviation, number of observations, minimum, maximum,
and quartiles) of numerical columns can be calculated using the .describe () method, which returns
a pandas dataframe of descriptive statistics.

In [1]: df = pd.DataFrame ({'A':

'B':
'C':
In [2]: df
Oout [2]
A B C
0 1 12 a

tx, 2, 1, 4, 3, 5, 2, 3, 4, 11,
(12, 14, 11, 16, 18, 18, 22, 13, 21, 17],
[‘a‘l vav, ‘b‘l vav, ‘b‘l 'C', ‘b‘l vav, ‘b‘l vav]})

https://riptutorial.com/

1 2 14 a
2 1 11 Db
3 4 16 a
4 3 18 b
5 5 18 ¢
6 2 22 b
7 3 13 a
8 4 21 D
9 1 17 a

In [3]: df.describe ()

Out [3]:

A B
count 10.000000 10.000000
mean 2.600000 16.200000
std 1.429841 3.705851
min 1.000000 11.000000
25% 1.250000 13.250000
50% 2.500000 16.500000
75% 3.750000 18.000000
max 5.000000 22.000000

Note that since c is not a numerical column, it is excluded from the output.

In [4]: dAf['C'].describe ()

Out[4]:

count 10
unique 3
freq 5

Name: C, dtype: object

In this case the method summarizes categorical data by number of observations, number of
unique elements, mode, and frequency of the mode.

Read Getting started with pandas online: https://riptutorial.com/pandas/topic/796/getting-started-
with-pandas

https://riptutorial.com/

C_hapter 2. Analysis: Bringing it all together
and making decisions

Examples

Quintile Analysis: with random data

Quintile analysis is a common framework for evaluating the efficacy of security factors.

What is a factor

A factor is a method for scoring/ranking sets of securities. For a particular point in time and for a
particular set of securities, a factor can be represented as a pandas series where the index is an
array of the security identifiers and the values are the scores or ranks.

If we take factor scores over time, we can, at each point in time, split the set of securities into 5
equal buckets, or quintiles, based on the order of the factor scores. There is nothing particularly
sacred about the number 5. We could have used 3 or 10. But we use 5 often. Finally, we track the
performance of each of the five buckets to determine if there is a meaningful difference in the
returns. We tend to focus more intently on the difference in returns of the bucket with the highest
rank relative to that of the lowest rank.

Let's start by setting some parameters and generating random data.

To facilitate the experimentation with the mechanics, we provide simple code to create random
data to give us an idea how this works.

Random Data Includes

* Returns: generate random returns for specified number of securities and periods.

» Signals: generate random signals for specified number of securities and periods and with
prescribed level of correlation with Returns. In order for a factor to be useful, there must be
some information or correlation between the scores/ranks and subsequent returns. If there
weren't correlation, we would see it. That would be a good exercise for the reader, duplicate
this analysis with random data generated with o correlation.

Initialization

import pandas as pd
import numpy as np

num_securities = 1000
num_periods = 1000
period_frequency = 'W'

https://riptutorial.com/

start_date = '2000-12-31"
np.random.seed ([3,1415])

means = [0, 0]
covariance = [[1., 5e-3],
[5e-3, 1.11

generates to sets of data m[0] and m[1l] with ~0.005 correlation
m = np.random.multivariate_normal (means, covariance,
(num_periods, num_securities)).T

Let's now generate a time series index and an index representing security ids. Then use them to
create dataframes for returns and signals

ids = pd.Index(['s{:05d}"'.format (s) for s in range (num_securities)], 'ID')
tidx = pd.date_range (start=start_date, periods=num_periods, freg=period_frequency)

| divide m{071 by 25 to scale down to something that looks like stock returns. | also add 1e-7 to give a
modest positive mean return.

pd.DataFrame (m[0] / 25 + le-7, tidx, ids)
security_signals = pd.DataFrame(m[1l], tidx, ids)

security_returns

< - Cleate Quintile Buckets

Let's use pd.qcut to divide my signals into quintile buckets for each period.

def gcut (s, g=5):
labels = ['g{}'.format (i) for i in range (1, 6)]
return pd.gcut (s, g, labels=labels)

cut = security_signals.stack () .groupby (level=0) .apply (gcut)

Use these cuts as an index on our returns

returns_cut = security_returns.stack () .rename ('returns') \
.to_frame () .set_index (cut, append=True) \
.swaplevel (2, 1).sort_index () .squeeze () \

.groupby (level=[0, 1]).mean().unstack()

malysis

Plot Returns

import matplotlib.pyplot as plt

fig = plt.figure(figsize=(15, 5))

https://riptutorial.com/ 9

axl = plt.subplot2grid((1,3), (0,0))
plt.subplot2grid((1,3), (0,1))
plt.subplot2grid((1,3), (0,2))

ax2

ax3

Cumulative Returns
returns_cut.add (1) .cumprod () \
.plot (colormap="'Jjet', ax=axl, title="Cumulative Returns")
legl = axl.legend(loc='upper left', ncol=2, prop={'size': 10}, fancybox=True)
legl.get_frame () .set_alpha(.8)

Rolling 50 Week Return
returns_cut.add (1) .rolling(50) .apply (lambda x: x.prod()) \
.plot (colormap="Jjet', ax=ax2, title="Rolling 50 Week Return")
leg2 = ax2.legend(loc='upper left', ncol=2, prop={'size': 10}, fancybox=True)
leg2.get_frame () .set_alpha(.8)

Return Distribution
returns_cut.plot.box (vert=False, ax=ax3, title="Return Distribution")

fig.autofmt_xdate ()

plt.show ()
13 Cumulative Returns 108 Rolling 50 Week Return
12 106 |

104
11

102
10

100
0.9 '

098
R

096 [
0.7 094 |
06 092

_El-aﬁl 'il-aﬁh 'E‘_i'&ﬁrﬂ _Egﬁ_ﬁ _Eg-\ﬂ _El-a-{l .il_a"l.h' 'El_al"l'% ‘g'_;'.'l""% _Eg-ﬁ!l _Egﬁl 'i'g-"ﬁh 'E‘_i'&ﬁrﬂ 'E]-aﬁﬁ _ngﬂ _El-a-{l .il_a"l.h' 'f_i'.‘:""rﬂ -E‘_E;‘"E‘ _Eg-ﬁ!l

Visualize Quintile Correlation With scatter matrix

from pandas.tools.plotting import scatter_matrix

scatter_matrix (returns_cut, alpha=0.5, figsize=(8, 8), diagonal='hist')
plt.show ()

https://riptutorial.com/

Return Dis
t---

+ ===

+ - — = — -

i+ - - = -

—

“hg\q p‘:}% ‘CI‘

10

0.006
0.004
0002

oo

= 4002
£.004
4,006
4.008

0003

= 0.000
-0.003

—-0.010

0003

0.0040

-0.003

—-0.010

0003
00040
E.—UDDS
—=0.010

0003
g 0000

—0.003

Calculate and visualize Maximum Draw Down

def max_dd(returns) :
"""returns is a series"""
r = returns.add(l) .cumprod/()
dd = r.div(r.cummax()) .sub (1)
mdd = dd.min ()
end = dd.argmin ()
start = r.loc[:end].argmax()
return mdd, start, end

def max_dd_df (returns) :
"""returns is a dataframe"""

series = lambda x: pd.Series(x, ['Draw Down',
return returns.apply (max_dd) .apply (series)

What does this look like

max_dd_df (returns_cut)

'Start’',

'End'])

https://riptutorial.com/

11

Draw Down | Start End
q1|-0.333527 |2001-01-07 |2020-02-16
q2|-0.092658 |2007-06-10 [2019-04-14
g3 |-0.089682 |2017-06-11 [2019-07-21
q4 | -0.058225 |2003-03-16 | 2008-03-30
q5|-0.046822 |2002-01-20 |2003-07-06

Let's plot it

draw_downs = max_dd_df (returns_cut)

fig, axes = plt.subplots(5, 1, figsize=(10, 8))

for i, ax in enumerate (axes[::-1]):
returns_cut.iloc[:, i].add(l).cumprod() .plot (ax=ax)
sd, ed = draw_downs[['Start', 'End']].iloc[i]
ax.axvspan(sd, ed, alpha=0.1, color='r'")
ax.set_ylabel (returns_cut.columns[i])

fig.suptitle ('Maximum Draw Down', fontsize=18)
fig.tight_layout ()
plt.subplots_adjust (top=.95)

https://riptutorial.com/

Maximum Draw Down

2002 2004 2006 2008 2010 2012

102

100
098
rl\:‘I'I}I'EIL::
094

=
[1=]
)

ql
ooooo oo
il =l on 0 o
LA L copnica L

2002 2004 2006 2008 2010 2012

Calculate Statistics

There are many potential statistics we can include. Below are just a few, but demonstrate how

simply we can incorporate new statistics into our summary.

def frequency_of_time_series (df):

start,
delta
return

end = df.index.min (), df.index.max ()
end - start
round ((len(df) - 1.) * 365.25 / delta.days, 2)

def annualized_return (df) :

freqg =
return

frequency_of_time_series (df)
df.add (1) .prod() ** (1 / freq) - 1

def annualized_volatility(df):

freqg =
return

def sharpe_

return

frequency_of_time_series (df)
df .std () .mul (freg ** .5)

ratio (df) :
annualized_return(df) / annualized_volatility (df)

def describe (df) :

2014

2016

2018

https://riptutorial.com/

13

r = annualized_return(df) .rename ('Return')

v annualized_volatility (df) .rename ('Volatility'")
s = sharpe_ratio (df) .rename ('Sharpe')

skew = df.skew().rename ('Skew')

kurt

desc

df .kurt () .rename ('Kurtosis')
df .describe () .T

return pd.concat ([r, v, s, skew, kurt, desc], axis=1l).T.drop('count')

We'll end up using just the descrive function as it pulls all the others together.

describe (returns_cut)

q1 q2 q3 q4 q5
Return |-0.007609 |-0.001375|0.001067 |0.002821 |0.003687
Volatility | 0.019584 |0.020445 |0.020629 |0.021185 |0.020172
Sharpe |-0.388525|-0.067278 |0.051709 |0.133176 |0.182792
Skew 0.040430 |-0.085828 |-0.078071 |-0.067522 | 0.005652
Kurtosis | -0.174206 | 0.203038 |0.026385 |0.370249 |-0.160678
mean -0.000395 | -0.000068 | 0.000060 |0.000151 |0.000196
std 0.002711 |0.002830 |0.002856 |0.002933 |0.002792
min -0.008608 | -0.009614 | -0.009845 | -0.014037 | -0.007913
25% -0.002196 | -0.002018 | -0.001956 | -0.001833 | -0.001694
50% -0.000434 | 0.000065 |0.000210 |0.000029 |0.000146
75% 0.001444 [0.001768 (0.001989 |0.002107 |0.002081
max 0.007070 |0.008432 (0.008100 |0.008687 |0.007791

This is not meant to be comprehensive. It's meant to bring many of pandas' features together and
demonstrate how you can use it to help answer questions important to you. This is a subset of the

types of metrics | use to evaluate the efficacy of quantitative factors.

Read Analysis: Bringing it all together and making decisions online:
https://riptutorial.com/pandas/topic/5238/analysis--bringing-it-all-together-and-making-decisions

https://riptutorial.com/ 14

C_hapter 3: Appending to DataFrame

Examples
Appending a new row to DataFrame

In [1]: import pandas as pd

In [2]: df = pd.DataFrame(columns = ['A', 'B', 'C'])
In [3]: df
Out [3]:

Empty DataFrame
Columns: [A, B, C]
Index: []

Appending a row by a single column value:

In [4]: df.loc[0O, 'A'] =1
In [5]: df
Out [5]
A B C
0 1 NaN NaN

Appending a row, given list of values:

In [6]: df.loc[l] = [2, 3, 4]
In [7]: df
Out [7]
A B C
0 1 NaN NaN
1 2 3 4

Appending a row given a dictionary:

In [8]: df.loc[2] = {'A': 3, 'C': 9, 'B': 9}
In [9]: df
Oout [9]
A B @
0 1 NaN NaN
1 2 3 4
2 3 9 9

The first input in .loc(] is the index. If you use an existing index, you will overwrite the values in that
row:

In [17]: df.loc[l] = [5, 6, 7]

https://riptutorial.com/ 15

In [18]: df
Out[18]:

A B C
0 1 NaN NaN
1 5 6 7
2 3 9 9
In [19]: df.loc[0, 'B'] = 8
In [20]: df
Oout [20]

A B C
0 1 8 NaN
1 5 6 7
2 3 9 9

Append a DataFrame to another DataFrame
Let us assume we have the following two DataFrames:

In [7]: dfl
Out[7]:

0 al bl
1 a2z b2

In [8]: df2
Out[8]:

The two DataFrames are not required to have the same set of columns. The append method does
not change either of the original DataFrames. Instead, it returns a new DataFrame by appending
the original two. Appending a DataFrame to another one is quite simple:

In [9]: dfl.append(df2)
Out[9]:
A B C
0 al Dbl NaN
a2 b2 NaN
0 NaN Dbl cl

As you can see, it is possible to have duplicate indices (0 in this example). To avoid this issue, you
may ask Pandas to reindex the new DataFrame for you:

In [10]: dfl.append(df2, ignore_index = True)
Out[107]:
B C
al bl NaN
1 az b2 NaN
2 NaN Dbl cl

Read Appending to DataFrame online: https://riptutorial.com/pandas/topic/6456/appending-to-

https://riptutorial.com/ 16

dataframe

https://riptutorial.com/

17

C_hapter 4: Boolean indexing of dataframes

Introduction

Accessing rows in a dataframe using the DataFrame indexer objects .ix, .10c, .i10oc and how it
differentiates itself from using a boolean mask.

Examples

Accessing a DataFrame with a boolean index

This will be our example data frame:

df = pd.DataFrame({"color": ['red', 'blue', 'red', 'blue'l},
index=[True, False, True, False])
color
True red
False Dblue
True red

False blue

Accessing with .10c

df.loc[True]

color
True red
True red

Accessing with .i10c

df.iloc[True]
>> TypeError

df.iloc[1]
color blue
dtype: object

Important to note is that older pandas versions did not distinguish between boolean
and integer input, thus .i1ocTrue] Would return the same as .iloc(1]

Accessing with .ix

df.ix[True]

color
True red
True red

df.ix[1]
color blue

https://riptutorial.com/

18

dtype: object

As you can see, .1ix has two behaviors. This is very bad practice in code and thus it should be
avoided. Please use .i1oc Or .10c t0o be more explicit.

Applying a boolean mask to a dataframe

This will be our example data frame:

color name size
0 red rose big
1 blue violet big
2 red tulip small
3 blue harebell small

Using the magic __getitem _ OF [] accessor. Giving it a list of True and False of the same length as
the dataframe will give you:

df [[True, False, True, False]]
color name size

0 red rose big

2 red tulip small

Masking data based on column value

This will be our example data frame:

color name size
0 red rose big
1 blue violet small
2 red tulip small
3 Dblue harebell small

Accessing a single column from a data frame, we can use a simple comparison == to compare
every element in the column to the given variable, producing a pd.series Of True and False

df['size'] == 'small'
0 False
1 True
2 True
3 True

Name: size, dtype: bool

This pd.series IS an extension of an np.array Which is an extension of a simple 1ist, Thus we can
hand this to the __getitem__Or (] accessor as in the above example.

size_small_mask = df['size'] == 'small'
df [size_small_mask]
color name size
1 blue violet small
red tulip small

https://riptutorial.com/ 19

3 Dblue harebell small

Masking data based on index value

This will be our example data frame:

color size
name
rose red big
violet blue small
tulip red small

harebell blue small

We can create a mask based on the index values, just like on a column value.

rose_mask = df.index == 'rose'
df [rose_mask]
color size
name
rose red big

But doing this is almost the same as

df.loc['rose']

color red

size big

Name: rose, dtype: object

The important difference being, when .10c only encounters one row in the index that matches, it
will return a pd.series, if it encounters more rows that matches, it will return a pd.patarrame. This
makes this method rather unstable.

This behavior can be controlled by giving the .10c a list of a single entry. This will force it to return
a data frame.

df.loc[['rose']]
color size

name

rose red big

Read Boolean indexing of dataframes online: https://riptutorial.com/pandas/topic/9589/boolean-
indexing-of-dataframes

https://riptutorial.com/ 20

C_hapter 5. Categorical data

Introduction
Categoricals are a pandas data type, which correspond to categorical variables in statistics: a
variable, which can take on only a limited, and usually fixed, number of possible values

(categories; levels in R). Examples are gender, social class, blood types, country affiliations,
observation time or ratings via Likert scales. Source: Pandas Docs

Examples
Object Creation

In [188]: s = pd.Series(["a","b","c","a","c"], dtype="category")

In [189]: s

Out[189]:

0 a

1

2 c

3 a

4 c

dtype: category

Categories (3, object): [a, b, c]

In [190]: df = pd.DataFrame ({"A":["a","b","c","a", "c"1})

In [191]: df["B"]

df ["A"] .astype ('category')

In [192]: df["C"] = pd.Categorical (df["A"])

193]: df

S w N ko
Q 9 Q O w
Q9 Q0 o Q

In [194]: df.dtypes

Out[194]:

A object
B category
© category

dtype: object

Creating large random datasets

In [1]: import pandas as pd
import numpy as np

https://riptutorial.com/

In [2]: df = pd.DataFrame (np.random.choice(['foo', 'bar', 'baz'], size=(100000,3)))
df

df.apply (lambda col: col.astype('category'))

In [3]: df.head()

Out [3]

0 1 2
0 bar foo baz
1 baz bar Dbaz
2 foo foo Dbar
3 bar Dbaz baz
4 foo bar Dbaz

In [4]: df.dtypes

Out [4]:

0 category
1 category
2 category

dtype: object

In [5]: df.shape
Out [5]: (100000, 3)

Read Categorical data online: https://riptutorial.com/pandas/topic/3887/categorical-data

https://riptutorial.com/

C_hapter 6: Computational Tools

Examples

Find The Correlation Between Columns
Suppose you have a DataFrame of numerical values, for example:

df = pd.DataFrame (np.random.randn (1000, 3), columns=['a', 'b', 'c'l])

Then

>>> df.corr ()

a b c
a 1.000000 0.018602 0.038098
0.018602 1.000000 -0.014245
© 0.038098 -0.014245 1.000000

will find the Pearson correlation between the columns. Note how the diagonal is 1, as each column

is (obviously) fully correlated with itself.

pd.Datarrane.correlation takes an optional method parameter, specifying which algorithm to use.

The default is pearson. TO USe Spearman correlation, for example, use

>>> df.corr (method="'spearman')

a b c
a 1.000000 0.007744 0.037209
0.007744 1.000000 -0.011823
@ 0.037209 -0.011823 1.000000

Read Computational Tools online: https://riptutorial.com/pandas/topic/5620/computational-tools

https://riptutorial.com/

23

C_hapter /. Creating DataFrames

Introduction

DataFrame is a data structure provided by pandas library,apart from Series & Panel. It is a 2-
dimensional structure & can be compared to a table of rows and columns.

Each row can be identified by an integer index (0..N) or a label explicitly set when creating a
DataFrame object. Each column can be of distinct type and is identified by a label.

This topic covers various ways to construct/create a DataFrame object. Ex. from Numpy arrays,
from list of tuples, from dictionary.

Examples
Create a sample DataFrame
import pandas as pd

Create a DataFrame from a dictionary, containing two columns: numbers and colors. Each key
represent a column name and the value is a series of data, the content of the column:

df = pd.DataFrame ({'numbers': [1, 2, 3], 'colors': ['red', 'white', 'blue']})

Show contents of dataframe:

print (df)
Output:
colors numbers
0 red 1
1 white 2
+ 2 blue 3

Pandas orders columns alphabetically as aict are not ordered. To specify the order, use the
columns parameter.

df = pd.DataFrame ({'numbers': [1, 2, 3], 'colors': ['red', 'white', 'blue'l},
columns=["'numbers', 'colors'])

print (df)

Output:

numbers colors

0 1 red

2 white

2 3 blue

Create a sample DataFrame using Numpy

https://riptutorial.com/ 24

Create a patarrame Of random numbers:

import numpy as np
import pandas as pd

Set the seed for a reproducible sample
np.random.seed (0)

df = pd.DataFrame (np.random.randn (5, 3), columns=list ('ABC'))

print (df)

Output:

A B ¢
.764052 0.400157 0.978738
.240893 1.867558 -0.977278
.950088 -0.151357 -0.103219
.410599 0.144044 1.454274
.761038 0.121675 0.443863

H o W 3
Sw N PO
o O o N

Create a patarrame With integers:

df = pd.DataFrame (np.arange (15) .reshape (5,3),columns=1ist ('ABC'"))

print (df)

Output:

A B C
0 0 1 2
1 3 4 5
2 6 7 8
3 9 10 11
4 12 13 14

Create a patarrame and include nans (vat, nan, 'nan', None) @aCross columns and rows:

df = pd.DataFrame (np.arange (48) .reshape(8,6),columns=1ist ('"ABCDEF"))

print (df)

Output:

A B C D E F

0 0 1 2 3 4 5

1 6 7 8 9 10 11

2 12 13 14 15 16 17

3 18 19 20 21 22 23

4 24 25 26 27 28 29

#5 30 31 32 33 34 35

6 36 37 38 39 40 41

7 42 43 44 45 46 47

df.ix[::2,0] = np.nan # in column 0, set elements with indices 0,2,4, ... to NaN
df.ix[::4,1] = pd.NaT # in column 1, set elements with indices 0,4, ... to np.NaT
df.ix[:3,2] = 'nan' # in column 2, set elements with index from 0 to 3 to 'nan'
df.ix[:,5] = None # in column 5, set all elements to None

df.ix[5,:] = None # in row 5, set all elements to None

df.ix[7,:] = np.nan # in row 7, set all elements to NaN

print (df)

Output:

A B C D E F

https://riptutorial.com/

0 NaN NaT nan 3 4 None
1 6 7 nan 9 10 None
2 NaN 13 nan 15 16 None
3 18 19 nan 21 22 DNone
4 NaN NaT 26 27 28 None
5 NaN None None NaN NaN None
6 NaN 37 38 39 40 None
7 NaN NaN NaN NaN NaN NaN

Create a sample DataFrame from multiple collections using Dictionary

import pandas as pd
import numpy as np

np.random.seed (123)

x = np.random.standard_normal (4)
y = range (4)

df = pd.DataFrame ({'X"':x, 'Y':y})

>>> df

X Y
0 -1.085631 0
1 0.997345 1
2 0.282978 2
3 -1.506295 3

Create a DataFrame from a list of tuples
You can create a DataFrame from a list of simple tuples, and can even choose the specific
elements of the tuples you want to use. Here we will create a DataFrame using all of the data in

each tuple except for the last element.

import pandas as pd

data = [

('pl', 't1', 1, 2),
('pl', 't2', 3, 4),
('p2', 'tl', 5, 6),
('p2', 't2', 7, 8),
('p2', 't3', 2, 8)

df = pd.DataFrame (data)

print (df)

0 1
pl tl1
pl t2
p2 tl
p2 t2
p2 t3

H o H W S
S W N RO

N W RN
w 0 o N W

Create a DataFrame from a dictionary of lists

Create a DataFrame from multiple lists by passing a dict whose values lists. The keys of the
dictionary are used as column labels. The lists can also be ndarrays. The lists/ndarrays must all be

https://riptutorial.com/ 26

the same length.

import pandas as pd

Create DF from dict of lists/ndarrays

df = pd.DataFrame({'A' : [1, 2, 3, 4],
'B' : [4, 3, 2, 11})
df
Output:
A B
0 1 4
1 2 3
2 3 2
3 4 1

If the arrays are not the same length an error is raised
df = pd.DataFrame({'A' : [1, 2, 3, 4], 'B' : [5, 5,
Using ndarrays

import pandas as pd
import numpy as np

np.random.seed (123)
x = np.random.standard_normal (4)

y = range (4)

df = pd.DataFrame({'X":x, 'Y':y})
df

Output: X Y

0 -1.085631 O

1 0.997345 1

2 0.282978 2

3 -1.506295 3

See additional details at: http://pandas.pydata.org/pandas-docs/stable/dsintro.html#from-dict-of-

ndarrays-lists

Create a sample DataFrame with datetime

import pandas as pd
import numpy as np

np.random. seed (0)

5]1}) # a ValueError is raised

create an array of 5 dates starting at '2015-02-24', one per minute

rng = pd.date_range ('2015-02-24"', periods=5, freg='T")

df = pd.DataFrame({ 'Date': rng, 'Val': np.random.randn(len(rng)) })

print (df)

Output:

Date Val
0 2015-02-24 00:00:00 1.764052
1 2015-02-24 00:01:00 0.400157
2 2015-02-24 00:02:00 0.978738
3 2015-02-24 00:03:00 2.240893

https://riptutorial.com/

27

4 2015-02-24 00:04:00 1.867558

create an array of 5 dates starting at '2015-02-24"', one per day
rng = pd.date_range ('2015-02-24"', periods=5, freg='D")

df = pd.DataFrame ({ 'Date': rng, 'Val' : np.random.randn(len(rng))})
print (df)

Output:

Date val

2015-02-24 -0.977278
2015-02-25 0.950088
2015-02-26 -0.151357
2015-02-27 -0.103219
2015-02-28 0.410599

+ o S 3 W
Ssw N PO

create an array of 5 dates starting at '2015-02-24', one every 3 years
rng = pd.date_range ('2015-02-24"', periods=5, freg='3A")

df = pd.DataFrame ({ 'Date': rng, 'Val' : np.random.randn(len(rng))})
print (df)

Output:

Date Val

0 2015-12-31 0.144044

1 2018-12-31 1.454274

2 2021-12-31 0.761038

3 2024-12-31 0.121675

4 2027-12-31 0.443863

DataFrame with patetimeIndex:

import pandas as pd
import numpy as np

np.random.seed (0)
rng = pd.date_range ('2015-02-24"', periods=5, freg='T")

df = pd.DataFrame({ 'Val' : np.random.randn(len(rng)) }, index=rng)
print (df)

Output:

Val

2015-02-24 00:00:00 1.764052

2015-02-24 00:01:00 0.400157

2015-02-24 00:02:00 0.978738

2015-02-24 00:03:00 2.240893

2015-02-24 00:04:00 1.867558

Offset-aliases fOr parameter freq in date_range.

Alias Description
business day frequency

C custom business day frequency (experimental)
D calendar day frequency

W weekly frequency

M month end frequency

BM business month end frequency

CBM custom business month end frequency

MS month start frequency

BMS business month start frequency

CBMS custom business month start frequency

https://riptutorial.com/

Q quarter end frequency

BQ business quarter endfrequency
QS quarter start frequency

BQS business quarter start frequency
A year end frequency

BA business year end frequency
AS year start frequency

BAS business year start frequency
BH business hour frequency

H hourly frequency

T, min minutely frequency

S secondly frequency

L, ms milliseconds

U, us microseconds

N nanoseconds

Create a sample DataFrame with Multilndex

import pandas as pd
import numpy as np

Using from tuples.

np.random.seed (0)
tuples = list(zip(*[['bar', 'bar', 'baz', 'baz',
'foo', 'foo', 'qux', 'qux'],
['one', 'two', 'one', 'two',
'one', 'two', 'one', 'two'l]))

idx = pd.MultiIndex.from_tuples (tuples, names=['first',

Using from_product.

idx = pd.MultiIndex.from product ([['bar', 'baz', 'foo',

Then, use this Multilndex:

'second'])

'qux'], ['one', "two']])

df = pd.DataFrame (np.random.randn (8, 2), index=idx, columns=['A', 'B'])

print (df)
A B
first second

bar one 1.764052 0.400157
two 0.978738 2.240893
baz one 1.867558 -0.977278
two 0.950088 -0.151357
foo one -0.103219 0.410599
two 0.144044 1.454274
qux one 0.761038 0.121675
two 0.443863 0.333674

Save and Load a DataFrame in pickle (.plk) format

import pandas as pd

https://riptutorial.com/

29

Save dataframe to pickled pandas object
df.to_pickle(file_name) # where to save it usually as a .plk

Load dataframe from pickled pandas object
df= pd.read_pickle(file_name)

Create a DataFrame from a list of dictionaries

A DataFrame can be created from a list of dictionaries. Keys are used as column names.

import pandas as pd

L = [{'"Name': 'John', 'Last Name': 'Smith'},
{'"Name': 'Mary', 'Last Name': 'Wood'}]

pd.DataFrame (L)

Output: Last Name Name

0 Smith John

1 Wood Mary

Missing values are filled with nans

L = [{'Name': 'John', 'Last Name': 'Smith', 'Age': 37},
{'Name': 'Mary', 'Last Name': 'Wood'}]

pd.DataFrame (L)

Output: Age Last Name Name

0 37 Smith John

1 NaN Wood Mary

Read Creating DataFrames online: https://riptutorial.com/pandas/topic/1595/creating-dataframes

https://riptutorial.com/ 30

C_hapter 8. Cross sections of different axes
with Multilndex

Examples
Selection of cross-sections using .Xs

In [1]:

import pandas as pd

import numpy as np

arrays = [['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'],
['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']]

idx_row pd.MultiIndex.from_arrays (arrays, names=['Row_First', 'Row_Second'])
idx_col = pd.MultiIndex.from_product ([['A','B'], ['i', '"ii']],
names=['Col_First', 'Col_Second'])

df = pd.DataFrame (np.random.randn (8,4), index=idx_row, columns=idx_col)

Out[1l]:
Col_First A B
Col_Second i ii i ii

Row_First Row_Second

bar one —-0.452982 -1.872641 0.248450 -0.319433
two -0.460388 -0.136089 -0.408048 0.998774
baz one 0.358206 -0.319344 -2.052081 -0.424957
two -0.823811 -0.302336 1.158968 0.272881
foo one -0.098048 -0.799666 0.969043 -0.595635
two -0.358485 0.412011 -0.667167 1.010457
qux one 1.176911 1.578676 0.350719 0.093351
two 0.241956 1.082138 -0.516898 -0.196605

.xs accepts a 1evel (either the name of said level or an integer), and an axis: O for rows, 1 for
columns.

.xs IS available for both pandas.Series and pandas.DataFrame.

Selection on rows:

In [2]: df.xs('two', level='Row_Second', axis=0)
Out[2]:

Col_First

Col_Second i ii i i1
Row_First

bar -0.460388 -0.136089 -0.408048 0.998774
baz -0.823811 -0.302336 1.158968 0.272881
foo -0.358485 0.412011 -0.667167 1.010457
qux 0.241956 1.082138 -0.516898 -0.196605

Selection on columns:

In [3]: df.xs('ii', level=1l, axis=1)
Out[3]:

https://riptutorial.com/

31

Col_First A B
Row_First Row_Second

bar one -1.872641 -0.319433
two -0.136089 0.998774
baz one -0.319344 -0.424957
two -0.302336 0.272881
foo one -0.799666 -0.595635
two 0.412011 1.010457
qux one 1.578676 0.093351
two 1.082138 -0.196605

.xs only works for selection , assignment is NOT possible (getting, not setting):”

In [4]: df.xs('ii', level='Col_Second', axis=1l) = 0
File "<ipython-input-10-92e0785187ba>", line 1
df.xs('ii', level='Col_Second', axis=1l) = 0

A

SyntaxError: can't assign to function call

Using .loc and slicers

Unlike the .xs method, this allows you to assign values. Indexing using slicers is available since
version o.14.o0.

In [1]:
import pandas as pd
import numpy as np
arrays = [['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'],
['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two'l]]
idx_row = pd.MultiIndex.from_arrays(arrays, names=['Row_First', 'Row_Second'])
pd.MultiIndex.from_product ([['A','B'], ['i', '"ii']],
names=["'Col_First', 'Col_Second'])

idx_col

df = pd.DataFrame (np.random.randn (8,4), index=idx_row, columns=idx_col)

Out[1l]:

Col_First

Col_Second i ii 1 i1
Row_First Row_Second

bar one -0.452982 -1.872641 0.248450 -0.319433
two -0.460388 -0.136089 -0.408048 0.998774
baz one 0.358206 -0.319344 -2.052081 -0.424957
two -0.823811 -0.302336 1.158968 0.272881
foo one -0.098048 -0.799666 0.969043 -0.595635
two -0.358485 0.412011 -0.667167 1.010457
qux one 1.176911 1.578676 0.350719 0.093351
two 0.241956 1.082138 -0.516898 -0.196605

Selection on rows:

In [2]: df.loc[(slice(None), 'two'), :]

Out[2]:
Col_First A B
Col_Second i ii i ii

Row_First Row_Second
bar two -0.460388 -0.136089 -0.408048 0.998774
baz two -0.823811 -0.302336 1.158968 0.272881

https://riptutorial.com/

32

foo two -0.358485 0.412011 -0.667167 1.010457
qux two 0.241956 1.082138 -0.516898 -0.196605

Selection on columns:

In [3]: df.loc[:, (slice(None), "ii'")]
Out[3]:

Col_First

Col_Second ii ii
Row_First Row_Second

bar one -1.872641 -0.319433
two -0.136089 0.998774
baz one -0.319344 -0.424957
two -0.302336 0.272881
foo one -0.799666 -0.595635
two 0.412011 1.010457
qux one 1.578676 0.093351
two 1.082138 -0.196605

Selection on both axis::

In [4]: df.loc[(slice(None), 'two'), (slice(None), "ii'")]
Oout [4]:

Col_First

Col_Second ii ii

Row_First Row_Second

bar two -0.136089 0.998774
baz two -0.302336 0.272881
foo two 0.412011 1.010457
qux two 1.082138 -0.196605

Assignment works (unlike .xs):

In [5]: df.loc[(slice(None), 'two'), (slice(None), 'ii')]1=0

df
Out [5]:
Col_First A B
Col_Second i ii 1 i1

Row_First Row_Second

bar one -0.452982 -1.872641 0.248450 -0.319433
two -0.460388 0.000000 -0.408048 0.000000
baz one 0.358206 -0.319344 -2.052081 -0.424957
two -0.823811 0.000000 1.158968 0.000000
foo one -0.098048 -0.799666 0.969043 -0.595635
two -0.358485 0.000000 -0.667167 0.000000
qux one 1.176911 1.578676 0.350719 0.093351
two 0.241956 0.000000 -0.516898 0.000000

Read Cross sections of different axes with Multiindex online:
https://riptutorial.com/pandas/topic/8099/cross-sections-of-different-axes-with-multiindex

https://riptutorial.com/

C_hapter 9: Data Types

Remarks

dtypes are not native to pandas. They are a result of pandas close architectural coupling to
numpy.

the dtype of a column does not in any way have to correlate to the python type of the object
contained in the column.

Here we have a pd.series With floats. The dtype will be ficat.

Then we use astype to "cast" it to object.

pd.Series([1.,2.,3.,4.,5.]) .astype (object)
0 1
1 2
2 3
3 4
4 5

dtype: object

The dtype is now object, but the objects in the list are still float. Logical if you know that in python,
everything is an object, and can be upcasted to object.

type (pd.Series([1.,2.,3.,4.,5.]) .astype (object) [0])
float

Here we try "casting" the floats to strings.

pd.Series([1.,2.,3.,4.,5.]) .astype(str)
0 1.0
1 2.0
2 3.0
3 4.0
4 5.0

dtype: object

The dtype is now object, but the type of the entries in the list are string. This is because numpy does
not deal with strings, and thus acts as if they are just objects and of no concern.

type (pd.Series([1.,2.,3.,4.,5.]) .astype(str) [0])
str

Do not trust dtypes, they are an artifact of an architectural flaw in pandas. Specify them as you
must, but do not rely on what dtype is set on a column.

Examples

https://riptutorial.com/ 34

Checking the types of columns

Types of columns can be checked by .dtypes atrribute of DataFrames.

In [1] df = pd.DataFrame ({'A':
In [2]: df
Oout[2]

A B C
0 1 1.0 True
1 2 2.0 False
2 3 3.0 True
In [3]: df.dtypes
Out [3]
A inte64
B float64
© bool
dtype: object

(1, 2,

31,

'B': [1.0,

For a single series, you can use .dtype attribute.

In [4]:
Out[4]:

df['"A'] .dtype
dtype ('int64")

Changing dtypes

2.0, 3,01, "CVs

[True,

astype () method changes the dtype of a Series and returns a new Series.

In [1l]: df = pd.DataFrame({'A':
'C':
'D':
'E':

In [2]: df

Out [2]

A B C D E

0 1 1.0 1.1.2010 1 days 1

1 2 2.0 2.1.2011 2 days 2

2 3 3.0 3.1.2011 3 days 3

In [3]: df.dtypes

Out [3]

A int64

B float64

C object

D object

E object

dtype: object

(i, 2, 31, "B's [1.0, 2.0, 3.Q@],
['‘i1.1.2010', '2.1.2011', '3.1.2011'],
['"1l days', '2 days', '3 days'],

('r', '2', '3'lh)

Change the type of column A to float, and type of column B to integer:

In [4]: df['A'].astype('float'")
Out[4]:

0 1.0

1 2.0

False,

Truel] })

https://riptutorial.com/

35

2 3.0
Name: A, dtype: floaté64

In [5]: df['B'].astype('int'")

Oout [5] :
0 1
1 2
2 3

Name: B, dtype: int32

astype () method is for specific type conversion (i.e. you can specify .astype (float64'),
.astype (float32), OF .astype (float16)). FOr general conversion, you can USe pd.to_numeric,
pd.to_datetime an(ipd.to_timedelta.

Changing the type to numeric

pd.to_numeric Cchanges the values to a numeric type.

In [6]: pd.to_numeric(df['E'])

Out[o6]:
0 1
1 2
2 3

Name: E, dtype: int64

By default, pa.to_numeric raises an error if an input cannot be converted to a number. You can
change that behavior by using the errors parameter.

Ignore the error, return the original input if it cannot be converted

In [7]: pd.to_numeric (pd.Series(['1l', '2', 'a'l), errors='ignore')
Oout[7]:
0 1
1 2
2 a

dtype: object

Return NaN when the input cannot be converted to a number
In [8]: pd.to_numeric (pd.Series(['1l', '2', 'a'l), errors='coerce')

Out [8]:

0 1.0
1 2.0
2 NaN

dtype: float64

If need check all rows with input cannot be converted to numeric use vooican indexing With tsnuii:

In [9]: df = pd.DataFrame({'A': [1, 'x', 'z'],
'B': [1.0, 2.0, 3.0],
'C': [True, False, Truel]l})

In [10]: pd.to_numeric(df.A, errors='coerce').isnull ()
Out[107]:

0 False

1 True

https://riptutorial.com/ 36

2 True
Name: A, dtype: bool

In [11]: df[pd.to_numeric(df.A, errors='coerce') .isnull ()]
Out [11
A B C
1 x 2.0 False
2 z 3.0 True

Changing the type to datetime

In [12]: pd.to_datetime(df['C'])
Out[1l2]:

0 2010-01-01

1 2011-02-01

2 2011-03-01

Name: C, dtype: datetime64[ns]

Note that 2.1.2011 is converted to February 1, 2011. If you want January 2, 2011 instead, you
need to use the dayrirst parameter.

In [13]: pd.to_datetime('2.1.2011', dayfirst=True)
Out[13]: Timestamp ('2011-01-02 00:00:00")

Changing the type to timedelta

In [14]: pd.to_timedelta(df['D'])

Out [14]:

0 1 days
1 2 days
2 3 days

Name: D, dtype: timedelta64[ns]

Selecting columns based on dtype
select_dtypes Mmethod can be used to select columns based on dtype.

In [1]: df = pd.DataFrame({'A': [1, 2, 3], 'B': [l1.0, 2.0, 3.0], 'C': ['a', 'b', 'c'],
'D': [True, False, Truel]l})

In [2]: df
Oout [2]

A B C D
0 1 1.0 a True
1 2 2.0 Db False
2 3 3.0 c¢ True

With inciude and exciude parameters you can specify which types you want:

Select numbers
In [3]: df.select_dtypes (include=["'number']) # You need to use a list

https://riptutorial.com/

Out [3]

A B
0 1 1.0
1 2 2.0
2 3 3.0

Select numbers and booleans
In [4]: df.select_dtypes (include=["'number', 'bool'])
Out [4]:

A B D

1 1.0 True
1 2 .0 False
3 3.0 True
Select numbers and booleans but exclude int64
In [5]: df.select_dtypes (include=["'number', 'bool'], exclude=['int64'])
Out [5]:

B D

0 1.0 True
1 2.0 False
3.0 True

Summarizing dtypes
get_dtype_counts method can be used to see a breakdown of dtypes.

In [1]: df = pd.DataFrame({'A': [1, 2, 3], 'B': [l1.0, 2.0, 3.0], 'C': ['a', 'b', 'c'],
'D': [True, False, Truel]l})

In [2]: df.get_dtype_counts ()
Out[2]:
bool

floatoe4d
int64

object
dtype: int64

e

Read Data Types online: https://riptutorial.com/pandas/topic/2959/data-types

https://riptutorial.com/

38

C_hapter 10: Dealing with categorical
variables

Examples
One-hot encoding with "get_dummies()’

>>> df = pd.DataFrame ({'Name':['John Smith', 'Mary Brown'],
'Gender':['M', 'F'], 'Smoker':['Y', 'N']})
>>> print (df)

Gender Name Smoker
0 M John Smith Y
1 F Mary Brown N

>>> df_with_dummies = pd.get_dummies (df, columns=['Gender', 'Smoker'])
>>> print (df_with_dummies)

Name Gender_F Gender_M Smoker_N Smoker_Y
0 John Smith 0.0 1.0 0.0 1.0
1 Mary Brown 1.0 0.0 1.0 0.0

Read Dealing with categorical variables online: https://riptutorial.com/pandas/topic/5999/dealing-

with-categorical-variables

https://riptutorial.com/

39

C_hapter 11: Duplicated data

Examples

Select duplicated

If need set value o to column s, where in column a are duplicated data first create mask by

Series.duplicated and then use patarrame. ix OF Series.mask:

In [224]: df = pd.DataFrame({'A':[1,2,3,3,2],
: 'B':[1,7,3,0,81})

In [225]: mask = df.A.duplicated(keep=False)
In [226]: mask

Out [226]:

0 False
1 True
2 True
3 True
4 True

Name: A, dtype: bool

In [227]: df.ix[mask, 'B'] = 0

In [228]: df['C'] = df.A.mask (mask, 0)
In [229]: df
Out [229]:
A B C
0 1 1 1
1 2 0 0
2 3 0 0
3 3 0 0
4 2 0 0

If need invert mask use ~:

In [230]: df['C'] = df.A.mask (~mask, 0)
In [231]: df
Out [231]:
A B C
0 1 1 O
1 2 0 2
2 3 0 3
3 3 0 3
4 2 0 2

Drop duplicated

Use drop_duplicates:

https://riptutorial.com/

In [216]: df = pd.DataFrame({'A':[1,2,3,3,2],
g 'B':[1,7,3,0,81})

S w NP o
W O W J = W

keep only the last value
In [218]: df.drop_duplicates (subset=["'A'], keep='last')

Out[218]:
A B

0 1 1

3 3 0

4 2 8

keep only the first value, default value
In [219]: df.drop_duplicates (subset=["'A'"'], keep='first')

Out[219]:
A B
0 1 1
1 2 7
3 3

drop all duplicated values
In [220]: df.drop_duplicates (subset=['A'], keep=False)

Oout [220] :
A B
0o 1 1

When you don't want to get a copy of a data frame, but to modify the existing one:

In [221]: df = pd.DataFrame ({'A':[1,2,3,3,2],
. 'B':[1,7,3,0,81})

In [222]: df.drop_duplicates (subset=["'A'], inplace=True)

In [223]: df
Out [223]
A B
o 1 1
1 2 7
2 3 3

Counting and getting uniqgue elements
Number of unique elements in a series:

In [1]: id_numbers = pd.Series([111, 112, 112, 114, 115, 118, 114, 118, 112])
In [2]: id_numbers.nunique ()
Out[2]: 5

Get unique elements in a series:

https://riptutorial.com/

41

In [3]: id_numbers.unique ()
Out[3]: array([111, 112, 114, 115, 118], dtype=int64)

In [4]: df = pd.DataFrame ({'Group': list ('ABAABABAAB'),

voVg (1L, 1, 2, 3, 3, 2, 1, 2, 1, 31})

In [5]: df
Oout [5] :

Group ID
0 A 1
1 B 1
2 A 2
3 A 3
4 B 3
5 A 2
6 B 1
7 A 2
8 A 1
9 B 3

Number of unique elements in each group:

In [6]: df.groupby ('Group') ['ID'].nunique ()
Out[6]:

Group

A 3

B 2

Name: ID, dtype: int64

Get of unique elements in each group:

In [7]: df.groupby ('Group') ['ID'].unique ()

Oout[7]:

Group

A [1, 2, 3]
B [1, 3]

Name: ID, dtype: object

Get unique values from a column.

In [15]: df = pd.DataFrame({"A":[1,1,2,3,1,1],"B":[5,4,3,4,6,71})

In [21]: df
Out [21]:
A B
0 1 5
1 1 4
2 2 3
3 3 4
4 1 6
5 1 7

To get unique values in column A and B.

In [22]: df["A"].unique ()

https://riptutorial.com/

42

Out [22]: array([1l, 2, 3])

In [23]: df["B"].unique ()
Out [23]: array([5, 4, 3, 6, 71)

To get the unique values in column A as a list (note that unique () can be used in two slightly
different ways)

In [24]: pd.unique(df['A']) .tolist ()
out[24]: [1, 2, 3]

Here is a more complex example. Say we want to find the unique values from column 'B' where 'A’
is equal to 1.

First, let's introduce a duplicate so you can see how it works. Let's replace the 6 in row '4', column
'B' with a 4:

In [24]: df.loc['4', 'B'] = 4
Out [24]:
A B
0 1 5
1 1 4
2 2 3
3 3 4
4 1 4
5 1 7

Now select the data:

In [25]: pd.unique(df[df['A'] == 1]J['B']).tolist()
out [25]: [5, 4, 7]

This can be broken down by thinking of the inner DataFrame first:
df['A'] == 1

This finds values in column A that are equal to 1, and applies True or False to them. We can then
use this to select values from column 'B' of the DataFrame (the outer DataFrame selection)

For comparison, here is the list if we don't use unique. It retrieves every value in column 'B' where
column'A'is 1

In [26]: dAf[df['A'] == 1]['B'].tolist ()
out[26]: [5, 4, 4, 7]

Read Duplicated data online: https://riptutorial.com/pandas/topic/2082/duplicated-data

https://riptutorial.com/ 43

C_hapter 12: Getting information about
DataFrames

Examples

Get DataFrame information and memory usage
To get basic information about a DataFrame including the column names and datatypes:

import pandas as pd

df = pd.DataFrame ({'integers': [1, 2, 3],

'floats': [1.5, 2.5, 31,

Vteth: [lal, VbV, 'C'],

'ints with None': [1, None, 3]})
df.info ()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 3 entries, 0 to 2
Data columns (total 4 columns):

floats 3 non-null floaté64
integers 3 non-null inté64

ints with None 2 non-null floaté64
text 3 non-null object

dtypes: float64(2), int64(1l), object(l)
memory usage: 120.0+ bytes

To get the memory usage of the DataFrame:

>>> df.info (memory_usage='deep')
<class 'pandas.core.frame.DataFrame'>
Int64Index: 3 entries, 0 to 2

Data columns (total 4 columns) :

floats 3 non-null float64
integers 3 non-null int64

ints with None 2 non—-null float64
text 3 non-null object

dtypes: float64(2), int64(l), object (1)
memory usage: 234.0 bytes

List DataFrame column names

df = pd.DataFrame({'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 91})

To list the column names in a DataFrame:

>>> list (df)
[VaV, lbl, VCV]

https://riptutorial.com/

This list comprehension method is especially useful when using the debugger:

>>> [c for ¢ in df]
[VaV, 'b" VCV]

This is the long way:
sampledf.columns.tolist ()

You can also print them as an index instead of a list (this won't be very visible for dataframes with
many columns though):

df.columns

Dataframe's various summary statistics.

import pandas as pd
df = pd.DataFrame (np.random.randn (5, 5), columns=list ('ABCDE'))

To generate various summary statistics. For numeric values the number of non-NA/null values (
count), the mean (nean), the standard deviation sta and values known as the five-number summary

* min: Minimum (smallest observation)

» 253 lower quartile or first quartile (Q1)
* 503: median (middle value, Q2)

» 753 upper quartile or third quartile (Q3)
* max: maximum (largest observation)

>>> df.describe ()

A B C D E
count 5.000000 5.000000 5.000000 5.000000 5.000000
mean -0.456917 -0.278666 0.334173 0.863089 0.211153
std 0.925617 1.091155 1.024567 1.238668 1.495219

min -1.494346 -2.031457 -0.336471 -0.821447 -2.106488
25% -1.143098 -0.407362 -0.246228 -0.087088 -0.082451
50% -0.536503 -0.163950 -0.004099 1.509749 0.313918
75% 0.092630 0.381407 0.120137 1.822794 1.060268

max 0.796729 0.828034 2.137527 1.891436 1.870520

Read Getting information about DataFrames online:
https://riptutorial.com/pandas/topic/6697/getting-information-about-dataframes

https://riptutorial.com/ 45

C_hapter 13: Gotchas of pandas

Remarks

Gotcha in general is a construct that is although documented, but not intuitive. Gotchas produce
some output that is normally not expected because of its counter-intuitive character.

Pandas package has several gotchas, that can confuse someone, who is not aware of them, and
some of them are presented on this documentation page.

Examples

Detecting missing values with np.nan
If you want to detect missings with

df=pd.DataFrame ({'col':[1l,np.nan]})
df==np.nan

you will get the following result:

col
0 False
1 False

This is because comparing missing value to anything results in a False - instead of this you should
use

df=pd.DataFrame({'col':[1l,np.nan]})
df.isnull ()

which results in:

col
0 False
1 True

Integer and NA

Pandas don't support missing in attributes of type integer. For example if you have missings in the
grade column:

df= pd.read_csv("data.csv", dtype={'grade': int})
error: Integer column has NA values

In this case you just should use float instead of integers or set the object dtype.

https://riptutorial.com/ 46

Automatic Data Alignment (index-awared behaviour)

If you want to append a series of values [1,2] to the column of dataframe df, you will get NaNs:

import pandas as pd

series=pd.Series([1,2])
df=pd.DataFrame (index=[3,4])
df ['col']=series

df

col

NaN
4 NaN

because setting a new column automatically aligns the data by the indexe, and your values 1 and
2 would get the indexes 0 and 1, and not 3 and 4 as in your data frame:

df=pd.DataFrame (index=[1,2])
df ['col']=series
df

col

2 NaN

If you want to ignore index, you should set the .values at the end:

df ['col']=series.values
col

3 1

4 2

Read Gotchas of pandas online: https://riptutorial.com/pandas/topic/6425/gotchas-of-pandas

https://riptutorial.com/

a7

C_hapter 14: Graphs and Visualizations

Examples

Basic Data Graphs

Pandas uses provides multiple ways to make graphs of the data inside the data frame. It uses
matplotlib for that purpose.

The basic graphs have their wrappers for both DataFrame and Series objects:

Line Plot

df = pd.DataFrame({'x': (10, 8, 10, 7, 7, 10, 9, 9],
'y': [6, 4, 5, 5, 7, 10, 9, 91})

df.plot ()

You can call the same method for a Series object to plot a subset of the Data Frame:
df['x'] .plot ()

10.0

95 F

90

85

80

15+

7.0
o

https://riptutorial.com/

48

Bar Chart

If you want to explore the distribution of your data, you can use the nist () method.
df['x'].hist ()

30

25

20 : : :
15 : : :
10
05 : ““\ :
00 L I i
7.0 15 80 85 9.0 95 10.0

General method for plotting plot()

All the possible graphs are available through the plot method. The kind of chart is selected by the
kind argument.

df['x'].plot (kind="pie")

Note In many environments, the pie chart will come out an oval. To make it a circle, use the
following:

from matplotlib import pyplot

pyplot.axis('equal')
df['x"'].plot (kind="pie")

Styling the plot

https://riptutorial.com/

49

plot () can take arguments that get passed on to matplotlib to style the plot in different ways.

df.plot (style='o') # plot as dots, not lines
df.plot (style='g--'") # plot as green dashed line
df.plot (style='o', markeredgecolor='white') # plot as dots with white edge

Plot on an existing matplotlib axis

By default, p10t () creates a new figure each time it is called. It is possible to plot on an existing
axis by passing the ax parameter.

plt.figure() # create a new figure

ax = plt.subplot (121) # create the left-side subplot
dfl.plot (ax=ax) # plot dfl on that subplot

ax = plt.subplot (122) # create the right-side subplot
df2.plot (ax=ax) # and plot df2 there

plt.show() # show the plot

Read Graphs and Visualizations online: https://riptutorial.com/pandas/topic/3839/graphs-and-
visualizations

https://riptutorial.com/

C_hapter 15: Grouping Data

Examples
Basic grouping
Group by one column

Using the following DataFrame

df = pd.DataFrame({'A': ['a', 'b', 'c', 'a', 'b', 'b'],
'B': [2, 8, 1, 4, 3, 8],
'c': [102, 98, 107, 104, 115, 87]})

af

Output:

A B @

#0 a 2 102

#1 b 8 98

#2 ¢ 1 107

#3 a 4 104

#4 b 3 115

#5 b 8 87

Group by column A and get the mean value of other columns:

df .groupby ('A'"') .mean ()
Output:
B @

6.333333 100

#
#
#
#
#
1.000000 107

A
a 3.000000 103
b
@

Group by multiple columns

df .groupby (['A','B']) .mean ()
Output:
©

A
a 102.
104.
115.
92.
107.

H= S = S o e
o

= oo w s N W

o U1 O O O

Q

Note how after grouping each row in the resulting DataFrame is indexed by a tuple or Multilndex
(in this case a pair of elements from columns A and B).

To apply several aggregation methods at once, for instance to count the number of items in each

group and compute their mean, use the agg function:

https://riptutorial.com/

51

df .groupby (['A', 'B']) .agg(['count', 'mean'])

Output:

C

count mean
A B

a 2 1 102.0
4 1 104.0
b 3 1 115.0
8 2 92.5
c 1 1 107.0

Grouping numbers
For the following DataFrame:

import numpy as np
import pandas as pd
np.random. seed (0)
df = pd.DataFrame ({'Age': np.random.randint (20, 70, 100),
'Sex': np.random.choice (['Male', 'Female'], 100),

'number_of_foo': np.random.randint (1, 20, 100)})

df .head ()

Output:

Age Sex number_of_foo
0 64 Female 14
1 67 Female 14
2 20 Female 12
3 23 Male 17
4 23 Female 15

Group age into three categories (or bins). Bins can be given as

* an integer » indicating the number of bins—in this case the dataframe's data is divided into »
intervals of equal size

» a sequence of integers denoting the endpoint of the left-open intervals in which the data is
divided into—for instance bins=119, 40, 65, np.inf] Creates three age groups (19, 401, (40,
651, and (65, np.inf].

Pandas assigns automatically the string versions of the intervals as label. It is also possible to
define own labels by defining a 1abe1s parameter as a list of strings.

pd.cut (df['Age'], bins=4)

this creates four age groups: (19.951, 32.25] < (32.25, 44.5] < (44.5, 56.75] < (56.75, 69]
Name: Age, dtype: category

Categories (4, object): [(19.951, 32.25] < (32.25, 44.5] < (44.5, 56.75] < (56.75, 69]]

pd.cut (df['Age'], bins=[19, 40, 65, np.inf])

this creates three age groups: (19, 40], (40, 65] and (65, infinity)
Name: Age, dtype: category

Categories (3, object): [(19, 40] < (40, 65] < (65, inf]]

Use it in groupby to get the mean number of foo:

https://riptutorial.com/ 52

age_groups = pd.cut(df['Age'], bins=[19, 40, 65, np.inf])
df.groupby (age_groups) ['number_of_foo'].mean ()

Output:

Age

(19, 40] 9.880000

(40, 65] 9.452381

(65, inf] 9.250000

Name: number_of_foo, dtype: float64

Cross tabulate age groups and gender:

pd.crosstab (age_groups, df['Sex'])

Output:

Sex Female Male
Age

(19, 40] 22 28
(40, 65] 18 24
(65, inf] 3 5

Column selection of a group

When you do a groupby you can select either a single column or a list of columns:

In [11]: df = pd.DataFrame([[1, 1, 2], [1, 2, 31, [2, 3, 4]], columns=["A",

In [12]: df
Out [12]:

A B C
0o 1 1 2
1 1 2 3
2 2 3 4

In [13]: g = df.groupby ("A")

In [14]: g["B"].mean() # just column B
Out[14]

A

1 1.5

2 3.0

Name: B, dtype: floaté64

In [15]: g[["B", "C"]].mean() # columns B and C

You can also use agg to specify columns and aggregation to perform:

In [16]: g.agg({'B': 'mean', 'C': 'count'})
Out[1l6]:
B
1 1.5
1 3.0

ngn
’

vvc"])

https://riptutorial.com/

53

Aggregating by size versus by count

The difference between size and count iSs:

size COUNtS NaN Va|UeS, count does not.

df = pd.DataFrame (
{"Name": ["Alice", "Bob", "Mallory", "Mallory", "Bob" , "Mallory"],
"City":["Seattle", "Seattle", "Portland", "Seattle", "Seattle", "Portland"],
"Val": [4, 3, 3, np.nan, np.nan, 4]})

df

Output:

City Name Val
0 Seattle Alice 4.0
1 Seattle Bob 3.0
2 Portland Mallory 3.0
3 Seattle Mallory NaN
4 Seattle Bob NaN
5 Portland Mallory 4.0
df.groupby (["Name", "City"])['Val'].size() .reset_index (name='Size')
Output:

Name City Size
0 Alice Seattle 1
1 Bob Seattle 2
2 Mallory Portland 2
3 Mallory Seattle 1

df.groupby (["Name", "City"])['Val'].count () .reset_index (name='Count')

Output:

Name City Count
0 Alice Seattle 1
1 Bob Seattle 1
2 Mallory Portland 2
3 Mallory Seattle 0

Aggregating groups
In [1]: import numpy as np
In [2]: import pandas as pd

In [3]: df = pd.DataFrame ({'A': list ('XYZXYzXYZX'), 'B': [1, 2, 1, 3, 1, 2, 3, 3, 1, 2],
'‘c¢': [12, 14, 11, 12, 13, 14, 16, 12, 10, 191})

In [4]: df.groupby ('A') ['B'].agg({'mean': np.mean, 'standard deviation': np.std})

Out[4]:

standard deviation mean
A
X 0.957427 2.250000
Y 1.000000 2.000000
7 0.577350 1.333333

For multiple columns:

https://riptutorial.com/

In [5]: df.groupby('A'").agg({'B': [np.mean, np.std], 'C': [np.sum, 'count']})
Out [5]:

C B
sum count mean std
A
X 59 4 2.250000 0.957427
Y 39 3 2.000000 1.000000
Z 35 3 1.333333 0.577350

Export groups in different files

You can iterate on the object returned by groupby (). The iterator contains (category, pataFrame)
tuples.

Same example data as in the previous example.

import numpy as np

import pandas as pd

np.random.seed (0)

df = pd.DataFrame ({'Age': np.random.randint (20, 70, 100),
'Sex': np.random.choice (['Male', factor'Female'], 100),
'number_of_foo': np.random.randint (1, 20, 100)})

Export to Male.csv and Female.csv files.
for sex, data in df.groupby('Sex'):
data.to_csv ("{}.csv".format (sex))

using transform to get group-level statistics while preserving the original
dataframe

example:
df = pd.DataFrame ({'groupl' : ['a*, 'a', 'a', 'a',
'B', 'B', 'B', 'B'],
'group2' : ('ev, €', ‘€', "bY,
'E', 'E', 'F', 'F'],
'B' 3 ['one', np.NaN, np.NaN, np.NaN,
np.NaN, 'two', np.NaN, np.NaN],
'C' : [np.NaN, 1, np.NaN, np.NaN,
np.NaN, np.NaN, np.NaN, 4]})
df
Out [34]:
B C groupl group2
0 one NaN A @
1 NaN 1.0 A @
2 NaN NaN A €
3 NaN NaN A D
4 NaN NaN B E
5 two NaN B E
6 NaN NaN B F
7 NaN 4.0 B B

| want to get the count of non-missing observations of B for each combination of group1 and group2.

groupby.transform IS @ very powerful function that does exactly that.

https://riptutorial.com/

55

df ['count_B']=df.groupby (['groupl', 'group2']) .B.transform('count"')

df
Out [36]:

B C groupl group2 count_B
0 one NaN A C 1
1 NaN 1.0 A C 1
2 NaN NaN A © 1
3 NaN NaN A D 0
4 NaN NaN B E 1
5 two NaN B E 1
6 NaN NaN B F 0
7 NaN 4.0 B F 0

Read Grouping Data online: https://riptutorial.com/pandas/topic/1822/grouping-data

https://riptutorial.com/

56

C_hapter 16: Grouping Time Series Data

Examples
Generate time series of random numbers then down sample

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

I want 7 days of 24 hours with 60 minutes each
periods = 7 * 24 * 60
tidx = pd.date_range('2016-07-01"', periods=periods, freg='T')

+ ~ A
| |

Start Date Frequency Code for Minute

This should get me 7 Days worth of minutes in a datetimeindex

Generate random data with numpy. We'll seed the random
number generator so that others can see the same results.
Otherwise, you don't have to seed it.

np.random.seed ([3,1415])

This will pick a number of normally distributed random numbers
where the number is specified by periods
data = np.random.randn (periods)

ts = pd.Series(data=data, index=tidx, name='HelloTimeSeries')

ts.describe ()

count 10080.000000
mean -0.008853
std 0.995411
min -3.936794
25% -0.683442
50% 0.002640
75% 0.654986
max 3.906053

Name: HelloTimeSeries, dtype: floaté64

Let's take this 7 days of per minute data and down sample to every 15 minutes. All frequency
codes can be found here.

resample says to group by every 15 minutes. But now we need
to specify what to do within those 15 minute chunks.

We could take the last value.
ts.resample ('"15T"') .last ()

Or any other thing we can do to a groupby Object, documentation.

We can even aggregate several useful things. Let's plot the min, nean, and nax of this
resample ('15M") data.

https://riptutorial.com/

ts.resample ('15T"') .agg(['min', 'mean', 'max']).plot ()

-4
01 0z 03 0 05 06 07
Jul
2016

Let's resample over r1st' (15 minutes), '3or' (half hour), and 1+ (1 hour) and see how our data

gets smoother.

fig, axes = plt.subplots(l, 3, figsize=(12, 4))
for i, freq in enumerate(['15T', '30T', '1lH']):

ts.resample (freq) .agg(['max', 'mean', 'min']).plot (ax=axes[i],

15T

-2 -2

-3 3|

4 —
0L 02 02 M 05 0w 07 0oL e 03 MM o0 mwm o7
Jul Jul
2016 2016

title=freq)

-2 ;w.jwl

-4
002
Jul

2016

HN MWWW W

M 05 0o

Read Grouping Time Series Data online: https://riptutorial.com/pandas/topic/4747/grouping-time-

series-data

https://riptutorial.com/

58

C_hapter 17: Holiday Calendars

Examples

Create a custom calendar

Here is how to create a custom calendar. The example given is a french calendar -- so it provides
many examples.

from pandas.tseries.holiday import AbstractHolidayCalendar, Holiday, EasterMonday, Easter
from pandas.tseries.offsets import Day, CustomBusinessDay

class FrBusinessCalendar (AbstractHolidayCalendar) :
""" Custom Holiday calendar for France based on
https://en.wikipedia.org/wiki/Public_holidays_in_France
— 1 January: New Year's Day
— Moveable: Easter Monday (Monday after Easter Sunday)
- 1 May: Labour Day
- 8 May: Victory in Europe Day
— Moveable Ascension Day (Thursday, 39 days after Easter Sunday)
- 14 July: Bastille Day
— 15 August: Assumption of Mary to Heaven
- 1 November: All Saints' Day
— 11 November: Armistice Day
— 25 December: Christmas Day
wun
rules = [
Holiday ('New Years Day', month=1, day=1),
EasterMonday,
Holiday ('Labour Day', month=5, day=1),
Holiday ('Victory in Europe Day', month=5, day=8),
Holiday ('Ascension Day', month=1, day=1, offset=[Easter (), Day(39)1),
Holiday ('Bastille Day', month=7, day=14),
Holiday ('Assumption of Mary to Heaven', month=8, day=15),
Holiday ('All Saints Day', month=11, day=1),
Holiday ('Armistice Day', month=11, day=11),
Holiday ('Christmas Day', month=12, day=25)

Use a custom calendar

Here is how to use the custom calendar.

Get the holidays between two dates

import pandas as pd
from datetime import date

Creating some boundaries
year = 2016
start = date(year, 1, 1)

https://riptutorial.com/ 59

end = start + pd.offsets.MonthEnd(12)

Creating a custom calendar

cal = FrBusinessCalendar ()

Getting the holidays (off-days) between two dates
cal.holidays (start=start, end=end)

'2016-11-11', '2016-12-25'],

#
#
#
dtype='datetime64[ns]', freg=None)

Count the number of working days between

two dates

DatetimeIndex(['2016-01-01"', '2016-03-28', '2016-05-01"',
'2016-05-08', '2016-07-14"', '2016-08-15",

'2016-05-05",
12016=11=01",

It is sometimes useful to get the number of working days by month whatever the year in the future

or in the past. Here is how to do that with a custom calendar.

from pandas.tseries.offsets import CDay

Creating a series of dates between the boundaries
by using the custom calendar
se = pd.bdate_range (start=start,

end=end,

freg=CDay (calendar=cal)) .to_series()
Counting the number of working days by month
se.groupby (se.dt .month) .count () .head ()

1 20
2 21
3 22
4 21
5 21

Read Holiday Calendars online: https://riptutorial.com/pandas/topic/7976/holiday-calendars

https://riptutorial.com/

60

C_hapter 18: Indexing and selecting data

Examples
Select column by label

Create a sample DF
df = pd.DataFrame (np.random.randn (5, 3), columns=list ('ABC'))

Show DF
af

A B ©
0 -0.467542 0.469146 -0.861848
1 -0.823205 -0.167087 —-0.759942
2 -1.508202 1.361894 -0.166701
3 0.394143 -0.287349 -0.978102
4 -0.160431 1.054736 —-0.785250

Select column using a single label, 'A'

df['A']

0 -0.467542
1 -0.823205
2 -1.508202
3 0.394143
4 -0.160431

Select multiple columns using an array of labels, ['A', 'C']
df[['A", 'C']]
A ©
-0.467542 -0.861848
-0.823205 -0.759942
.508202 -0.166701
0.394143 -0.978102
-0.160431 -0.785250

Sw N PO
|
[y

Additional details at: http://pandas.pydata.org/pandas-docs/version/0.18.0/indexing.html#selection-

by-label

Select by position

The i10c (short for integer location) method allows to select the rows of a dataframe based on their

position index. This way one can slice dataframes just like one does with Python's list slicing.

df = pd.DataFrame([[11, 22], [33, 44], [55, 66]], index=list ("abc"))

df

Out:

0 1
#a 11 22
b 33 44
c 55 66

df.iloc[0] # the 0th index (row)

https://riptutorial.com/

61

Out:

0 11

1 22

Name: a, dtype: inté64

df.iloc[1l] # the 1st index (row)

Out:
0 33
1 44

Name: b, dtype: int64

df.iloc[:2] # the first 2 rows

0 1
#a 11 22
b 33 44
eiE[gs=1] # reverse order of rows
0 1
c 55 66
b 33 44
#a 11 22

Row location can be combined with column location

df.iloc[:, 1] # the 1st column

Out[15]:
a 22
Db 44
c 66

Name: 1, dtype: int64
See also: Selection by Position
Slicing with labels
When using labels, both the start and the stop are included in the results.

import pandas as pd

import numpy as np

np.random.seed (5)

df = pd.DataFrame (np.random.randint (100, size=(5, 5)), columns = list ("ABCDE"),
index = ["R" + str (i) for 1 in range(5)])

A B € D E
RO 99 78 61 16 73
R1 8 62 27 30 80
R2 7 76 15 53 80
R3 27 44 77 75 65
R4 47 30 84 86 18

S oW W S 4 e W

Rows ro to r2:

df.loc['RO':'R2"']
Out:
A B C D E

https://riptutorial.com/

62

RO 9 41 62 1 82
RL 16 78 5 58 0
R2 80 4 36 51 27

Notice how 1oc differs from i10c because i1oc excludes the end index

df.loc['RO':'"R2'] # rows labelled RO, R1l, R2
Out:
A B C D E
RO 9 41 62 1 82
Rl 16 78 5 58 0
R2 80 4 36 51 27

H H W e

df.iloc[0:2] # rows indexed by 0, 1
A B C D E

RO 99 78 61 16 73

R1 8 62 27 30 80

H H W

Columns c to &:

df.loc[:, 'C':'E']
Out:

@ D E
RO 62 1 82
R1 5 58 0
R2 36 51 27
R3 68 38 83
R4 7 30 62

P

Mixed position and label based selection
DataFrame:

import pandas as pd

import numpy as np

np.random.seed (5)

df = pd.DataFrame (np.random.randint (100, size=(5, 5)), columns = list ("ABCDE"),
index = ["R" + str (i) for 1 in range(5)])

df
Out[12]:

A B € D E
RO 99 78 61 16 73
R1 8 62 27 30 80
R2 7 76 15 53 80
R3 27 44 77 75 65
R4 47 30 84 86 18

Select rows by position, and columns by label:

df.ix[1:3, 'C':'E']
Out[19]:
C D E

https://riptutorial.com/

R1 5 58 0
R2 36 51 27

If the index is integer, .ix will use labels rather than positions:

df.index = np.arange (5, 10)

df
Out[22]:

A B @ D E
5 9 41 62 1 82
6 16 78 5 58 0
7 80 4 36 51 27
8 31 2 68 38 83
9 19 18 7 30 62

#same call returns an empty DataFrame because now the index is integer
df.ix[1:3, 'C':'E']

Out [24]:

Empty DataFrame

Columns: [C, D, E]

Index: []

Boolean indexing
One can select rows and columns of a dataframe using boolean arrays.

import pandas as pd

import numpy as np

np.random. seed (5)

df = pd.DataFrame (np.random.randint (100, size=(5, 5)), columns = list ("ABCDE"),

index = ["R" + str(i) for i in range(5)1])

print (df)

A B ¢] D E
RO 99 78 61 16 73
R1 8 62 27 30 80
R2 7 76 15 53 80
R3 27 44 77 175 65
R4 47 30 84 86 18

mask = df['A'] > 10
print (mask)

RO True
R1 False
R2 False
R3 True
R4 True
Name: A, dtype: bool

print (df[mask])

A B C D E
RO 99 78 61 16 73
R3 27 44 77 75 65
R4 47 30 84 86 18

print (df.ix[mask, 'C'])
RO 61

https://riptutorial.com/

64

R3 77
R4 84
Name: C, dtype: int32

print (df.ix[mask, ['C', 'D']ll])
© D
RO 61 16
R3 77 175
R4 84 86

More in pandas documentation.

Filtering columns (selecting "interesting", dropping unneeded, using RegEX,
etc.)

generate sample DF

In [39]: df = pd.DataFrame (np.random.randint (0, 10, size=(5, 6)),
columns=['al0', 'a20', 'a25', 'b','c','d'])

In [40]: df

Out [407] :

ald a20 a25 b c¢ d
0 2 3 7 5 4 7
1 3 1 5 7 2 6
2 7 4 9 0 8 7
3 5 8 8 9 6 8
4 8 1 0 4 4 9

show columns containing letter 'a’

In [41]: df.filter(like="a"')

Out [41]:

ald0 a20 a25b
0 2 3 7
1 3 1 5
2 7 4 9
3 5 8 8
4 8 1 0

show columns using RegEXx filter ¢y -» Or . OF

das
In [42]: df.filter (regex="'(b|c|d)")
Out [42] :
b ¢ d
0 5 4 7
1 7 2 6

https://riptutorial.com/ 65

show all columns except those beginning
with . (in other word remove / drop all
columns satisfying given RegEx)

In [43]: df.ix[:, ~df.columns.str.contains('?a')]
Out [43]:
b ¢ d
0 5 4 7
1 7 2 6
2 0 8 7
3 9 6 8
4 4 4 9

Filtering / selecting rows using ".query()" method

import pandas as pd

generate random DF

df = pd.DataFrame (np.random.randint (0,10,size=(10, 3)), columns=1list ('ABC'))

In [16]: print (df)
A B C
0 4 1 4
1 0 2 O
2 7 8 8
3 2 1 9
4 7 3 8
5 4 0 7
6 1 5 5
7 6 7 8
8 6 7 3
9 6 4 5

select rows where values in column . > 2 and values in
columnsz«<s

In [18]: df.query('A > 2 and B < 5")
Out [18]:

A B C

4 1 4

7 3 8

4 0 7

https://riptutorial.com/ 66

using .eeryo Mmethod with variables for filtering

In [23]: B_filter = [1,7]
In [24]: df.query('B == @B_filter')
Oout[24]:
A B C
0 4 1 4
3 2 1 9
7 6 7 8
8 6 7 3
In [25]: df.query('@B_filter in B')
Out [25]:
A B C
0 4 1 4

Path Dependent Slicing

It may become necessary to traverse the elements of a series or the rows of a dataframe in a way
that the next element or next row is dependent on the previously selected element or row. This is

called path dependency.

Consider the following time series s with irregular frequency.

#starting python community conventions
import numpy as np
import pandas as pd

n is number of observations
n = 5000

day = pd.to_datetime (['2013-02-06"])

irregular seconds spanning 28800 seconds (8 hours)
seconds = np.random.rand(n) * 28800 * pd.Timedelta(l, 's'")
start at 8 am

start = pd.offsets.Hour (8)

irregular timeseries

tidx = day + start + seconds

tidx = tidx.sort_values|()

s = pd.Series (np.random.randn (n), tidx, name='A').cumsum/ ()
s.plot () ;

https://riptutorial.com/

67

=120 i i i i i i

R o o o o o o
oo % o’ o’ o o o
of? R R LN S

Let's assume a path dependent condition. Starting with the first member of the series, | want to
grab each subsequent element such that the absolute difference between that element and the
current element is greater than or equal to x.

We'll solve this problem using python generators.

Generator function

def mover (s, move_size=10) :
"""Given a reference, find next value with
an absolute difference >= move_size"""
ref = None
for i, v in s.iteritems():
if ref is None or (abs(ref - v) >= move_size):
yield i, v
ref = v

Then we can define a new series moves like so

moves = pd.Series({i:v for i, v in mover (s, move_size=10) },
name="'_{}_"'.format (s.name))

Plotting them both

moves.plot (legend=True)
s.plot (legend=True)

https://riptutorial.com/

68

=100

=120

The analog for dataframes would be:

def mover_df (df, col, move_size=2):
ref = None
for i, row in df.iterrows() :
if ref is None or (abs(ref - row.loc[col]) >= move_size):
yield row
ref = row.loc[col]

df = s.to_frame()
moves_df = pd.concat (mover_df (df, 'A', 10), axis=1l).T

moves_df.A.plot (label="'_A_', legend=True)
df .A.plot (legend=True)

—100

=120 i i i i i i

o o 0 0 o o o

o of of of of of of

D B R El . L Sl
N pte k- - - N

e

Get the first/last n rows of a dataframe

To view the first or last few records of a dataframe, you can use the methods nhead and tai1

To return the first n rows use pataFrame.head ([n])

df .head (n)

https://riptutorial.com/ 69

To return the last n rows uSe pataFrame.tail ([n])
df.tail (n)

Without the argument n, these functions return 5 rows.

Note that the slice notation for nead/tai1 would be:

df[:10] # same as df.head(10)
df[-10:] # same as df.tail(10)

Select distinct rows across dataframe

Let

df = pd.DataFrame({'col_1':['A','B','A','B','C'], 'col_2'
df
Output:

col_1 col_2

S oW W o e W
DSw N ko
QO w>r w
oUW s W

:[3,4,3,5,6]1})

To get the distinct values in co1_1 you can use serics.unique ()

df['col_1"'].unique ()
Output:
array (['A', 'B', 'C'], dtype=object)

But Series.unique() works only for a single column.

To simulate the select unique col_1, col_2 of SQL you can use vatarrame.drop duplicates():

df.drop_duplicates()

col_1 col_2
0 A 3
1 B 4
3 B 5
4 C 6

This will get you all the unique rows in the dataframe. So if

df = pd.DataFrame({'col_1':['A','B','A','B','C"'], 'col_2'
'col_3':[(0,0.1,0.2,0.3,0.41})

df

Output:

col_1 col_2 col_3

0 A 3 0.0

1 B 4 0.1

2 A 3 0.2

:[314131516]1

https://riptutorial.com/

70

+= =

df.drop_duplicates ()

col_ 1 col 2 <col_3
0 A 3 0.0
1 B 4 0.1
2 A 3 0.2
3 B 5 0.3
4 C 6 0.4

To specify the columns to consider when selecting unique records, pass them as arguments

df = pd.DataFrame({'col_1':['A','B','A','B','C'], 'col_2':[3,4,3,5,61,
'col_3':[(0,0.1,0.2,0.3,0.41})
df.drop_duplicates(['col_1',"'col_2"'])

Output:

col_1 col 2 col_3
0 A 3 0.0
1 B 4 0.1
3 B 5 0.3
4 C 6 0.4
skip last column

df.drop_duplicates(['col_1','col _2'])[['col 1',"'col_2"']]
col_1 col_2

0 A 3

1 B 4

3 B 5

4 C 6

Source: How to “select distinct” across multiple data frame columns in pandas?.
Filter out rows with missing data (NaN, None, NaT)
If you have a dataframe with missing data (vaw, pd.naT, None) YOU can filter out incomplete rows

df = pd.DataFrame([[0,1,2,3],
[None, 5,None, pd.NaT],
[8,None, 10, None],
[11,12,13,pd.NaT]],columns=1ist ('"ABCD"'))

df

Output:

A B C D
0 0 1 2 3
1 NaN 5 NaN NaT
2 8 NaN 10 None
3 11 12 13 NaT

patarrame.dropna drops all rows containing at least one field with missing data

df.dropna ()

Output:

A B C D
#0 0 1 2 3

https://riptutorial.com/

To just drop the rows that are missing data at specified columns use subset

df.dropna (subset=["'C'])

Output:

A B C D
0 0 1 2 3
2 8 NaN 10 None
3 11 12 13 NaT

Use the option inpiace = True fOr in-place replacement with the filtered frame.

Read Indexing and selecting data online: https://riptutorial.com/pandas/topic/1751/indexing-and-
selecting-data

https://riptutorial.com/

72

C_hapter 19: 10 for Google BigQuery

Examples

Reading data from BigQuery with user account credentials

In [1]: import pandas as pd

In order to run a query in BigQuery you need to have your own BigQuery project. We can request
some public sample data:

In [2]: data = pd.read_gbg('''SELECT title, id, num_characters

This will print out:

FROM [publicdata:samples.wikipedia]
LIMIT 5'''

, project_id="'<your-project-id>")

Your browser has been opened to visit:

https://accounts.google.com/o/ocauth2/v2/auth...[looong url cutted]

If your browser is on a different machine then exit and re-run this

application with the command-line parameter

——noauth_local_webserver

If your are operating from local machine than browser will pop-up. After granting privileges pandas

will continue with output:

Authentication successful.

Requesting query... ok.
Query running...

Query done.

Processed: 13.8 Gb

Retrieving results...
Got 5 rows.

Total time taken 1.5 s.

Finished at 2016-08-23 11:26:03.

Result:

In [3]: data

Out [3]

title
0 Fusidic acid
1 Clark Air Base
2 Watergate scandal
3 2005

id
935328
426241

52382
35984

num_characters
1112

8257

25790

75813

https://riptutorial.com/

73

4 .BLP 2664340 1659

As a side effect pandas will create json file vigquery_credentials.dat Which will allow you to run
further queries without need to grant privileges any more:

In [9]: pd.read_gbg('SELECT count (1) cnt FROM [publicdata:samples.wikipedia]'
, project_id='<your-project-id>")

Requesting query... ok.

[rest of output cutted]

Out[9]:
cnt
0 313797035

Reading data from BigQuery with service account credentials

If you have created service account and have private key json file for it, you can use this file to
authenticate with pandas

In [5]: pd.read_gbg('''SELECT corpus, sum(word_count) words
FROM [bigquery-public-data:samples.shakespeare]
GROUP BY corpus
ORDER BY words desc
LIMIT 5''""
, project_id="'<your-project-id>"
, private_key='<private key json contents or file path>")
Requesting query... ok.
[rest of output cutted]

Out [5] :

corpus words
0 hamlet 32446
1 kingrichardiii 31868
2 coriolanus 29535
3 cymbeline 29231
4 2kinghenryiv 28241

Read 10 for Google BigQuery online: https://riptutorial.com/pandas/topic/5610/io-for-google-
bigquery

https://riptutorial.com/

74

C_hapter 20: JSON

Examples

Read JSON

can either pass string of the json, or a
filepath to a file with valid json

: pd.read_json('[{"A": 1, "B": 2}, {"A": 3, "B": 4}]1")

Alternatively to conserve memory:

with open('test.json') as f:
data = pd.DataFrame (json.loads(line) for line in f)

Dataframe into nested JSON as in flare.js files used in D3.js

def to_flare_json(df, filename):
"""Convert dataframe into nested JSON as in flare files used for D3.js"""
flare = dict ()
d = {"name":"flare", "children": []}

for index, row in df.iterrows () :
parent = row[0]
child = row[1l]
child_size = rowl[2]

Make a list of keys

key_list = []

for item in d['children']:
key_list.append(item['name'])

#if 'parent' is NOT a key in flare.JSON, append it
if not parent in key_list:

d['children'] .append ({"name": parent, "children":[{"value": child_size, "name":
child}1})
1f parent IS a key in flare.json, add a new child to it
else::
d['children'] [key_list.index (parent)]['children'].append({"value": child_size,
"name": child})
flare = d

export the final result to a json file
with open(filename +'.json', 'w') as outfile:
json.dump (flare, outfile, indent=4)

https://riptutorial.com/

return ("Done")

Read JSON from file

Content of file.json (one JSON object per line):

{"A": 1’ "R, 2}
{"A": 3’ "R, 4}

How to read directly from a local file:

pd.read_json('file.json', lines=True)
Output:
A B

Read JSON online: https://riptutorial.com/pandas/topic/4752/json

https://riptutorial.com/

76

C_hapter 21: Making Pandas Play Nice With
Native Python Datatypes

Examples

Moving Data Out of Pandas Into Native Python and Numpy Data Structures

In [l1]: df = pd.DataFrame({'A': [1, 2, 3], 'B': [1.0, 2.0, 3.0], 'C': ['a', 'b', 'c'],

'D': [True, False, True]})
In [2]: df
out [2]
A B C D
0 1 1.0 a True
1 2 2.0 Db False
2 3 3.0 c¢ True

Getting a python list from a series:

In [3]: df['A'].tolist ()
Out[3]: [1, 2, 3]

DataFrames do not have a to1ist () method. Trying it results in an AttributeError:

AttributeError Traceback (most recent call last)
<ipython-input-4-fc6763aflff7> in <module> ()
————> 1 df.tolist ()

//anaconda/lib/python2.7/site-packages/pandas/core/generic.pyc in __getattr_ (self, name)

2742 if name in self._info_axis:
2743 return self[name]
-> 2744 return object.__getattribute__ (self, name)
2745
2746 def _ setattr_ (self, name, value):

AttributeError: 'DataFrame' object has no attribute 'tolist'

Getting a numpy array from a series:

In [5]: df['B'].values
Out [5]: array([1., 2., 3.1)

You can also get an array of the columns as individual numpy arrays from an entire dataframe:

In [6]: df.values

Out[o6]:

array([[1l, 1.0, 'a', True],
[2, 2.0, 'b', False],

https://riptutorial.com/

[3, 3.0, 'c', True]], dtype=object)
Getting a dictionary from a series (uses the index as the keys):

In [7]: df['C'].to_dict ()
OQut[7]: {0: 'a', 1: 'b', 2: 'c'}

You can also get the entire DataFrame back as a dictionary:

In [8]: df.to_dict ()

Out [8]:

{'A': {O0: 1, 1: 2, 2: 3},
'B': {0: 1.0, 1: 2.0, 2: 3.0},
iCVs {05 '@V, 1g "BY, 23 "€"},
'D': {0: True, 1: False, 2: True}}

The to_aict method has a few different parameters to adjust how the dictionaries are formatted.
To get a list of dicts for each row:

In [9]: df.to_dict ('records')
Oout[9]:

[{'a': 1, 'B': 1.0, 'C': 'a', 'D': True},
{'a': 2, 'B': 2.0, 'C': '"b', 'D': False},
{'Aa': 3, 'B': 3.0, 'C': 'c¢', 'D': True}]

See the documentation for the full list of options available to create dictionaries.

Read Making Pandas Play Nice With Native Python Datatypes online:
https://riptutorial.com/pandas/topic/8008/making-pandas-play-nice-with-native-python-datatypes

https://riptutorial.com/

78

C_hapter 22: Map Values

Remarks

it should be mentioned that if the key value does not exist then this will raise xeyerror, in those
situations it maybe better to use merge Or 5=+ Which allows you to specify a default value if the key
doesn't exist

Examples

Map from Dictionary

Starting from a dataframe ar:

111 en
112 en
112 es
113 es
113 Jja
113 zh
114 es

Imagine you want to add a new column called s taking values from the following dictionary:
d = {112: 'en', 113: 'es', 114: 'es', 111: 'en'}

You can use = to perform a lookup on keys returning the corresponding values as a new column:
df['S'] = df['U"'] .map (d)

that returns:

111 en en
112 en en
112 es en
113 es es
113 Jja es
113 zh es
114 es es

Read Map Values online: https://riptutorial.com/pandas/topic/3928/map-values

https://riptutorial.com/ 79

Syntax

» DataFrame.merge(right, how='inner', on=None, left_on=None, right_on=None,
left_index=False, right_index=False, sort=False, suffixes=("_x',"'_y'), copy=True,
indicator=False)

» Merge DataFrame objects by performing a database-style join operation by columns or

indexes.

« If joining columns on columns, the DataFrame indexes will be ignored. Otherwise if joining
indexes on indexes or indexes on a column or columns, the index will be passed on.

Parameters

right

how

left_on

right_on

left_index

right_index

sort

suffixes

copy

indicator

DataFrame
{'left’, ‘right’, ‘outer’, ‘inner’}, default ‘inner’

label or list, or array-like. Field names to join on in left DataFrame. Can be a
vector or list of vectors of the length of the DataFrame to use a particular
vector as the join key instead of columns

label or list, or array-like. Field names to join on in right DataFrame or
vector/list of vectors per left_on docs

boolean, default False. Use the index from the left DataFrame as the join
key(s). If it is a Multilndex, the number of keys in the other DataFrame (either
the index or a number of columns) must match the number of levels

boolean, default False. Use the index from the right DataFrame as the join key.
Same caveats as left_index

boolean, default Fals. Sort the join keys lexicographically in the result
DataFrame

2-length sequence (tuple, list, ...). Suffix to apply to overlapping column names
in the left and right side, respectively

boolean, default True. If False, do not copy data unnecessarily

boolean or string, default False. If True, adds a column to output DataFrame
called “_merge” with information on the source of each row. If string, column
with information on source of each row will be added to output DataFrame, and

https://riptutorial.com/

80

column will be named value of string. Information column is Categorical-type
and takes on a value of “left_only” for observations whose merge key only
appears in ‘left’ DataFrame, “right_only” for observations whose merge key
only appears in ‘right’ DataFrame, and “both” if the observation’s merge key is

found in both.

Examples

Merge

For instance, two tables are given,

T1
id X %
42 1.9
30 1.9
T2
id signal
8 55
8 56
8 59
9 57
9 58
9 60

The goal is to get the new table T3:

id X y sl s2
8 42 1,9 55 56
9 30 1,9 57 58

s3

58
60

Which is to create columns s1, s2 and s3, each corresponding to a row (the number of rows per ia

is always fixed and equal to 3)

By applying j0in (Which takes an optional on argument which may be a column or multiple column

names, which specifies that the passed DataFrame is to be aligned on that column in the
DataFrame). So the solution can be as shown below:

df = dfl.merge(df2.groupby(‘id")['signal’].apply(lambda x:
x.reset_index(drop=True)).unstack().reset_index())

https://riptutorial.com/

81

If | separate them:

60

df2t = df2.groupby ('id') ['signal'] .apply (lambda x:

x.reset_index (drop=True)) .unstack () .reset_index ()

df2t
Oout [59]:

id 0 1 2
0 8 55 56 59
1 9 57 58 60

df = dfl.merge (df2t)

df
Out[6l]:

id b4 % 0 1
0 8 42 1.9 55 56
1 9 30 1.9 57 58

59
60

In [1]: dfl = pd.DataFrame ({'x"': [1,

In [2]: df2 = pd.DataFrame({'y':

QO 0K -

: df2

o U1 ™ N e

Inner join:

Uses the intersection of keys from two DataFrames.

In [5]: dfl.merge(df2)
Oout [5] :
X Yy
0 2 b 4
1 3 ¢

by default,

it does an inner join on the common column (s)

Alternatively specify intersection of keys from two Dataframes.

https://riptutorial.com/

82

In [5]: merged_inner = pd.merge (left=dfl, right=df2, left_on='y', right_on='y")
Out [5]:
X vy z
0 2 b 4
1 3 ¢ 5

Outer join:
Uses the union of the keys from two DataFrames.

In [
Oout [

: dfl.merge (df2, how='outer')

NaN

w N P o
w NP
O O O X — —
0O Q0 O oK
o U
o o o

NaN

Left join:

Uses only keys from left DataFrame.

In [7]: dfl.merge (df2, how='left')
Oout[7]:
X y z
0 1 a NaN
1 2 b 4.0
2 3 ¢ 5.0

Right Join
Uses only keys from right DataFrame.

In [8]: dfl.merge(df2, how='right')

Out [8]:

Xy z
0 2.0 b 4
1 3.0 c¢c 5
2 NaN d 6

Merging / concatenating / joining multiple data frames (horizontally and
vertically)

generate sample data frames:

In [57]: df3 = pd.DataFrame ({'coll':[211,212,213], 'col2': [221,222,223]})

https://riptutorial.com/

In [58]: dfl = pd.DataFrame({'coll':[11,12,13], 'col2': [21,22,23]})
In [59]: df2 = pd.DataFrame({'coll':[111,112,113], 'col2': [121,122,123]})
In [60]: df3 = pd.DataFrame ({'coll':[211,212,213], 'col2': [221,222,223]1})

In [61]: dfl

Out[61]:

coll col2
0 11 21
1 12 22
2 13 23

In [62]: df2
Out[62]:

coll col2
0 111 121
1 112 122
2 113 123

In [63]: df3
Out [63]:

coll col2
0 211 221
1 212 222
2 213 223

merge / join / concatenate data frames [df1, df2, df3] vertically - add rows

In [64]: pd.concat ([dfl,df2,df3], ignore_index=True)

Out[64]:

coll col2
0 11 21
1 12 22
2 13 23
3 111 121
4 112 122
5 113 123
6 211 221
7 212 222
8 213 223

merge / join / concatenate data frames horizontally (aligning by index):

In [65]: pd.concat ([dfl,df2,df3], axis=1)

Out [65]:

coll col2 <coll col2 coll col2
0 11 21 111 121 211 221
1 12 22 112 122 212 222
2 13 23 113 123 213 223

Merge, Join and Concat
Merging key names are same

pd.merge (dfl, df2, on='key')

https://riptutorial.com/

Merging key names are different

pd.merge (df1, df2, left_on='l_key', right_on='r_key')
Different types of joining

pd.merge (dfl, df2, on='key', how='left')

Merging on multiple keys

pd.merge (dfl, df2, on=['keyl',6 'key2'])
Treatment of overlapping columns

pd.merge (dfl, df2, on='key', suffixes=('_left', '_right'))
Using row index instead of merging keys

pd.merge (dfl, df2, right_index=True, left_index=True)

Avoid use of . j0in Syntax as it gives exception for overlapping columns

Merging on left dataframe index and right dataframe column
pd.merge (dfl, df2, right_index=True, left_on='l_key")

Concate dataframes

Glued vertically
pd.concat ([dfl, df2, df3], axis=0)
Glued horizontally

pd.concat ([dfl, df2, df3], axis=1)

What is the difference between join and merge
Consider the dataframes 1ett and right

left = pd.DataFrame([['a', 1], ['b', 2]], list('XY'), list('AB'))
left

KX
oo >
N oW

https://riptutorial.com/

85

right = pd.DataFrame([['a', 3], ['b', 4]], list('XY'), list('AC'"))
right

=X
o o >

join

Think of j50in as wanting to combine to dataframes based on their respective indexes. If there are
overlapping columns, ;j0in Will want you to add a suffix to the overlapping column name from left
dataframe. Our two dataframes do have an overlapping column name x.

left.join(right, lsuffix='_")

A

=X
o o |
N E W
o oo o>
VNG

Notice the index is preserved and we have 4 columns. 2 columns from 1eft and 2 from right.

If the indexes did not align

left.join(right.reset_index (), lsuffix='_"', how='outer')
A_ B index A C

0 NaN NaN X a 3.0

1 NaN NaN Y b 4.0

X a 1.0 NaN NaN NaN

Y b 2.0 NaN NaN NaN

| used an outer join to better illustrate the point. If the indexes do not align, the result will be the
union of the indexes.

We can tell 50in to use a specific column in the left dataframe to use as the join key, but it will still
use the index from the right.

left.reset_index () .join(right, on='index', lsuffix='_")

index A
0 X
Y

BSw 0

B A
1 a
2 Db

o o |

merge
Think of nerge as aligning on columns. By default nerge Will look for overlapping columns in which
to merge on. merge gives better control over merge keys by allowing the user to specify a subset of
the overlapping columns to use with parameter on, or to separately allow the specification of which
columns on the left and which columns on the right to merge by.

merge WIll return a combined dataframe in which the index will be destroyed.

This simple example finds the overlapping column to be ' and combines based on it.

https://riptutorial.com/ 86

left.merge (right)

o

o o >

N oW
w

Note the index is o, 17 and no longer ['x', 'v']

You can explicitly specify that you are merging on the index with the 1eft_index OF right_index
paramter

left.merge (right, left_index=True, right_index=True, suffixes=['_"', ''])

A
X
Y

o o |

N — W
o o >
Sow O

And this looks exactly like the j0in example above.

Read Merge, join, and concatenate online: https://riptutorial.com/pandas/topic/1966/merge--join--
and-concatenate

https://riptutorial.com/ 87

C_hapter 24:. Meta: Documentation Guidelines

Remarks

This meta post is similar to the python version
http://stackoverflow.com/documentation/python/394/meta-documentation-
guidelines#t=201607240058406359521.

Please make edit suggestions, and comment on those (in lieu of proper comments), so we can
flesh out/iterate on these suggestions :)

Examples

Showing code snippets and output

Two popular options are to use:

ipython notation:

In [11]: df = pd.DataFrame([[1, 2], [3, 4]11)
In [12]: df
Out[12]:
0 1
0o 1 2
1 3 4

Alternatively (this is popular over in the python documentation) and more concisely:

df.columns # Out: RangeIndex (start=0, stop=2, step=1)

df[0]

Out:

0 1
1 3

Name: 0, dtype: int64

for col in df:
print (col)

prints:

0

1

Generally, this is better for smaller examples.

Note: The distinction between output and printing. ipython makes this clear (the prints occur before
the output is returned):

In [21]: [print(col) for col in df]

https://riptutorial.com/ 88

0
1
Out [21]: [None, None]

style

Use the pandas library as pq, this can be assumed (the import does not need to be in every
example)

import pandas as pd

PEPS8!

* 4 space indentation

» kwargs should use no spaces r (a=1)

» 80 character limit (the entire line fitting in the rendered code snippet should be strongly
preferred)

Pandas version support

Most examples will work across multiple versions, if you are using a "new" feature you should
mention when this was introduced.

Example: sort_values.

print statements

Most of the time printing should be avoided as it can be a distraction (Out should be preferred).

That is:

a
out: 1

is always better than

print (a)
prints: 1

Prefer supporting python 2 and 3:

print (x) # yes! (works same in python 2 and 3)
print x # no! (python 2 only)
print (x, y) # no! (works differently in python 2 and 3)

Read Meta: Documentation Guidelines online: https://riptutorial.com/pandas/topic/3253/meta--
documentation-guidelines

https://riptutorial.com/

89

C_hapter 25: Missing Data

Remarks

Should we include the non-documented rfi11 and pfi117?
Examples
Filling missing values

In [11]: df = pd.DataFrame([[l, 2, None, 3], [4, None, 5, 6],
(7, 8, 9, 10], [None, None, None, None]])

Fill missing values with a single value:

In [12]: df.fillna(0)
Out[12]:

0 1 2 3
0 1.0 2.0 0.0 3,0
1 4.0 0.0 5.0 6.0
2 7.0 8.0 9.0 10.0
3 0.0 0.0 0.0 0.0

This returns a new DataFrame. If you want to change the original DataFrame, either use the
inplace parameter (daf.fillna (0, inplace=True)) OF assign it back to original DataFrame (ar =
df.fillna(0)).

Fill missing values with the previous ones:

In [13]: df.fillna(method='pad"') # this is equivalent to both method='ffill' and .f£fill()
Out [13]:
0 1 2 3
0 1.0 2.0 NaN 3.0
1 4.0 2.0 5.0 6.0
2 7.0 8.0 9.0 10.0
3 7.0 8.0 9.0 10.0

Fill with the next ones:

https://riptutorial.com/

90

In [14]: df.fillna(method="bfill"'") # this is equivalent to .bfill()
Out [14]:
0 1 2 3
0 1.0 2.0 5.0 3.0
1 4.0 8.0 5.0 6.0
2 7.0 8.0 9.0 10.0
3 NaN NaN NaN NaN

Fill using another DataFrame:

In [15]: df2 = pd.DataFrame (np.arange (100, 116) .reshape (4, 4))

df2
Out [15] :
0 1 2 3
0 100 101 102 103
1 104 105 106 107
2 108 109 110 111
3 112 113 114 115

In [16]: df.fillna(df2) # takes the corresponding cells in df2 to fill df

0 1 2 3
0 1.0 2.0 102.0 3.0
1 4.0 105.0 5.0 6.0
2 7.0 8.0 9.0 10.0
3 112.0 113.0 114.0 115.0

Dropping missing values

When creating a DataFrame none (python's missing value) is converted to nan (pandas’ missing
value):

In [11]: df = pd.DataFrame([[1l, 2, None, 3], [4, None, 5, 6],
(7, 8, 9, 10], [None, None, None, None]l])

Out[11]:

0 1 2 3
0 1.0 2.0 NaN 3.0
1 4.0 NaN 5.0 6.0
2 7.0 8.0 9.0 10.0
3 NaN NaN NaN NaN

Drop rows if at least one column has a missing value

In [12]: df.dropna()
Out[1l2]:

2 7.0 8.0 9.0 10.0
This returns a new DataFrame. If you want to change the original DataFrame, either use the

inplace parameter (df.dropna (inplace=True)) OF assign it back to original DataFrame (ar =
df.dropna())

https://riptutorial.com/ 91

Drop rows if all values in that row are missing

In [13]: df.dropna (how='all')
Out [13]:
0 1 2 3
0 1.0 2.0 NaN 3.0
1 4.0 NaN 5.0 6.0
2 7.0 8.0 9.0 10.0

Drop columns that don't have at least 3 non-missing values

In [14]: df.dropna(axis=1l, thresh=3)
Out[1l4]:
0 3
0 1.0 3.0
1 4.0 6.0
2 7.0 10.0
3 NaN NaN

Interpolation
import pandas as pd
import numpy as np

df = pd.DataFrame({'A':[1,2,np.nan,3,np.nan],
'B':[1.2,7,3,0,8]11})

df['C'] = df.A.interpolate ()
df['D'] = df.A.interpolate (method='spline', order=1)
print (df)
A B C D
0 1.0 1.2 1.0 1.000000
1 2.0 7.0 2.0 2.000000
2 NaN 3.0 2.5 2.428571
3 3.0 0.0 3.0 3.000000
4 NaN 8.0 3.0 3.714286

Checking for missing values
In order to check whether a value is NaN, isnu11 () Or notnull () functions can be used.

[1]: import numpy as np

[2]: import pandas as pd

In [3]: ser = pd.Series([1l, 2, np.nan, 4])
[
[

In [4]: pd.isnull (ser)
Out [4]

0 False

1 False

2 True

3 False

dtype: bool

https://riptutorial.com/

Note that np.nan == np.nan returns False so you should avoid comparison against np.nan:

In [5]: ser == np.nan
Oout [5] :

0 False

1 False

2 False

3 False

dtype: bool

Both functions are also defined as methods on Series and DataFrames.

In [6]: ser.isnull()

Out[o6]:

0 False
1 False
2 True
3 False

dtype: bool

Testing on DataFrames:

In [7]: df = pd.DataFrame({'A': [1l, np.nan, 3], 'B':

[np.nan, 5, 61})

In [8]: print (df)

Out[8]:
A

0 1.0 NaN

1 NaN
2 3.0
In [9]:
Out[9]:
A
0 False
1 True
2 False
In [10]
Out [107]:
A
0 True
1 False
2 True

df.isnull ()

: df.notnull ()

If the value is NaN, returns True.

B

True

False

False

Opposite of .isnull(). If the value is not NaN, returns True.
B

False

True
True

Read Missing Data online: https://riptutorial.com/pandas/topic/1896/missing-data

https://riptutorial.com/

93

C_hapter 26: Multiindex

Examples

Select from Multilndex by Level
Given the following DataFrame:

In [11]: df = pd.DataFrame (np.random.randn (6, 3), columns=['A', 'B', 'C'])

In [12]: df.set_index(['A', 'B'], inplace=True)

0.902764 -0.259656 -1.864541
-0.695893 0.308893 0.125199
1,696989 =i,221131l =2,9756839
-1.132069 -1.086189 -1.945467
2.294835 -1.765507 1.567853
-1.788299 2.579029 0.792919

Get the values of a, by name:

In [14]: df.index.get_level_values('A'")
Out[14]:
Float64Index ([0.902764041011, -0.69589264969, 1.69698924476, -1.13206872067,
2.2948348114¢6, -1.788298829],
dtype='float64', name='A"')

Or by number of level:

In [15]: df.index.get_level_values (level=0)
Out [15]:
Float64Index ([0.902764041011, -0.69589264969, 1.69698924476, -1.13206872067,
2.2948348114¢6, -1.788298829],
dtype='float64', name='A'")

And for a specific range:

In [16]: df.loc[(df.index.get_level_values('A') > 0.5) & (df.index.get_level_values('A') <
2.1)]
Out[1l6]:

A B

0.902764 -0.259656 -1.864541
1.696989 -1.221131 -2.975839

Range can also include multiple columns:

https://riptutorial.com/

In [17]: df.loc[(df.index.get_level values('A') > 0.5) & (df.index.get_level_values('B')

©

.696989 -1.221131 -2.975839

A
0.902764 -0.259656 —-1.864541
1
2.294835 -1.765507 1.567853

To extract a specific value you can use xs (cross-section):

In [18]: df.xs(key=0.9027639999999999)

C
In [19]: df.xs(key=0.9027639999999999, drop_level=False)

0.902764 -0.259656 -1.864541

lterate over DataFrame with Multilndex

Given the following DataFrame:

In [11]: df = pd.DataFrame({'a':[1,1,1,2,2,3],'b"':[4,4,5,5,6,7,1,'c':

In [12]: df.set_index(['a','b'], inplace=True)

In [13]: df

Out [13]:

a b

1 4 10
4 11
5 12

25 13
6 14

3 7 15

[10,11,12,13,14,151})

< 0)]

You can iterate by any level of the Multiindex. For example, 1eve1=0 (you can also select the level

by name e.g. 1evel='a"):

In[21]: for idx, data in df.groupby (level=0) :
print ('--—=-")
print (data)

@
a b

14 10

4 11

5 12

@

https://riptutorial.com/

95

You can also select the levels by name e.g. ‘level="b":

In[22]: for idx, data in df.groupby(level='b'):

print ('-—-")
print (data)

ab
14 10
4 11
@

a b
15 12
25 13
@

a b
2 6 14
@

a b
3 7 15

Setting and sorting a Multiindex

This example shows how to use column data to set a MultiIndex IN @ pandas.DataFrame.

In [1]: df = pd.DataFrame([['one', 'A', 100],
S ['one', 'B', 1037,

columns=['cl', 'c2',

In [2] df
Out [2]

cl c2 c3
0 one A 100
1 two A 101
2 three A 102
3 one B 103
4 two B 104
5 three B 105

In [3]: df.set_index(['cl', 'c2'])
Out [3]:
c3
cl c2
one A 100
two A 101

["two',
["two',
'c3'])

L
Al

TR
B',

1017,
1047,

['three',
['three',

TAT
A',

TR
B',

1027,
105117,

https://riptutorial.com/

96

three A 102
one B 103
two B 104
three B 105

You can sort the index right after you set it:

In [4]: df.set_index(['cl', 'c2']).sort_index ()
Out[4]:
c3

cl c2
one A 100

B 103
three A 102

B 105
two A 101

B 104

Having a sorted index, will result in slightly more efficient lookups on the first level:

In [5]: df_01 = df.set_index(['cl', 'c2'])

In [6]: %timeit df_0l.loc['one']

1000 loops, best of 3: 607 ps per loop

In [7]: df_02 = df.set_index(['cl', 'c2']).sort_index()

In [8]: %timeit df_02.loc['one']
1000 loops, best of 3: 413 ps per loop

After the index has been set, you can perform lookups for specific records or groups of records:

In [9]: df_indexed = df.set_index(['cl', 'c2']).sort_index()

In [10]: df_indexed.loc['one']

Out [10]
c3

c2

A 100

B 103

In [11]: df_indexed.loc['one', 'A']
Out[11]:

c3 100

Name: (one, A), dtype: int64

In [12]: df_indexed.xs((slice (None), 'A'))

Out[12]:
c3

cl

one 100

three 102

two 101

https://riptutorial.com/

97

How to change Multiindex columns to standard columns
Given a DataFrame with Multiindex columns

build an example DataFrame
midx = pd.MultiIndex(levels=[["'zero', 'one'], ['x','y']l], labels=[[1,1,0,1,11,0,1,11)
df = pd.DataFrame (np.random.randn (2,3), columns=midx)

In [2]: df
Oout[2]:
one Zero
y X y
0 0.785806 -0.679039 0.513451
1 -0.337862 -0.350690 -1.423253

If you want to change the columns to standard columns (not Multilndex), just rename the columns.

df.columns = ['A','B','C"']
In [3]: df
Out[3]:
A B C

0 0.785806 -0.679039 0.513451
1 -0.337862 -0.350690 -1.423253

How to change standard columns to Multilndex
Start with a standard DataFrame

df = pd.DataFrame (np.random.randn(2,3), columns=['a',6'b','c'])

In [91]: df
Out[917]:

a b c
0 -0.911752 -1.405419 -0.978419
1 0.603888 -1.187064 -0.035883

Now to change to Multiindex, create a wuititndex Object and assign it to df.columns.

midx = pd.MultiIndex(levels=[['zero', 'one'], ['x','y']l], labels=[[1,1,0,1,11,0,1,11)
df.columns = midx

In [94]: df
out[94]:
one Zero
y X y
0 -0.911752 -1.405419 -0.978419
1 0.603888 -1.187064 -0.035883

Multilndex Columns

Multilndex can also be used to create DataFrames with multilevel columns. Just use the columns
keyword in the DataFrame command.

https://riptutorial.com/ 98

midx = pd.MultiIndex(levels=[['zero', 'one'], ['x','y']l], labels=[[1,1,0,1,11,0,1,11)
df = pd.DataFrame (np.random.randn (6,4), columns=midx)

one ZEero

y X y
0 0.625695 2.149377 0.006123
1 -1.392909 0.849853 0.005477

Displaying all elements in the index

To view all elements in the index change the print options that “sparsifies” the display of the
Multiindex.

pd.set_option('display.multi_sparse', False)
df .groupby (['A','B']) .mean ()

Output:
C
A B

a1l 107
a2 102
a 3 115
b 5 92
b 8 98
#c 2 87
c 4 104
c 9 123

Read Multiindex online: https://riptutorial.com/pandas/topic/3840/multiindex

https://riptutorial.com/

C_hapter 27: Pandas Datareader

Remarks

The Pandas datareader is a sub package that allows one to create a dataframe from various
internet datasources, currently including:

* Yahoo! Finance

» Google Finance

« St.Louis FED (FRED)

» Kenneth French'’s data library
» World Bank

* Google Analytics

For more information, see here.

Examples
Datareader basic example (Yahoo Finance)

from pandas_datareader import data

Only get the adjusted close.

aapl = data.DataReader ("AAPL",
start='2015-1-1",
end='2015-12-31",
data_source="'yahoo') ['Adj Close']

>>> aapl.plot (title="'AAPL Adj. Closing Price')

AAPL Adj. Closing Price

130
125
120
115
110
105
100
ﬁ#iﬁi’*‘ 1{_].‘!19‘ @x‘:ﬁ‘}ﬁ\‘:wﬂfh@iu‘f;&}ﬁx;q 11:.1‘;&.-@'&:“* "f':'f;kx.le

Date

Convert the adjusted closing prices to cumulative returns.
returns = aapl.pct_change ()

https://riptutorial.com/ 100

>>> ((1 + returns) .cumprod() - 1).plot(title="'AAPL Cumulative Returns')
_ AAPL Cumulative Returns

025

020

015

01

0os

ooo

-0.05

B g 0 P g P P P g P o
0T et gl T W R et 0B aet et
Date

Reading financial data (for multiple tickers) into pandas panel - demo

from datetime import datetime

import pandas_datareader.data as wb

stocklist =

start =
end =

p =

wb.DataReader (stocklist,

["AAPL', 'GOOG', "FB', 'AMZN"', "COP ']

datetime (2016, 6, 8)
datetime (2016,6,11)

'vahoo', start, end)

p - is a pandas panel, with which we can do funny things:

let's see what do we have in our panel

In [388]:
Out [388]:
[Index (['Open',

p.axes

name="'Date',

'High',
DatetimeIndex (['2016-06-08",

'Low', 'Close',

'2016-06-09",

fregq='D"),

'Volume',

'Adj Close'],
'2016-06-10"'1,

dtype='object"'),

dtype='datetime64 [ns]"',

'Adj Close'],

GOOG

728.280029
728.580017

Index (['"AAPL', 'AMZN', 'COP', 'FB', 'GOOG'], dtype='object')]
In [389]: p.keys()
Out [389]: Index(['Open', 'High', 'Low', 'Close', 'Volume',
selecting & slicing data

In [390]: p['Adj Close']
Out [3907] :

AAPL AMZN COP FB
Date
2016-06-08 98.940002 726.640015 47.490002 118.389999
2016-06-09 99.650002 727.650024 46.570000 118.559998
2016-06-10 98.830002 717.909973 44.509998 116.620003

719.409973

dtype='object"')

https://riptutorial.com/

101

In [391]: p['Volume']
Out [391]:

AAPL
Date
2016-06-08 20812700.0
2016-06-09 26419600.0
2016-06-10 31462100.0

AMZN

2200100.0
2163100.0
3409500.0

In [394]: pl[:,:, "AAPL'"]

Out [394]:

Open
Date
2016-06-08 99.019997
2016-06-09 98.500000
2016-06-10 98.529999

High

99,559996
99.989998
99.349998

In [395]: pl[:,'2016-06-10"]

Out [395]:
Open

AAPL 98.529999 99,
AMZN 722.349976 724.
COP 45.900002 46.
FB 117.540001 118.
GOOG 719.469971 725.

Read Pandas Datareader online: https://riptutorial.com/pandas/topic/1912/pandas-datareader

High

349998 98.
979980 714.
119999 44,
110001 11e6.
890015 716.

COP

9596700.0

5389300.0
8941200.0

Low

98.680000

98.459999
98.480003

Low

480003 98.
210022 717.
259998 44,
260002 116.
429993 719.

14368700.
13823400.
18412700.

Close

98.940002
99.650002
98.830002

Close
830002
909973
509998
620003
409973

FB GOOG
0 1582100.0
0 985900.0
0 1206000.0

Volume
20812700.0
26419600.0
31462100.0

Volume

31462100.0
3409500.0 7
8941200.0

18412700.0 1
1206000.0 7

Adj Close

98.940002
99.650002
98.830002

Adj Close
98.830002
17.909973
44.509998
16.620003
19.409973

https://riptutorial.com/

102

C_hapter 28:. Pandas IO tools (reading and
saving data sets)

Remarks

The pandas official documentation includes a page on |0 Tools with a list of relevant functions to
read and write to files, as well as some examples and common parameters.

Examples

Reading csv file into DataFrame

Example for reading file data_file.csv such as:
File:

index, headerl, header2, header3
1,str_data,12,1.4
3,str_data,22,42.33
4,str_data,2,3.44
2,str_data,43,43.34

7, str_data, 25, 23.32

Code:

pd.read_csv('data_file.csv')

Output:
index headerl header2 header3
0 1 str_data 12 1.40
1 3 str_data 22 42 .33
2 4 str_data 2 3.44
3 2 str_data 43 43.34
4 7 str_data 25 23.32

Some useful arguments:

* sep I'he default field delimiter is a comma , . Use this option if you need a different delimiter,
for instance pd.read_csv ('data_file.csv', sep=';")

* index_col With index_co1 = n (n @n integer) you tell pandas to use column r to index the

https://riptutorial.com/ 103

DataFrame. In the above example:

pd.read_csv('data_file.csv', index_col=0)

Output:
headerl header2 header3

index
1 str_data 12 1.40
3 str_data 22 42 .33
4 str_data 2 3.44
2 str_data 43 43.34
7 str_data 25 23.32

* skip blank lines By default blank lines are skipped. Use skip_blank_lines=ralse t0 include
blank lines (they will be filled with nax values)

pd.read_csv('data_file.csv', index_col=0,skip_blank_lines=False)

Output:
headerl header2 header3
index
1 str_data 12 1.40
3 str_data 22 42 .33
4 str_data 2 3.44
2 str_data 43 43.34
NaN NaN NaN NaN
7 str_data 25 23.32

* parse_dates Use this option to parse date data.

File:

date_begin;date_end; header3;header4;header>5
1/1/2017;1/10/2017;str_data;1001;123,45
2/1/2017;2/10/2017; str_data;1001;67,89
3/1/2017;3/10/2017;str_data;1001;0

Code to parse columns o and 1 as dates:

pd.read_csv('f.csv', sep=';', parse_dates=[0,1])

Output:

date_begin date_end header3 header4 headerb5

0 2017-01-01 2017-01-10 str_data 1001 123,45
1 2017-02-01 2017-02-10 str_data 1001 67,89
2 2017-03-01 2017-03-10 str_data 1001 0

By default, the date format is inferred. If you want to specify a date format you can use for

https://riptutorial.com/ 104

instance

dateparse = lambda x: pd.datetime.strptime(x, '%$d/%m/%$Y')
pd.read_csv('f.csv', sep=';',parse_dates=[0,1],date_parser=dateparse)

Output:
date_begin date_end header3 header4 header5
0 2017-01-01 2017-10-01 str_data 1001 123,45
1 2017-01-02 2017-10-02 str_data 1001 67,89
2 2017-01-03 2017-10-03 str_data 1001 0

More information on the function's parameters can be found in the official documentation.

Basic saving to a csv file

raw_data = {'first_name': ['John', 'Jane', 'Jim'],
'last_name': ['Doe', 'Smith', 'Jones'],
'department': ['Accounting', 'Sales', 'Engineering'],}

df = pd.DataFrame (raw_data,columns=raw_data.keys())
df.to_csv('data_file.csv')

Parsing dates when reading from csv

You can specify a column that contains dates so pandas would automatically parse them when
reading from the csv

pandas.read_csv('data_file.csv', parse_dates=['date_column'])
Spreadsheet to dict of DataFrames

with pd.ExcelFile('path_to_file.xls) as x1l:
d = {sheet_name: xl.parse(sheet_name) for sheet_name in xl.sheet_names}

Read a specific sheet
pd.read_excel ('path_to_file.xls', sheetname='Sheetl')

There are many parsing options for rcaa cxcc1 (similar to the options in read_csv.

pd.read_excel ('path_to_file.xls',
sheetname='Sheetl', header=[0, 1, 2],
skiprows=3, index_col=0) # etc.

Testing read_csv

import pandas as pd
import io

https://riptutorial.com/ 105

temp=u"""index; headerl; header2; header3

; str_data; 12; 1.4

; str_data; 22; 42.33

; str_data; 2; 3.44

; str_data; 43; 43.34

; str_data; 25; 23.32"""

#after testing replace io.StringIO(temp) to filename

~ N s W P

df = pd.read_csv(io.StringIO (temp),

sep = '; ',

index_col = 0,

skip_blank_lines = True)
print (df)

headerl header2 header3

index
1 str_data 12 1.40
3 str_data 22 42 .33
4 str_data 2 3.44
2 str_data 43 43.34
7 str_data 25 23.32

List comprehension

All files are in folder riies. First create list of DataFrames and then con

import pandas as pd
import glob

#a.csv
#a,b
#1,2
#5,8

#b.csv
#a,b
#9,6
#6,4

#c.csv
#a,b
#4,3
#7,0

files = glob.glob('files/*.csv"')
dfs = [pd.read_csv(fp) for fp in files]

#duplicated index inherited from each Dataframe
df = pd.concat (dfs)
print (df)

a

W & o0 o N O

0
seting' index

H*+= P O B O O

1
5
9
6
4
7
@

'r

df = pd.concat (dfs, ignore_index=True)

+ them:

https://riptutorial.com/

106

print (df)
a b

0o 1 2

1 5 8

2 9 6

3 6 4

4 4 3

5 7 0

#concat by columns

dfl = pd.concat (dfs,
print (dfl)

a b a b a
0 1 2 9 6 4
1 5 8 6 4 7
#reset column names
dfl = pd.concat (dfs,
print (dfl)

0 1 2 3 4
0 1 2 9 6 4
1 5 8 6 4 7

Read in chunks

import pandas as pd

chunksize = [n]

axis=1)

axis=1, ignore_index=True)

for chunk in pd.read_csv(filename, chunksize=chunksize):

Save to CSV file

process (chunk)

delete (chunk)

Save with default parameters:

df.to_csv (file_name)

Write specific columns:

df.to_csv(file_name,

columns =['col'])

Difault delimiter is ',' - to change it:

df.to_csv(file_name, sep="[|")

Write without the header:

df.to_csv(file_name,

header=False)

Write with a given header:

https://riptutorial.com/

107

df.to_csv(file_name, header = ['A','B','C',...]

To use a specific encoding (e.g. 'utf-8') use the encoding argument:

df.to_csv(file_name, encoding="utf-8")
Parsing date columns with read_csv

Date always have a different format, they can be parsed using a specific parse_dates function.

This input.csv:

2016 06 10 20:30:00 foo
2016 07 11 19:45:30 bar
2013 10 12 4:30:00 foo

Can be parsed like this :

mydateparser = lambda x: pd.datetime.strptime (x, "%Y %m %$d $H:$M:%3S")
df = pd.read_csv("file.csv", sep='\t', names=['date_column', 'other_ column'],
parse_dates=["'date_column'], date_parser=mydateparser)

parse_dates argument is the column to be parsed
date_parser is the parser function

Read & merge multiple CSV files (with the same structure) into one DF

import os
import glob
import pandas as pd

def get_merged_csv(flist, **kwargs) :

return pd.concat ([pd.read_csv(f, **kwargs) for f in flist], ignore_index=True)
path = 'C:/Users/csvfiles'
fmask = os.path.join(path, '*mask*.csv')
df = get_merged_csv(glob.glob (fmask), index_col=None, usecols=['coll', 'col3'])

print (df.head())

If you want to merge CSV files horizontally (adding columns), use axis=1 when calling pd. concat ()
function:

def merged_csv_horizontally (flist, **kwargs) :
return pd.concat ([pd.read_csv(f, **kwargs) for f in flist], axis=1)

Reading cvs file into a pandas data frame when there is no header row

If the file does not contain a header row,

https://riptutorial.com/ 108

File:

1;str_data;12;1.4
3;str_data;22;42.33
4;str_data;2;3.44
2;str_data;43;43.34

7; str_data; 25; 23.32

you can use the keyword names to provide column names:

df = pandas.read_csv('data_file.csv', sep=';"', index_col=0,
skip_blank_lines=True, names=['a', 'b', 'c'])

df
Out:

a b c
1 str_data 12 1.40
3 str_data 22 42.33
4 str_data 2 3.44
2 str_data 43 43.34
7 str_data 25 23.32

Using HDFStore

import string

import numpy

as np

import pandas as pd

generate sample DF with various dtypes

df = pd.DataFrame ({

'int32': np.random.randint (0, 10**6,

'int64': np.random.randint (10**7, 10**9, 10) .astype(np.int64)*10,
'float': np.random.rand(10),

'string': np.random.choice ([c*10 for c in string.ascii_uppercase],

b

In [71]: df

Oout [71]:

float int32 int64 string
0 0.649978 848354 5269162190 DDDDDDDDDD
1 0.346963 490266 6897476700 0000000000
2 0.035069 756373 6711566750 ZZZZZZZZZZ
3 0.066692 957474 9085243570 FFFFFFFFFF
4 0.679182 665894 3750794810 MMMMMMMMMM
5 0.861914 630527 6567684430 TTTTTITTITT
6 0.697691 825704 8005182860 FFFFFFFFFF
7 0.474501 942131 4099797720 QQQQQ0QQQ0
8 0.645817 951055 8065980030 VVVVVVVVVV
9 0.083500 349709 7417288920 EEEEEEEEEE

https://riptutorial.com/

109

make a bigger DF (10 * 100.000 = 1.000.000

rows)

df = pd.concat ([df] * 10**5, ignore_index=True)

create (or open existing) HDFStore file

store = pd.HDFStore('d:/temp/example.h5")

save our data frame into .. (HDFStore) file,
iIndexing [int32, int64, string] columns:

store.append ('store_key', df, data_columns=['int32',6 'int64', 'string'])

%W HDFStore detalls

In [78]: store.get_storer ('store_key') .table

out [78]:
/store_key/table (Table(10,)) "'
description := {

"index": Int64Col (shape=(), dflt=0, pos=0),
"values_block_0": Float64Col (shape=(1,), dflt=0.0, pos=1l),
"int32": Int32Col (shape=(), dflt=0, pos=2),

"int64": Int64Col (shape=(), dflt=0, pos=3),

"string": StringCol (itemsize=10, shape=(), dflt=b'', pos=4)}

byteorder := 'little'

chunkshape := (1724,)

autoindex := True

colindexes := {
"index": Index (6, medium, shuffle, zlib(l)).is_csi=False,
"int32": Index (6, medium, shuffle, zlib(l)).is_csi=False,
"string": Index (6, medium, shuffle, zlib(l)).is_csi=False,

"int64": Index (6, medium, shuffle, zlib(l)).is_csi=False}

show indexed columns

In [80]: store.get_storer('store_key') .table.colindexes

Out [80] :

{
"int32": Index (6, medium, shuffle, zlib(l)).is_csi=False,
"index": Index (6, medium, shuffle, zlib(l)).is_csi=False,
"string": Index (6, medium, shuffle, zlib(l)).is_csi=False,

https://riptutorial.com/

110

"int64": Index (6, medium, shuffle, zlib(l)).is_csi=False}

close (flush to disk) our store file

store.close ()

Read Nginx access log (multiple quotechars)
For multiple quotechars use regex in place of sep:

df = pd.read_csv(log_file,
sep=r'\s (?=(2: [""]F"[A"]F") X [A"]XS) (2L IAN[IAND]) ',
engine='python',
usecols=[0, 3, 4, 5, 6, 7, 8],
names=['ip', 'time', 'request', 'status', 'size', 'referer', 'user_agent'],
na_values='-"',
header=None

)

Read Pandas 10 tools (reading and saving data sets) online:
https://riptutorial.com/pandas/topic/2896/pandas-io-tools--reading-and-saving-data-sets-

https://riptutorial.com/

111

C_hapter 29: pd.DataFrame.apply

Examples

pandas.DataFrame.apply Basic Usage

The pandas.DataFrame.apply() method is used to apply a given function to an entire patarrame ---

for example, computing the square root of every entry of a given patarrame OF SUMMING across
each row of a patarrame tO return a series.

The below is a basic example of usage of this function:

create a random DataFrame with 7 rows and 2 columns
df = pd.DataFrame (np.random.randint (0,100,size = (7,2)),

columns = ['fst','snd'])

>>> df

fst snd
0 40 94
1 58 93
2 95 95
3 88 40
4 25 27
5 62 64
6 18 92

apply the square root function to each column:

(this returns a DataFrame where each entry is the sqgrt of the entry in df;
setting axis=0 or axis=1 doesn't make a difference)

>>> df.apply (np.sqrt)

fst snd
0 6.324555 9.695360
1 7.615773 9.643651
2 9.746794 9.746794
3 9.380832 6.324555
4 5.000000 5.196152
5 7.874008 8.000000
6 4.242641 9.591663

sum across the row (axis parameter now makes a difference):
>>> df.apply (np.sum, axis=1)

134

151

190

128

52

126

110

dtype: int64

o U W N PO

>>> df.apply (np.sum)
fst 386

snd 505

dtype: int64

https://riptutorial.com/

112

Read pd.DataFrame.apply online: https://riptutorial.com/pandas/topic/7024/pd-dataframe-apply

https://riptutorial.com/ 113

C_hapter 30: Read MySQL to DataFrame

Examples
Using sqlalchemy and PyMySQL

from sglalchemy import create_engine

cnx = create_engine ('mysqgl+pymysqgl://username:password@server:3306/database') .connect ()
sgl = 'select * from mytable'
df = pd.read_sgl(sgl, cnx)

To read mysqgl to dataframe, In case of large amount of data
To fetch large data we can use generators in pandas and load data in chunks.

import pandas as pd
from sglalchemy import create_engine
from sglalchemy.engine.url import URL

sglalchemy engine

engine = create_engine (URL (
drivername="mysqgl"
username="user",
password="password"
host="host"
database="database"

))
conn = engine.connect ()

generator_df = pd.read_sqgl (sgl=query, # mysgl query
con=conn,
chunksize=chunksize) # size you want to fetch each time

for dataframe in generator_df:
for row in dataframe:
pass # whatever you want to do

Read Read MySQL to DataFrame online: https://riptutorial.com/pandas/topic/8809/read-mysql-to-
dataframe

https://riptutorial.com/ 114

C_hapter 31: Read SQL Server to Dataframe

Examples

Using pyodbc

import pandas.io.sqgl
import pyodbc
import pandas as pd

Specify the parameters

Parameters

server = 'server_name'
db = 'database_name'
UID = 'user_id'

Create the connection

Create the connection

conn = pyodbc.connect ('DRIVER={SQL Server}; SERVER=' + server + ';DATABASE='

+ UID + '; PWD = ' + UID + 'Trusted_Connection=yes')

’

Query into pandas dataframe

Query into dataframe
df= pandas.io.sgl.read_sqgl('sqgl_query_string', conn)

Using pyodbc with connection loop

import os, time
import pyodbc
import pandas.io.sgl as pdsqgl

def todf (dsn='yourdsn', uid=None, pwd=None, query=None, params=None) :
''"'" if “query’ 1s not an actual query but rather a path to a text file

containing a query, read it in instead '''

if query.endswith('.sgl') and os.path.exists (query) :

with open (query, 'r') as fin:
query = fin.read()
connstr = "DSN={};UID={};PWD={}".format (dsn,uid, pwd)

connected = False
while not connected:
try:
with pyodbc.connect (connstr, autocommit=True) as con:

cur = con.cursor ()

if params is not None: df = pdsqgl.read_sqgl (query, con,
params=params)

else: df = pdsgl.read_sqgl (query, con)
cur.close ()

+ ely

r

UID

https://riptutorial.com/

115

break
except pyodbc.OperationalError:
time.sleep (60) # one minute could be changed
return df

Read Read SQL Server to Dataframe online: https://riptutorial.com/pandas/topic/2176/read-sql-
server-to-dataframe

https://riptutorial.com/ 116

C_hapter 32: Reading files into pandas
DataFrame

Examples
Read table into DataFrame

Table file with header, footer, row names, and index column:

file: table.txt

This is a header that discusses the table file
to show space in a generic table file

index name occupation
1 Alice Salesman
2 Bob Engineer
3 Charlie Janitor

This is a footer because your boss does not understand data files

code:

import pandas as pd
index_col=0 tells pandas that column 0 is the index and not data
pd.read_table('table.txt', delim whitespace=True, skiprows=3, skipfooter=2, index_col=0)

OUtpUt:
name occupation
index
1 Alice Salesman
2 Bob Engineer
3 Charlie Janitor

Table file without row names or index:

file: table.txt
Alice Salesman
Bob Engineer

Charlie Janitor

code:

import pandas as pd

https://riptutorial.com/ 117

pd.read_table('table.txt', delim_whitespace=True, names=['name', 'occupation'])

OUtpUt:
name occupation
0 Alice Salesman
1 Bob Engineer
2 Charlie Janitor

All options can be found in the pandas documentation here
Read CSV File

Data with header, separated by semicolons instead of
commas

file: table.csv

index;name; occupation
1;Alice; Saleswoman
2;Bob;Engineer
3;Charlie; Janitor

code:

import pandas as pd
pd.read_csv('table.csv', sep=';"', index_col=0)

OUtpUt:
name occupation
index
1 Alice Salesman
2 Bob Engineer
3 Charlie Janitor

Table without row names or index and commas as
separators

file: table.csv

Alice, Saleswoman
Bob, Engineer
Charlie, Janitor

code:

https://riptutorial.com/ 118

import pandas as pd
pd.read_csv('table.csv', names=['name', 'occupation'])

output:

name occupation

0 Alice Salesman
Bob Engineer

2 Charlie Janitor

further clarification can be found in the =24 s documentation page

Collect google spreadsheet data into pandas dataframe

Sometimes we need to collect data from google spreadsheets. We can use gspread and
oauth2client libraries to collect data from google spreadsheets. Here is a example to collect data:

Code:

from _ future__ import print_function

import gspread

from oauth2client.client import SignedJwtAssertionCredentials
import pandas as pd

import json

scope = ['https://spreadsheets.google.com/feeds']

credentials = ServiceAccountCredentials.from_json_keyfile_name ('your-authorization-file. json',
scope)

gc = gspread.authorize (credentials)

work_sheet = gc.open_by_key ("spreadsheet-key-here")
sheet = work_sheet.sheetl

data = pd.DataFrame (sheet.get_all_records())

print (data.head())

Read Reading files into pandas DataFrame online:
https://riptutorial.com/pandas/topic/1988/reading-files-into-pandas-dataframe

https://riptutorial.com/ 119

C_hapter 33: Resampling

Examples
Downsampling and upsampling

import pandas as pd
import numpy as np

np.random.seed (0)
rng = pd.date_range ('2015-02-24"', periods=10, freg='T')

df = pd.DataFrame ({'Val' : np.random.randn(len(rng))}, index=rng)
print (df)
Val
2015-02-24 00:00:00 1.764052
2015-02-24 00:01:00 0.400157
2015-02-24 00:02:00 0.978738
2015-02-24 00:03:00 2.240893
2015-02-24 00:04:00 1.867558
2015-02-24 00:05:00 -0.977278
2015-02-24 00:06:00 0.950088

2015-02-24 00:07:00 -0.151357
2015-02-24 00:08:00 -0.103219
2015-02-24 00:09:00 0.410599

#downsampling with aggregating sum
print (df.resample('5Min') .sum())
Val
2015-02-24 00:00:00 7.251399
2015-02-24 00:05:00 0.128833

#5Min is same as 5T

print (df.resample('5T').sum())
Val

2015-02-24 00:00:00 7.251399

2015-02-24 00:05:00 0.128833

#fupsampling and fill NaN values method forward filling
print (df.resample('303").£f£i11())

Val
2015-02-24 00:00:00 1.764052
2015-02-24 00:00:30 1.764052
2015-02-24 00:01:00 0.400157
2015-02-24 00:01:30 0.400157
2015-02-24 00:02:00 0.978738
2015-02-24 00:02:30 0.978738
2015-02-24 00:03:00 2.240893
2015-02-24 00:03:30 2.240893
2015-02-24 00:04:00 1.867558
2015-02-24 00:04:30 1.867558
2015-02-24 00:05:00 -0.977278
2015-02-24 00:05:30 -0.977278

2015-02-24 00:06:00 0.950088
2015-02-24 00:06:30 0.950088
2015-02-24 00:07:00 -0.151357
2015-02-24 00:07:30 -0.151357

https://riptutorial.com/

120

2015-02-24 00:08:00 -0.103219
2015-02-24 00:08:30 -0.103219
2015-02-24 00:09:00 0.410599

Read Resampling online: https://riptutorial.com/pandas/topic/2164/resampling

https://riptutorial.com/ 121

C_hapter 34: Reshaping and pivoting

Examples
Simple pivoting
First try use oivor:

import pandas as pd
import numpy as np

df = pd.DataFrame ({'Name':['Mary', 'Josh',6 'Jon', 'Lucy', 'Jane', 'Sue'],

'Age':[34, 37, 29, 40, 29, 311,

'City':['Boston', 'New York', 'Chicago', 'Los Angeles', 'Chicago',
'Boston'],

'Position':['Manager', 'Programmer’', 'Manager', 'Manager', 'Programmer’',
'Programmer']},

columns=["'Name', 'Position', 'City"', 'Age'])

print (df)

Name Position City Age
0 Mary Manager Boston 34
1 Josh Programmer New York 37
2 Jon Manager Chicago 29
3 Lucy Manager Los Angeles 40
4 Jane Programmer Chicago 29
5 Sue Programmer Boston 31

print (df.pivot (index='Position', columns='City', values='Age'))

City Boston Chicago Los Angeles New York
Position

Manager 34.0 29.0 40.0 NaN
Programmer 31.0 29.0 NaN 37.0

If need reset index, remove columns names and fill NaN values:

#pivoting by numbers - column Age

print (df.pivot (index='Position', columns='City', values='Age')
.reset_index ()
.rename_axis (None, axis=1)
.fillna(0))

Position Boston Chicago Los Angeles New York

0 Manager 34.0 29.0 40.0 0.0
1 Programmer 31.0 29.0 0.0 37.0
#pivoting by strings - column Name

print (df.pivot (index='Position', columns='City', values='Name'))

City Boston Chicago Los Angeles New York
Position

Manager Mary Jon Lucy None
Programmer Sue Jane None Josh

https://riptutorial.com/ 122

Pivoting with aggregating

import pandas as pd
import numpy as np

df = pd.DataFrame ({'Name':['Mary', 'Jon', 'Lucy', 'Jane', 'Sue', 'Mary', 'Lucy'l],
'Age':[35, 37, 40, 29, 31, 26, 28],
'City':['Boston', 'Chicago', 'Los Angeles', 'Chicago', 'Boston', 'Boston'
'Chicago'],
'Position': ['Manager', 'Manager', '"Manager', 'Programmer’',
'Programmer', 'Manager', 'Manager'],
'Sex':['Female', 'Male', 'Female', 'Female', 'Female',6 'Female', 'Female']},

columns=|["'Name', 'Position', 'City"', 'Age', 'Sex"'])

print (df)

Name Position City Age Sex
0 Mary Manager Boston 35 Female
1 Jon Manager Chicago 37 Male
2 Lucy Manager Los Angeles 40 Female
3 Jane Programmer Chicago 29 Female
4 Sue Programmer Boston 31 Female
5 Mary Manager Boston 26 Female
6 Lucy Manager Chicago 28 Female

If use »ivot, get error:

print (df.pivot (index='Position', columns='City', values='Age'))

ValueError: Index contains duplicate entries, cannot reshape

Use vivor tabie With aggregating function:

#default aggfunc is np.mean
print (df.pivot_table (index='Position', columns='City', values='Age'))

City Boston Chicago Los Angeles
Position

Manager 30.5 32.5 40.0
Programmer 31.0 29.0 NaN

print (df.pivot_table (index='Position', columns='City', values='Age', aggfunc=np.mean))

City Boston Chicago Los Angeles
Position

Manager 30.5 32.5 40.0
Programmer 31.0 29.0 NaN

Another agg functions:

print (df.pivot_table(index='Position', columns='City', wvalues='Age',K aggfunc=sum))

City Boston Chicago Los Angeles
Position

Manager 61.0 65.0 40.0
Programmer 31.0 29.0 NaN
#lost data !!!

print (df.pivot_table(index='Position', columns='City', values='Age', aggfunc='first'))
City Boston Chicago Los Angeles

https://riptutorial.com/

123

Position
35.0
31.0

37.0 4
29.0

Manager
Programmer

0.0
NaN

If need aggregate by columns with string values:

print (df.pivot_table (index='Position

DataError: No numeric types to a

', columns='City"',

ggregate

You can use these aggragating functions:

print (df.pivot_table (index='Position
City Boston Chicago Los Angeles
Position
Manager Mary Jon Lucy
Programmer Sue Jane None
print (df.pivot_table (index='Position
City Boston Chicago Los Angeles
Position
Manager Mary Lucy Lucy
Programmer Sue Jane None
print (df.pivot_table (index='Position
City Boston Chicago Los Ang
Position
Manager MaryMary JonLucy
Programmer Sue Jane
print (df.pivot_table (index='Position
City Boston Chicago Los
Position
Manager Mary, Mary Jon, Lucy
Programmer Sue Jane
print (df.pivot_table (index='Position
fill_value='-")
.reset_index ()
.rename_axis (None, axis=1l))

Position Boston Chicago
0 Manager Mary, Mary Jon, Lucy
1 Programmer Sue Jane

', columns='City',

', columns='City',

', columns='City',
eles

Lucy

None

', columns='City',
Angeles

Lucy
None

', columns='City',

Los Angeles
Lucy

values="'Name'))

values="'Name', aggfunc='first'))

values="'Name', aggfunc='last'))

values="'Name', aggfunc='sum'))

values="'Name', aggfunc=', '.join))

values="'Name', aggfunc=', '.join,
4

The information regarding the Sex has yet not been used. It could be switched by one of the

columns, or it could be added as anoth

print (df.pivot_table (index='Position

aggfunc="first"'))

er level:

', columns=['City"',

City Boston Chicago Los Angeles
Sex Female Female Male Female
Position

Manager 35.0 28.0 37.0 40.0
Programmer 31.0 29.0 NaN NaN

'Sex'], values='Age',

https://riptutorial.com/

124

Multiple columns can be specified in any of the attributes index, columns and values.

print (df.pivot_table (index=['Position', 'Sex'], columns='City', values='Age',
aggfunc="'first'))

City Boston Chicago Los Angeles

Position Sex

Manager Female 35.0 28.0 40.0
Male NaN 37.0 NaN

Programmer Female 31.0 29.0 NaN

Applying several aggregating functions

You can easily apply multiple functions during a single pivot:

In [23]: import numpy as np
In [24]: df.pivot_table(index='Position', wvalues='Age', aggfunc=[np.mean, np.std])
Oout [24]:
mean std
Position
Manager 34.333333 5.507571

Programmer 32.333333 4.163332

Sometimes, you may want to apply specific functions to specific columns:

In [35]: df['Random'] = np.random.random(6)
In [36]: df
Out [36]

Name Position City Age Random
0 Mary Manager Boston 34 0.678577
1 Josh Programmer New York 37 0.973168
2 Jon Manager Chicago 29 0.146668
3 Lucy Manager Los Angeles 40 0.150120
4 Jane Programmer Chicago 29 0.112769
5 Sue Programmer Boston 31 0.185198

For example, find the mean age, and standard deviation of random by Position:

In [37]: df.pivot_table(index='Position', aggfunc={'Age': np.mean, 'Random': np.std})
Out [37] :
Age Random
Position
Manager 34.333333 0.306106
Programmer 32.333333 0.477219

One can pass a list of functions to apply to the individual columns as well:

In [38]: df.pivot_table(index='Position', aggfunc={'Age': np.mean, 'Random': [np.mean,
np.std]})]
Out [38]:
Age Random
mean mean std
Position
Manager 34.333333 0.325122 0.306106

Programmer 32.333333 0.423712 0.477219

https://riptutorial.com/

125

Stacking and unstacking

import pandas as pd
import numpy as np

np.random. seed (0)

tuples = list (zip(*[['bar',

[v

idx = pd.MultiIndex.from_tuples (tuples,

'bar’

one', 'two',

, 'foo',

df = pd.DataFrame (np.random.randn (6,

print (df)
A
first second
bar one 1.764052
two 0.978738
foo one 1.867558
two 0.950088
qux one -0.103219
two 0.144044
print (df.stack())
first second
bar one A 1
B 0
two A 0
B 2
foo one A 1
B -0
two A 0
B -0
qux one A -0
B 0
two A 0
B 1

dtype: float64

#reset index, rename cC

B

0.400157
2.240893
-0.977278
-0.151357
0.410599
1.454274

.764052
.400157
.978738
.240893
.867558
.977278
.950088
.151357
.103219
.410599
.144044
.454274

olumn name

'one',

'foo',

index=1dx,

'qux',
'two', 'one',

names=['first',

'qux'],
'two'l]))

'second'])
columns=['A",

print (df.stack() .reset_index (name='val2') .rename (columns={'level 2':
first second vall val2
0 bar one A 1.764052
1 bar one B 0.400157
2 bar two A 0.978738
3 bar two B 2.240893
4 foo one A 1.867558
5 foo one B -0.977278
6 foo two A 0.950088
7 foo two B -0.151357
8 qux one A -0.103219
9 qux one B 0.410599
10 qux two A 0.144044
11 qux two B 1.454274
print (df.unstack())
A B
second one two one two
first
bar 1.764052 0.978738 0.400157 2.240893

https://riptutorial.com/

126

foo 1.867558 0.950088 -0.977278 -0.151357
qux -0.103219 0.144044 0.410599 1.454274

rename_axis OTEVVin pandas O.lS.Oy

#reset index, remove columns names

dfl = df.unstack() .reset_index () .rename_axis ((None,None), axis=1)
#reset MultiIndex in columns with list comprehension
dfl.columns = ['_'.join(col).strip('_'") for col in dfl.columns]
print (dfl)

first A_one A_two B_one B_two

bar 1.764052 0.978738 0.400157 2.240893
1 foo 1.867558 0.950088 -0.977278 -0.151357
qux —-0.103219 0.144044 0.410599 1.454274

pandas bellow 0.18.0

#reset index
dfl = df.unstack () .reset_index ()
#remove columns names

dfl.columns.names = (None, None)
#reset MultiIndex in columns with list comprehension
dfl.columns = ['_'.join(col).strip('_'") for col in dfl.columns]
print (dfl)

first A_one A_two B_one B_two

0 bar 1.764052 0.978738 0.400157 2.240893
foo 1.867558 0.950088 -0.977278 -0.151357
2 qux —-0.103219 0.144044 0.410599 1.454274

Cross Tabulation

import pandas as pd

df = pd.DataFrame ({'Sex': ['M', 'M', 'F', 'M', 'F', 'F', 'M', 'M', 'F', 'F'],

"Age': [20, 19, 17, 35, 22, 22, 12, 15, 17, 221,

'Heart Disease': ['Y', 'N', 'Y', 'N', 'N', 'Y', 'N', 'Y', 'N',

df

Age Heart Disease Sex

0 20 Y M
1 19 N M
2 17 Y F
3 35 N M
4 22 N F
5 22 Y F
6 12 N M
7 15 Y M
8 17 N F
9 22 Y F

pd.crosstab (df['Sex'], df['Heart Disease'])

Hearth Disease N Y

Sex
F 2 3
M 3 2

https://riptutorial.com/

127

Using dot notation:

pd.crosstab (df.Sex, df.Age)

Age 12 15 17 19 20 22 35

Sex
F 0
M 1 1 0 1 1 0 1

Getting transpose of DF:

pd.crosstab (df.Sex, df.Age).T

Sex F M
Age

12 0 1
15 0 1
17 2 0
19 0 1
20 0 1
22 3 0
35 0 1

Getting margins or cumulatives:

pd.crosstab (df['Sex'], df['Heart Disease'], margins=True)

Heart Disease N Y All

Sex

F 2 3 5
M 3 2 5
All 5 5 10

Getting transpose of cumulative:

pd.crosstab (df['Sex'], df['Age'], margins=True) .T

Sex F M All
Age
12
15
17
19
20
22
35
All

OO W o o N O O
O O R P O K
O WER P N -

=

Getting percentages :

pd.crosstab (df ["Sex"],df ['Heart Disease']) .apply(lambda r: r/len(df), axis=1)
Heart Disease N Y
Sex

https://riptutorial.com/ 128

Getting cumulative and multiplying by 100:

df2 = pd.crosstab (df["Age"],df['Sex'], margins=True) .apply(lambda r:

df2

Sex F M All
Age

12 .0 10.0 10.0
15 0.0 10.0 10.0
17 20.0 0.0 20.0
19 0.0 10.0 10.0
20 0.0 10.0 10.0
22 30.0 0.0 30.0
35 0.0 10.0 10.0
All 50.0 50.0 100.0

Removing a column from DF (one way):

df2 [["F", "M"]]

Sex F M
Age

12 .0 10.0
15 0.0 10.0
17 20.0 0.0
19 0.0 10.0
20 0.0 10.0
22 30.0 0.0
35 0.0 10.0
All 50.0 50.0

Pandas melt to go from wide to long

>>> df

ID Year Jan_salary Feb_salary
0 1 2016 4500

2 2016 3800

3 2016 5500

4200
3600
5200

Mar_salary
4700
4400
5300

>>> melted_df = pd.melt (df,id_vars=['ID', 'Year'],
value_vars=['Jan_salary', 'Feb_salary', '"Mar_salary'],

var_name='month',value_name='salary')

>>> melted_df

ID Year month salary
0 1 2016 Jan_salary 4500
1 2 2016 Jan_salary 3800
2 3 2016 Jan_salary 5500
3 1 2016 Feb_salary 4200
4 2 2016 Feb_salary 3600
5 3 2016 Feb_salary 5200
6 1 2016 Mar_salary 4700
7 2 2016 Mar_salary 4400

r/len (df) *100,

axis=1)

https://riptutorial.com/

129

8 3 2016 Mar_salary 5300

>>> melted_['month'] = melted_['month'].str.replace('_salary','")

>>> import calendar

>>> def mapper (month_abbr) :
from http://stackoverflow.com/a/3418092/42346
d = {v: str(k).zfill(2) for k,v in enumerate (calendar.month_abbr) }
return d[month_abbr]

>>> melted_df['month'] = melted_df['month'].apply (mapper)
>>> melted_df
ID Year month salary

0 1 2016 01 4500
1 2 2016 01 3800
2 3 2016 01 5500
3 1 2016 02 4200
4 2 2016 02 3600
5 3 2016 02 5200
6 1 2016 03 4700
7 2 2016 03 4400
8 3 2016 03 5300

Split (reshape) CSV strings in columns into multiple rows, having one element
per row

import pandas as pd

df = pd.DataFrame([{'varl': 'a,b,c', 'var2': 1, 'var3': 'XX'},
{'varl': 'd,e,f,x,y', 'var2': 2, 'var3': 'ZZ'}])

print (df)

reshaped = \
(df.set_index (df.columns.drop('varl',1l) .tolist ())
.varl.str.split(',', expand=True)
.stack ()
.reset_index ()
.rename (columns={0:"'varl'})
.loc[:, df.columns]

print (reshaped)

Output:
varl wvar2 var3
0 a,b,c 1 XX
1 d,e, f,x,y 2 7.7

varl wvar2 var3

0 a 1 XX
1 b 1 XX
2 € 1 XX
3 d 2 %
4 e 2 ZZ
5 f 2 %

https://riptutorial.com/ 130

Read Reshaping and pivoting online: https://riptutorial.com/pandas/topic/1463/reshaping-and-
pivoting

https://riptutorial.com/ 131

Parameters

string or file handle, default None File path or object, if None is provided the

e result is returned as a string.

sep character, default ‘,;” Field delimiter for the output file.

na_rep string, default © Missing data representation

float_format string, default None Format string for floating point numbers

columns sequence, optional Columns to write

header boolean or list of string, default True Write out column names. If a list of
string is given it is assumed to be aliases for the column names

index boolean, default True Write row names (index)

string or sequence, or False, default None Column label for index column(s)
if desired. If None is given, and header and index are True, then the index

index_label names are used. A sequence should be given if the DataFrame uses
Multilndex. If False do not print fields for index names. Use
index_label=False for easier importing in R

nanRep None deprecated, use na_rep
mode str Python write mode, default ‘w’

string, optional A string representing the encoding to use in the output file,

encoding defaults to ‘ascii’ on Python 2 and ‘utf-8’ on Python 3.

string, optional a string representing the compression to use in the output
compression file, allowed values are ‘gzip’, ‘bz2’, ‘xz’, only used when the first argument
is a filename

. . string, default ‘n’ The newline character or character sequence to use in the
line_terminator

output file
quoting optional constant from csv module defaults to csv.QUOTE_MINIMAL
quotechar string (length 1), default *” character used to quote fields

https://riptutorial.com/ 132

doublequote boolean, default True Control quoting of quotechar inside a field

string (length 1), default None character used to escape sep and quotechar

escapechar .
when appropriate

chunksize int or None rows to write at a time

boolean, default False write multi_index columns as a list of tuples (if True)

tupleize_cols or new (expanded format) if False)

date_format string, default None Format string for datetime objects
: string, default *." Character recognized as decimal separator. E.g. use ‘,” for
decimal
European data
Examples

Create random DataFrame and write to .csv
Create a simple DataFrame.

import numpy as np
import pandas as pd

Set the seed so that the numbers can be reproduced.
np.random.seed (0)

df = pd.DataFrame (np.random.randn (5, 3), columns=list ('ABC'))

Another way to set column names is
"columns=['column_1_name', 'column_2_name', 'column_3_name']"

df

A B ©
.764052 0.400157 0.978738
.240893 1.867558 -0.977278
.950088 -0.151357 -0.103219
.410599 0.144044 1.454274
.761038 0.121675 0.443863

Sw N RO
O O O N

Now, write to a CSV file:

df.to_csv ('example.csv', index=False)

Contents of example.csv:

A,B,C
1.76405234597,0.400157208367,0.978737984106
2.2408931992,1.86755799015,-0.977277879876

https://riptutorial.com/ 133

0.950088417526,-0.151357208298,-0.103218851794
0.410598501938,0.144043571161,1.45427350696
0.761037725147,0.121675016493,0.443863232745

Note that we specify index=False SO that the auto-generated indices (row #s 0,1,2,3,4) are not
included in the CSV file. Include it if you need the index column, like so:

df.to_csv ('example.csv', index=True) # Or just leave off the index param; default is True

Contents of example.csv:

A,B,C
,1.76405234597,0.400157208367,0.978737984106
,2.2408931992,1.86755799015,-0.977277879876
,0.950088417526,-0.151357208298,-0.103218851794
,0.410598501938,0.144043571161,1.45427350696
,0.761037725147,0.121675016493,0.443863232745

sw N PO

Also note that you can remove the header if it's not needed with header=ra1se. This is the simplest
output:

df.to_csv ('example.csv', index=False, header=False)

Contents of example.csv:

.76405234597,0.400157208367,0.978737984106
.2408931992,1.86755799015,-0.977277879876
.950088417526,-0.151357208298,-0.103218851794
.410598501938,0.144043571161,1.45427350696
.761037725147,0.121675016493,0.443863232745

o O O N -

The delimiter can be set by sep= argument, although the standard separator for csv filesis ', ' .

df.to_csv ('example.csv', index=False, header=False, sep='\t')

1.76405234597 0.400157208367 0.978737984106
2.2408931992 1.86755799015 -0.977277879876
0.950088417526 -0.151357208298 -0.103218851794
0.410598501938 0.144043571161 1.45427350696
0.761037725147 0.121675016493 0.443863232745

Save Pandas DataFrame from list to dicts to csv with no index and with data
encoding

import pandas as pd

data = [
{'name': 'Daniel', 'country': 'Uganda'},
{"name': 'Yao', 'country': 'China'},
{"name': 'James', 'country': 'Colombia'},

]
df = pd.DataFrame (data)
filename = 'people.csv'

https://riptutorial.com/ 134

df.to_csv(filename, index=False, encoding='utf-8")

Read Save pandas dataframe to a csv file online: https://riptutorial.com/pandas/topic/1558/save-
pandas-dataframe-to-a-csv-file

https://riptutorial.com/ 135

C_hapter 36: Series

Examples
Simple Series creation examples
A series is a one-dimension data structure. It's a bit like a supercharged array, or a dictionary.

import pandas as pd

s = pd.Series([10, 20, 30])

>>> 5
0 10
1 20
2 30

dtype: int64

Every value in a series has an index. By default, the indices are integers, running from 0 to the
series length minus 1. In the example above you can see the indices printed to the left of the
values.

You can specify your own indices:

s2 = pd.Series([1.5, 2.5, 3.5], index=['a', 'b', 'c'], name='my_series')

>>> s2

a 1.5
b 2.5
@ 3.5

Name: my_series, dtype: float64

s3 = pd.Series(['a', 'b', 'c'], index=1list ('ABC'))

>>> 53
A a
B b
© @

dtype: object

Series with datetime

import pandas as pd
import numpy as np

np.random.seed (0)

rng = pd.date_range ('2015-02-24"', periods=5, freg='T")
s = pd.Series (np.random.randn (len(rng)), index=rng)
print (s)

2015-02-24 00:00:00 1.764052
2015-02-24 00:01:00 0.400157

https://riptutorial.com/ 136

2015-02-24 00:02:00 0.978738
2015-02-24 00:03:00 2.240893
2015-02-24 00:04:00 1.867558
Freq: T, dtype: float64

rng = pd.date_range ('2015-02-24"', periods=5,

sl = pd.Series (rng)
print (sl)

2015-02-24 00:00:00
2015-02-24 00:01:00
2015-02-24 00:02:00
2015-02-24 00:03:00
2015-02-24 00:04:00
dtype: datetime64[ns]

Sw N PO

A few quick tips about Series in Pandas

Let us assume we have the following Series:

>>> import pandas as pd

>>> s = pd.Series([1, 4, 6, 3, 8, 7, 4, 51)

>>> s

0 1
1 4
2 6
3 3
4 8
5 7
6 4
7 5

dtype: int64

Followings are a few simple things which come handy when you are working with Series:

To get the length of s:

>>> len(s)
8

To access an elementin s:

>>> s[4]
8

To access an element in s using the index:

>>> s.loc[2]
6

To access a sub-Series inside s:

>>> g [1:3]

https://riptutorial.com/

137

1 4
2 6
dtype: into64

To get a sub-Series of s with values larger than 5:

>>> s
2 6
4 8
5 7
dtype: int64

s > 5]

To get the minimum, maximum, mean, and standard deviation:

>>> s.min ()

1

>>> s.max ()

8

>>> s.mean ()

4.75

>>> s.std()
2.2519832529192065

To convert the Series type to float:

>>> s.astype (float)
.0

~N o U W NP O
O > 3 00 W o >
O O O O O O O

dtype: float64

To get the values in s as a numpy array:

>>> s.values
array ([1, 4, 6, 3, 8, 7, 4, 5])

To make a copy of s:

>>> d = s.copy()

>>> d
0 1
1 4
2 6
3 3
4 8
5 7
6 4
7 5

dtype: int64

https://riptutorial.com/ 138

Applying a function to a Series

Pandas provides an effective way to apply a function to every element of a Series and get a new
Series. Let us assume we have the following Series:

>>> import pandas as pd
>>> s = pd.Series([3, 7, 5, 8, 9, 1, 0, 41])
>>> s

~N o U W NP O
S O P 0w 00 U J W

dtype: int64

and a square function:

>>> def square (x):
return x*x

We can simply apply square to every element of s and get a new Series:

>>> t = s.apply (square)
>>> t

0 9

1 49

2 25

3 64

4 81

5 1

6 0

7 16
dtype: int64

In some cases it is easier to use a lambda expression:

>>> s.apply(lambda x: x ** 2)
0 9
1 49
2 25
3 64
4 81
5 1
6 0
7 16
dtype: int64

or we can use any builtin function:

>>> g = pd.Series(['Bob', 'Jack', 'Rose'l])
>>> g.apply(str.lower)

https://riptutorial.com/ 139

0 bob
1 jack
2 rose
dtype: object

If all the elements of the Series are strings, there is an easier way to apply string methods:

>>> g.str.lower ()

0 bob
1 jack
2 rose

dtype: object
>>> qg.str.len()

0 3
1 4
2 4

Read Series online: https://riptutorial.com/pandas/topic/1898/series

https://riptutorial.com/ 140

C_hapter 37: Shifting and Lagging Data

Examples

Shifting or lagging values in a dataframe

import pandas as pd

df = pd.DataFrame({'eggs': [1,2,4,8,], 'chickens': [0,1,2,4,1})
df

chickens eggs
0 0 1
1 1 2
2 2 4
3 4 8
df.shift ()

chickens eggs
0 NaN NaN
1 0.0 1.0
2 1.0 2.0
3 2.0 4.0

df.shift (-2)

chickens eggs
0 2.0 4.0
1 4.0 8.0
2 NaN NaN
3 NaN NaN

df['eggs'].shift (1) - df['chickens']

0 NaN
1 0.0
2 0.0
3 0.0

The first argument to .<n it () IS periods, the number of spaces to move the data. If not specified,
defaults to 1.

Read Shifting and Lagging Data online: https://riptutorial.com/pandas/topic/7554/shifting-and-
lagging-data

https://riptutorial.com/ 141

C_hapter 38: Simple manipulation of

DataFrames

Examples

Delete a column in a DataFrame

There are a couple of ways to delete a column in a DataFrame.

import numpy as np
import pandas as pd

np.random.seed (0)

pd.DataFrame (np.random.randn (5, 6), columns=list ('"ABCDEF'))

print (df)

Output:

A B C D E
0 -0.895467 0.386902 -0.510805 -1.180632 -0.028182
1 0.066517 0.302472 -0.634322 -0.362741 -0.672460
2 -0.813146 -1.726283 0.177426 -0.401781 -1.630198
3 -0.907298 0.051945 0.729091 0.128983 1.139401
4 0.402342 -0.684810 -0.870797 -0.578850 -0.311553
1) Using de1

del df['C']

print (df)

Output:

A B D E F
0 -0.895467 0.386902 -1.180632 -0.028182 0.428332
1 0.066517 0.302472 -0.362741 -0.672460 -0.359553
2 -0.813146 -1.726283 -0.401781 -1.630198 0.462782
3 -0.907298 0.051945 0.128983 1.139401 -1.234826
4 0.402342 -0.684810 -0.578850 -0.311553 0.056165
2) Using drop

df.drop(['B', 'E'], axis='columns', inplace=True)

or df = df.drop(['B', 'E'], axis=1l) without the option inplace=True

print (df)

Output:

A D F
0 -0.895467 -1.180632 0.428332
1 0.066517 -0.362741 -0.359553
2 -0.813146 -0.401781 0.462782
3 -0.907298 0.128983 -1.234826
4 0.402342 -0.578850 0.056165

F

.428332
-0.
.462782
=1,
.056165

359553

234826

https://riptutorial.com/

142

3) Using drop With column numbers

To use column integer numbers instead of names (remember column indices start at zero):

df.drop (df.columns[[0, 2]]

print (df)

Output:

D
0 -1.180632
1 -0.362741
2 -0.401781
3 0.128983
4 -0.578850

Rename a column

’

axis='columns')

df = pd.DataFrame({'old_name_1': [1, 2, 3],
print (df)

Output:

old_name_1 old_name_2

0 1 5

1 2 6

3 7

To rename one or more columns, pass the old names and new names as a dictionary:

df.rename (columns={'old_name_1"':

print (df)
Output:
new_name_1 new_name_2

#

0 1
1

#

Or a function:

df.rename (columns=lambda x

print (df)

Output:

new_name_1 new_name_2
0 1

2

2 3

You can also set daf.colunns as the list of the new names:

x.replace('old_ "',

df.columns = ['new_name_1"', "'new_name_2"]
print (df)

Output:

i new_name_1l new_name_2

0 1 5

1 2 6

'new_name_1",

'old_name_2"':

'new_name_2"'},

inplace=True)

inplace=True)

https://riptutorial.com/

143

More details can be found here.

Adding a new column

df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})

print (df)
Output:
A
#0 1
1 2
3

o o> W

Directly assign

df[('e'] = [7, 8, 9]
print (df)

Output:

B C

#0 1 4 7

2 5 8

#2 3 6 9

Add a constant column

df['C'] =1
print (df)

Output:

B C
#0 1 4 1
#1 2 5 1
3 6 1

Column as an expression in other columns

df['C'] = df['A'] + df['B']

print (df)

Output:

A B C

#0 1 4 5

#1 2 5 7

#2 3 6 9

df['C"'] = df['A"'"]**df['B']
print (df)

https://riptutorial.com/ 144

Output:
A B
#0 1 4 1
#1 2 5 32
#2 3 6 729

a = [1/ 2! 3]
b = [4/ 5! 6]

the column in the last expression would be obtained as

c = [x**y for (x,y) in zip(a,b)]
print (c)

Output:
[1, 32, 729]

Create it on the fly

df_means = df.assign(D=[10, 20, 30]) .mean()

print (df_means)

Output:

A 2.0

B 5.0

C 7.0

D 20.0 # adds a new column D before taking the mean
dtype: float64

add multiple columns

df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 61})

df[['A2','B2']] = np.square (df)
print (df)

Output:

B A2 B2

#0 1 4 16

#1 2 5 25

#2 3 6 36

add multiple columns on the fly

new_df = df.assign (A3=df.A*df.A2, B3=5*df.B)

print (new_df)

Output:

A B A2 B2 A3 B3
#0 1 4 1 16 1 20

https://riptutorial.com/ 145

2 5 4 25 8 25
36 27 30

+= =
N
W
[e))
\e)

Locate and replace data in a column

import pandas as pd

df = pd.DataFrame ({'gender': ["male", "female","female"],
'id': [1, 2, 3] })
>>> df
gender id
0 male 1
1 female 2
2 female 3

To encode the male to 0 and female to 1:

df.loc[df["gender"] == "male","gender"] = 0
df.loc[df["gender"] == "female", "gender"] =1
>>> df
gender id
0 0 1
1 1 2
2 1 3

Adding a new row to DataFrame
Given a DataFrame:

sl = pd.Series([1,2,3])
s2 pd.Series(['a','b','c'])

df = pd.DataFrame([list(sl), list(s2)], columns = (rcim, "cav,
print df

Output:

Cl c2 C3
0o 1 2 3
1 a b c

Lets add a new row, [10,11,121:

df = pd.DataFrame (np.array ([[10,11,12]]), \

columns=["C1l", "C2", "C3"]) .append(df, ignore_index=True)

print df
Output:
cl1 c2 c3

0 10 11 12

"C3"])

https://riptutorial.com/

146

Delete / drop rows from DataFrame

let's generate a DataFrame first:

df

pd.DataFrame (np.arange (10) .reshape (5,2), columns=list('ab'))

print (df)
Output:

#

ESE .

drop rows with indexes: o and 4 uSing drop([...], inplace=True) Method:

Sw N PO

a

o o B N O

© g U w - o

df.drop([0,4], inplace=True)

print (df)
Output

+ o oW #

w N =

a

2
4
6

-~ 0o w o

drop rows with indexes: o and 4 using daf = drop([...]) method:

df

df

pd.DataFrame (np.arange (10) . reshape (5,2), columns=list('ab'))

df.drop([0,4])

print (df)

#
#
#
#
#

Output:

1
2
3

a

2
4
6

-~ 0 w o

using negative selection method:

df

df

pd.DataFrame (np.arange (10) .reshape (5,2), columns=list('ab'))

df [~df.index.isin ([0, 4])]

print (df)
Output:

E

w N =

a

2
4
6

< 0w o

https://riptutorial.com/

147

Reorder columns

get a list of columns
cols = list (df)

move the column to head of list using index, pop and insert
cols.insert (0, cols.pop(cols.index('listing')))

use ix to reorder
df2 = df.ix[:, cols]

Read Simple manipulation of DataFrames online: https://riptutorial.com/pandas/topic/6694/simple-
manipulation-of-dataframes

https://riptutorial.com/ 148

C_hapter 39: String manipulation

Examples

Regular expressions

Extract strings with a specific regex

df= df['col _name'].str.extract[r'[RAa-Zz]"']

Replace strings within a regex

df['col_name'].str.replace('Replace this',

'With this'")

For information on how to match strings using regex, see Getting started with Regular Expressions

Slicing strings

Strings in a Series can be sliced using .str.s1ice () method, or more conveniently, using brackets

(.str[])

In [1]: ser = pd.Series(['Lorem ipsum',

In [2]: ser

Out[2]:

0 Lorem ipsum
1 dolor sit amet
2 consectetur adipiscing elit
dtype: object

Get the first character of each string:

In [3]: ser.str[0]
Out [3]:

0 L

1 d

2 c

dtype: object

'dolor sit amet',

Get the first three characters of each string:

In [4]: ser.str[:3]
Out[4]:

0 Lor

1 dol

2 con

dtype: object

Get the last character of each string:

In [5]: ser.str[-1]

'consectetur adipiscing elit'])

https://riptutorial.com/

149

0 m
1 t
2 t

dtype: object
Get the last three characters of each string:

In [6]: ser.str[-3:]

Out[o]:

0 sum
1 met
2 lit

dtype: object
Get the every other character of the first 10 characters:

In [7]: ser.str[:10:2]

Oout[7]:

0 Lrmis
1 dlrst
2 cnett

dtype: object

Pandas behaves similarly to Python when handling slices and indices. For example, if an index is
outside the range, Python raises an error:

In [8]:'Lorem ipsum'[12]
IndexError: string index out of range

However, if a slice is outside the range, an empty string is returned:

In [9]: 'Lorem ipsum'[12:15]
Out[9]: "'

Pandas returns NaN when an index is out of range:

In [10]: ser.str[1l2]

Out[107]:
0 NaN
1 e
2 a

dtype: object
And returns an empty string if a slice is out of range:

In [11]: ser.str[1l2:15]

Out [11]:
0

1 et
2 adi

dtype: object

https://riptutorial.com/ 150

Checking for contents of a string

str.contains () Method can be used to check if a pattern occurs in each string of a Series.
str.startswith() and str.endswith () methods can also be used as more specialized versions.

In [1]: animals = pd.Series(['cat', 'dog', 'bear', 'cow', 'bird', 'owl', 'rabbit', 'snake'])

Check if strings contain the letter 'a":

)
=)

[2]: animals.str.contains('a')

O
5
2
)

True
False
True
False
False
False
True
True

O J o U b W N P O

True
dtype: bool

This can be used as a boolean index to return only the animals containing the letter 'a":

In [3]: animals[animals.str.contains('a')]

Out [3]:

0 cat
2 bear
6 rabbit
7 snake

dtype: object
str.startswith and str.endswith methods work similarly, but they also accept tuples as inputs.

In [4]: animals[animals.str.startswith(('b', 'c'))]
Returns animals starting with 'b' or 'c'

Oout[4]:

0 cat
2 bear
3 cow
4 bird

dtype: object

Capitalization of strings
In [1]: ser = pd.Series(['lORem ipSuM', 'Dolor sit amet', 'Consectetur Adipiscing Elit'])

Convert all to uppercase:

In [2]: ser.str.upper/()
Oout[2]:
0 LOREM IPSUM

https://riptutorial.com/ 151

1 DOLOR SIT AMET
2 CONSECTETUR ADIPISCING ELIT
dtype: object

All lowercase:

In [3]: ser.str.lower ()

Out[3]:

0 lorem ipsum
1 dolor sit amet
2 consectetur adipiscing elit

dtype: object

Capitalize the first character and lowercase the remaining:

In [4]: ser.str.capitalize()

Oout [4]:

0 Lorem ipsum
1 Dolor sit amet
2 Consectetur adipiscing elit

dtype: object

Convert each string to a titlecase (capitalize the first character of each word in each string,
lowercase the remaining):

In [5]: ser.str.title ()

Out [5]:

0 Lorem Ipsum
1 Dolor Sit Amet
2 Consectetur Adipiscing Elit

dtype: object
Swap cases (convert lowercase to uppercase and vice versa):

In [6]: ser.str.swapcase ()

Out[o6]:

0 LorEM IPsUm
1 dOLOR SIT AMET
2 CONSECTETUR aDIPISCING eLIT

dtype: object

Aside from these methods that change the capitalization, several methods can be used to check
the capitalization of strings.

In [7]: ser = pd.Series(['LOREM IPSUM', 'dolor sit amet', 'Consectetur Adipiscing Elit'])

Check if it is all lowercase:

In [8]: ser.str.islower ()

Out[8]:

0 False
1 True
2 False

https://riptutorial.com/ 152

dtype: bool

Is it all uppercase:

In [9]: ser.str.isupper/()

Out[9]:

0 True
1 False
2 False

dtype: bool

Is it a titlecased string:

In [10]: ser.str.istitle()

Out [107]:

0 False
1 False
2 True

dtype: bool

Read String manipulation online: https://riptutorial.com/pandas/topic/2372/string-manipulation

https://riptutorial.com/ 153

C_hapter 40: Using .ix, .lloc, .loc, .at and .iat to
access a DataFrame

Examples

Using .iloc
.iloc uses integers to read and write data to a DataFrame.

First, let's create a DataFrame:

df = pd.DataFrame({'one': [1, 2, 3, 4, 51,
'two': [6, 7, 8, 9, 101,
}, index=['a', 'b', 'c', 'd', 'e']l)

This DataFrame looks like:

one two

o Q Q T W
aobs W N e

Now we can use .iloc to read and write values. Let's read the first row, first column:
print df.iloc[0, O]

This will print out:

We can also set values. Lets set the second column, second row to something new:
df.iloc[1l, 1] = '21"
And then have a look to see what happened:

print df

one two
1 6
21
8
9
10

® 0 Q0 T o
a o W N

https://riptutorial.com/ 154

Using .loc

.loc uses labels to read and write data.

Let's setup a DataFrame:

df = pd.DataFrame({'one': [1, 2, 3, 4, 51,
'two': [6, 7, 8, 9, 101,
}, index=['a', 'b', 'c', 'd', 'e']l)

Then we can print the DataFrame to have a look at the shape:
print df

This will output

one two

O Q Q T o
a s W N e

We use the column and row labels to access data with .loc. Let's set row 'c', column 'two' to the
value 33:

df.loc['c', 'two'] = 33

This is what the DataFrame now looks like:

one two
a 1 6
b 2 7
c 3 33
d 4 9
e 5 10
Of note, using dar['two']1.10oc['c'] = 33 May not report a warning, and may even work, however,

using dr.loci'c', 'two'] IS guaranteed to work correctly, while the former is not.

We can read slices of data, for example
print df.loc['a':'c']
will print rows a to c. This is inclusive.

one two

a 1
b 2
€ 3 8

https://riptutorial.com/ 155

And finally, we can do both together:
print df.loc['b':'d', 'two']

Will output rows b to ¢ of column 'two'. Notice that the column label is not printed.

b 7
c 8
d 9

If .loc is supplied with an integer argument that is not a label it reverts to integer indexing of axes
(the behaviour of .iloc). This makes mixed label and integer indexing possible:

df.loc['b', 1]

will return the value in 2nd column (index starting at 0) in row 'b":

Read Using .ix, .iloc, .loc, .at and .iat to access a DataFrame online:
https://riptutorial.com/pandas/topic/7074/using--ix---iloc---loc---at-and--iat-to-access-a-dataframe

https://riptutorial.com/ 156

C_hapter 41: Working with Time Series

Examples

Creating Time Series
Here is how to create a simple Time Series.

import pandas as pd

import numpy as np

The number of sample to generate

nb_sample = 100

Seeding to obtain a reproductible dataset

np.random.seed (0)

se = pd.Series (np.random.randint (0,

se.head (2)

2016-09-24
2016-09-25

se.tail (2)

2016-12-31
2017-01-01

Partial String Indexing

A very handy way to subset Time Series is to use partial string indexing. It permits to select
range of dates with a clear syntax.

Getting Data

We are using the dataset in the Creating Time Series example

Displaying head and tail to see the boundaries

se.head(2) .append(se.tail (2))

2016-09-24
2016-09-25
2016-12-31
2017-01-01

44
47

85
48

44
47
85
48

100, nb_sample),
pd.to_datetime ('2016-09-24"),
freg='D"))

pd.date_range (start
nb_sample,

https://riptutorial.com/

157

Subsetting

Now we can subset by year, month, day very intuitively.
By year

se['2017"]

2017-01-01 48

By month

se['2017-01"]

2017-01-01 48
By day

se['2017-01-01"]

48

With a range of year, month, day according to your needs.

se['2016-12-31"':'2017-01-01"]

2016-12-31 85
2017-01-01 48

pandas also provides a dedicated truncate function for this usage through the after and vefore
parameters -- but | think it's less clear.

se.truncate (before='2017")

2017-01-01 48

se.truncate (before='2016-12-30"', after='2016-12-31")

2016-12-30 13
2016-12-31 85

Read Working with Time Series online: https://riptutorial.com/pandas/topic/7029/working-with-
time-series

https://riptutorial.com/ 158

Credits

10

11

12

13

14

Chapters

Getting started with

pandas

Analysis: Bringing it

all together and
making decisions

Appending to
DataFrame

Boolean indexing of

dataframes
Categorical data

Computational
Tools

Creating
DataFrames

Cross sections of
different axes with
Multilndex

Data Types

Dealing with
categorical
variables

Duplicated data

Getting information
about DataFrames

Gotchas of pandas

Graphs and
Visualizations

Contributors

Alexander, Andy Hayden, ayhan, Bryce Frank, Community,
hashcode55, Nikita Pestrov, user2314737

piRSquared

shahins

firelynx

jezrael, Julien Marrec

Ami Tavory

Ahamed Mustafa M, Alexander, ayhan, Ayush Kumar Singh,
bernie, Gal Dreiman, Geeklhem, Gorkem Ozkaya, jasimpson,
jezrael, JJD, Julien Marrec, MaxU, Merlin, pylang, Romain,
SerialDev, user2314737, vaerek, ysearka

Julien Marrec

Andy Hayden, ayhan, firelynx, jezrael

Gorkem Ozkaya

ayhan, Ayush Kumar Singh, bee-sting, jezrael

Alexander, ayhan, Ayush Kumar Singh, bernie, Romain, ysearka

vlad.rad

Ami Tavory, Nikita Pestrov, Scimonster

https://riptutorial.com/

159

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

Grouping Data
Grouping Time
Series Data

Holiday Calendars

Indexing and
selecting data

10 for Google
BigQuery
JSON

Making Pandas
Play Nice With
Native Python
Datatypes

Map Values

Merge, join, and
concatenate

Meta:
Documentation
Guidelines

Missing Data
Multilndex
Pandas Datareader

Pandas 10 tools
(reading and saving
data sets)

pd.DataFrame.apply

Read MySQL to
DataFrame

Read SQL Server to

Dataframe

Reading files into

Andy Hayden, ayhan, danio, Geeklhem, jezrael, NeeoBIE, QM.py,
Romain, user2314737

ayhan, piRSquared

Romain

amin, Andy Hayden, ayhan, doubleOdarbo, jasimpson, jezrael,
Joseph Dasenbrock, MaxU, Merlin, piRSquared, SerialDev,
user2314737

ayhan, tworec

PinoSan, SerialDev, user2314737

DataSwede

EdChum, Fabio Lamanna

ayhan, Josh Garlitos, MaThMaX, MaxU, piRSquared, SerialDev,
varunsinghal

Andy Hayden, ayhan, Stephen Leppik

Andy Hayden, ayhan, EdChum, jezrael, Zdenek
Andy Hayden, benten, danielhadar, danio, Pedro M Duarte
Alexander, MaxU

amin, Andy Hayden, bernie, Fabich, Gal Dreiman, jezrael, Joao
Almeida, Julien Spronck, MaxU, Nikita Pestrov, SerialDev,
user2314737

ptsw, Romain

andyabel, rrawat

bernie, SerialDev

Arthur Camara, bee-sting, Corey Petty, Sirajus Salayhin

https://riptutorial.com/

160

33

34

35

36

37

38

39

40

41

pandas DataFrame
Resampling

Reshaping and
pivoting

Save pandas
dataframe to a csv
file

Series

Shifting and
Lagging Data

Simple manipulation
of DataFrames

String manipulation

Using .ix, .iloc, .loc,
.at and .iat to
access a
DataFrame

Working with Time
Series

jezrael

Albert Camps, ayhan, bernie, DataSwede, jezrael, MaxU, Merlin

amin, bernie, eraoul, Gal Dreiman, maxliving, Musafir Safwan,
Nikita Pestrov, Olel Daniel, Stephan

Alexander, daphshez, EdChum, jezrael, shahins

ASGM

Alexander, ayhan, Ayush Kumar Singh, Gal Dreiman, Geeklhem,
MaxU, paulo.filip3, R.M., SerialDev, user2314737, ysearka

ayhan, mnoronha, SerialDev

bee-sting, DataSwede, farleytpm

Romain

https://riptutorial.com/

161

