
pandas

#pandas

monou
Typewriter
Follow me on Facebook for more:
 Mukesh Mithrakumar
https://www.facebook.com/adhiraiyan

Table of Contents

About 1

Chapter 1: Getting started with pandas 2

Remarks 2

Versions 2

Examples 3

Installation or Setup 3

Install via anaconda 5

Hello World 5

Descriptive statistics 6

Chapter 2: Analysis: Bringing it all together and making decisions 8

Examples 8

Quintile Analysis: with random data 8

What is a factor 8

Initialization 8

pd.qcut - Create Quintile Buckets 9

Analysis 9

Plot Returns 9

Visualize Quintile Correlation with scatter_matrix 10

Calculate and visualize Maximum Draw Down 11

Calculate Statistics 13

Chapter 3: Appending to DataFrame 15

Examples 15

Appending a new row to DataFrame 15

Append a DataFrame to another DataFrame 16

Chapter 4: Boolean indexing of dataframes 18

Introduction 18

Examples 18

Accessing a DataFrame with a boolean index 18

Applying a boolean mask to a dataframe 19

Masking data based on column value 19

Masking data based on index value 20

Chapter 5: Categorical data 21

Introduction 21

Examples 21

Object Creation 21

Creating large random datasets 21

Chapter 6: Computational Tools 23

Examples 23

Find The Correlation Between Columns 23

Chapter 7: Creating DataFrames 24

Introduction 24

Examples 24

Create a sample DataFrame 24

Create a sample DataFrame using Numpy 24

Create a sample DataFrame from multiple collections using Dictionary 26

Create a DataFrame from a list of tuples 26

Create a DataFrame from a dictionary of lists 26

Create a sample DataFrame with datetime 27

Create a sample DataFrame with MultiIndex 29

Save and Load a DataFrame in pickle (.plk) format 29

Create a DataFrame from a list of dictionaries 30

Chapter 8: Cross sections of different axes with MultiIndex 31

Examples 31

Selection of cross-sections using .xs 31

Using .loc and slicers 32

Chapter 9: Data Types 34

Remarks 34

Examples 34

Checking the types of columns 35

Changing dtypes 35

Changing the type to numeric 36

Changing the type to datetime 37

Changing the type to timedelta 37

Selecting columns based on dtype 37

Summarizing dtypes 38

Chapter 10: Dealing with categorical variables 39

Examples 39

One-hot encoding with `get_dummies()` 39

Chapter 11: Duplicated data 40

Examples 40

Select duplicated 40

Drop duplicated 40

Counting and getting unique elements 41

Get unique values from a column. 42

Chapter 12: Getting information about DataFrames 44

Examples 44

Get DataFrame information and memory usage 44

List DataFrame column names 44

Dataframe's various summary statistics. 45

Chapter 13: Gotchas of pandas 46

Remarks 46

Examples 46

Detecting missing values with np.nan 46

Integer and NA 46

Automatic Data Alignment (index-awared behaviour) 47

Chapter 14: Graphs and Visualizations 48

Examples 48

Basic Data Graphs 48

Styling the plot 49

Plot on an existing matplotlib axis 50

Chapter 15: Grouping Data 51

Examples 51

Basic grouping 51

Group by one column 51

Group by multiple columns 51

Grouping numbers 52

Column selection of a group 53

Aggregating by size versus by count 54

Aggregating groups 54

Export groups in different files 55

using transform to get group-level statistics while preserving the original dataframe 55

Chapter 16: Grouping Time Series Data 57

Examples 57

Generate time series of random numbers then down sample 57

Chapter 17: Holiday Calendars 59

Examples 59

Create a custom calendar 59

Use a custom calendar 59

Get the holidays between two dates 59

Count the number of working days between two dates 60

Chapter 18: Indexing and selecting data 61

Examples 61

Select column by label 61

Select by position 61

Slicing with labels 62

Mixed position and label based selection 63

Boolean indexing 64

Filtering columns (selecting "interesting", dropping unneeded, using RegEx, etc.) 65

generate sample DF 65

show columns containing letter 'a' 65

show columns using RegEx filter (b|c|d) - b or c or d: 65

show all columns except those beginning with a (in other word remove / drop all columns sa 66

Filtering / selecting rows using `.query()` method 66

generate random DF 66

select rows where values in column A > 2 and values in column B < 5 66

using .query() method with variables for filtering 67

Path Dependent Slicing 67

Get the first/last n rows of a dataframe 69

Select distinct rows across dataframe 70

Filter out rows with missing data (NaN, None, NaT) 71

Chapter 19: IO for Google BigQuery 73

Examples 73

Reading data from BigQuery with user account credentials 73

Reading data from BigQuery with service account credentials 74

Chapter 20: JSON 75

Examples 75

Read JSON 75

can either pass string of the json, or a filepath to a file with valid json 75

Dataframe into nested JSON as in flare.js files used in D3.js 75

Read JSON from file 76

Chapter 21: Making Pandas Play Nice With Native Python Datatypes 77

Examples 77

Moving Data Out of Pandas Into Native Python and Numpy Data Structures 77

Chapter 22: Map Values 79

Remarks 79

Examples 79

Map from Dictionary 79

Chapter 23: Merge, join, and concatenate 80

Syntax 80

Parameters 80

Examples 81

Merge 81

Merging two DataFrames 82

Inner join: 82

Outer join: 83

Left join: 83

Right Join 83

Merging / concatenating / joining multiple data frames (horizontally and vertically) 83

Merge, Join and Concat 84

What is the difference between join and merge 85

Chapter 24: Meta: Documentation Guidelines 88

Remarks 88

Examples 88

Showing code snippets and output 88

style 89

Pandas version support 89

print statements 89

Prefer supporting python 2 and 3: 89

Chapter 25: Missing Data 90

Remarks 90

Examples 90

Filling missing values 90

Fill missing values with a single value: 90

Fill missing values with the previous ones: 90

Fill with the next ones: 90

Fill using another DataFrame: 91

Dropping missing values 91

Drop rows if at least one column has a missing value 91

Drop rows if all values in that row are missing 92

Drop columns that don't have at least 3 non-missing values 92

Interpolation 92

Checking for missing values 92

Chapter 26: MultiIndex 94

Examples 94

Select from MultiIndex by Level 94

Iterate over DataFrame with MultiIndex 95

Setting and sorting a MultiIndex 96

How to change MultiIndex columns to standard columns 98

How to change standard columns to MultiIndex 98

MultiIndex Columns 98

Displaying all elements in the index 99

Chapter 27: Pandas Datareader 100

Remarks 100

Examples 100

Datareader basic example (Yahoo Finance) 100

Reading financial data (for multiple tickers) into pandas panel - demo 101

Chapter 28: Pandas IO tools (reading and saving data sets) 103

Remarks 103

Examples 103

Reading csv file into DataFrame 103

File: 103

Code: 103

Output: 103

Some useful arguments: 103

Basic saving to a csv file 105

Parsing dates when reading from csv 105

Spreadsheet to dict of DataFrames 105

Read a specific sheet 105

Testing read_csv 105

List comprehension 106

Read in chunks 107

Save to CSV file 107

Parsing date columns with read_csv 108

Read & merge multiple CSV files (with the same structure) into one DF 108

Reading cvs file into a pandas data frame when there is no header row 108

Using HDFStore 109

generate sample DF with various dtypes 109

make a bigger DF (10 * 100.000 = 1.000.000 rows) 109

create (or open existing) HDFStore file 110

save our data frame into h5 (HDFStore) file, indexing [int32, int64, string] columns: 110

show HDFStore details 110

show indexed columns 110

close (flush to disk) our store file 111

Read Nginx access log (multiple quotechars) 111

Chapter 29: pd.DataFrame.apply 112

Examples 112

pandas.DataFrame.apply Basic Usage 112

Chapter 30: Read MySQL to DataFrame 114

Examples 114

Using sqlalchemy and PyMySQL 114

To read mysql to dataframe, In case of large amount of data 114

Chapter 31: Read SQL Server to Dataframe 115

Examples 115

Using pyodbc 115

Using pyodbc with connection loop 115

Chapter 32: Reading files into pandas DataFrame 117

Examples 117

Read table into DataFrame 117

Table file with header, footer, row names, and index column: 117

Table file without row names or index: 117

Read CSV File 118

Data with header, separated by semicolons instead of commas 118

Table without row names or index and commas as separators 118

Collect google spreadsheet data into pandas dataframe 119

Chapter 33: Resampling 120

Examples 120

Downsampling and upsampling 120

Chapter 34: Reshaping and pivoting 122

Examples 122

Simple pivoting 122

Pivoting with aggregating 123

Stacking and unstacking 126

Cross Tabulation 127

Pandas melt to go from wide to long 129

Split (reshape) CSV strings in columns into multiple rows, having one element per row 130

Chapter 35: Save pandas dataframe to a csv file 132

Parameters 132

Examples 133

Create random DataFrame and write to .csv 133

Save Pandas DataFrame from list to dicts to csv with no index and with data encoding 134

Chapter 36: Series 136

Examples 136

Simple Series creation examples 136

Series with datetime 136

A few quick tips about Series in Pandas 137

Applying a function to a Series 139

Chapter 37: Shifting and Lagging Data 141

Examples 141

Shifting or lagging values in a dataframe 141

Chapter 38: Simple manipulation of DataFrames 142

Examples 142

Delete a column in a DataFrame 142

Rename a column 143

Adding a new column 144

Directly assign 144

Add a constant column 144

Column as an expression in other columns 144

Create it on the fly 145

add multiple columns 145

add multiple columns on the fly 145

Locate and replace data in a column 146

Adding a new row to DataFrame 146

Delete / drop rows from DataFrame 147

Reorder columns 148

Chapter 39: String manipulation 149

Examples 149

Regular expressions 149

Slicing strings 149

Checking for contents of a string 151

Capitalization of strings 151

Chapter 40: Using .ix, .iloc, .loc, .at and .iat to access a DataFrame 154

Examples 154

Using .iloc 154

Using .loc 155

Chapter 41: Working with Time Series 157

Examples 157

Creating Time Series 157

Partial String Indexing 157

Getting Data 157

Subsetting 157

Credits 159

Chapter 1: Getting started with pandas

Remarks

Pandas is a Python package providing fast, flexible, and expressive data structures designed to
make working with “relational” or “labeled” data both easy and intuitive. It aims to be the
fundamental high-level building block for doing practical, real world data analysis in Python.

The official Pandas documentation can be found here.

Versions

Pandas

Version Release Date

0.19.1 2016-11-03

0.19.0 2016-10-02

0.18.1 2016-05-03

0.18.0 2016-03-13

0.17.1 2015-11-21

0.17.0 2015-10-09

0.16.2 2015-06-12

0.16.1 2015-05-11

0.16.0 2015-03-22

0.15.2 2014-12-12

0.15.1 2014-11-09

0.15.0 2014-10-18

0.14.1 2014-07-11

0.14.0 2014-05-31

0.13.1 2014-02-03

0.13.0 2014-01-03

https://riptutorial.com/ 2

Version Release Date

0.12.0 2013-07-23

Examples

Installation or Setup

Detailed instructions on getting pandas set up or installed can be found here in the official
documentation.

Installing pandas with Anaconda

Installing pandas and the rest of the NumPy and SciPy stack can be a little difficult for
inexperienced users.

The simplest way to install not only pandas, but Python and the most popular packages that make
up the SciPy stack (IPython, NumPy, Matplotlib, ...) is with Anaconda, a cross-platform (Linux,
Mac OS X, Windows) Python distribution for data analytics and scientific computing.

After running a simple installer, the user will have access to pandas and the rest of the SciPy stack
without needing to install anything else, and without needing to wait for any software to be
compiled.

Installation instructions for Anaconda can be found here.

A full list of the packages available as part of the Anaconda distribution can be found here.

An additional advantage of installing with Anaconda is that you don’t require admin rights to install
it, it will install in the user’s home directory, and this also makes it trivial to delete Anaconda at a
later date (just delete that folder).

Installing pandas with Miniconda

The previous section outlined how to get pandas installed as part of the Anaconda distribution.
However this approach means you will install well over one hundred packages and involves
downloading the installer which is a few hundred megabytes in size.

If you want to have more control on which packages, or have a limited internet bandwidth, then
installing pandas with Miniconda may be a better solution.

Conda is the package manager that the Anaconda distribution is built upon. It is a package
manager that is both cross-platform and language agnostic (it can play a similar role to a pip and
virtualenv combination).

Miniconda allows you to create a minimal self contained Python installation, and then use the
Conda command to install additional packages.

First you will need Conda to be installed and downloading and running the Miniconda will do this

https://riptutorial.com/ 3

for you. The installer can be found here.

The next step is to create a new conda environment (these are analogous to a virtualenv but they
also allow you to specify precisely which Python version to install also). Run the following
commands from a terminal window:

conda create -n name_of_my_env python

This will create a minimal environment with only Python installed in it. To put your self inside this
environment run:

source activate name_of_my_env

On Windows the command is:

activate name_of_my_env

The final step required is to install pandas. This can be done with the following command:

conda install pandas

To install a specific pandas version:

conda install pandas=0.13.1

To install other packages, IPython for example:

conda install ipython

To install the full Anaconda distribution:

conda install anaconda

If you require any packages that are available to pip but not conda, simply install pip, and use pip
to install these packages:

conda install pip
pip install django

Usually, you would install pandas with one of packet managers.

pip example:

pip install pandas

This will likely require the installation of a number of dependencies, including NumPy, will require a
compiler to compile required bits of code, and can take a few minutes to complete.

https://riptutorial.com/ 4

Install via anaconda

First download anaconda from the Continuum site. Either via the graphical installer
(Windows/OSX) or running a shell script (OSX/Linux). This includes pandas!

If you don't want the 150 packages conveniently bundled in anaconda, you can install miniconda.
Either via the graphical installer (Windows) or shell script (OSX/Linux).

Install pandas on miniconda using:

conda install pandas

To update pandas to the latest version in anaconda or miniconda use:

conda update pandas

Hello World

Once Pandas has been installed, you can check if it is is working properly by creating a dataset of
randomly distributed values and plotting its histogram.

import pandas as pd # This is always assumed but is included here as an introduction.
import numpy as np
import matplotlib.pyplot as plt

np.random.seed(0)

values = np.random.randn(100) # array of normally distributed random numbers
s = pd.Series(values) # generate a pandas series
s.plot(kind='hist', title='Normally distributed random values') # hist computes distribution
plt.show()

https://riptutorial.com/ 5

Check some of the data's statistics (mean, standard deviation, etc.)

s.describe()
Output: count 100.000000
mean 0.059808
std 1.012960
min -2.552990
25% -0.643857
50% 0.094096
75% 0.737077
max 2.269755
dtype: float64

Descriptive statistics

Descriptive statistics (mean, standard deviation, number of observations, minimum, maximum,
and quartiles) of numerical columns can be calculated using the .describe() method, which returns
a pandas dataframe of descriptive statistics.

In [1]: df = pd.DataFrame({'A': [1, 2, 1, 4, 3, 5, 2, 3, 4, 1],
 'B': [12, 14, 11, 16, 18, 18, 22, 13, 21, 17],
 'C': ['a', 'a', 'b', 'a', 'b', 'c', 'b', 'a', 'b', 'a']})

In [2]: df
Out[2]:
 A B C
0 1 12 a

https://riptutorial.com/ 6

1 2 14 a
2 1 11 b
3 4 16 a
4 3 18 b
5 5 18 c
6 2 22 b
7 3 13 a
8 4 21 b
9 1 17 a

In [3]: df.describe()
Out[3]:
 A B
count 10.000000 10.000000
mean 2.600000 16.200000
std 1.429841 3.705851
min 1.000000 11.000000
25% 1.250000 13.250000
50% 2.500000 16.500000
75% 3.750000 18.000000
max 5.000000 22.000000

Note that since C is not a numerical column, it is excluded from the output.

In [4]: df['C'].describe()
Out[4]:
count 10
unique 3
freq 5
Name: C, dtype: object

In this case the method summarizes categorical data by number of observations, number of
unique elements, mode, and frequency of the mode.

Read Getting started with pandas online: https://riptutorial.com/pandas/topic/796/getting-started-
with-pandas

https://riptutorial.com/ 7

Chapter 2: Analysis: Bringing it all together
and making decisions

Examples

Quintile Analysis: with random data

Quintile analysis is a common framework for evaluating the efficacy of security factors.

What is a factor

A factor is a method for scoring/ranking sets of securities. For a particular point in time and for a
particular set of securities, a factor can be represented as a pandas series where the index is an
array of the security identifiers and the values are the scores or ranks.

If we take factor scores over time, we can, at each point in time, split the set of securities into 5
equal buckets, or quintiles, based on the order of the factor scores. There is nothing particularly
sacred about the number 5. We could have used 3 or 10. But we use 5 often. Finally, we track the
performance of each of the five buckets to determine if there is a meaningful difference in the
returns. We tend to focus more intently on the difference in returns of the bucket with the highest
rank relative to that of the lowest rank.

Let's start by setting some parameters and generating random data.

To facilitate the experimentation with the mechanics, we provide simple code to create random
data to give us an idea how this works.

Random Data Includes

Returns: generate random returns for specified number of securities and periods.•
Signals: generate random signals for specified number of securities and periods and with
prescribed level of correlation with Returns. In order for a factor to be useful, there must be
some information or correlation between the scores/ranks and subsequent returns. If there
weren't correlation, we would see it. That would be a good exercise for the reader, duplicate
this analysis with random data generated with 0 correlation.

•

Initialization

import pandas as pd
import numpy as np

num_securities = 1000
num_periods = 1000
period_frequency = 'W'

https://riptutorial.com/ 8

start_date = '2000-12-31'

np.random.seed([3,1415])

means = [0, 0]
covariance = [[1., 5e-3],
 [5e-3, 1.]]

generates to sets of data m[0] and m[1] with ~0.005 correlation
m = np.random.multivariate_normal(means, covariance,
 (num_periods, num_securities)).T

Let's now generate a time series index and an index representing security ids. Then use them to
create dataframes for returns and signals

ids = pd.Index(['s{:05d}'.format(s) for s in range(num_securities)], 'ID')
tidx = pd.date_range(start=start_date, periods=num_periods, freq=period_frequency)

I divide m[0] by 25 to scale down to something that looks like stock returns. I also add 1e-7 to give a
modest positive mean return.

security_returns = pd.DataFrame(m[0] / 25 + 1e-7, tidx, ids)
security_signals = pd.DataFrame(m[1], tidx, ids)

pd.qcut - Create Quintile Buckets

Let's use pd.qcut to divide my signals into quintile buckets for each period.

def qcut(s, q=5):
 labels = ['q{}'.format(i) for i in range(1, 6)]
 return pd.qcut(s, q, labels=labels)

cut = security_signals.stack().groupby(level=0).apply(qcut)

Use these cuts as an index on our returns

returns_cut = security_returns.stack().rename('returns') \
 .to_frame().set_index(cut, append=True) \
 .swaplevel(2, 1).sort_index().squeeze() \
 .groupby(level=[0, 1]).mean().unstack()

Analysis

Plot Returns

import matplotlib.pyplot as plt

fig = plt.figure(figsize=(15, 5))

https://riptutorial.com/ 9

ax1 = plt.subplot2grid((1,3), (0,0))
ax2 = plt.subplot2grid((1,3), (0,1))
ax3 = plt.subplot2grid((1,3), (0,2))

Cumulative Returns
returns_cut.add(1).cumprod() \
 .plot(colormap='jet', ax=ax1, title="Cumulative Returns")
leg1 = ax1.legend(loc='upper left', ncol=2, prop={'size': 10}, fancybox=True)
leg1.get_frame().set_alpha(.8)

Rolling 50 Week Return
returns_cut.add(1).rolling(50).apply(lambda x: x.prod()) \
 .plot(colormap='jet', ax=ax2, title="Rolling 50 Week Return")
leg2 = ax2.legend(loc='upper left', ncol=2, prop={'size': 10}, fancybox=True)
leg2.get_frame().set_alpha(.8)

Return Distribution
returns_cut.plot.box(vert=False, ax=ax3, title="Return Distribution")

fig.autofmt_xdate()

plt.show()

Visualize Quintile Correlation with scatter_matrix

from pandas.tools.plotting import scatter_matrix

scatter_matrix(returns_cut, alpha=0.5, figsize=(8, 8), diagonal='hist')
plt.show()

https://riptutorial.com/ 10

Calculate and visualize Maximum Draw Down

def max_dd(returns):
 """returns is a series"""
 r = returns.add(1).cumprod()
 dd = r.div(r.cummax()).sub(1)
 mdd = dd.min()
 end = dd.argmin()
 start = r.loc[:end].argmax()
 return mdd, start, end

def max_dd_df(returns):
 """returns is a dataframe"""
 series = lambda x: pd.Series(x, ['Draw Down', 'Start', 'End'])
 return returns.apply(max_dd).apply(series)

What does this look like

max_dd_df(returns_cut)

https://riptutorial.com/ 11

Let's plot it

draw_downs = max_dd_df(returns_cut)

fig, axes = plt.subplots(5, 1, figsize=(10, 8))
for i, ax in enumerate(axes[::-1]):
 returns_cut.iloc[:, i].add(1).cumprod().plot(ax=ax)
 sd, ed = draw_downs[['Start', 'End']].iloc[i]
 ax.axvspan(sd, ed, alpha=0.1, color='r')
 ax.set_ylabel(returns_cut.columns[i])

fig.suptitle('Maximum Draw Down', fontsize=18)
fig.tight_layout()
plt.subplots_adjust(top=.95)

https://riptutorial.com/ 12

Calculate Statistics

There are many potential statistics we can include. Below are just a few, but demonstrate how
simply we can incorporate new statistics into our summary.

def frequency_of_time_series(df):
 start, end = df.index.min(), df.index.max()
 delta = end - start
 return round((len(df) - 1.) * 365.25 / delta.days, 2)

def annualized_return(df):
 freq = frequency_of_time_series(df)
 return df.add(1).prod() ** (1 / freq) - 1

def annualized_volatility(df):
 freq = frequency_of_time_series(df)
 return df.std().mul(freq ** .5)

def sharpe_ratio(df):
 return annualized_return(df) / annualized_volatility(df)

def describe(df):

https://riptutorial.com/ 13

 r = annualized_return(df).rename('Return')
 v = annualized_volatility(df).rename('Volatility')
 s = sharpe_ratio(df).rename('Sharpe')
 skew = df.skew().rename('Skew')
 kurt = df.kurt().rename('Kurtosis')
 desc = df.describe().T

 return pd.concat([r, v, s, skew, kurt, desc], axis=1).T.drop('count')

We'll end up using just the describe function as it pulls all the others together.

describe(returns_cut)

This is not meant to be comprehensive. It's meant to bring many of pandas' features together and
demonstrate how you can use it to help answer questions important to you. This is a subset of the
types of metrics I use to evaluate the efficacy of quantitative factors.

Read Analysis: Bringing it all together and making decisions online:
https://riptutorial.com/pandas/topic/5238/analysis--bringing-it-all-together-and-making-decisions

https://riptutorial.com/ 14

Chapter 3: Appending to DataFrame

Examples

Appending a new row to DataFrame

In [1]: import pandas as pd

In [2]: df = pd.DataFrame(columns = ['A', 'B', 'C'])

In [3]: df
Out[3]:
Empty DataFrame
Columns: [A, B, C]
Index: []

Appending a row by a single column value:

In [4]: df.loc[0, 'A'] = 1

In [5]: df
Out[5]:
 A B C
0 1 NaN NaN

Appending a row, given list of values:

In [6]: df.loc[1] = [2, 3, 4]

In [7]: df
Out[7]:
 A B C
0 1 NaN NaN
1 2 3 4

Appending a row given a dictionary:

In [8]: df.loc[2] = {'A': 3, 'C': 9, 'B': 9}

In [9]: df
Out[9]:
 A B C
0 1 NaN NaN
1 2 3 4
2 3 9 9

The first input in .loc[] is the index. If you use an existing index, you will overwrite the values in that
row:

In [17]: df.loc[1] = [5, 6, 7]

https://riptutorial.com/ 15

In [18]: df
Out[18]:
 A B C
0 1 NaN NaN
1 5 6 7
2 3 9 9

In [19]: df.loc[0, 'B'] = 8

In [20]: df
Out[20]:
 A B C
0 1 8 NaN
1 5 6 7
2 3 9 9

Append a DataFrame to another DataFrame

Let us assume we have the following two DataFrames:

In [7]: df1
Out[7]:
 A B
0 a1 b1
1 a2 b2

In [8]: df2
Out[8]:
 B C
0 b1 c1

The two DataFrames are not required to have the same set of columns. The append method does
not change either of the original DataFrames. Instead, it returns a new DataFrame by appending
the original two. Appending a DataFrame to another one is quite simple:

In [9]: df1.append(df2)
Out[9]:
 A B C
0 a1 b1 NaN
1 a2 b2 NaN
0 NaN b1 c1

As you can see, it is possible to have duplicate indices (0 in this example). To avoid this issue, you
may ask Pandas to reindex the new DataFrame for you:

In [10]: df1.append(df2, ignore_index = True)
Out[10]:
 A B C
0 a1 b1 NaN
1 a2 b2 NaN
2 NaN b1 c1

Read Appending to DataFrame online: https://riptutorial.com/pandas/topic/6456/appending-to-

https://riptutorial.com/ 16

dataframe

https://riptutorial.com/ 17

Chapter 4: Boolean indexing of dataframes

Introduction

Accessing rows in a dataframe using the DataFrame indexer objects .ix, .loc, .iloc and how it
differentiates itself from using a boolean mask.

Examples

Accessing a DataFrame with a boolean index

This will be our example data frame:

df = pd.DataFrame({"color": ['red', 'blue', 'red', 'blue']},
 index=[True, False, True, False])
 color
True red
False blue
True red
False blue

Accessing with .loc

df.loc[True]
 color
True red
True red

Accessing with .iloc

df.iloc[True]
>> TypeError

df.iloc[1]
color blue
dtype: object

Important to note is that older pandas versions did not distinguish between boolean
and integer input, thus .iloc[True] would return the same as .iloc[1]

Accessing with .ix

df.ix[True]
 color
True red
True red

df.ix[1]
color blue

https://riptutorial.com/ 18

dtype: object

As you can see, .ix has two behaviors. This is very bad practice in code and thus it should be
avoided. Please use .iloc or .loc to be more explicit.

Applying a boolean mask to a dataframe

This will be our example data frame:

 color name size
0 red rose big
1 blue violet big
2 red tulip small
3 blue harebell small

Using the magic __getitem__ or [] accessor. Giving it a list of True and False of the same length as
the dataframe will give you:

df[[True, False, True, False]]
 color name size
0 red rose big
2 red tulip small

Masking data based on column value

This will be our example data frame:

 color name size
0 red rose big
1 blue violet small
2 red tulip small
3 blue harebell small

Accessing a single column from a data frame, we can use a simple comparison == to compare
every element in the column to the given variable, producing a pd.Series of True and False

df['size'] == 'small'
0 False
1 True
2 True
3 True
Name: size, dtype: bool

This pd.Series is an extension of an np.array which is an extension of a simple list, Thus we can
hand this to the __getitem__ or [] accessor as in the above example.

size_small_mask = df['size'] == 'small'
df[size_small_mask]
 color name size
1 blue violet small
2 red tulip small

https://riptutorial.com/ 19

3 blue harebell small

Masking data based on index value

This will be our example data frame:

 color size
name
rose red big
violet blue small
tulip red small
harebell blue small

We can create a mask based on the index values, just like on a column value.

rose_mask = df.index == 'rose'
df[rose_mask]
 color size
name
rose red big

But doing this is almost the same as

df.loc['rose']
color red
size big
Name: rose, dtype: object

The important difference being, when .loc only encounters one row in the index that matches, it
will return a pd.Series, if it encounters more rows that matches, it will return a pd.DataFrame. This
makes this method rather unstable.

This behavior can be controlled by giving the .loc a list of a single entry. This will force it to return
a data frame.

df.loc[['rose']]
 color size
name
rose red big

Read Boolean indexing of dataframes online: https://riptutorial.com/pandas/topic/9589/boolean-
indexing-of-dataframes

https://riptutorial.com/ 20

Chapter 5: Categorical data

Introduction

Categoricals are a pandas data type, which correspond to categorical variables in statistics: a
variable, which can take on only a limited, and usually fixed, number of possible values
(categories; levels in R). Examples are gender, social class, blood types, country affiliations,
observation time or ratings via Likert scales. Source: Pandas Docs

Examples

Object Creation

In [188]: s = pd.Series(["a","b","c","a","c"], dtype="category")

In [189]: s
Out[189]:
0 a
1 b
2 c
3 a
4 c
dtype: category
Categories (3, object): [a, b, c]

In [190]: df = pd.DataFrame({"A":["a","b","c","a", "c"]})

In [191]: df["B"] = df["A"].astype('category')

In [192]: df["C"] = pd.Categorical(df["A"])

In [193]: df
Out[193]:
 A B C
0 a a a
1 b b b
2 c c c
3 a a a
4 c c c

In [194]: df.dtypes
Out[194]:
A object
B category
C category
dtype: object

Creating large random datasets

In [1]: import pandas as pd
 import numpy as np

https://riptutorial.com/ 21

In [2]: df = pd.DataFrame(np.random.choice(['foo','bar','baz'], size=(100000,3)))
 df = df.apply(lambda col: col.astype('category'))

In [3]: df.head()
Out[3]:
 0 1 2
0 bar foo baz
1 baz bar baz
2 foo foo bar
3 bar baz baz
4 foo bar baz

In [4]: df.dtypes
Out[4]:
0 category
1 category
2 category
dtype: object

In [5]: df.shape
Out[5]: (100000, 3)

Read Categorical data online: https://riptutorial.com/pandas/topic/3887/categorical-data

https://riptutorial.com/ 22

Chapter 6: Computational Tools

Examples

Find The Correlation Between Columns

Suppose you have a DataFrame of numerical values, for example:

df = pd.DataFrame(np.random.randn(1000, 3), columns=['a', 'b', 'c'])

Then

>>> df.corr()
 a b c
a 1.000000 0.018602 0.038098
b 0.018602 1.000000 -0.014245
c 0.038098 -0.014245 1.000000

will find the Pearson correlation between the columns. Note how the diagonal is 1, as each column
is (obviously) fully correlated with itself.

pd.DataFrame.correlation takes an optional method parameter, specifying which algorithm to use.
The default is pearson. To use Spearman correlation, for example, use

>>> df.corr(method='spearman')
 a b c
a 1.000000 0.007744 0.037209
b 0.007744 1.000000 -0.011823
c 0.037209 -0.011823 1.000000

Read Computational Tools online: https://riptutorial.com/pandas/topic/5620/computational-tools

https://riptutorial.com/ 23

Chapter 7: Creating DataFrames

Introduction

DataFrame is a data structure provided by pandas library,apart from Series & Panel. It is a 2-
dimensional structure & can be compared to a table of rows and columns.

Each row can be identified by an integer index (0..N) or a label explicitly set when creating a
DataFrame object. Each column can be of distinct type and is identified by a label.

This topic covers various ways to construct/create a DataFrame object. Ex. from Numpy arrays,
from list of tuples, from dictionary.

Examples

Create a sample DataFrame

import pandas as pd

Create a DataFrame from a dictionary, containing two columns: numbers and colors. Each key
represent a column name and the value is a series of data, the content of the column:

df = pd.DataFrame({'numbers': [1, 2, 3], 'colors': ['red', 'white', 'blue']})

Show contents of dataframe:

print(df)
Output:
colors numbers
0 red 1
1 white 2
2 blue 3

Pandas orders columns alphabetically as dict are not ordered. To specify the order, use the
columns parameter.

df = pd.DataFrame({'numbers': [1, 2, 3], 'colors': ['red', 'white', 'blue']},
 columns=['numbers', 'colors'])

print(df)
Output:
numbers colors
0 1 red
1 2 white
2 3 blue

Create a sample DataFrame using Numpy

https://riptutorial.com/ 24

Create a DataFrame of random numbers:

import numpy as np
import pandas as pd

Set the seed for a reproducible sample
np.random.seed(0)

df = pd.DataFrame(np.random.randn(5, 3), columns=list('ABC'))

print(df)
Output:
A B C
0 1.764052 0.400157 0.978738
1 2.240893 1.867558 -0.977278
2 0.950088 -0.151357 -0.103219
3 0.410599 0.144044 1.454274
4 0.761038 0.121675 0.443863

Create a DataFrame with integers:

df = pd.DataFrame(np.arange(15).reshape(5,3),columns=list('ABC'))

print(df)
Output:
A B C
0 0 1 2
1 3 4 5
2 6 7 8
3 9 10 11
4 12 13 14

Create a DataFrame and include nans (NaT, NaN, 'nan', None) across columns and rows:

df = pd.DataFrame(np.arange(48).reshape(8,6),columns=list('ABCDEF'))

print(df)
Output:
A B C D E F
0 0 1 2 3 4 5
1 6 7 8 9 10 11
2 12 13 14 15 16 17
3 18 19 20 21 22 23
4 24 25 26 27 28 29
5 30 31 32 33 34 35
6 36 37 38 39 40 41
7 42 43 44 45 46 47

df.ix[::2,0] = np.nan # in column 0, set elements with indices 0,2,4, ... to NaN
df.ix[::4,1] = pd.NaT # in column 1, set elements with indices 0,4, ... to np.NaT
df.ix[:3,2] = 'nan' # in column 2, set elements with index from 0 to 3 to 'nan'
df.ix[:,5] = None # in column 5, set all elements to None
df.ix[5,:] = None # in row 5, set all elements to None
df.ix[7,:] = np.nan # in row 7, set all elements to NaN

print(df)
Output:
A B C D E F

https://riptutorial.com/ 25

0 NaN NaT nan 3 4 None
1 6 7 nan 9 10 None
2 NaN 13 nan 15 16 None
3 18 19 nan 21 22 None
4 NaN NaT 26 27 28 None
5 NaN None None NaN NaN None
6 NaN 37 38 39 40 None
7 NaN NaN NaN NaN NaN NaN

Create a sample DataFrame from multiple collections using Dictionary

import pandas as pd
import numpy as np

np.random.seed(123)
x = np.random.standard_normal(4)
y = range(4)
df = pd.DataFrame({'X':x, 'Y':y})
>>> df
 X Y
0 -1.085631 0
1 0.997345 1
2 0.282978 2
3 -1.506295 3

Create a DataFrame from a list of tuples

You can create a DataFrame from a list of simple tuples, and can even choose the specific
elements of the tuples you want to use. Here we will create a DataFrame using all of the data in
each tuple except for the last element.

import pandas as pd

data = [
('p1', 't1', 1, 2),
('p1', 't2', 3, 4),
('p2', 't1', 5, 6),
('p2', 't2', 7, 8),
('p2', 't3', 2, 8)
]

df = pd.DataFrame(data)

print(df)
0 1 2 3
0 p1 t1 1 2
1 p1 t2 3 4
2 p2 t1 5 6
3 p2 t2 7 8
4 p2 t3 2 8

Create a DataFrame from a dictionary of lists

Create a DataFrame from multiple lists by passing a dict whose values lists. The keys of the
dictionary are used as column labels. The lists can also be ndarrays. The lists/ndarrays must all be

https://riptutorial.com/ 26

the same length.

import pandas as pd

Create DF from dict of lists/ndarrays
df = pd.DataFrame({'A' : [1, 2, 3, 4],
 'B' : [4, 3, 2, 1]})
df
Output:
A B
0 1 4
1 2 3
2 3 2
3 4 1

If the arrays are not the same length an error is raised

df = pd.DataFrame({'A' : [1, 2, 3, 4], 'B' : [5, 5, 5]}) # a ValueError is raised

Using ndarrays

import pandas as pd
import numpy as np

np.random.seed(123)
x = np.random.standard_normal(4)
y = range(4)
df = pd.DataFrame({'X':x, 'Y':y})
df
Output: X Y
0 -1.085631 0
1 0.997345 1
2 0.282978 2
3 -1.506295 3

See additional details at: http://pandas.pydata.org/pandas-docs/stable/dsintro.html#from-dict-of-
ndarrays-lists

Create a sample DataFrame with datetime

import pandas as pd
import numpy as np

np.random.seed(0)
create an array of 5 dates starting at '2015-02-24', one per minute
rng = pd.date_range('2015-02-24', periods=5, freq='T')
df = pd.DataFrame({ 'Date': rng, 'Val': np.random.randn(len(rng)) })

print (df)
Output:
Date Val
0 2015-02-24 00:00:00 1.764052
1 2015-02-24 00:01:00 0.400157
2 2015-02-24 00:02:00 0.978738
3 2015-02-24 00:03:00 2.240893

https://riptutorial.com/ 27

4 2015-02-24 00:04:00 1.867558

create an array of 5 dates starting at '2015-02-24', one per day
rng = pd.date_range('2015-02-24', periods=5, freq='D')
df = pd.DataFrame({ 'Date': rng, 'Val' : np.random.randn(len(rng))})

print (df)
Output:
Date Val
0 2015-02-24 -0.977278
1 2015-02-25 0.950088
2 2015-02-26 -0.151357
3 2015-02-27 -0.103219
4 2015-02-28 0.410599

create an array of 5 dates starting at '2015-02-24', one every 3 years
rng = pd.date_range('2015-02-24', periods=5, freq='3A')
df = pd.DataFrame({ 'Date': rng, 'Val' : np.random.randn(len(rng))})

print (df)
Output:
Date Val
0 2015-12-31 0.144044
1 2018-12-31 1.454274
2 2021-12-31 0.761038
3 2024-12-31 0.121675
4 2027-12-31 0.443863

DataFrame with DatetimeIndex:

import pandas as pd
import numpy as np

np.random.seed(0)
rng = pd.date_range('2015-02-24', periods=5, freq='T')
df = pd.DataFrame({ 'Val' : np.random.randn(len(rng)) }, index=rng)

print (df)
Output:
Val
2015-02-24 00:00:00 1.764052
2015-02-24 00:01:00 0.400157
2015-02-24 00:02:00 0.978738
2015-02-24 00:03:00 2.240893
2015-02-24 00:04:00 1.867558

Offset-aliases for parameter freq in date_range:

Alias Description
B business day frequency
C custom business day frequency (experimental)
D calendar day frequency
W weekly frequency
M month end frequency
BM business month end frequency
CBM custom business month end frequency
MS month start frequency
BMS business month start frequency
CBMS custom business month start frequency

https://riptutorial.com/ 28

Q quarter end frequency
BQ business quarter endfrequency
QS quarter start frequency
BQS business quarter start frequency
A year end frequency
BA business year end frequency
AS year start frequency
BAS business year start frequency
BH business hour frequency
H hourly frequency
T, min minutely frequency
S secondly frequency
L, ms milliseconds
U, us microseconds
N nanoseconds

Create a sample DataFrame with MultiIndex

import pandas as pd
import numpy as np

Using from_tuples:

np.random.seed(0)
tuples = list(zip(*[['bar', 'bar', 'baz', 'baz',
 'foo', 'foo', 'qux', 'qux'],
 ['one', 'two', 'one', 'two',
 'one', 'two', 'one', 'two']]))

idx = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])

Using from_product:

idx = pd.MultiIndex.from_product([['bar', 'baz', 'foo', 'qux'],['one','two']])

Then, use this MultiIndex:

df = pd.DataFrame(np.random.randn(8, 2), index=idx, columns=['A', 'B'])
print (df)
 A B
first second
bar one 1.764052 0.400157
 two 0.978738 2.240893
baz one 1.867558 -0.977278
 two 0.950088 -0.151357
foo one -0.103219 0.410599
 two 0.144044 1.454274
qux one 0.761038 0.121675
 two 0.443863 0.333674

Save and Load a DataFrame in pickle (.plk) format

import pandas as pd

https://riptutorial.com/ 29

Save dataframe to pickled pandas object
df.to_pickle(file_name) # where to save it usually as a .plk

Load dataframe from pickled pandas object
df= pd.read_pickle(file_name)

Create a DataFrame from a list of dictionaries

A DataFrame can be created from a list of dictionaries. Keys are used as column names.

import pandas as pd
L = [{'Name': 'John', 'Last Name': 'Smith'},
 {'Name': 'Mary', 'Last Name': 'Wood'}]
pd.DataFrame(L)
Output: Last Name Name
0 Smith John
1 Wood Mary

Missing values are filled with NaNs

L = [{'Name': 'John', 'Last Name': 'Smith', 'Age': 37},
 {'Name': 'Mary', 'Last Name': 'Wood'}]
pd.DataFrame(L)
Output: Age Last Name Name
0 37 Smith John
1 NaN Wood Mary

Read Creating DataFrames online: https://riptutorial.com/pandas/topic/1595/creating-dataframes

https://riptutorial.com/ 30

Chapter 8: Cross sections of different axes
with MultiIndex

Examples

Selection of cross-sections using .xs

In [1]:
import pandas as pd
import numpy as np
arrays = [['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'],
 ['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']]
idx_row = pd.MultiIndex.from_arrays(arrays, names=['Row_First', 'Row_Second'])
idx_col = pd.MultiIndex.from_product([['A','B'], ['i', 'ii']],
names=['Col_First','Col_Second'])
df = pd.DataFrame(np.random.randn(8,4), index=idx_row, columns=idx_col)

Out[1]:
Col_First A B
Col_Second i ii i ii
Row_First Row_Second
bar one -0.452982 -1.872641 0.248450 -0.319433
 two -0.460388 -0.136089 -0.408048 0.998774
baz one 0.358206 -0.319344 -2.052081 -0.424957
 two -0.823811 -0.302336 1.158968 0.272881
foo one -0.098048 -0.799666 0.969043 -0.595635
 two -0.358485 0.412011 -0.667167 1.010457
qux one 1.176911 1.578676 0.350719 0.093351
 two 0.241956 1.082138 -0.516898 -0.196605

.xs accepts a level (either the name of said level or an integer), and an axis: 0 for rows, 1 for
columns.

.xs is available for both pandas.Series and pandas.DataFrame.

Selection on rows:

In [2]: df.xs('two', level='Row_Second', axis=0)
Out[2]:
Col_First A B
Col_Second i ii i ii
Row_First
bar -0.460388 -0.136089 -0.408048 0.998774
baz -0.823811 -0.302336 1.158968 0.272881
foo -0.358485 0.412011 -0.667167 1.010457
qux 0.241956 1.082138 -0.516898 -0.196605

Selection on columns:

In [3]: df.xs('ii', level=1, axis=1)
Out[3]:

https://riptutorial.com/ 31

Col_First A B
Row_First Row_Second
bar one -1.872641 -0.319433
 two -0.136089 0.998774
baz one -0.319344 -0.424957
 two -0.302336 0.272881
foo one -0.799666 -0.595635
 two 0.412011 1.010457
qux one 1.578676 0.093351
 two 1.082138 -0.196605

.xs only works for selection , assignment is NOT possible (getting, not setting):¨

In [4]: df.xs('ii', level='Col_Second', axis=1) = 0
 File "<ipython-input-10-92e0785187ba>", line 1
 df.xs('ii', level='Col_Second', axis=1) = 0
 ^
SyntaxError: can't assign to function call

Using .loc and slicers

Unlike the .xs method, this allows you to assign values. Indexing using slicers is available since
version 0.14.0.

In [1]:
import pandas as pd
import numpy as np
arrays = [['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'],
 ['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']]
idx_row = pd.MultiIndex.from_arrays(arrays, names=['Row_First', 'Row_Second'])
idx_col = pd.MultiIndex.from_product([['A','B'], ['i', 'ii']],
names=['Col_First','Col_Second'])
df = pd.DataFrame(np.random.randn(8,4), index=idx_row, columns=idx_col)

Out[1]:
Col_First A B
Col_Second i ii i ii
Row_First Row_Second
bar one -0.452982 -1.872641 0.248450 -0.319433
 two -0.460388 -0.136089 -0.408048 0.998774
baz one 0.358206 -0.319344 -2.052081 -0.424957
 two -0.823811 -0.302336 1.158968 0.272881
foo one -0.098048 -0.799666 0.969043 -0.595635
 two -0.358485 0.412011 -0.667167 1.010457
qux one 1.176911 1.578676 0.350719 0.093351
 two 0.241956 1.082138 -0.516898 -0.196605

Selection on rows:

In [2]: df.loc[(slice(None),'two'),:]
Out[2]:
Col_First A B
Col_Second i ii i ii
Row_First Row_Second
bar two -0.460388 -0.136089 -0.408048 0.998774
baz two -0.823811 -0.302336 1.158968 0.272881

https://riptutorial.com/ 32

foo two -0.358485 0.412011 -0.667167 1.010457
qux two 0.241956 1.082138 -0.516898 -0.196605

Selection on columns:

In [3]: df.loc[:,(slice(None),'ii')]
Out[3]:
Col_First A B
Col_Second ii ii
Row_First Row_Second
bar one -1.872641 -0.319433
 two -0.136089 0.998774
baz one -0.319344 -0.424957
 two -0.302336 0.272881
foo one -0.799666 -0.595635
 two 0.412011 1.010457
qux one 1.578676 0.093351
 two 1.082138 -0.196605

Selection on both axis::

In [4]: df.loc[(slice(None),'two'),(slice(None),'ii')]
Out[4]:
Col_First A B
Col_Second ii ii
Row_First Row_Second
bar two -0.136089 0.998774
baz two -0.302336 0.272881
foo two 0.412011 1.010457
qux two 1.082138 -0.196605

Assignment works (unlike .xs):

In [5]: df.loc[(slice(None),'two'),(slice(None),'ii')]=0
 df
Out[5]:
Col_First A B
Col_Second i ii i ii
Row_First Row_Second
bar one -0.452982 -1.872641 0.248450 -0.319433
 two -0.460388 0.000000 -0.408048 0.000000
baz one 0.358206 -0.319344 -2.052081 -0.424957
 two -0.823811 0.000000 1.158968 0.000000
foo one -0.098048 -0.799666 0.969043 -0.595635
 two -0.358485 0.000000 -0.667167 0.000000
qux one 1.176911 1.578676 0.350719 0.093351
 two 0.241956 0.000000 -0.516898 0.000000

Read Cross sections of different axes with MultiIndex online:
https://riptutorial.com/pandas/topic/8099/cross-sections-of-different-axes-with-multiindex

https://riptutorial.com/ 33

Chapter 9: Data Types

Remarks

dtypes are not native to pandas. They are a result of pandas close architectural coupling to
numpy.

the dtype of a column does not in any way have to correlate to the python type of the object
contained in the column.

Here we have a pd.Series with floats. The dtype will be float.

Then we use astype to "cast" it to object.

pd.Series([1.,2.,3.,4.,5.]).astype(object)
0 1
1 2
2 3
3 4
4 5
dtype: object

The dtype is now object, but the objects in the list are still float. Logical if you know that in python,
everything is an object, and can be upcasted to object.

type(pd.Series([1.,2.,3.,4.,5.]).astype(object)[0])
float

Here we try "casting" the floats to strings.

pd.Series([1.,2.,3.,4.,5.]).astype(str)
0 1.0
1 2.0
2 3.0
3 4.0
4 5.0
dtype: object

The dtype is now object, but the type of the entries in the list are string. This is because numpy does
not deal with strings, and thus acts as if they are just objects and of no concern.

type(pd.Series([1.,2.,3.,4.,5.]).astype(str)[0])
str

Do not trust dtypes, they are an artifact of an architectural flaw in pandas. Specify them as you
must, but do not rely on what dtype is set on a column.

Examples

https://riptutorial.com/ 34

Checking the types of columns

Types of columns can be checked by .dtypes atrribute of DataFrames.

In [1]: df = pd.DataFrame({'A': [1, 2, 3], 'B': [1.0, 2.0, 3.0], 'C': [True, False, True]})

In [2]: df
Out[2]:
 A B C
0 1 1.0 True
1 2 2.0 False
2 3 3.0 True

In [3]: df.dtypes
Out[3]:
A int64
B float64
C bool
dtype: object

For a single series, you can use .dtype attribute.

In [4]: df['A'].dtype
Out[4]: dtype('int64')

Changing dtypes

astype() method changes the dtype of a Series and returns a new Series.

In [1]: df = pd.DataFrame({'A': [1, 2, 3], 'B': [1.0, 2.0, 3.0],
 'C': ['1.1.2010', '2.1.2011', '3.1.2011'],
 'D': ['1 days', '2 days', '3 days'],
 'E': ['1', '2', '3']})
In [2]: df
Out[2]:
 A B C D E
0 1 1.0 1.1.2010 1 days 1
1 2 2.0 2.1.2011 2 days 2
2 3 3.0 3.1.2011 3 days 3

In [3]: df.dtypes
Out[3]:
A int64
B float64
C object
D object
E object
dtype: object

Change the type of column A to float, and type of column B to integer:

In [4]: df['A'].astype('float')
Out[4]:
0 1.0
1 2.0

https://riptutorial.com/ 35

2 3.0
Name: A, dtype: float64

In [5]: df['B'].astype('int')
Out[5]:
0 1
1 2
2 3
Name: B, dtype: int32

astype() method is for specific type conversion (i.e. you can specify .astype(float64'),
.astype(float32), or .astype(float16)). For general conversion, you can use pd.to_numeric,
pd.to_datetime and pd.to_timedelta.

Changing the type to numeric

pd.to_numeric changes the values to a numeric type.

In [6]: pd.to_numeric(df['E'])
Out[6]:
0 1
1 2
2 3
Name: E, dtype: int64

By default, pd.to_numeric raises an error if an input cannot be converted to a number. You can
change that behavior by using the errors parameter.

Ignore the error, return the original input if it cannot be converted
In [7]: pd.to_numeric(pd.Series(['1', '2', 'a']), errors='ignore')
Out[7]:
0 1
1 2
2 a
dtype: object

Return NaN when the input cannot be converted to a number
In [8]: pd.to_numeric(pd.Series(['1', '2', 'a']), errors='coerce')
Out[8]:
0 1.0
1 2.0
2 NaN
dtype: float64

If need check all rows with input cannot be converted to numeric use boolean indexing with isnull:

In [9]: df = pd.DataFrame({'A': [1, 'x', 'z'],
 'B': [1.0, 2.0, 3.0],
 'C': [True, False, True]})

In [10]: pd.to_numeric(df.A, errors='coerce').isnull()
Out[10]:
0 False
1 True

https://riptutorial.com/ 36

2 True
Name: A, dtype: bool

In [11]: df[pd.to_numeric(df.A, errors='coerce').isnull()]
Out[11]:
 A B C
1 x 2.0 False
2 z 3.0 True

Changing the type to datetime

In [12]: pd.to_datetime(df['C'])
Out[12]:
0 2010-01-01
1 2011-02-01
2 2011-03-01
Name: C, dtype: datetime64[ns]

Note that 2.1.2011 is converted to February 1, 2011. If you want January 2, 2011 instead, you
need to use the dayfirst parameter.

In [13]: pd.to_datetime('2.1.2011', dayfirst=True)
Out[13]: Timestamp('2011-01-02 00:00:00')

Changing the type to timedelta

In [14]: pd.to_timedelta(df['D'])
Out[14]:
0 1 days
1 2 days
2 3 days
Name: D, dtype: timedelta64[ns]

Selecting columns based on dtype

select_dtypes method can be used to select columns based on dtype.

In [1]: df = pd.DataFrame({'A': [1, 2, 3], 'B': [1.0, 2.0, 3.0], 'C': ['a', 'b', 'c'],
 'D': [True, False, True]})

In [2]: df
Out[2]:
 A B C D
0 1 1.0 a True
1 2 2.0 b False
2 3 3.0 c True

With include and exclude parameters you can specify which types you want:

Select numbers
In [3]: df.select_dtypes(include=['number']) # You need to use a list

https://riptutorial.com/ 37

Out[3]:
 A B
0 1 1.0
1 2 2.0
2 3 3.0

Select numbers and booleans
In [4]: df.select_dtypes(include=['number', 'bool'])
Out[4]:
 A B D
0 1 1.0 True
1 2 2.0 False
2 3 3.0 True

Select numbers and booleans but exclude int64
In [5]: df.select_dtypes(include=['number', 'bool'], exclude=['int64'])
Out[5]:
 B D
0 1.0 True
1 2.0 False
2 3.0 True

Summarizing dtypes

get_dtype_counts method can be used to see a breakdown of dtypes.

In [1]: df = pd.DataFrame({'A': [1, 2, 3], 'B': [1.0, 2.0, 3.0], 'C': ['a', 'b', 'c'],
 'D': [True, False, True]})

In [2]: df.get_dtype_counts()
Out[2]:
bool 1
float64 1
int64 1
object 1
dtype: int64

Read Data Types online: https://riptutorial.com/pandas/topic/2959/data-types

https://riptutorial.com/ 38

Chapter 10: Dealing with categorical
variables

Examples

One-hot encoding with `get_dummies()`

>>> df = pd.DataFrame({'Name':['John Smith', 'Mary Brown'],
 'Gender':['M', 'F'], 'Smoker':['Y', 'N']})
>>> print(df)

 Gender Name Smoker
0 M John Smith Y
1 F Mary Brown N

>>> df_with_dummies = pd.get_dummies(df, columns=['Gender', 'Smoker'])
>>> print(df_with_dummies)

 Name Gender_F Gender_M Smoker_N Smoker_Y
0 John Smith 0.0 1.0 0.0 1.0
1 Mary Brown 1.0 0.0 1.0 0.0

Read Dealing with categorical variables online: https://riptutorial.com/pandas/topic/5999/dealing-
with-categorical-variables

https://riptutorial.com/ 39

Chapter 11: Duplicated data

Examples

Select duplicated

If need set value 0 to column B, where in column A are duplicated data first create mask by
Series.duplicated and then use DataFrame.ix or Series.mask:

In [224]: df = pd.DataFrame({'A':[1,2,3,3,2],
 ...: 'B':[1,7,3,0,8]})

In [225]: mask = df.A.duplicated(keep=False)

In [226]: mask
Out[226]:
0 False
1 True
2 True
3 True
4 True
Name: A, dtype: bool

In [227]: df.ix[mask, 'B'] = 0

In [228]: df['C'] = df.A.mask(mask, 0)

In [229]: df
Out[229]:
 A B C
0 1 1 1
1 2 0 0
2 3 0 0
3 3 0 0
4 2 0 0

If need invert mask use ~:

In [230]: df['C'] = df.A.mask(~mask, 0)

In [231]: df
Out[231]:
 A B C
0 1 1 0
1 2 0 2
2 3 0 3
3 3 0 3
4 2 0 2

Drop duplicated

Use drop_duplicates:

https://riptutorial.com/ 40

In [216]: df = pd.DataFrame({'A':[1,2,3,3,2],
 ...: 'B':[1,7,3,0,8]})

In [217]: df
Out[217]:
 A B
0 1 1
1 2 7
2 3 3
3 3 0
4 2 8

keep only the last value
In [218]: df.drop_duplicates(subset=['A'], keep='last')
Out[218]:
 A B
0 1 1
3 3 0
4 2 8

keep only the first value, default value
In [219]: df.drop_duplicates(subset=['A'], keep='first')
Out[219]:
 A B
0 1 1
1 2 7
2 3 3

drop all duplicated values
In [220]: df.drop_duplicates(subset=['A'], keep=False)
Out[220]:
 A B
0 1 1

When you don't want to get a copy of a data frame, but to modify the existing one:

In [221]: df = pd.DataFrame({'A':[1,2,3,3,2],
 ...: 'B':[1,7,3,0,8]})

In [222]: df.drop_duplicates(subset=['A'], inplace=True)

In [223]: df
Out[223]:
 A B
0 1 1
1 2 7
2 3 3

Counting and getting unique elements

Number of unique elements in a series:

In [1]: id_numbers = pd.Series([111, 112, 112, 114, 115, 118, 114, 118, 112])
In [2]: id_numbers.nunique()
Out[2]: 5

Get unique elements in a series:

https://riptutorial.com/ 41

In [3]: id_numbers.unique()
Out[3]: array([111, 112, 114, 115, 118], dtype=int64)

In [4]: df = pd.DataFrame({'Group': list('ABAABABAAB'),
 'ID': [1, 1, 2, 3, 3, 2, 1, 2, 1, 3]})

In [5]: df
Out[5]:
 Group ID
0 A 1
1 B 1
2 A 2
3 A 3
4 B 3
5 A 2
6 B 1
7 A 2
8 A 1
9 B 3

Number of unique elements in each group:

In [6]: df.groupby('Group')['ID'].nunique()
Out[6]:
Group
A 3
B 2
Name: ID, dtype: int64

Get of unique elements in each group:

In [7]: df.groupby('Group')['ID'].unique()
Out[7]:
Group
A [1, 2, 3]
B [1, 3]
Name: ID, dtype: object

Get unique values from a column.

In [15]: df = pd.DataFrame({"A":[1,1,2,3,1,1],"B":[5,4,3,4,6,7]})

In [21]: df
Out[21]:
 A B
0 1 5
1 1 4
2 2 3
3 3 4
4 1 6
5 1 7

To get unique values in column A and B.

In [22]: df["A"].unique()

https://riptutorial.com/ 42

Out[22]: array([1, 2, 3])

In [23]: df["B"].unique()
Out[23]: array([5, 4, 3, 6, 7])

To get the unique values in column A as a list (note that unique() can be used in two slightly
different ways)

In [24]: pd.unique(df['A']).tolist()
Out[24]: [1, 2, 3]

Here is a more complex example. Say we want to find the unique values from column 'B' where 'A'
is equal to 1.

First, let's introduce a duplicate so you can see how it works. Let's replace the 6 in row '4', column
'B' with a 4:

In [24]: df.loc['4', 'B'] = 4
Out[24]:
 A B
0 1 5
1 1 4
2 2 3
3 3 4
4 1 4
5 1 7

Now select the data:

In [25]: pd.unique(df[df['A'] == 1]['B']).tolist()
Out[25]: [5, 4, 7]

This can be broken down by thinking of the inner DataFrame first:

df['A'] == 1

This finds values in column A that are equal to 1, and applies True or False to them. We can then
use this to select values from column 'B' of the DataFrame (the outer DataFrame selection)

For comparison, here is the list if we don't use unique. It retrieves every value in column 'B' where
column 'A' is 1

In [26]: df[df['A'] == 1]['B'].tolist()
Out[26]: [5, 4, 4, 7]

Read Duplicated data online: https://riptutorial.com/pandas/topic/2082/duplicated-data

https://riptutorial.com/ 43

Chapter 12: Getting information about
DataFrames

Examples

Get DataFrame information and memory usage

To get basic information about a DataFrame including the column names and datatypes:

import pandas as pd

df = pd.DataFrame({'integers': [1, 2, 3],
 'floats': [1.5, 2.5, 3],
 'text': ['a', 'b', 'c'],
 'ints with None': [1, None, 3]})

df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 3 entries, 0 to 2
Data columns (total 4 columns):
floats 3 non-null float64
integers 3 non-null int64
ints with None 2 non-null float64
text 3 non-null object
dtypes: float64(2), int64(1), object(1)
memory usage: 120.0+ bytes

To get the memory usage of the DataFrame:

>>> df.info(memory_usage='deep')
<class 'pandas.core.frame.DataFrame'>
Int64Index: 3 entries, 0 to 2
Data columns (total 4 columns):
floats 3 non-null float64
integers 3 non-null int64
ints with None 2 non-null float64
text 3 non-null object
dtypes: float64(2), int64(1), object(1)
memory usage: 234.0 bytes

List DataFrame column names

df = pd.DataFrame({'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9]})

To list the column names in a DataFrame:

>>> list(df)
['a', 'b', 'c']

https://riptutorial.com/ 44

This list comprehension method is especially useful when using the debugger:

>>> [c for c in df]
['a', 'b', 'c']

This is the long way:

sampledf.columns.tolist()

You can also print them as an index instead of a list (this won't be very visible for dataframes with
many columns though):

df.columns

Dataframe's various summary statistics.

import pandas as pd
df = pd.DataFrame(np.random.randn(5, 5), columns=list('ABCDE'))

To generate various summary statistics. For numeric values the number of non-NA/null values (
count), the mean (mean), the standard deviation std and values known as the five-number summary
:

min: minimum (smallest observation)•
25%: lower quartile or first quartile (Q1)•
50%: median (middle value, Q2)•
75%: upper quartile or third quartile (Q3)•
max: maximum (largest observation)•

>>> df.describe()
 A B C D E
count 5.000000 5.000000 5.000000 5.000000 5.000000
mean -0.456917 -0.278666 0.334173 0.863089 0.211153
std 0.925617 1.091155 1.024567 1.238668 1.495219
min -1.494346 -2.031457 -0.336471 -0.821447 -2.106488
25% -1.143098 -0.407362 -0.246228 -0.087088 -0.082451
50% -0.536503 -0.163950 -0.004099 1.509749 0.313918
75% 0.092630 0.381407 0.120137 1.822794 1.060268
max 0.796729 0.828034 2.137527 1.891436 1.870520

Read Getting information about DataFrames online:
https://riptutorial.com/pandas/topic/6697/getting-information-about-dataframes

https://riptutorial.com/ 45

Chapter 13: Gotchas of pandas

Remarks

Gotcha in general is a construct that is although documented, but not intuitive. Gotchas produce
some output that is normally not expected because of its counter-intuitive character.

Pandas package has several gotchas, that can confuse someone, who is not aware of them, and
some of them are presented on this documentation page.

Examples

Detecting missing values with np.nan

If you want to detect missings with

df=pd.DataFrame({'col':[1,np.nan]})
df==np.nan

you will get the following result:

col
0 False
1 False

This is because comparing missing value to anything results in a False - instead of this you should
use

df=pd.DataFrame({'col':[1,np.nan]})
df.isnull()

which results in:

col
0 False
1 True

Integer and NA

Pandas don't support missing in attributes of type integer. For example if you have missings in the
grade column:

df= pd.read_csv("data.csv", dtype={'grade': int})
error: Integer column has NA values

In this case you just should use float instead of integers or set the object dtype.

https://riptutorial.com/ 46

Automatic Data Alignment (index-awared behaviour)

If you want to append a series of values [1,2] to the column of dataframe df, you will get NaNs:

import pandas as pd

series=pd.Series([1,2])
df=pd.DataFrame(index=[3,4])
df['col']=series
df

 col
3 NaN
4 NaN

because setting a new column automatically aligns the data by the indexe, and your values 1 and
2 would get the indexes 0 and 1, and not 3 and 4 as in your data frame:

df=pd.DataFrame(index=[1,2])
df['col']=series
df

 col
1 2.0
2 NaN

If you want to ignore index, you should set the .values at the end:

df['col']=series.values

 col
3 1
4 2

Read Gotchas of pandas online: https://riptutorial.com/pandas/topic/6425/gotchas-of-pandas

https://riptutorial.com/ 47

Chapter 14: Graphs and Visualizations

Examples

Basic Data Graphs

Pandas uses provides multiple ways to make graphs of the data inside the data frame. It uses
matplotlib for that purpose.

The basic graphs have their wrappers for both DataFrame and Series objects:

Line Plot

df = pd.DataFrame({'x': [10, 8, 10, 7, 7, 10, 9, 9],
 'y': [6, 4, 5, 5, 7, 10, 9, 9]})
df.plot()

You can call the same method for a Series object to plot a subset of the Data Frame:

df['x'].plot()

https://riptutorial.com/ 48

Bar Chart

If you want to explore the distribution of your data, you can use the hist() method.

df['x'].hist()

General method for plotting plot()

All the possible graphs are available through the plot method. The kind of chart is selected by the
kind argument.

df['x'].plot(kind='pie')

Note In many environments, the pie chart will come out an oval. To make it a circle, use the
following:

from matplotlib import pyplot

pyplot.axis('equal')
df['x'].plot(kind='pie')

Styling the plot

https://riptutorial.com/ 49

plot() can take arguments that get passed on to matplotlib to style the plot in different ways.

df.plot(style='o') # plot as dots, not lines
df.plot(style='g--') # plot as green dashed line
df.plot(style='o', markeredgecolor='white') # plot as dots with white edge

Plot on an existing matplotlib axis

By default, plot() creates a new figure each time it is called. It is possible to plot on an existing
axis by passing the ax parameter.

plt.figure() # create a new figure
ax = plt.subplot(121) # create the left-side subplot
df1.plot(ax=ax) # plot df1 on that subplot
ax = plt.subplot(122) # create the right-side subplot
df2.plot(ax=ax) # and plot df2 there
plt.show() # show the plot

Read Graphs and Visualizations online: https://riptutorial.com/pandas/topic/3839/graphs-and-
visualizations

https://riptutorial.com/ 50

Chapter 15: Grouping Data

Examples

Basic grouping

Group by one column

Using the following DataFrame

df = pd.DataFrame({'A': ['a', 'b', 'c', 'a', 'b', 'b'],
 'B': [2, 8, 1, 4, 3, 8],
 'C': [102, 98, 107, 104, 115, 87]})

df
Output:
A B C
0 a 2 102
1 b 8 98
2 c 1 107
3 a 4 104
4 b 3 115
5 b 8 87

Group by column A and get the mean value of other columns:

df.groupby('A').mean()
Output:
B C
A
a 3.000000 103
b 6.333333 100
c 1.000000 107

Group by multiple columns

df.groupby(['A','B']).mean()
Output:
C
A B
a 2 102.0
4 104.0
b 3 115.0
8 92.5
c 1 107.0

Note how after grouping each row in the resulting DataFrame is indexed by a tuple or MultiIndex
(in this case a pair of elements from columns A and B).

To apply several aggregation methods at once, for instance to count the number of items in each
group and compute their mean, use the agg function:

https://riptutorial.com/ 51

df.groupby(['A','B']).agg(['count', 'mean'])
Output:
C
count mean
A B
a 2 1 102.0
4 1 104.0
b 3 1 115.0
8 2 92.5
c 1 1 107.0

Grouping numbers

For the following DataFrame:

import numpy as np
import pandas as pd
np.random.seed(0)
df = pd.DataFrame({'Age': np.random.randint(20, 70, 100),
 'Sex': np.random.choice(['Male', 'Female'], 100),
 'number_of_foo': np.random.randint(1, 20, 100)})
df.head()
Output:

Age Sex number_of_foo
0 64 Female 14
1 67 Female 14
2 20 Female 12
3 23 Male 17
4 23 Female 15

Group Age into three categories (or bins). Bins can be given as

an integer n indicating the number of bins—in this case the dataframe's data is divided into n
intervals of equal size

•

a sequence of integers denoting the endpoint of the left-open intervals in which the data is
divided into—for instance bins=[19, 40, 65, np.inf] creates three age groups (19, 40], (40,
65], and (65, np.inf].

•

Pandas assigns automatically the string versions of the intervals as label. It is also possible to
define own labels by defining a labels parameter as a list of strings.

pd.cut(df['Age'], bins=4)
this creates four age groups: (19.951, 32.25] < (32.25, 44.5] < (44.5, 56.75] < (56.75, 69]
Name: Age, dtype: category
Categories (4, object): [(19.951, 32.25] < (32.25, 44.5] < (44.5, 56.75] < (56.75, 69]]

pd.cut(df['Age'], bins=[19, 40, 65, np.inf])
this creates three age groups: (19, 40], (40, 65] and (65, infinity)
Name: Age, dtype: category
Categories (3, object): [(19, 40] < (40, 65] < (65, inf]]

Use it in groupby to get the mean number of foo:

https://riptutorial.com/ 52

age_groups = pd.cut(df['Age'], bins=[19, 40, 65, np.inf])
df.groupby(age_groups)['number_of_foo'].mean()
Output:
Age
(19, 40] 9.880000
(40, 65] 9.452381
(65, inf] 9.250000
Name: number_of_foo, dtype: float64

Cross tabulate age groups and gender:

pd.crosstab(age_groups, df['Sex'])
Output:
Sex Female Male
Age
(19, 40] 22 28
(40, 65] 18 24
(65, inf] 3 5

Column selection of a group

When you do a groupby you can select either a single column or a list of columns:

In [11]: df = pd.DataFrame([[1, 1, 2], [1, 2, 3], [2, 3, 4]], columns=["A", "B", "C"])

In [12]: df
Out[12]:
 A B C
0 1 1 2
1 1 2 3
2 2 3 4

In [13]: g = df.groupby("A")

In [14]: g["B"].mean() # just column B
Out[14]:
A
1 1.5
2 3.0
Name: B, dtype: float64

In [15]: g[["B", "C"]].mean() # columns B and C
Out[15]:
 B C
A
1 1.5 2.5
2 3.0 4.0

You can also use agg to specify columns and aggregation to perform:

In [16]: g.agg({'B': 'mean', 'C': 'count'})
Out[16]:
 C B
A
1 2 1.5
2 1 3.0

https://riptutorial.com/ 53

Aggregating by size versus by count

The difference between size and count is:

size counts NaN values, count does not.

df = pd.DataFrame(
 {"Name":["Alice", "Bob", "Mallory", "Mallory", "Bob" , "Mallory"],
 "City":["Seattle", "Seattle", "Portland", "Seattle", "Seattle", "Portland"],
 "Val": [4, 3, 3, np.nan, np.nan, 4]})

df
Output:
City Name Val
0 Seattle Alice 4.0
1 Seattle Bob 3.0
2 Portland Mallory 3.0
3 Seattle Mallory NaN
4 Seattle Bob NaN
5 Portland Mallory 4.0

df.groupby(["Name", "City"])['Val'].size().reset_index(name='Size')
Output:
Name City Size
0 Alice Seattle 1
1 Bob Seattle 2
2 Mallory Portland 2
3 Mallory Seattle 1

df.groupby(["Name", "City"])['Val'].count().reset_index(name='Count')
Output:
Name City Count
0 Alice Seattle 1
1 Bob Seattle 1
2 Mallory Portland 2
3 Mallory Seattle 0

Aggregating groups

In [1]: import numpy as np
In [2]: import pandas as pd

In [3]: df = pd.DataFrame({'A': list('XYZXYZXYZX'), 'B': [1, 2, 1, 3, 1, 2, 3, 3, 1, 2],
 'C': [12, 14, 11, 12, 13, 14, 16, 12, 10, 19]})

In [4]: df.groupby('A')['B'].agg({'mean': np.mean, 'standard deviation': np.std})
Out[4]:
 standard deviation mean
A
X 0.957427 2.250000
Y 1.000000 2.000000
Z 0.577350 1.333333

For multiple columns:

https://riptutorial.com/ 54

In [5]: df.groupby('A').agg({'B': [np.mean, np.std], 'C': [np.sum, 'count']})
Out[5]:
 C B
 sum count mean std
A
X 59 4 2.250000 0.957427
Y 39 3 2.000000 1.000000
Z 35 3 1.333333 0.577350

Export groups in different files

You can iterate on the object returned by groupby(). The iterator contains (Category, DataFrame)
tuples.

Same example data as in the previous example.
import numpy as np
import pandas as pd
np.random.seed(0)
df = pd.DataFrame({'Age': np.random.randint(20, 70, 100),
 'Sex': np.random.choice(['Male', factor'Female'], 100),
 'number_of_foo': np.random.randint(1, 20, 100)})

Export to Male.csv and Female.csv files.
for sex, data in df.groupby('Sex'):
 data.to_csv("{}.csv".format(sex))

using transform to get group-level statistics while preserving the original
dataframe

example:

df = pd.DataFrame({'group1' : ['A', 'A', 'A', 'A',
 'B', 'B', 'B', 'B'],
 'group2' : ['C', 'C', 'C', 'D',
 'E', 'E', 'F', 'F'],
 'B' : ['one', np.NaN, np.NaN, np.NaN,
 np.NaN, 'two', np.NaN, np.NaN],
 'C' : [np.NaN, 1, np.NaN, np.NaN,
 np.NaN, np.NaN, np.NaN, 4]})

 df
Out[34]:
 B C group1 group2
0 one NaN A C
1 NaN 1.0 A C
2 NaN NaN A C
3 NaN NaN A D
4 NaN NaN B E
5 two NaN B E
6 NaN NaN B F
7 NaN 4.0 B F

I want to get the count of non-missing observations of B for each combination of group1 and group2.
groupby.transform is a very powerful function that does exactly that.

https://riptutorial.com/ 55

df['count_B']=df.groupby(['group1','group2']).B.transform('count')

df
Out[36]:
 B C group1 group2 count_B
0 one NaN A C 1
1 NaN 1.0 A C 1
2 NaN NaN A C 1
3 NaN NaN A D 0
4 NaN NaN B E 1
5 two NaN B E 1
6 NaN NaN B F 0
7 NaN 4.0 B F 0

Read Grouping Data online: https://riptutorial.com/pandas/topic/1822/grouping-data

https://riptutorial.com/ 56

Chapter 16: Grouping Time Series Data

Examples

Generate time series of random numbers then down sample

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

I want 7 days of 24 hours with 60 minutes each
periods = 7 * 24 * 60
tidx = pd.date_range('2016-07-01', periods=periods, freq='T')
^ ^
| |
Start Date Frequency Code for Minute
This should get me 7 Days worth of minutes in a datetimeindex

Generate random data with numpy. We'll seed the random
number generator so that others can see the same results.
Otherwise, you don't have to seed it.
np.random.seed([3,1415])

This will pick a number of normally distributed random numbers
where the number is specified by periods
data = np.random.randn(periods)

ts = pd.Series(data=data, index=tidx, name='HelloTimeSeries')

ts.describe()

count 10080.000000
mean -0.008853
std 0.995411
min -3.936794
25% -0.683442
50% 0.002640
75% 0.654986
max 3.906053
Name: HelloTimeSeries, dtype: float64

Let's take this 7 days of per minute data and down sample to every 15 minutes. All frequency
codes can be found here.

resample says to group by every 15 minutes. But now we need
to specify what to do within those 15 minute chunks.

We could take the last value.
ts.resample('15T').last()

Or any other thing we can do to a groupby object, documentation.

We can even aggregate several useful things. Let's plot the min, mean, and max of this
resample('15M') data.

https://riptutorial.com/ 57

ts.resample('15T').agg(['min', 'mean', 'max']).plot()

Let's resample over '15T' (15 minutes), '30T' (half hour), and '1H' (1 hour) and see how our data
gets smoother.

fig, axes = plt.subplots(1, 3, figsize=(12, 4))
for i, freq in enumerate(['15T', '30T', '1H']):
 ts.resample(freq).agg(['max', 'mean', 'min']).plot(ax=axes[i], title=freq)

Read Grouping Time Series Data online: https://riptutorial.com/pandas/topic/4747/grouping-time-
series-data

https://riptutorial.com/ 58

Chapter 17: Holiday Calendars

Examples

Create a custom calendar

Here is how to create a custom calendar. The example given is a french calendar -- so it provides
many examples.

from pandas.tseries.holiday import AbstractHolidayCalendar, Holiday, EasterMonday, Easter
from pandas.tseries.offsets import Day, CustomBusinessDay

class FrBusinessCalendar(AbstractHolidayCalendar):
 """ Custom Holiday calendar for France based on
 https://en.wikipedia.org/wiki/Public_holidays_in_France
 - 1 January: New Year's Day
 - Moveable: Easter Monday (Monday after Easter Sunday)
 - 1 May: Labour Day
 - 8 May: Victory in Europe Day
 - Moveable Ascension Day (Thursday, 39 days after Easter Sunday)
 - 14 July: Bastille Day
 - 15 August: Assumption of Mary to Heaven
 - 1 November: All Saints' Day
 - 11 November: Armistice Day
 - 25 December: Christmas Day
 """
 rules = [
 Holiday('New Years Day', month=1, day=1),
 EasterMonday,
 Holiday('Labour Day', month=5, day=1),
 Holiday('Victory in Europe Day', month=5, day=8),
 Holiday('Ascension Day', month=1, day=1, offset=[Easter(), Day(39)]),
 Holiday('Bastille Day', month=7, day=14),
 Holiday('Assumption of Mary to Heaven', month=8, day=15),
 Holiday('All Saints Day', month=11, day=1),
 Holiday('Armistice Day', month=11, day=11),
 Holiday('Christmas Day', month=12, day=25)
]

Use a custom calendar

Here is how to use the custom calendar.

Get the holidays between two dates

import pandas as pd
from datetime import date

Creating some boundaries
year = 2016
start = date(year, 1, 1)

https://riptutorial.com/ 59

end = start + pd.offsets.MonthEnd(12)

Creating a custom calendar
cal = FrBusinessCalendar()
Getting the holidays (off-days) between two dates
cal.holidays(start=start, end=end)

DatetimeIndex(['2016-01-01', '2016-03-28', '2016-05-01', '2016-05-05',
'2016-05-08', '2016-07-14', '2016-08-15', '2016-11-01',
'2016-11-11', '2016-12-25'],
dtype='datetime64[ns]', freq=None)

Count the number of working days between
two dates

It is sometimes useful to get the number of working days by month whatever the year in the future
or in the past. Here is how to do that with a custom calendar.

from pandas.tseries.offsets import CDay

Creating a series of dates between the boundaries
by using the custom calendar
se = pd.bdate_range(start=start,
 end=end,
 freq=CDay(calendar=cal)).to_series()
Counting the number of working days by month
se.groupby(se.dt.month).count().head()

1 20
2 21
3 22
4 21
5 21

Read Holiday Calendars online: https://riptutorial.com/pandas/topic/7976/holiday-calendars

https://riptutorial.com/ 60

Chapter 18: Indexing and selecting data

Examples

Select column by label

Create a sample DF
df = pd.DataFrame(np.random.randn(5, 3), columns=list('ABC'))

Show DF
df
 A B C
0 -0.467542 0.469146 -0.861848
1 -0.823205 -0.167087 -0.759942
2 -1.508202 1.361894 -0.166701
3 0.394143 -0.287349 -0.978102
4 -0.160431 1.054736 -0.785250

Select column using a single label, 'A'
df['A']
0 -0.467542
1 -0.823205
2 -1.508202
3 0.394143
4 -0.160431

Select multiple columns using an array of labels, ['A', 'C']
df[['A', 'C']]
 A C
0 -0.467542 -0.861848
1 -0.823205 -0.759942
2 -1.508202 -0.166701
3 0.394143 -0.978102
4 -0.160431 -0.785250

Additional details at: http://pandas.pydata.org/pandas-docs/version/0.18.0/indexing.html#selection-
by-label

Select by position

The iloc (short for integer location) method allows to select the rows of a dataframe based on their
position index. This way one can slice dataframes just like one does with Python's list slicing.

df = pd.DataFrame([[11, 22], [33, 44], [55, 66]], index=list("abc"))

df
Out:
0 1
a 11 22
b 33 44
c 55 66

df.iloc[0] # the 0th index (row)

https://riptutorial.com/ 61

Out:
0 11
1 22
Name: a, dtype: int64

df.iloc[1] # the 1st index (row)
Out:
0 33
1 44
Name: b, dtype: int64

df.iloc[:2] # the first 2 rows
0 1
a 11 22
b 33 44

df[::-1] # reverse order of rows
0 1
c 55 66
b 33 44
a 11 22

Row location can be combined with column location

df.iloc[:, 1] # the 1st column
Out[15]:
a 22
b 44
c 66
Name: 1, dtype: int64

See also: Selection by Position

Slicing with labels

When using labels, both the start and the stop are included in the results.

import pandas as pd
import numpy as np
np.random.seed(5)
df = pd.DataFrame(np.random.randint(100, size=(5, 5)), columns = list("ABCDE"),
 index = ["R" + str(i) for i in range(5)])

Out:
A B C D E
R0 99 78 61 16 73
R1 8 62 27 30 80
R2 7 76 15 53 80
R3 27 44 77 75 65
R4 47 30 84 86 18

Rows R0 to R2:

df.loc['R0':'R2']
Out:
A B C D E

https://riptutorial.com/ 62

R0 9 41 62 1 82
R1 16 78 5 58 0
R2 80 4 36 51 27

Notice how loc differs from iloc because iloc excludes the end index

df.loc['R0':'R2'] # rows labelled R0, R1, R2
Out:
A B C D E
R0 9 41 62 1 82
R1 16 78 5 58 0
R2 80 4 36 51 27

df.iloc[0:2] # rows indexed by 0, 1
A B C D E
R0 99 78 61 16 73
R1 8 62 27 30 80

Columns C to E:

df.loc[:, 'C':'E']
Out:
C D E
R0 62 1 82
R1 5 58 0
R2 36 51 27
R3 68 38 83
R4 7 30 62

Mixed position and label based selection

DataFrame:

import pandas as pd
import numpy as np
np.random.seed(5)
df = pd.DataFrame(np.random.randint(100, size=(5, 5)), columns = list("ABCDE"),
 index = ["R" + str(i) for i in range(5)])

df
Out[12]:
 A B C D E
R0 99 78 61 16 73
R1 8 62 27 30 80
R2 7 76 15 53 80
R3 27 44 77 75 65
R4 47 30 84 86 18

Select rows by position, and columns by label:

df.ix[1:3, 'C':'E']
Out[19]:
 C D E

https://riptutorial.com/ 63

R1 5 58 0
R2 36 51 27

If the index is integer, .ix will use labels rather than positions:

df.index = np.arange(5, 10)

df
Out[22]:
 A B C D E
5 9 41 62 1 82
6 16 78 5 58 0
7 80 4 36 51 27
8 31 2 68 38 83
9 19 18 7 30 62

#same call returns an empty DataFrame because now the index is integer
df.ix[1:3, 'C':'E']
Out[24]:
Empty DataFrame
Columns: [C, D, E]
Index: []

Boolean indexing

One can select rows and columns of a dataframe using boolean arrays.

import pandas as pd
import numpy as np
np.random.seed(5)
df = pd.DataFrame(np.random.randint(100, size=(5, 5)), columns = list("ABCDE"),
 index = ["R" + str(i) for i in range(5)])
print (df)
A B C D E
R0 99 78 61 16 73
R1 8 62 27 30 80
R2 7 76 15 53 80
R3 27 44 77 75 65
R4 47 30 84 86 18

mask = df['A'] > 10
print (mask)
R0 True
R1 False
R2 False
R3 True
R4 True
Name: A, dtype: bool

print (df[mask])
A B C D E
R0 99 78 61 16 73
R3 27 44 77 75 65
R4 47 30 84 86 18

print (df.ix[mask, 'C'])
R0 61

https://riptutorial.com/ 64

R3 77
R4 84
Name: C, dtype: int32

print(df.ix[mask, ['C', 'D']])
C D
R0 61 16
R3 77 75
R4 84 86

More in pandas documentation.

Filtering columns (selecting "interesting", dropping unneeded, using RegEx,
etc.)

generate sample DF

In [39]: df = pd.DataFrame(np.random.randint(0, 10, size=(5, 6)),
columns=['a10','a20','a25','b','c','d'])

In [40]: df
Out[40]:
 a10 a20 a25 b c d
0 2 3 7 5 4 7
1 3 1 5 7 2 6
2 7 4 9 0 8 7
3 5 8 8 9 6 8
4 8 1 0 4 4 9

show columns containing letter 'a'

In [41]: df.filter(like='a')
Out[41]:
 a10 a20 a25
0 2 3 7
1 3 1 5
2 7 4 9
3 5 8 8
4 8 1 0

show columns using RegEx filter (b|c|d) - b or c or
d:

In [42]: df.filter(regex='(b|c|d)')
Out[42]:
 b c d
0 5 4 7
1 7 2 6

https://riptutorial.com/ 65

2 0 8 7
3 9 6 8
4 4 4 9

show all columns except those beginning
with a (in other word remove / drop all
columns satisfying given RegEx)

In [43]: df.ix[:, ~df.columns.str.contains('^a')]
Out[43]:
 b c d
0 5 4 7
1 7 2 6
2 0 8 7
3 9 6 8
4 4 4 9

Filtering / selecting rows using `.query()` method

import pandas as pd

generate random DF

df = pd.DataFrame(np.random.randint(0,10,size=(10, 3)), columns=list('ABC'))

In [16]: print(df)
 A B C
0 4 1 4
1 0 2 0
2 7 8 8
3 2 1 9
4 7 3 8
5 4 0 7
6 1 5 5
7 6 7 8
8 6 7 3
9 6 4 5

select rows where values in column A > 2 and values in
column B < 5

In [18]: df.query('A > 2 and B < 5')
Out[18]:
 A B C
0 4 1 4
4 7 3 8
5 4 0 7

https://riptutorial.com/ 66

9 6 4 5

using .query() method with variables for filtering

In [23]: B_filter = [1,7]

In [24]: df.query('B == @B_filter')
Out[24]:
 A B C
0 4 1 4
3 2 1 9
7 6 7 8
8 6 7 3

In [25]: df.query('@B_filter in B')
Out[25]:
 A B C
0 4 1 4

Path Dependent Slicing

It may become necessary to traverse the elements of a series or the rows of a dataframe in a way
that the next element or next row is dependent on the previously selected element or row. This is
called path dependency.

Consider the following time series s with irregular frequency.

#starting python community conventions
import numpy as np
import pandas as pd

n is number of observations
n = 5000

day = pd.to_datetime(['2013-02-06'])
irregular seconds spanning 28800 seconds (8 hours)
seconds = np.random.rand(n) * 28800 * pd.Timedelta(1, 's')
start at 8 am
start = pd.offsets.Hour(8)
irregular timeseries
tidx = day + start + seconds
tidx = tidx.sort_values()

s = pd.Series(np.random.randn(n), tidx, name='A').cumsum()
s.plot();

https://riptutorial.com/ 67

Let's assume a path dependent condition. Starting with the first member of the series, I want to
grab each subsequent element such that the absolute difference between that element and the
current element is greater than or equal to x.

We'll solve this problem using python generators.

Generator function

def mover(s, move_size=10):
 """Given a reference, find next value with
 an absolute difference >= move_size"""
 ref = None
 for i, v in s.iteritems():
 if ref is None or (abs(ref - v) >= move_size):
 yield i, v
 ref = v

Then we can define a new series moves like so

moves = pd.Series({i:v for i, v in mover(s, move_size=10)},
 name='_{}_'.format(s.name))

Plotting them both

moves.plot(legend=True)
s.plot(legend=True)

https://riptutorial.com/ 68

The analog for dataframes would be:

def mover_df(df, col, move_size=2):
 ref = None
 for i, row in df.iterrows():
 if ref is None or (abs(ref - row.loc[col]) >= move_size):
 yield row
 ref = row.loc[col]

df = s.to_frame()
moves_df = pd.concat(mover_df(df, 'A', 10), axis=1).T

moves_df.A.plot(label='_A_', legend=True)
df.A.plot(legend=True)

Get the first/last n rows of a dataframe

To view the first or last few records of a dataframe, you can use the methods head and tail

To return the first n rows use DataFrame.head([n])

df.head(n)

https://riptutorial.com/ 69

To return the last n rows use DataFrame.tail([n])

df.tail(n)

Without the argument n, these functions return 5 rows.

Note that the slice notation for head/tail would be:

df[:10] # same as df.head(10)
df[-10:] # same as df.tail(10)

Select distinct rows across dataframe

Let

df = pd.DataFrame({'col_1':['A','B','A','B','C'], 'col_2':[3,4,3,5,6]})
df
Output:
col_1 col_2
0 A 3
1 B 4
2 A 3
3 B 5
4 C 6

To get the distinct values in col_1 you can use Series.unique()

df['col_1'].unique()
Output:
array(['A', 'B', 'C'], dtype=object)

But Series.unique() works only for a single column.

To simulate the select unique col_1, col_2 of SQL you can use DataFrame.drop_duplicates():

df.drop_duplicates()
col_1 col_2
0 A 3
1 B 4
3 B 5
4 C 6

This will get you all the unique rows in the dataframe. So if

df = pd.DataFrame({'col_1':['A','B','A','B','C'], 'col_2':[3,4,3,5,6],
'col_3':[0,0.1,0.2,0.3,0.4]})
df
Output:
col_1 col_2 col_3
0 A 3 0.0
1 B 4 0.1
2 A 3 0.2

https://riptutorial.com/ 70

3 B 5 0.3
4 C 6 0.4

df.drop_duplicates()
col_1 col_2 col_3
0 A 3 0.0
1 B 4 0.1
2 A 3 0.2
3 B 5 0.3
4 C 6 0.4

To specify the columns to consider when selecting unique records, pass them as arguments

df = pd.DataFrame({'col_1':['A','B','A','B','C'], 'col_2':[3,4,3,5,6],
'col_3':[0,0.1,0.2,0.3,0.4]})
df.drop_duplicates(['col_1','col_2'])
Output:
col_1 col_2 col_3
0 A 3 0.0
1 B 4 0.1
3 B 5 0.3
4 C 6 0.4

skip last column
df.drop_duplicates(['col_1','col_2'])[['col_1','col_2']]
col_1 col_2
0 A 3
1 B 4
3 B 5
4 C 6

Source: How to “select distinct” across multiple data frame columns in pandas?.

Filter out rows with missing data (NaN, None, NaT)

If you have a dataframe with missing data (NaN, pd.NaT, None) you can filter out incomplete rows

df = pd.DataFrame([[0,1,2,3],
 [None,5,None,pd.NaT],
 [8,None,10,None],
 [11,12,13,pd.NaT]],columns=list('ABCD'))
df
Output:
A B C D
0 0 1 2 3
1 NaN 5 NaN NaT
2 8 NaN 10 None
3 11 12 13 NaT

DataFrame.dropna drops all rows containing at least one field with missing data

df.dropna()
Output:
A B C D
0 0 1 2 3

https://riptutorial.com/ 71

To just drop the rows that are missing data at specified columns use subset

df.dropna(subset=['C'])
Output:
A B C D
0 0 1 2 3
2 8 NaN 10 None
3 11 12 13 NaT

Use the option inplace = True for in-place replacement with the filtered frame.

Read Indexing and selecting data online: https://riptutorial.com/pandas/topic/1751/indexing-and-
selecting-data

https://riptutorial.com/ 72

Chapter 19: IO for Google BigQuery

Examples

Reading data from BigQuery with user account credentials

In [1]: import pandas as pd

In order to run a query in BigQuery you need to have your own BigQuery project. We can request
some public sample data:

In [2]: data = pd.read_gbq('''SELECT title, id, num_characters
 ...: FROM [publicdata:samples.wikipedia]
 ...: LIMIT 5'''
 ...: , project_id='<your-project-id>')

This will print out:

Your browser has been opened to visit:

 https://accounts.google.com/o/oauth2/v2/auth...[looong url cutted]

If your browser is on a different machine then exit and re-run this
application with the command-line parameter

 --noauth_local_webserver

If your are operating from local machine than browser will pop-up. After granting privileges pandas
will continue with output:

Authentication successful.
Requesting query... ok.
Query running...
Query done.
Processed: 13.8 Gb

Retrieving results...
Got 5 rows.

Total time taken 1.5 s.
Finished at 2016-08-23 11:26:03.

Result:

In [3]: data
Out[3]:
 title id num_characters
0 Fusidic acid 935328 1112
1 Clark Air Base 426241 8257
2 Watergate scandal 52382 25790
3 2005 35984 75813

https://riptutorial.com/ 73

4 .BLP 2664340 1659

As a side effect pandas will create json file bigquery_credentials.dat which will allow you to run
further queries without need to grant privileges any more:

In [9]: pd.read_gbq('SELECT count(1) cnt FROM [publicdata:samples.wikipedia]'
 , project_id='<your-project-id>')
Requesting query... ok.
[rest of output cutted]

Out[9]:
 cnt
0 313797035

Reading data from BigQuery with service account credentials

If you have created service account and have private key json file for it, you can use this file to
authenticate with pandas

In [5]: pd.read_gbq('''SELECT corpus, sum(word_count) words
 FROM [bigquery-public-data:samples.shakespeare]
 GROUP BY corpus
 ORDER BY words desc
 LIMIT 5'''
 , project_id='<your-project-id>'
 , private_key='<private key json contents or file path>')
Requesting query... ok.
[rest of output cutted]

Out[5]:
 corpus words
0 hamlet 32446
1 kingrichardiii 31868
2 coriolanus 29535
3 cymbeline 29231
4 2kinghenryiv 28241

Read IO for Google BigQuery online: https://riptutorial.com/pandas/topic/5610/io-for-google-
bigquery

https://riptutorial.com/ 74

Chapter 20: JSON

Examples

Read JSON

can either pass string of the json, or a
filepath to a file with valid json

In [99]: pd.read_json('[{"A": 1, "B": 2}, {"A": 3, "B": 4}]')
Out[99]:
 A B
0 1 2
1 3 4

Alternatively to conserve memory:

with open('test.json') as f:
 data = pd.DataFrame(json.loads(line) for line in f)

Dataframe into nested JSON as in flare.js files used in D3.js

def to_flare_json(df, filename):
 """Convert dataframe into nested JSON as in flare files used for D3.js"""
 flare = dict()
 d = {"name":"flare", "children": []}

 for index, row in df.iterrows():
 parent = row[0]
 child = row[1]
 child_size = row[2]

 # Make a list of keys
 key_list = []
 for item in d['children']:
 key_list.append(item['name'])

 #if 'parent' is NOT a key in flare.JSON, append it
 if not parent in key_list:
 d['children'].append({"name": parent, "children":[{"value": child_size, "name":
child}]})
 # if parent IS a key in flare.json, add a new child to it
 else:
 d['children'][key_list.index(parent)]['children'].append({"value": child_size,
"name": child})
 flare = d
 # export the final result to a json file
 with open(filename +'.json', 'w') as outfile:
 json.dump(flare, outfile, indent=4)

https://riptutorial.com/ 75

 return ("Done")

Read JSON from file

Content of file.json (one JSON object per line):

{"A": 1, "B": 2}
{"A": 3, "B": 4}

How to read directly from a local file:

pd.read_json('file.json', lines=True)
Output:
A B
0 1 2
1 3 4

Read JSON online: https://riptutorial.com/pandas/topic/4752/json

https://riptutorial.com/ 76

Chapter 21: Making Pandas Play Nice With
Native Python Datatypes

Examples

Moving Data Out of Pandas Into Native Python and Numpy Data Structures

In [1]: df = pd.DataFrame({'A': [1, 2, 3], 'B': [1.0, 2.0, 3.0], 'C': ['a', 'b', 'c'],
 'D': [True, False, True]})

In [2]: df
Out[2]:
 A B C D
0 1 1.0 a True
1 2 2.0 b False
2 3 3.0 c True

Getting a python list from a series:

In [3]: df['A'].tolist()
Out[3]: [1, 2, 3]

DataFrames do not have a tolist() method. Trying it results in an AttributeError:

In [4]: df.tolist()

AttributeError Traceback (most recent call last)
<ipython-input-4-fc6763af1ff7> in <module>()
----> 1 df.tolist()

//anaconda/lib/python2.7/site-packages/pandas/core/generic.pyc in __getattr__(self, name)
 2742 if name in self._info_axis:
 2743 return self[name]
-> 2744 return object.__getattribute__(self, name)
 2745
 2746 def __setattr__(self, name, value):

AttributeError: 'DataFrame' object has no attribute 'tolist'

Getting a numpy array from a series:

In [5]: df['B'].values
Out[5]: array([1., 2., 3.])

You can also get an array of the columns as individual numpy arrays from an entire dataframe:

In [6]: df.values
Out[6]:
array([[1, 1.0, 'a', True],
 [2, 2.0, 'b', False],

https://riptutorial.com/ 77

 [3, 3.0, 'c', True]], dtype=object)

Getting a dictionary from a series (uses the index as the keys):

In [7]: df['C'].to_dict()
Out[7]: {0: 'a', 1: 'b', 2: 'c'}

You can also get the entire DataFrame back as a dictionary:

In [8]: df.to_dict()
Out[8]:
{'A': {0: 1, 1: 2, 2: 3},
 'B': {0: 1.0, 1: 2.0, 2: 3.0},
 'C': {0: 'a', 1: 'b', 2: 'c'},
 'D': {0: True, 1: False, 2: True}}

The to_dict method has a few different parameters to adjust how the dictionaries are formatted.
To get a list of dicts for each row:

In [9]: df.to_dict('records')
Out[9]:
[{'A': 1, 'B': 1.0, 'C': 'a', 'D': True},
 {'A': 2, 'B': 2.0, 'C': 'b', 'D': False},
 {'A': 3, 'B': 3.0, 'C': 'c', 'D': True}]

See the documentation for the full list of options available to create dictionaries.

Read Making Pandas Play Nice With Native Python Datatypes online:
https://riptutorial.com/pandas/topic/8008/making-pandas-play-nice-with-native-python-datatypes

https://riptutorial.com/ 78

Chapter 22: Map Values

Remarks

it should be mentioned that if the key value does not exist then this will raise KeyError, in those
situations it maybe better to use merge or get which allows you to specify a default value if the key
doesn't exist

Examples

Map from Dictionary

Starting from a dataframe df:

 U L
111 en
112 en
112 es
113 es
113 ja
113 zh
114 es

Imagine you want to add a new column called S taking values from the following dictionary:

d = {112: 'en', 113: 'es', 114: 'es', 111: 'en'}

You can use map to perform a lookup on keys returning the corresponding values as a new column:

df['S'] = df['U'].map(d)

that returns:

 U L S
111 en en
112 en en
112 es en
113 es es
113 ja es
113 zh es
114 es es

Read Map Values online: https://riptutorial.com/pandas/topic/3928/map-values

https://riptutorial.com/ 79

Chapter 23: Merge, join, and concatenate

Syntax

DataFrame.merge(right, how='inner', on=None, left_on=None, right_on=None,
left_index=False, right_index=False, sort=False, suffixes=('_x', '_y'), copy=True,
indicator=False)

•

Merge DataFrame objects by performing a database-style join operation by columns or
indexes.

•

If joining columns on columns, the DataFrame indexes will be ignored. Otherwise if joining
indexes on indexes or indexes on a column or columns, the index will be passed on.

•

Parameters

Parameters Explanation

right DataFrame

how {‘left’, ‘right’, ‘outer’, ‘inner’}, default ‘inner’

left_on
label or list, or array-like. Field names to join on in left DataFrame. Can be a
vector or list of vectors of the length of the DataFrame to use a particular
vector as the join key instead of columns

right_on
label or list, or array-like. Field names to join on in right DataFrame or
vector/list of vectors per left_on docs

left_index
boolean, default False. Use the index from the left DataFrame as the join
key(s). If it is a MultiIndex, the number of keys in the other DataFrame (either
the index or a number of columns) must match the number of levels

right_index
boolean, default False. Use the index from the right DataFrame as the join key.
Same caveats as left_index

sort
boolean, default Fals. Sort the join keys lexicographically in the result
DataFrame

suffixes
2-length sequence (tuple, list, ...). Suffix to apply to overlapping column names
in the left and right side, respectively

copy boolean, default True. If False, do not copy data unnecessarily

boolean or string, default False. If True, adds a column to output DataFrame
called “_merge” with information on the source of each row. If string, column
with information on source of each row will be added to output DataFrame, and

indicator

https://riptutorial.com/ 80

Parameters Explanation

column will be named value of string. Information column is Categorical-type
and takes on a value of “left_only” for observations whose merge key only
appears in ‘left’ DataFrame, “right_only” for observations whose merge key
only appears in ‘right’ DataFrame, and “both” if the observation’s merge key is
found in both.

Examples

Merge

For instance, two tables are given,

T1

id x y
8 42 1.9
9 30 1.9

T2

id signal
8 55
8 56
8 59
9 57
9 58
9 60

The goal is to get the new table T3:

id x y s1 s2 s3
8 42 1.9 55 56 58
9 30 1.9 57 58 60

Which is to create columns s1, s2 and s3, each corresponding to a row (the number of rows per id
is always fixed and equal to 3)

By applying join (which takes an optional on argument which may be a column or multiple column
names, which specifies that the passed DataFrame is to be aligned on that column in the
DataFrame). So the solution can be as shown below:

df = df1.merge(df2.groupby('id')['signal'].apply(lambda x:
x.reset_index(drop=True)).unstack().reset_index())

df
Out[63]:
 id x y 0 1 2
0 8 42 1.9 55 56 59

https://riptutorial.com/ 81

1 9 30 1.9 57 58 60

If I separate them:

df2t = df2.groupby('id')['signal'].apply(lambda x:
x.reset_index(drop=True)).unstack().reset_index()

df2t
Out[59]:
 id 0 1 2
0 8 55 56 59
1 9 57 58 60

df = df1.merge(df2t)

df
Out[61]:
 id x y 0 1 2
0 8 42 1.9 55 56 59
1 9 30 1.9 57 58 60

Merging two DataFrames

In [1]: df1 = pd.DataFrame({'x': [1, 2, 3], 'y': ['a', 'b', 'c']})

In [2]: df2 = pd.DataFrame({'y': ['b', 'c', 'd'], 'z': [4, 5, 6]})

In [3]: df1
Out[3]:
 x y
0 1 a
1 2 b
2 3 c

In [4]: df2
Out[4]:
 y z
0 b 4
1 c 5
2 d 6

Inner join:

Uses the intersection of keys from two DataFrames.

In [5]: df1.merge(df2) # by default, it does an inner join on the common column(s)
Out[5]:
 x y z
0 2 b 4
1 3 c 5

Alternatively specify intersection of keys from two Dataframes.

https://riptutorial.com/ 82

In [5]: merged_inner = pd.merge(left=df1, right=df2, left_on='y', right_on='y')
Out[5]:
 x y z
0 2 b 4
1 3 c 5

Outer join:

Uses the union of the keys from two DataFrames.

In [6]: df1.merge(df2, how='outer')
Out[6]:
 x y z
0 1.0 a NaN
1 2.0 b 4.0
2 3.0 c 5.0
3 NaN d 6.0

Left join:

Uses only keys from left DataFrame.

In [7]: df1.merge(df2, how='left')
Out[7]:
 x y z
0 1 a NaN
1 2 b 4.0
2 3 c 5.0

Right Join

Uses only keys from right DataFrame.

In [8]: df1.merge(df2, how='right')
Out[8]:
 x y z
0 2.0 b 4
1 3.0 c 5
2 NaN d 6

Merging / concatenating / joining multiple data frames (horizontally and
vertically)

generate sample data frames:

In [57]: df3 = pd.DataFrame({'col1':[211,212,213], 'col2': [221,222,223]})

https://riptutorial.com/ 83

In [58]: df1 = pd.DataFrame({'col1':[11,12,13], 'col2': [21,22,23]})

In [59]: df2 = pd.DataFrame({'col1':[111,112,113], 'col2': [121,122,123]})

In [60]: df3 = pd.DataFrame({'col1':[211,212,213], 'col2': [221,222,223]})

In [61]: df1
Out[61]:
 col1 col2
0 11 21
1 12 22
2 13 23

In [62]: df2
Out[62]:
 col1 col2
0 111 121
1 112 122
2 113 123

In [63]: df3
Out[63]:
 col1 col2
0 211 221
1 212 222
2 213 223

merge / join / concatenate data frames [df1, df2, df3] vertically - add rows

In [64]: pd.concat([df1,df2,df3], ignore_index=True)
Out[64]:
 col1 col2
0 11 21
1 12 22
2 13 23
3 111 121
4 112 122
5 113 123
6 211 221
7 212 222
8 213 223

merge / join / concatenate data frames horizontally (aligning by index):

In [65]: pd.concat([df1,df2,df3], axis=1)
Out[65]:
 col1 col2 col1 col2 col1 col2
0 11 21 111 121 211 221
1 12 22 112 122 212 222
2 13 23 113 123 213 223

Merge, Join and Concat

Merging key names are same

pd.merge(df1, df2, on='key')

https://riptutorial.com/ 84

Merging key names are different

pd.merge(df1, df2, left_on='l_key', right_on='r_key')

Different types of joining

pd.merge(df1, df2, on='key', how='left')

Merging on multiple keys

pd.merge(df1, df2, on=['key1', 'key2'])

Treatment of overlapping columns

pd.merge(df1, df2, on='key', suffixes=('_left', '_right'))

Using row index instead of merging keys

pd.merge(df1, df2, right_index=True, left_index=True)

Avoid use of .join syntax as it gives exception for overlapping columns

Merging on left dataframe index and right dataframe column

pd.merge(df1, df2, right_index=True, left_on='l_key')

Concate dataframes

Glued vertically

pd.concat([df1, df2, df3], axis=0)

Glued horizontally

pd.concat([df1, df2, df3], axis=1)

What is the difference between join and merge

Consider the dataframes left and right

left = pd.DataFrame([['a', 1], ['b', 2]], list('XY'), list('AB'))
left

 A B
X a 1
Y b 2

https://riptutorial.com/ 85

right = pd.DataFrame([['a', 3], ['b', 4]], list('XY'), list('AC'))
right

 A C
X a 3
Y b 4

join
Think of join as wanting to combine to dataframes based on their respective indexes. If there are
overlapping columns, join will want you to add a suffix to the overlapping column name from left
dataframe. Our two dataframes do have an overlapping column name A.

left.join(right, lsuffix='_')

 A_ B A C
X a 1 a 3
Y b 2 b 4

Notice the index is preserved and we have 4 columns. 2 columns from left and 2 from right.

If the indexes did not align

left.join(right.reset_index(), lsuffix='_', how='outer')

 A_ B index A C
0 NaN NaN X a 3.0
1 NaN NaN Y b 4.0
X a 1.0 NaN NaN NaN
Y b 2.0 NaN NaN NaN

I used an outer join to better illustrate the point. If the indexes do not align, the result will be the
union of the indexes.

We can tell join to use a specific column in the left dataframe to use as the join key, but it will still
use the index from the right.

left.reset_index().join(right, on='index', lsuffix='_')

 index A_ B A C
0 X a 1 a 3
1 Y b 2 b 4

merge
Think of merge as aligning on columns. By default merge will look for overlapping columns in which
to merge on. merge gives better control over merge keys by allowing the user to specify a subset of
the overlapping columns to use with parameter on, or to separately allow the specification of which
columns on the left and which columns on the right to merge by.

merge will return a combined dataframe in which the index will be destroyed.

This simple example finds the overlapping column to be 'A' and combines based on it.

https://riptutorial.com/ 86

left.merge(right)

 A B C
0 a 1 3
1 b 2 4

Note the index is [0, 1] and no longer ['X', 'Y']

You can explicitly specify that you are merging on the index with the left_index or right_index
paramter

left.merge(right, left_index=True, right_index=True, suffixes=['_', ''])

 A_ B A C
X a 1 a 3
Y b 2 b 4

And this looks exactly like the join example above.

Read Merge, join, and concatenate online: https://riptutorial.com/pandas/topic/1966/merge--join--
and-concatenate

https://riptutorial.com/ 87

Chapter 24: Meta: Documentation Guidelines

Remarks

This meta post is similar to the python version
http://stackoverflow.com/documentation/python/394/meta-documentation-
guidelines#t=201607240058406359521.

Please make edit suggestions, and comment on those (in lieu of proper comments), so we can
flesh out/iterate on these suggestions :)

Examples

Showing code snippets and output

Two popular options are to use:

ipython notation:

In [11]: df = pd.DataFrame([[1, 2], [3, 4]])

In [12]: df
Out[12]:
 0 1
0 1 2
1 3 4

Alternatively (this is popular over in the python documentation) and more concisely:

df.columns # Out: RangeIndex(start=0, stop=2, step=1)

df[0]
Out:
0 1
1 3
Name: 0, dtype: int64

for col in df:
 print(col)
prints:
0
1

Generally, this is better for smaller examples.

Note: The distinction between output and printing. ipython makes this clear (the prints occur before
the output is returned):

In [21]: [print(col) for col in df]

https://riptutorial.com/ 88

0
1
Out[21]: [None, None]

style

Use the pandas library as pd, this can be assumed (the import does not need to be in every
example)

import pandas as pd

PEP8!

4 space indentation•
kwargs should use no spaces f(a=1)•
80 character limit (the entire line fitting in the rendered code snippet should be strongly
preferred)

•

Pandas version support

Most examples will work across multiple versions, if you are using a "new" feature you should
mention when this was introduced.

Example: sort_values.

print statements

Most of the time printing should be avoided as it can be a distraction (Out should be preferred).
That is:

a
Out: 1

is always better than

print(a)
prints: 1

Prefer supporting python 2 and 3:

print(x) # yes! (works same in python 2 and 3)
print x # no! (python 2 only)
print(x, y) # no! (works differently in python 2 and 3)

Read Meta: Documentation Guidelines online: https://riptutorial.com/pandas/topic/3253/meta--
documentation-guidelines

https://riptutorial.com/ 89

Chapter 25: Missing Data

Remarks

Should we include the non-documented ffill and bfill?

Examples

Filling missing values

In [11]: df = pd.DataFrame([[1, 2, None, 3], [4, None, 5, 6],
 [7, 8, 9, 10], [None, None, None, None]])

Out[11]:
 0 1 2 3
0 1.0 2.0 NaN 3.0
1 4.0 NaN 5.0 6.0
2 7.0 8.0 9.0 10.0
3 NaN NaN NaN NaN

Fill missing values with a single value:

In [12]: df.fillna(0)
Out[12]:
 0 1 2 3
0 1.0 2.0 0.0 3.0
1 4.0 0.0 5.0 6.0
2 7.0 8.0 9.0 10.0
3 0.0 0.0 0.0 0.0

This returns a new DataFrame. If you want to change the original DataFrame, either use the
inplace parameter (df.fillna(0, inplace=True)) or assign it back to original DataFrame (df =
df.fillna(0)).

Fill missing values with the previous ones:

In [13]: df.fillna(method='pad') # this is equivalent to both method='ffill' and .ffill()
Out[13]:
 0 1 2 3
0 1.0 2.0 NaN 3.0
1 4.0 2.0 5.0 6.0
2 7.0 8.0 9.0 10.0
3 7.0 8.0 9.0 10.0

Fill with the next ones:

https://riptutorial.com/ 90

In [14]: df.fillna(method='bfill') # this is equivalent to .bfill()
Out[14]:
 0 1 2 3
0 1.0 2.0 5.0 3.0
1 4.0 8.0 5.0 6.0
2 7.0 8.0 9.0 10.0
3 NaN NaN NaN NaN

Fill using another DataFrame:

In [15]: df2 = pd.DataFrame(np.arange(100, 116).reshape(4, 4))
 df2
Out[15]:
 0 1 2 3
0 100 101 102 103
1 104 105 106 107
2 108 109 110 111
3 112 113 114 115

In [16]: df.fillna(df2) # takes the corresponding cells in df2 to fill df
Out[16]:
 0 1 2 3
0 1.0 2.0 102.0 3.0
1 4.0 105.0 5.0 6.0
2 7.0 8.0 9.0 10.0
3 112.0 113.0 114.0 115.0

Dropping missing values

When creating a DataFrame None (python's missing value) is converted to NaN (pandas' missing
value):

In [11]: df = pd.DataFrame([[1, 2, None, 3], [4, None, 5, 6],
 [7, 8, 9, 10], [None, None, None, None]])

Out[11]:
 0 1 2 3
0 1.0 2.0 NaN 3.0
1 4.0 NaN 5.0 6.0
2 7.0 8.0 9.0 10.0
3 NaN NaN NaN NaN

Drop rows if at least one column has a missing value

In [12]: df.dropna()
Out[12]:
 0 1 2 3
2 7.0 8.0 9.0 10.0

This returns a new DataFrame. If you want to change the original DataFrame, either use the
inplace parameter (df.dropna(inplace=True)) or assign it back to original DataFrame (df =
df.dropna()).

https://riptutorial.com/ 91

Drop rows if all values in that row are missing

In [13]: df.dropna(how='all')
Out[13]:
 0 1 2 3
0 1.0 2.0 NaN 3.0
1 4.0 NaN 5.0 6.0
2 7.0 8.0 9.0 10.0

Drop columns that don't have at least 3 non-missing values

In [14]: df.dropna(axis=1, thresh=3)
Out[14]:
 0 3
0 1.0 3.0
1 4.0 6.0
2 7.0 10.0
3 NaN NaN

Interpolation

import pandas as pd
import numpy as np

df = pd.DataFrame({'A':[1,2,np.nan,3,np.nan],
 'B':[1.2,7,3,0,8]})

df['C'] = df.A.interpolate()
df['D'] = df.A.interpolate(method='spline', order=1)

print (df)
 A B C D
0 1.0 1.2 1.0 1.000000
1 2.0 7.0 2.0 2.000000
2 NaN 3.0 2.5 2.428571
3 3.0 0.0 3.0 3.000000
4 NaN 8.0 3.0 3.714286

Checking for missing values

In order to check whether a value is NaN, isnull() or notnull() functions can be used.

In [1]: import numpy as np
In [2]: import pandas as pd
In [3]: ser = pd.Series([1, 2, np.nan, 4])
In [4]: pd.isnull(ser)
Out[4]:
0 False
1 False
2 True
3 False
dtype: bool

https://riptutorial.com/ 92

Note that np.nan == np.nan returns False so you should avoid comparison against np.nan:

In [5]: ser == np.nan
Out[5]:
0 False
1 False
2 False
3 False
dtype: bool

Both functions are also defined as methods on Series and DataFrames.

In [6]: ser.isnull()
Out[6]:
0 False
1 False
2 True
3 False
dtype: bool

Testing on DataFrames:

In [7]: df = pd.DataFrame({'A': [1, np.nan, 3], 'B': [np.nan, 5, 6]})
In [8]: print(df)
Out[8]:
 A B
0 1.0 NaN
1 NaN 5.0
2 3.0 6.0

In [9]: df.isnull() # If the value is NaN, returns True.
Out[9]:
 A B
0 False True
1 True False
2 False False

In [10]: df.notnull() # Opposite of .isnull(). If the value is not NaN, returns True.
Out[10]:
 A B
0 True False
1 False True
2 True True

Read Missing Data online: https://riptutorial.com/pandas/topic/1896/missing-data

https://riptutorial.com/ 93

Chapter 26: MultiIndex

Examples

Select from MultiIndex by Level

Given the following DataFrame:

In [11]: df = pd.DataFrame(np.random.randn(6, 3), columns=['A', 'B', 'C'])

In [12]: df.set_index(['A', 'B'], inplace=True)

In [13]: df
Out[13]:
 C
A B
 0.902764 -0.259656 -1.864541
-0.695893 0.308893 0.125199
 1.696989 -1.221131 -2.975839
-1.132069 -1.086189 -1.945467
 2.294835 -1.765507 1.567853
-1.788299 2.579029 0.792919

Get the values of A, by name:

In [14]: df.index.get_level_values('A')
Out[14]:
Float64Index([0.902764041011, -0.69589264969, 1.69698924476, -1.13206872067,
 2.29483481146, -1.788298829],
 dtype='float64', name='A')

Or by number of level:

In [15]: df.index.get_level_values(level=0)
Out[15]:
Float64Index([0.902764041011, -0.69589264969, 1.69698924476, -1.13206872067,
 2.29483481146, -1.788298829],
 dtype='float64', name='A')

And for a specific range:

In [16]: df.loc[(df.index.get_level_values('A') > 0.5) & (df.index.get_level_values('A') <
2.1)]
Out[16]:
 C
A B
0.902764 -0.259656 -1.864541
1.696989 -1.221131 -2.975839

Range can also include multiple columns:

https://riptutorial.com/ 94

In [17]: df.loc[(df.index.get_level_values('A') > 0.5) & (df.index.get_level_values('B') < 0)]
Out[17]:
 C
A B
0.902764 -0.259656 -1.864541
1.696989 -1.221131 -2.975839
2.294835 -1.765507 1.567853

To extract a specific value you can use xs (cross-section):

In [18]: df.xs(key=0.9027639999999999)
Out[18]:
 C
B
-0.259656 -1.864541

In [19]: df.xs(key=0.9027639999999999, drop_level=False)
Out[19]:
 C
A B
0.902764 -0.259656 -1.864541

Iterate over DataFrame with MultiIndex

Given the following DataFrame:

In [11]: df = pd.DataFrame({'a':[1,1,1,2,2,3],'b':[4,4,5,5,6,7,],'c':[10,11,12,13,14,15]})

In [12]: df.set_index(['a','b'], inplace=True)

In [13]: df
Out[13]:
 c
a b
1 4 10
 4 11
 5 12
2 5 13
 6 14
3 7 15

You can iterate by any level of the MultiIndex. For example, level=0 (you can also select the level
by name e.g. level='a'):

In[21]: for idx, data in df.groupby(level=0):
 print('---')
 print(data)

 c
a b
1 4 10
 4 11
 5 12

 c
a b

https://riptutorial.com/ 95

2 5 13
 6 14

 c
a b
3 7 15

You can also select the levels by name e.g. `level='b':

In[22]: for idx, data in df.groupby(level='b'):
 print('---')
 print(data)

 c
a b
1 4 10
 4 11

 c
a b
1 5 12
2 5 13

 c
a b
2 6 14

 c
a b
3 7 15

Setting and sorting a MultiIndex

This example shows how to use column data to set a MultiIndex in a pandas.DataFrame.

In [1]: df = pd.DataFrame([['one', 'A', 100], ['two', 'A', 101], ['three', 'A', 102],
 ...: ['one', 'B', 103], ['two', 'B', 104], ['three', 'B', 105]],
 ...: columns=['c1', 'c2', 'c3'])

In [2]: df
Out[2]:
 c1 c2 c3
0 one A 100
1 two A 101
2 three A 102
3 one B 103
4 two B 104
5 three B 105

In [3]: df.set_index(['c1', 'c2'])
Out[3]:
 c3
c1 c2
one A 100
two A 101

https://riptutorial.com/ 96

three A 102
one B 103
two B 104
three B 105

You can sort the index right after you set it:

In [4]: df.set_index(['c1', 'c2']).sort_index()
Out[4]:
 c3
c1 c2
one A 100
 B 103
three A 102
 B 105
two A 101
 B 104

Having a sorted index, will result in slightly more efficient lookups on the first level:

In [5]: df_01 = df.set_index(['c1', 'c2'])

In [6]: %timeit df_01.loc['one']
1000 loops, best of 3: 607 µs per loop

In [7]: df_02 = df.set_index(['c1', 'c2']).sort_index()

In [8]: %timeit df_02.loc['one']
1000 loops, best of 3: 413 µs per loop

After the index has been set, you can perform lookups for specific records or groups of records:

In [9]: df_indexed = df.set_index(['c1', 'c2']).sort_index()

In [10]: df_indexed.loc['one']
Out[10]:
 c3
c2
A 100
B 103

In [11]: df_indexed.loc['one', 'A']
Out[11]:
c3 100
Name: (one, A), dtype: int64

In [12]: df_indexed.xs((slice(None), 'A'))
Out[12]:
 c3
c1
one 100
three 102
two 101

https://riptutorial.com/ 97

How to change MultiIndex columns to standard columns

Given a DataFrame with MultiIndex columns

build an example DataFrame
midx = pd.MultiIndex(levels=[['zero', 'one'], ['x','y']], labels=[[1,1,0,],[1,0,1,]])
df = pd.DataFrame(np.random.randn(2,3), columns=midx)

In [2]: df
Out[2]:
 one zero
 y x y
0 0.785806 -0.679039 0.513451
1 -0.337862 -0.350690 -1.423253

If you want to change the columns to standard columns (not MultiIndex), just rename the columns.

df.columns = ['A','B','C']
In [3]: df
Out[3]:
 A B C
0 0.785806 -0.679039 0.513451
1 -0.337862 -0.350690 -1.423253

How to change standard columns to MultiIndex

Start with a standard DataFrame

df = pd.DataFrame(np.random.randn(2,3), columns=['a','b','c'])

In [91]: df
Out[91]:
 a b c
0 -0.911752 -1.405419 -0.978419
1 0.603888 -1.187064 -0.035883

Now to change to MultiIndex, create a MultiIndex object and assign it to df.columns.

midx = pd.MultiIndex(levels=[['zero', 'one'], ['x','y']], labels=[[1,1,0,],[1,0,1,]])
df.columns = midx

In [94]: df
Out[94]:
 one zero
 y x y
 0 -0.911752 -1.405419 -0.978419
 1 0.603888 -1.187064 -0.035883

MultiIndex Columns

MultiIndex can also be used to create DataFrames with multilevel columns. Just use the columns
keyword in the DataFrame command.

https://riptutorial.com/ 98

midx = pd.MultiIndex(levels=[['zero', 'one'], ['x','y']], labels=[[1,1,0,],[1,0,1,]])
df = pd.DataFrame(np.random.randn(6,4), columns=midx)

In [86]: df
Out[86]:
 one zero
 y x y
0 0.625695 2.149377 0.006123
1 -1.392909 0.849853 0.005477

Displaying all elements in the index

To view all elements in the index change the print options that “sparsifies” the display of the
MultiIndex.

pd.set_option('display.multi_sparse', False)
df.groupby(['A','B']).mean()
Output:
C
A B
a 1 107
a 2 102
a 3 115
b 5 92
b 8 98
c 2 87
c 4 104
c 9 123

Read MultiIndex online: https://riptutorial.com/pandas/topic/3840/multiindex

https://riptutorial.com/ 99

Chapter 27: Pandas Datareader

Remarks

The Pandas datareader is a sub package that allows one to create a dataframe from various
internet datasources, currently including:

Yahoo! Finance•
Google Finance•
St.Louis FED (FRED)•
Kenneth French’s data library•
World Bank•
Google Analytics•

For more information, see here.

Examples

Datareader basic example (Yahoo Finance)

from pandas_datareader import data

Only get the adjusted close.
aapl = data.DataReader("AAPL",
 start='2015-1-1',
 end='2015-12-31',
 data_source='yahoo')['Adj Close']

>>> aapl.plot(title='AAPL Adj. Closing Price')

Convert the adjusted closing prices to cumulative returns.
returns = aapl.pct_change()

https://riptutorial.com/ 100

>>> ((1 + returns).cumprod() - 1).plot(title='AAPL Cumulative Returns')

Reading financial data (for multiple tickers) into pandas panel - demo

from datetime import datetime
import pandas_datareader.data as wb

stocklist = ['AAPL','GOOG','FB','AMZN','COP']

start = datetime(2016,6,8)
end = datetime(2016,6,11)

p = wb.DataReader(stocklist, 'yahoo',start,end)

p - is a pandas panel, with which we can do funny things:

let's see what do we have in our panel

In [388]: p.axes
Out[388]:
[Index(['Open', 'High', 'Low', 'Close', 'Volume', 'Adj Close'], dtype='object'),
 DatetimeIndex(['2016-06-08', '2016-06-09', '2016-06-10'], dtype='datetime64[ns]',
name='Date', freq='D'),
 Index(['AAPL', 'AMZN', 'COP', 'FB', 'GOOG'], dtype='object')]

In [389]: p.keys()
Out[389]: Index(['Open', 'High', 'Low', 'Close', 'Volume', 'Adj Close'], dtype='object')

selecting & slicing data

In [390]: p['Adj Close']
Out[390]:
 AAPL AMZN COP FB GOOG
Date
2016-06-08 98.940002 726.640015 47.490002 118.389999 728.280029
2016-06-09 99.650002 727.650024 46.570000 118.559998 728.580017
2016-06-10 98.830002 717.909973 44.509998 116.620003 719.409973

https://riptutorial.com/ 101

In [391]: p['Volume']
Out[391]:
 AAPL AMZN COP FB GOOG
Date
2016-06-08 20812700.0 2200100.0 9596700.0 14368700.0 1582100.0
2016-06-09 26419600.0 2163100.0 5389300.0 13823400.0 985900.0
2016-06-10 31462100.0 3409500.0 8941200.0 18412700.0 1206000.0

In [394]: p[:,:,'AAPL']
Out[394]:
 Open High Low Close Volume Adj Close
Date
2016-06-08 99.019997 99.559998 98.680000 98.940002 20812700.0 98.940002
2016-06-09 98.500000 99.989998 98.459999 99.650002 26419600.0 99.650002
2016-06-10 98.529999 99.349998 98.480003 98.830002 31462100.0 98.830002

In [395]: p[:,'2016-06-10']
Out[395]:
 Open High Low Close Volume Adj Close
AAPL 98.529999 99.349998 98.480003 98.830002 31462100.0 98.830002
AMZN 722.349976 724.979980 714.210022 717.909973 3409500.0 717.909973
COP 45.900002 46.119999 44.259998 44.509998 8941200.0 44.509998
FB 117.540001 118.110001 116.260002 116.620003 18412700.0 116.620003
GOOG 719.469971 725.890015 716.429993 719.409973 1206000.0 719.409973

Read Pandas Datareader online: https://riptutorial.com/pandas/topic/1912/pandas-datareader

https://riptutorial.com/ 102

Chapter 28: Pandas IO tools (reading and
saving data sets)

Remarks

The pandas official documentation includes a page on IO Tools with a list of relevant functions to
read and write to files, as well as some examples and common parameters.

Examples

Reading csv file into DataFrame

Example for reading file data_file.csv such as:

File:

index,header1,header2,header3
1,str_data,12,1.4
3,str_data,22,42.33
4,str_data,2,3.44
2,str_data,43,43.34

7, str_data, 25, 23.32

Code:

pd.read_csv('data_file.csv')

Output:

 index header1 header2 header3
0 1 str_data 12 1.40
1 3 str_data 22 42.33
2 4 str_data 2 3.44
3 2 str_data 43 43.34
4 7 str_data 25 23.32

Some useful arguments:

sep The default field delimiter is a comma ,. Use this option if you need a different delimiter,
for instance pd.read_csv('data_file.csv', sep=';')

•

index_col With index_col = n (n an integer) you tell pandas to use column n to index the •

https://riptutorial.com/ 103

DataFrame. In the above example:

pd.read_csv('data_file.csv', index_col=0)

Output:

 header1 header2 header3
index
 1 str_data 12 1.40
 3 str_data 22 42.33
 4 str_data 2 3.44
 2 str_data 43 43.34
 7 str_data 25 23.32

skip_blank_lines By default blank lines are skipped. Use skip_blank_lines=False to include
blank lines (they will be filled with NaN values)

pd.read_csv('data_file.csv', index_col=0,skip_blank_lines=False)

Output:

 header1 header2 header3
index
 1 str_data 12 1.40
 3 str_data 22 42.33
 4 str_data 2 3.44
 2 str_data 43 43.34
NaN NaN NaN NaN
 7 str_data 25 23.32

•

parse_dates Use this option to parse date data.

File:

date_begin;date_end;header3;header4;header5
1/1/2017;1/10/2017;str_data;1001;123,45
2/1/2017;2/10/2017;str_data;1001;67,89
3/1/2017;3/10/2017;str_data;1001;0

Code to parse columns 0 and 1 as dates:

pd.read_csv('f.csv', sep=';', parse_dates=[0,1])

Output:

 date_begin date_end header3 header4 header5
0 2017-01-01 2017-01-10 str_data 1001 123,45
1 2017-02-01 2017-02-10 str_data 1001 67,89
2 2017-03-01 2017-03-10 str_data 1001 0

By default, the date format is inferred. If you want to specify a date format you can use for

•

https://riptutorial.com/ 104

instance

dateparse = lambda x: pd.datetime.strptime(x, '%d/%m/%Y')
pd.read_csv('f.csv', sep=';',parse_dates=[0,1],date_parser=dateparse)

Output:

 date_begin date_end header3 header4 header5
0 2017-01-01 2017-10-01 str_data 1001 123,45
1 2017-01-02 2017-10-02 str_data 1001 67,89
2 2017-01-03 2017-10-03 str_data 1001 0

More information on the function's parameters can be found in the official documentation.

Basic saving to a csv file

raw_data = {'first_name': ['John', 'Jane', 'Jim'],
 'last_name': ['Doe', 'Smith', 'Jones'],
 'department': ['Accounting', 'Sales', 'Engineering'],}
df = pd.DataFrame(raw_data,columns=raw_data.keys())
df.to_csv('data_file.csv')

Parsing dates when reading from csv

You can specify a column that contains dates so pandas would automatically parse them when
reading from the csv

pandas.read_csv('data_file.csv', parse_dates=['date_column'])

Spreadsheet to dict of DataFrames

with pd.ExcelFile('path_to_file.xls) as xl:
 d = {sheet_name: xl.parse(sheet_name) for sheet_name in xl.sheet_names}

Read a specific sheet

pd.read_excel('path_to_file.xls', sheetname='Sheet1')

There are many parsing options for read_excel (similar to the options in read_csv.

pd.read_excel('path_to_file.xls',
 sheetname='Sheet1', header=[0, 1, 2],
 skiprows=3, index_col=0) # etc.

Testing read_csv

import pandas as pd
import io

https://riptutorial.com/ 105

temp=u"""index; header1; header2; header3
1; str_data; 12; 1.4
3; str_data; 22; 42.33
4; str_data; 2; 3.44
2; str_data; 43; 43.34
7; str_data; 25; 23.32"""
#after testing replace io.StringIO(temp) to filename
df = pd.read_csv(io.StringIO(temp),
 sep = ';',
 index_col = 0,
 skip_blank_lines = True)
print (df)
 header1 header2 header3
index
1 str_data 12 1.40
3 str_data 22 42.33
4 str_data 2 3.44
2 str_data 43 43.34
7 str_data 25 23.32

List comprehension

All files are in folder files. First create list of DataFrames and then concat them:

import pandas as pd
import glob

#a.csv
#a,b
#1,2
#5,8

#b.csv
#a,b
#9,6
#6,4

#c.csv
#a,b
#4,3
#7,0

files = glob.glob('files/*.csv')
dfs = [pd.read_csv(fp) for fp in files]

#duplicated index inherited from each Dataframe
df = pd.concat(dfs)
print (df)
 a b
0 1 2
1 5 8
0 9 6
1 6 4
0 4 3
1 7 0
#'reseting' index
df = pd.concat(dfs, ignore_index=True)

https://riptutorial.com/ 106

print (df)
 a b
0 1 2
1 5 8
2 9 6
3 6 4
4 4 3
5 7 0
#concat by columns
df1 = pd.concat(dfs, axis=1)
print (df1)
 a b a b a b
0 1 2 9 6 4 3
1 5 8 6 4 7 0
#reset column names
df1 = pd.concat(dfs, axis=1, ignore_index=True)
print (df1)
 0 1 2 3 4 5
0 1 2 9 6 4 3
1 5 8 6 4 7 0

Read in chunks

import pandas as pd

chunksize = [n]
for chunk in pd.read_csv(filename, chunksize=chunksize):
 process(chunk)
 delete(chunk)

Save to CSV file

Save with default parameters:

df.to_csv(file_name)

Write specific columns:

df.to_csv(file_name, columns =['col'])

Difault delimiter is ',' - to change it:

df.to_csv(file_name,sep="|")

Write without the header:

df.to_csv(file_name, header=False)

Write with a given header:

https://riptutorial.com/ 107

df.to_csv(file_name, header = ['A','B','C',...]

To use a specific encoding (e.g. 'utf-8') use the encoding argument:

df.to_csv(file_name, encoding='utf-8')

Parsing date columns with read_csv

Date always have a different format, they can be parsed using a specific parse_dates function.

This input.csv:

2016 06 10 20:30:00 foo
2016 07 11 19:45:30 bar
2013 10 12 4:30:00 foo

Can be parsed like this :

mydateparser = lambda x: pd.datetime.strptime(x, "%Y %m %d %H:%M:%S")
df = pd.read_csv("file.csv", sep='\t', names=['date_column', 'other_column'],
parse_dates=['date_column'], date_parser=mydateparser)

parse_dates argument is the column to be parsed
date_parser is the parser function

Read & merge multiple CSV files (with the same structure) into one DF

import os
import glob
import pandas as pd

def get_merged_csv(flist, **kwargs):
 return pd.concat([pd.read_csv(f, **kwargs) for f in flist], ignore_index=True)

path = 'C:/Users/csvfiles'
fmask = os.path.join(path, '*mask*.csv')

df = get_merged_csv(glob.glob(fmask), index_col=None, usecols=['col1', 'col3'])

print(df.head())

If you want to merge CSV files horizontally (adding columns), use axis=1 when calling pd.concat()
function:

def merged_csv_horizontally(flist, **kwargs):
 return pd.concat([pd.read_csv(f, **kwargs) for f in flist], axis=1)

Reading cvs file into a pandas data frame when there is no header row

If the file does not contain a header row,

https://riptutorial.com/ 108

File:

1;str_data;12;1.4
3;str_data;22;42.33
4;str_data;2;3.44
2;str_data;43;43.34

7; str_data; 25; 23.32

you can use the keyword names to provide column names:

df = pandas.read_csv('data_file.csv', sep=';', index_col=0,
 skip_blank_lines=True, names=['a', 'b', 'c'])

df
Out:
 a b c
1 str_data 12 1.40
3 str_data 22 42.33
4 str_data 2 3.44
2 str_data 43 43.34
7 str_data 25 23.32

Using HDFStore

import string
import numpy as np
import pandas as pd

generate sample DF with various dtypes

df = pd.DataFrame({
 'int32': np.random.randint(0, 10**6, 10),
 'int64': np.random.randint(10**7, 10**9, 10).astype(np.int64)*10,
 'float': np.random.rand(10),
 'string': np.random.choice([c*10 for c in string.ascii_uppercase], 10),
 })

In [71]: df
Out[71]:
 float int32 int64 string
0 0.649978 848354 5269162190 DDDDDDDDDD
1 0.346963 490266 6897476700 OOOOOOOOOO
2 0.035069 756373 6711566750 ZZZZZZZZZZ
3 0.066692 957474 9085243570 FFFFFFFFFF
4 0.679182 665894 3750794810 MMMMMMMMMM
5 0.861914 630527 6567684430 TTTTTTTTTT
6 0.697691 825704 8005182860 FFFFFFFFFF
7 0.474501 942131 4099797720 QQQQQQQQQQ
8 0.645817 951055 8065980030 VVVVVVVVVV
9 0.083500 349709 7417288920 EEEEEEEEEE

https://riptutorial.com/ 109

make a bigger DF (10 * 100.000 = 1.000.000
rows)

df = pd.concat([df] * 10**5, ignore_index=True)

create (or open existing) HDFStore file

store = pd.HDFStore('d:/temp/example.h5')

save our data frame into h5 (HDFStore) file,
indexing [int32, int64, string] columns:

store.append('store_key', df, data_columns=['int32','int64','string'])

show HDFStore details

In [78]: store.get_storer('store_key').table
Out[78]:
/store_key/table (Table(10,)) ''
 description := {
 "index": Int64Col(shape=(), dflt=0, pos=0),
 "values_block_0": Float64Col(shape=(1,), dflt=0.0, pos=1),
 "int32": Int32Col(shape=(), dflt=0, pos=2),
 "int64": Int64Col(shape=(), dflt=0, pos=3),
 "string": StringCol(itemsize=10, shape=(), dflt=b'', pos=4)}
 byteorder := 'little'
 chunkshape := (1724,)
 autoindex := True
 colindexes := {
 "index": Index(6, medium, shuffle, zlib(1)).is_csi=False,
 "int32": Index(6, medium, shuffle, zlib(1)).is_csi=False,
 "string": Index(6, medium, shuffle, zlib(1)).is_csi=False,
 "int64": Index(6, medium, shuffle, zlib(1)).is_csi=False}

show indexed columns

In [80]: store.get_storer('store_key').table.colindexes
Out[80]:
{
 "int32": Index(6, medium, shuffle, zlib(1)).is_csi=False,
 "index": Index(6, medium, shuffle, zlib(1)).is_csi=False,
 "string": Index(6, medium, shuffle, zlib(1)).is_csi=False,

https://riptutorial.com/ 110

 "int64": Index(6, medium, shuffle, zlib(1)).is_csi=False}

close (flush to disk) our store file

store.close()

Read Nginx access log (multiple quotechars)

For multiple quotechars use regex in place of sep:

df = pd.read_csv(log_file,
 sep=r'\s(?=(?:[^"]*"[^"]*")*[^"]*$)(?![^\[]*\])',
 engine='python',
 usecols=[0, 3, 4, 5, 6, 7, 8],
 names=['ip', 'time', 'request', 'status', 'size', 'referer', 'user_agent'],
 na_values='-',
 header=None
)

Read Pandas IO tools (reading and saving data sets) online:
https://riptutorial.com/pandas/topic/2896/pandas-io-tools--reading-and-saving-data-sets-

https://riptutorial.com/ 111

Chapter 29: pd.DataFrame.apply

Examples

pandas.DataFrame.apply Basic Usage

The pandas.DataFrame.apply() method is used to apply a given function to an entire DataFrame ---
for example, computing the square root of every entry of a given DataFrame or summing across
each row of a DataFrame to return a Series.

The below is a basic example of usage of this function:

create a random DataFrame with 7 rows and 2 columns
df = pd.DataFrame(np.random.randint(0,100,size = (7,2)),
 columns = ['fst','snd'])

>>> df
 fst snd
0 40 94
1 58 93
2 95 95
3 88 40
4 25 27
5 62 64
6 18 92

apply the square root function to each column:
(this returns a DataFrame where each entry is the sqrt of the entry in df;
setting axis=0 or axis=1 doesn't make a difference)
>>> df.apply(np.sqrt)
 fst snd
0 6.324555 9.695360
1 7.615773 9.643651
2 9.746794 9.746794
3 9.380832 6.324555
4 5.000000 5.196152
5 7.874008 8.000000
6 4.242641 9.591663

sum across the row (axis parameter now makes a difference):
>>> df.apply(np.sum, axis=1)
0 134
1 151
2 190
3 128
4 52
5 126
6 110
dtype: int64

>>> df.apply(np.sum)
fst 386
snd 505
dtype: int64

https://riptutorial.com/ 112

Read pd.DataFrame.apply online: https://riptutorial.com/pandas/topic/7024/pd-dataframe-apply

https://riptutorial.com/ 113

Chapter 30: Read MySQL to DataFrame

Examples

Using sqlalchemy and PyMySQL

from sqlalchemy import create_engine

cnx = create_engine('mysql+pymysql://username:password@server:3306/database').connect()
sql = 'select * from mytable'
df = pd.read_sql(sql, cnx)

To read mysql to dataframe, In case of large amount of data

To fetch large data we can use generators in pandas and load data in chunks.

import pandas as pd
from sqlalchemy import create_engine
from sqlalchemy.engine.url import URL

sqlalchemy engine
engine = create_engine(URL(
 drivername="mysql"
 username="user",
 password="password"
 host="host"
 database="database"
))

conn = engine.connect()

generator_df = pd.read_sql(sql=query, # mysql query
 con=conn,
 chunksize=chunksize) # size you want to fetch each time

for dataframe in generator_df:
 for row in dataframe:
 pass # whatever you want to do

Read Read MySQL to DataFrame online: https://riptutorial.com/pandas/topic/8809/read-mysql-to-
dataframe

https://riptutorial.com/ 114

Chapter 31: Read SQL Server to Dataframe

Examples

Using pyodbc

import pandas.io.sql
import pyodbc
import pandas as pd

Specify the parameters

Parameters
server = 'server_name'
db = 'database_name'
UID = 'user_id'

Create the connection

Create the connection
conn = pyodbc.connect('DRIVER={SQL Server};SERVER=' + server + ';DATABASE=' + db + '; UID = '
+ UID + '; PWD = ' + UID + 'Trusted_Connection=yes')

Query into pandas dataframe

Query into dataframe
df= pandas.io.sql.read_sql('sql_query_string', conn)

Using pyodbc with connection loop

import os, time
import pyodbc
import pandas.io.sql as pdsql

def todf(dsn='yourdsn', uid=None, pwd=None, query=None, params=None):
 ''' if `query` is not an actual query but rather a path to a text file
 containing a query, read it in instead '''
 if query.endswith('.sql') and os.path.exists(query):
 with open(query,'r') as fin:
 query = fin.read()

 connstr = "DSN={};UID={};PWD={}".format(dsn,uid,pwd)
 connected = False
 while not connected:
 try:
 with pyodbc.connect(connstr,autocommit=True) as con:
 cur = con.cursor()
 if params is not None: df = pdsql.read_sql(query, con,
 params=params)
 else: df = pdsql.read_sql(query, con)
 cur.close()

https://riptutorial.com/ 115

 break
 except pyodbc.OperationalError:
 time.sleep(60) # one minute could be changed
 return df

Read Read SQL Server to Dataframe online: https://riptutorial.com/pandas/topic/2176/read-sql-
server-to-dataframe

https://riptutorial.com/ 116

Chapter 32: Reading files into pandas
DataFrame

Examples

Read table into DataFrame

Table file with header, footer, row names, and index column:

file: table.txt

This is a header that discusses the table file
to show space in a generic table file

index name occupation
1 Alice Salesman
2 Bob Engineer
3 Charlie Janitor

This is a footer because your boss does not understand data files

code:

import pandas as pd
index_col=0 tells pandas that column 0 is the index and not data
pd.read_table('table.txt', delim_whitespace=True, skiprows=3, skipfooter=2, index_col=0)

output:

 name occupation
index
1 Alice Salesman
2 Bob Engineer
3 Charlie Janitor

Table file without row names or index:

file: table.txt

Alice Salesman
Bob Engineer
Charlie Janitor

code:

import pandas as pd

https://riptutorial.com/ 117

pd.read_table('table.txt', delim_whitespace=True, names=['name','occupation'])

output:

 name occupation
0 Alice Salesman
1 Bob Engineer
2 Charlie Janitor

All options can be found in the pandas documentation here

Read CSV File

Data with header, separated by semicolons instead of
commas

file: table.csv

index;name;occupation
1;Alice;Saleswoman
2;Bob;Engineer
3;Charlie;Janitor

code:

import pandas as pd
pd.read_csv('table.csv', sep=';', index_col=0)

output:

 name occupation
index
1 Alice Salesman
2 Bob Engineer
3 Charlie Janitor

Table without row names or index and commas as
separators

file: table.csv

Alice,Saleswoman
Bob,Engineer
Charlie,Janitor

code:

https://riptutorial.com/ 118

import pandas as pd
pd.read_csv('table.csv', names=['name','occupation'])

output:

 name occupation
0 Alice Salesman
1 Bob Engineer
2 Charlie Janitor

further clarification can be found in the read_csv documentation page

Collect google spreadsheet data into pandas dataframe

Sometimes we need to collect data from google spreadsheets. We can use gspread and
oauth2client libraries to collect data from google spreadsheets. Here is a example to collect data:

Code:

from __future__ import print_function
import gspread
from oauth2client.client import SignedJwtAssertionCredentials
import pandas as pd
import json

scope = ['https://spreadsheets.google.com/feeds']

credentials = ServiceAccountCredentials.from_json_keyfile_name('your-authorization-file.json',
scope)

gc = gspread.authorize(credentials)

work_sheet = gc.open_by_key("spreadsheet-key-here")
sheet = work_sheet.sheet1
data = pd.DataFrame(sheet.get_all_records())

print(data.head())

Read Reading files into pandas DataFrame online:
https://riptutorial.com/pandas/topic/1988/reading-files-into-pandas-dataframe

https://riptutorial.com/ 119

Chapter 33: Resampling

Examples

Downsampling and upsampling

import pandas as pd
import numpy as np

np.random.seed(0)
rng = pd.date_range('2015-02-24', periods=10, freq='T')
df = pd.DataFrame({'Val' : np.random.randn(len(rng))}, index=rng)
print (df)
 Val
2015-02-24 00:00:00 1.764052
2015-02-24 00:01:00 0.400157
2015-02-24 00:02:00 0.978738
2015-02-24 00:03:00 2.240893
2015-02-24 00:04:00 1.867558
2015-02-24 00:05:00 -0.977278
2015-02-24 00:06:00 0.950088
2015-02-24 00:07:00 -0.151357
2015-02-24 00:08:00 -0.103219
2015-02-24 00:09:00 0.410599

#downsampling with aggregating sum
print (df.resample('5Min').sum())
 Val
2015-02-24 00:00:00 7.251399
2015-02-24 00:05:00 0.128833

#5Min is same as 5T
print (df.resample('5T').sum())
 Val
2015-02-24 00:00:00 7.251399
2015-02-24 00:05:00 0.128833

#upsampling and fill NaN values method forward filling
print (df.resample('30S').ffill())
 Val
2015-02-24 00:00:00 1.764052
2015-02-24 00:00:30 1.764052
2015-02-24 00:01:00 0.400157
2015-02-24 00:01:30 0.400157
2015-02-24 00:02:00 0.978738
2015-02-24 00:02:30 0.978738
2015-02-24 00:03:00 2.240893
2015-02-24 00:03:30 2.240893
2015-02-24 00:04:00 1.867558
2015-02-24 00:04:30 1.867558
2015-02-24 00:05:00 -0.977278
2015-02-24 00:05:30 -0.977278
2015-02-24 00:06:00 0.950088
2015-02-24 00:06:30 0.950088
2015-02-24 00:07:00 -0.151357
2015-02-24 00:07:30 -0.151357

https://riptutorial.com/ 120

2015-02-24 00:08:00 -0.103219
2015-02-24 00:08:30 -0.103219
2015-02-24 00:09:00 0.410599

Read Resampling online: https://riptutorial.com/pandas/topic/2164/resampling

https://riptutorial.com/ 121

Chapter 34: Reshaping and pivoting

Examples

Simple pivoting

First try use pivot:

import pandas as pd
import numpy as np

df = pd.DataFrame({'Name':['Mary', 'Josh','Jon','Lucy', 'Jane', 'Sue'],
 'Age':[34, 37, 29, 40, 29, 31],
 'City':['Boston','New York', 'Chicago', 'Los Angeles', 'Chicago',
'Boston'],
 'Position':['Manager','Programmer','Manager','Manager','Programmer',
'Programmer']},
 columns=['Name','Position','City','Age'])

print (df)
 Name Position City Age
0 Mary Manager Boston 34
1 Josh Programmer New York 37
2 Jon Manager Chicago 29
3 Lucy Manager Los Angeles 40
4 Jane Programmer Chicago 29
5 Sue Programmer Boston 31

print (df.pivot(index='Position', columns='City', values='Age'))
City Boston Chicago Los Angeles New York
Position
Manager 34.0 29.0 40.0 NaN
Programmer 31.0 29.0 NaN 37.0

If need reset index, remove columns names and fill NaN values:

#pivoting by numbers - column Age
print (df.pivot(index='Position', columns='City', values='Age')
 .reset_index()
 .rename_axis(None, axis=1)
 .fillna(0))

 Position Boston Chicago Los Angeles New York
0 Manager 34.0 29.0 40.0 0.0
1 Programmer 31.0 29.0 0.0 37.0

#pivoting by strings - column Name
print (df.pivot(index='Position', columns='City', values='Name'))

City Boston Chicago Los Angeles New York
Position
Manager Mary Jon Lucy None
Programmer Sue Jane None Josh

https://riptutorial.com/ 122

Pivoting with aggregating

import pandas as pd
import numpy as np

df = pd.DataFrame({'Name':['Mary', 'Jon','Lucy', 'Jane', 'Sue', 'Mary', 'Lucy'],
 'Age':[35, 37, 40, 29, 31, 26, 28],
 'City':['Boston', 'Chicago', 'Los Angeles', 'Chicago', 'Boston', 'Boston',
'Chicago'],
 'Position':['Manager','Manager','Manager','Programmer',
'Programmer','Manager','Manager'],
 'Sex':['Female','Male','Female','Female', 'Female','Female','Female']},
 columns=['Name','Position','City','Age','Sex'])

print (df)
 Name Position City Age Sex
0 Mary Manager Boston 35 Female
1 Jon Manager Chicago 37 Male
2 Lucy Manager Los Angeles 40 Female
3 Jane Programmer Chicago 29 Female
4 Sue Programmer Boston 31 Female
5 Mary Manager Boston 26 Female
6 Lucy Manager Chicago 28 Female

If use pivot, get error:

print (df.pivot(index='Position', columns='City', values='Age'))

ValueError: Index contains duplicate entries, cannot reshape

Use pivot_table with aggregating function:

#default aggfunc is np.mean
print (df.pivot_table(index='Position', columns='City', values='Age'))
City Boston Chicago Los Angeles
Position
Manager 30.5 32.5 40.0
Programmer 31.0 29.0 NaN

print (df.pivot_table(index='Position', columns='City', values='Age', aggfunc=np.mean))
City Boston Chicago Los Angeles
Position
Manager 30.5 32.5 40.0
Programmer 31.0 29.0 NaN

Another agg functions:

print (df.pivot_table(index='Position', columns='City', values='Age', aggfunc=sum))
City Boston Chicago Los Angeles
Position
Manager 61.0 65.0 40.0
Programmer 31.0 29.0 NaN

#lost data !!!
print (df.pivot_table(index='Position', columns='City', values='Age', aggfunc='first'))
City Boston Chicago Los Angeles

https://riptutorial.com/ 123

Position
Manager 35.0 37.0 40.0
Programmer 31.0 29.0 NaN

If need aggregate by columns with string values:

print (df.pivot_table(index='Position', columns='City', values='Name'))

DataError: No numeric types to aggregate

You can use these aggragating functions:

print (df.pivot_table(index='Position', columns='City', values='Name', aggfunc='first'))
City Boston Chicago Los Angeles
Position
Manager Mary Jon Lucy
Programmer Sue Jane None

print (df.pivot_table(index='Position', columns='City', values='Name', aggfunc='last'))
City Boston Chicago Los Angeles
Position
Manager Mary Lucy Lucy
Programmer Sue Jane None

print (df.pivot_table(index='Position', columns='City', values='Name', aggfunc='sum'))
City Boston Chicago Los Angeles
Position
Manager MaryMary JonLucy Lucy
Programmer Sue Jane None

print (df.pivot_table(index='Position', columns='City', values='Name', aggfunc=', '.join))
City Boston Chicago Los Angeles
Position
Manager Mary, Mary Jon, Lucy Lucy
Programmer Sue Jane None

print (df.pivot_table(index='Position', columns='City', values='Name', aggfunc=', '.join,
fill_value='-')
 .reset_index()
 .rename_axis(None, axis=1))
 Position Boston Chicago Los Angeles
0 Manager Mary, Mary Jon, Lucy Lucy
1 Programmer Sue Jane -

The information regarding the Sex has yet not been used. It could be switched by one of the
columns, or it could be added as another level:

print (df.pivot_table(index='Position', columns=['City','Sex'], values='Age',
aggfunc='first'))

City Boston Chicago Los Angeles
Sex Female Female Male Female
Position
Manager 35.0 28.0 37.0 40.0
Programmer 31.0 29.0 NaN NaN

https://riptutorial.com/ 124

Multiple columns can be specified in any of the attributes index, columns and values.

print (df.pivot_table(index=['Position','Sex'], columns='City', values='Age',
aggfunc='first'))

City Boston Chicago Los Angeles
Position Sex
Manager Female 35.0 28.0 40.0
 Male NaN 37.0 NaN
Programmer Female 31.0 29.0 NaN

Applying several aggregating functions

You can easily apply multiple functions during a single pivot:

In [23]: import numpy as np

In [24]: df.pivot_table(index='Position', values='Age', aggfunc=[np.mean, np.std])
Out[24]:
 mean std
Position
Manager 34.333333 5.507571
Programmer 32.333333 4.163332

Sometimes, you may want to apply specific functions to specific columns:

In [35]: df['Random'] = np.random.random(6)
In [36]: df
Out[36]:
 Name Position City Age Random
0 Mary Manager Boston 34 0.678577
1 Josh Programmer New York 37 0.973168
2 Jon Manager Chicago 29 0.146668
3 Lucy Manager Los Angeles 40 0.150120
4 Jane Programmer Chicago 29 0.112769
5 Sue Programmer Boston 31 0.185198

For example, find the mean age, and standard deviation of random by Position:

In [37]: df.pivot_table(index='Position', aggfunc={'Age': np.mean, 'Random': np.std})
Out[37]:
 Age Random
Position
Manager 34.333333 0.306106
Programmer 32.333333 0.477219

One can pass a list of functions to apply to the individual columns as well:

In [38]: df.pivot_table(index='Position', aggfunc={'Age': np.mean, 'Random': [np.mean,
np.std]})]
Out[38]:
 Age Random
 mean mean std
Position
Manager 34.333333 0.325122 0.306106
Programmer 32.333333 0.423712 0.477219

https://riptutorial.com/ 125

Stacking and unstacking

import pandas as pd
import numpy as np

np.random.seed(0)
tuples = list(zip(*[['bar', 'bar', 'foo', 'foo', 'qux', 'qux'],
 ['one', 'two', 'one', 'two','one', 'two']]))

idx = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])
df = pd.DataFrame(np.random.randn(6, 2), index=idx, columns=['A', 'B'])
print (df)
 A B
first second
bar one 1.764052 0.400157
 two 0.978738 2.240893
foo one 1.867558 -0.977278
 two 0.950088 -0.151357
qux one -0.103219 0.410599
 two 0.144044 1.454274

print (df.stack())
first second
bar one A 1.764052
 B 0.400157
 two A 0.978738
 B 2.240893
foo one A 1.867558
 B -0.977278
 two A 0.950088
 B -0.151357
qux one A -0.103219
 B 0.410599
 two A 0.144044
 B 1.454274
dtype: float64

#reset index, rename column name
print (df.stack().reset_index(name='val2').rename(columns={'level_2': 'val1'}))
 first second val1 val2
0 bar one A 1.764052
1 bar one B 0.400157
2 bar two A 0.978738
3 bar two B 2.240893
4 foo one A 1.867558
5 foo one B -0.977278
6 foo two A 0.950088
7 foo two B -0.151357
8 qux one A -0.103219
9 qux one B 0.410599
10 qux two A 0.144044
11 qux two B 1.454274

print (df.unstack())
 A B
second one two one two
first
bar 1.764052 0.978738 0.400157 2.240893

https://riptutorial.com/ 126

foo 1.867558 0.950088 -0.977278 -0.151357
qux -0.103219 0.144044 0.410599 1.454274

rename_axis (new in pandas 0.18.0):

#reset index, remove columns names
df1 = df.unstack().reset_index().rename_axis((None,None), axis=1)
#reset MultiIndex in columns with list comprehension
df1.columns = ['_'.join(col).strip('_') for col in df1.columns]
print (df1)
 first A_one A_two B_one B_two
0 bar 1.764052 0.978738 0.400157 2.240893
1 foo 1.867558 0.950088 -0.977278 -0.151357
2 qux -0.103219 0.144044 0.410599 1.454274

pandas bellow 0.18.0

#reset index
df1 = df.unstack().reset_index()
#remove columns names
df1.columns.names = (None, None)
#reset MultiIndex in columns with list comprehension
df1.columns = ['_'.join(col).strip('_') for col in df1.columns]
print (df1)
 first A_one A_two B_one B_two
0 bar 1.764052 0.978738 0.400157 2.240893
1 foo 1.867558 0.950088 -0.977278 -0.151357
2 qux -0.103219 0.144044 0.410599 1.454274

Cross Tabulation

import pandas as pd
df = pd.DataFrame({'Sex': ['M', 'M', 'F', 'M', 'F', 'F', 'M', 'M', 'F', 'F'],
 'Age': [20, 19, 17, 35, 22, 22, 12, 15, 17, 22],
 'Heart Disease': ['Y', 'N', 'Y', 'N', 'N', 'Y', 'N', 'Y', 'N', 'Y']})

df

 Age Heart Disease Sex
0 20 Y M
1 19 N M
2 17 Y F
3 35 N M
4 22 N F
5 22 Y F
6 12 N M
7 15 Y M
8 17 N F
9 22 Y F

pd.crosstab(df['Sex'], df['Heart Disease'])

Hearth Disease N Y
Sex
F 2 3
M 3 2

https://riptutorial.com/ 127

Using dot notation:

pd.crosstab(df.Sex, df.Age)

Age 12 15 17 19 20 22 35
Sex
F 0 0 2 0 0 3 0
M 1 1 0 1 1 0 1

Getting transpose of DF:

pd.crosstab(df.Sex, df.Age).T

Sex F M
Age
12 0 1
15 0 1
17 2 0
19 0 1
20 0 1
22 3 0
35 0 1

Getting margins or cumulatives:

pd.crosstab(df['Sex'], df['Heart Disease'], margins=True)

Heart Disease N Y All
Sex
F 2 3 5
M 3 2 5
All 5 5 10

Getting transpose of cumulative:

pd.crosstab(df['Sex'], df['Age'], margins=True).T

Sex F M All
Age
12 0 1 1
15 0 1 1
17 2 0 2
19 0 1 1
20 0 1 1
22 3 0 3
35 0 1 1
All 5 5 10

Getting percentages :

pd.crosstab(df["Sex"],df['Heart Disease']).apply(lambda r: r/len(df), axis=1)

Heart Disease N Y
Sex

https://riptutorial.com/ 128

F 0.2 0.3
M 0.3 0.2

Getting cumulative and multiplying by 100:

df2 = pd.crosstab(df["Age"],df['Sex'], margins=True).apply(lambda r: r/len(df)*100, axis=1)

df2

Sex F M All
Age
12 0.0 10.0 10.0
15 0.0 10.0 10.0
17 20.0 0.0 20.0
19 0.0 10.0 10.0
20 0.0 10.0 10.0
22 30.0 0.0 30.0
35 0.0 10.0 10.0
All 50.0 50.0 100.0

Removing a column from DF (one way):

df2[["F","M"]]

Sex F M
Age
12 0.0 10.0
15 0.0 10.0
17 20.0 0.0
19 0.0 10.0
20 0.0 10.0
22 30.0 0.0
35 0.0 10.0
All 50.0 50.0

Pandas melt to go from wide to long

>>> df
 ID Year Jan_salary Feb_salary Mar_salary
0 1 2016 4500 4200 4700
1 2 2016 3800 3600 4400
2 3 2016 5500 5200 5300

>>> melted_df = pd.melt(df,id_vars=['ID','Year'],
 value_vars=['Jan_salary','Feb_salary','Mar_salary'],
 var_name='month',value_name='salary')

>>> melted_df
 ID Year month salary
0 1 2016 Jan_salary 4500
1 2 2016 Jan_salary 3800
2 3 2016 Jan_salary 5500
3 1 2016 Feb_salary 4200
4 2 2016 Feb_salary 3600
5 3 2016 Feb_salary 5200
6 1 2016 Mar_salary 4700
7 2 2016 Mar_salary 4400

https://riptutorial.com/ 129

8 3 2016 Mar_salary 5300

>>> melted_['month'] = melted_['month'].str.replace('_salary','')

>>> import calendar
>>> def mapper(month_abbr):
... # from http://stackoverflow.com/a/3418092/42346
... d = {v: str(k).zfill(2) for k,v in enumerate(calendar.month_abbr)}
... return d[month_abbr]

>>> melted_df['month'] = melted_df['month'].apply(mapper)
>>> melted_df
 ID Year month salary
0 1 2016 01 4500
1 2 2016 01 3800
2 3 2016 01 5500
3 1 2016 02 4200
4 2 2016 02 3600
5 3 2016 02 5200
6 1 2016 03 4700
7 2 2016 03 4400
8 3 2016 03 5300

Split (reshape) CSV strings in columns into multiple rows, having one element
per row

import pandas as pd

df = pd.DataFrame([{'var1': 'a,b,c', 'var2': 1, 'var3': 'XX'},
 {'var1': 'd,e,f,x,y', 'var2': 2, 'var3': 'ZZ'}])

print(df)

reshaped = \
(df.set_index(df.columns.drop('var1',1).tolist())
 .var1.str.split(',', expand=True)
 .stack()
 .reset_index()
 .rename(columns={0:'var1'})
 .loc[:, df.columns]
)

print(reshaped)

Output:

 var1 var2 var3
0 a,b,c 1 XX
1 d,e,f,x,y 2 ZZ

 var1 var2 var3
0 a 1 XX
1 b 1 XX
2 c 1 XX
3 d 2 ZZ
4 e 2 ZZ
5 f 2 ZZ

https://riptutorial.com/ 130

6 x 2 ZZ
7 y 2 ZZ

Read Reshaping and pivoting online: https://riptutorial.com/pandas/topic/1463/reshaping-and-
pivoting

https://riptutorial.com/ 131

Chapter 35: Save pandas dataframe to a csv
file

Parameters

Parameter Description

path_or_buf
string or file handle, default None File path or object, if None is provided the
result is returned as a string.

sep character, default ‘,’ Field delimiter for the output file.

na_rep string, default ‘’ Missing data representation

float_format string, default None Format string for floating point numbers

columns sequence, optional Columns to write

header
boolean or list of string, default True Write out column names. If a list of
string is given it is assumed to be aliases for the column names

index boolean, default True Write row names (index)

index_label

string or sequence, or False, default None Column label for index column(s)
if desired. If None is given, and header and index are True, then the index
names are used. A sequence should be given if the DataFrame uses
MultiIndex. If False do not print fields for index names. Use
index_label=False for easier importing in R

nanRep None deprecated, use na_rep

mode str Python write mode, default ‘w’

encoding
string, optional A string representing the encoding to use in the output file,
defaults to ‘ascii’ on Python 2 and ‘utf-8’ on Python 3.

compression
string, optional a string representing the compression to use in the output
file, allowed values are ‘gzip’, ‘bz2’, ‘xz’, only used when the first argument
is a filename

line_terminator
string, default ‘n’ The newline character or character sequence to use in the
output file

quoting optional constant from csv module defaults to csv.QUOTE_MINIMAL

quotechar string (length 1), default ‘”’ character used to quote fields

https://riptutorial.com/ 132

Parameter Description

doublequote boolean, default True Control quoting of quotechar inside a field

escapechar
string (length 1), default None character used to escape sep and quotechar
when appropriate

chunksize int or None rows to write at a time

tupleize_cols
boolean, default False write multi_index columns as a list of tuples (if True)
or new (expanded format) if False)

date_format string, default None Format string for datetime objects

decimal
string, default ‘.’ Character recognized as decimal separator. E.g. use ‘,’ for
European data

Examples

Create random DataFrame and write to .csv

Create a simple DataFrame.

import numpy as np
import pandas as pd

Set the seed so that the numbers can be reproduced.
np.random.seed(0)

df = pd.DataFrame(np.random.randn(5, 3), columns=list('ABC'))

Another way to set column names is
"columns=['column_1_name','column_2_name','column_3_name']"

df

 A B C
0 1.764052 0.400157 0.978738
1 2.240893 1.867558 -0.977278
2 0.950088 -0.151357 -0.103219
3 0.410599 0.144044 1.454274
4 0.761038 0.121675 0.443863

Now, write to a CSV file:

df.to_csv('example.csv', index=False)

Contents of example.csv:

A,B,C
1.76405234597,0.400157208367,0.978737984106
2.2408931992,1.86755799015,-0.977277879876

https://riptutorial.com/ 133

0.950088417526,-0.151357208298,-0.103218851794
0.410598501938,0.144043571161,1.45427350696
0.761037725147,0.121675016493,0.443863232745

Note that we specify index=False so that the auto-generated indices (row #s 0,1,2,3,4) are not
included in the CSV file. Include it if you need the index column, like so:

df.to_csv('example.csv', index=True) # Or just leave off the index param; default is True

Contents of example.csv:

,A,B,C
0,1.76405234597,0.400157208367,0.978737984106
1,2.2408931992,1.86755799015,-0.977277879876
2,0.950088417526,-0.151357208298,-0.103218851794
3,0.410598501938,0.144043571161,1.45427350696
4,0.761037725147,0.121675016493,0.443863232745

Also note that you can remove the header if it's not needed with header=False. This is the simplest
output:

df.to_csv('example.csv', index=False, header=False)

Contents of example.csv:

1.76405234597,0.400157208367,0.978737984106
2.2408931992,1.86755799015,-0.977277879876
0.950088417526,-0.151357208298,-0.103218851794
0.410598501938,0.144043571161,1.45427350696
0.761037725147,0.121675016493,0.443863232745

The delimiter can be set by sep= argument, although the standard separator for csv files is ',' .

df.to_csv('example.csv', index=False, header=False, sep='\t')

1.76405234597 0.400157208367 0.978737984106
2.2408931992 1.86755799015 -0.977277879876
0.950088417526 -0.151357208298 -0.103218851794
0.410598501938 0.144043571161 1.45427350696
0.761037725147 0.121675016493 0.443863232745

Save Pandas DataFrame from list to dicts to csv with no index and with data
encoding

import pandas as pd
data = [
 {'name': 'Daniel', 'country': 'Uganda'},
 {'name': 'Yao', 'country': 'China'},
 {'name': 'James', 'country': 'Colombia'},
]
df = pd.DataFrame(data)
filename = 'people.csv'

https://riptutorial.com/ 134

df.to_csv(filename, index=False, encoding='utf-8')

Read Save pandas dataframe to a csv file online: https://riptutorial.com/pandas/topic/1558/save-
pandas-dataframe-to-a-csv-file

https://riptutorial.com/ 135

Chapter 36: Series

Examples

Simple Series creation examples

A series is a one-dimension data structure. It's a bit like a supercharged array, or a dictionary.

import pandas as pd

s = pd.Series([10, 20, 30])

>>> s
0 10
1 20
2 30
dtype: int64

Every value in a series has an index. By default, the indices are integers, running from 0 to the
series length minus 1. In the example above you can see the indices printed to the left of the
values.

You can specify your own indices:

s2 = pd.Series([1.5, 2.5, 3.5], index=['a', 'b', 'c'], name='my_series')

>>> s2
a 1.5
b 2.5
c 3.5
Name: my_series, dtype: float64

s3 = pd.Series(['a', 'b', 'c'], index=list('ABC'))

>>> s3
A a
B b
C c
dtype: object

Series with datetime

import pandas as pd
import numpy as np

np.random.seed(0)
rng = pd.date_range('2015-02-24', periods=5, freq='T')
s = pd.Series(np.random.randn(len(rng)), index=rng)
print (s)

2015-02-24 00:00:00 1.764052
2015-02-24 00:01:00 0.400157

https://riptutorial.com/ 136

2015-02-24 00:02:00 0.978738
2015-02-24 00:03:00 2.240893
2015-02-24 00:04:00 1.867558
Freq: T, dtype: float64

rng = pd.date_range('2015-02-24', periods=5, freq='T')
s1 = pd.Series(rng)
print (s1)

0 2015-02-24 00:00:00
1 2015-02-24 00:01:00
2 2015-02-24 00:02:00
3 2015-02-24 00:03:00
4 2015-02-24 00:04:00
dtype: datetime64[ns]

A few quick tips about Series in Pandas

Let us assume we have the following Series:

>>> import pandas as pd
>>> s = pd.Series([1, 4, 6, 3, 8, 7, 4, 5])
>>> s
0 1
1 4
2 6
3 3
4 8
5 7
6 4
7 5
dtype: int64

Followings are a few simple things which come handy when you are working with Series:

To get the length of s:

>>> len(s)
8

To access an element in s:

>>> s[4]
8

To access an element in s using the index:

>>> s.loc[2]
6

To access a sub-Series inside s:

>>> s[1:3]

https://riptutorial.com/ 137

1 4
2 6
dtype: int64

To get a sub-Series of s with values larger than 5:

>>> s[s > 5]
2 6
4 8
5 7
dtype: int64

To get the minimum, maximum, mean, and standard deviation:

>>> s.min()
1
>>> s.max()
8
>>> s.mean()
4.75
>>> s.std()
2.2519832529192065

To convert the Series type to float:

>>> s.astype(float)
0 1.0
1 4.0
2 6.0
3 3.0
4 8.0
5 7.0
6 4.0
7 5.0
dtype: float64

To get the values in s as a numpy array:

>>> s.values
array([1, 4, 6, 3, 8, 7, 4, 5])

To make a copy of s:

>>> d = s.copy()
>>> d
0 1
1 4
2 6
3 3
4 8
5 7
6 4
7 5
dtype: int64

https://riptutorial.com/ 138

Applying a function to a Series

Pandas provides an effective way to apply a function to every element of a Series and get a new
Series. Let us assume we have the following Series:

>>> import pandas as pd
>>> s = pd.Series([3, 7, 5, 8, 9, 1, 0, 4])
>>> s
0 3
1 7
2 5
3 8
4 9
5 1
6 0
7 4
dtype: int64

and a square function:

>>> def square(x):
... return x*x

We can simply apply square to every element of s and get a new Series:

>>> t = s.apply(square)
>>> t
0 9
1 49
2 25
3 64
4 81
5 1
6 0
7 16
dtype: int64

In some cases it is easier to use a lambda expression:

>>> s.apply(lambda x: x ** 2)
0 9
1 49
2 25
3 64
4 81
5 1
6 0
7 16
dtype: int64

or we can use any builtin function:

>>> q = pd.Series(['Bob', 'Jack', 'Rose'])
>>> q.apply(str.lower)

https://riptutorial.com/ 139

0 bob
1 jack
2 rose
dtype: object

If all the elements of the Series are strings, there is an easier way to apply string methods:

>>> q.str.lower()
0 bob
1 jack
2 rose
dtype: object
>>> q.str.len()
0 3
1 4
2 4

Read Series online: https://riptutorial.com/pandas/topic/1898/series

https://riptutorial.com/ 140

Chapter 37: Shifting and Lagging Data

Examples

Shifting or lagging values in a dataframe

import pandas as pd

df = pd.DataFrame({'eggs': [1,2,4,8,], 'chickens': [0,1,2,4,]})

df

chickens eggs
0 0 1
1 1 2
2 2 4
3 4 8

df.shift()

chickens eggs
0 NaN NaN
1 0.0 1.0
2 1.0 2.0
3 2.0 4.0

df.shift(-2)

chickens eggs
0 2.0 4.0
1 4.0 8.0
2 NaN NaN
3 NaN NaN

df['eggs'].shift(1) - df['chickens']

0 NaN
1 0.0
2 0.0
3 0.0

The first argument to .shift() is periods, the number of spaces to move the data. If not specified,
defaults to 1.

Read Shifting and Lagging Data online: https://riptutorial.com/pandas/topic/7554/shifting-and-
lagging-data

https://riptutorial.com/ 141

Chapter 38: Simple manipulation of
DataFrames

Examples

Delete a column in a DataFrame

There are a couple of ways to delete a column in a DataFrame.

import numpy as np
import pandas as pd

np.random.seed(0)

pd.DataFrame(np.random.randn(5, 6), columns=list('ABCDEF'))

print(df)
Output:
A B C D E F
0 -0.895467 0.386902 -0.510805 -1.180632 -0.028182 0.428332
1 0.066517 0.302472 -0.634322 -0.362741 -0.672460 -0.359553
2 -0.813146 -1.726283 0.177426 -0.401781 -1.630198 0.462782
3 -0.907298 0.051945 0.729091 0.128983 1.139401 -1.234826
4 0.402342 -0.684810 -0.870797 -0.578850 -0.311553 0.056165

1) Using del

del df['C']

print(df)
Output:
A B D E F
0 -0.895467 0.386902 -1.180632 -0.028182 0.428332
1 0.066517 0.302472 -0.362741 -0.672460 -0.359553
2 -0.813146 -1.726283 -0.401781 -1.630198 0.462782
3 -0.907298 0.051945 0.128983 1.139401 -1.234826
4 0.402342 -0.684810 -0.578850 -0.311553 0.056165

2) Using drop

df.drop(['B', 'E'], axis='columns', inplace=True)
or df = df.drop(['B', 'E'], axis=1) without the option inplace=True

print(df)
Output:
A D F
0 -0.895467 -1.180632 0.428332
1 0.066517 -0.362741 -0.359553
2 -0.813146 -0.401781 0.462782
3 -0.907298 0.128983 -1.234826
4 0.402342 -0.578850 0.056165

https://riptutorial.com/ 142

3) Using drop with column numbers

To use column integer numbers instead of names (remember column indices start at zero):

df.drop(df.columns[[0, 2]], axis='columns')

print(df)
Output:
D
0 -1.180632
1 -0.362741
2 -0.401781
3 0.128983
4 -0.578850

Rename a column

df = pd.DataFrame({'old_name_1': [1, 2, 3], 'old_name_2': [5, 6, 7]})

print(df)
Output:
old_name_1 old_name_2
0 1 5
1 2 6
2 3 7

To rename one or more columns, pass the old names and new names as a dictionary:

df.rename(columns={'old_name_1': 'new_name_1', 'old_name_2': 'new_name_2'}, inplace=True)
print(df)
Output:
new_name_1 new_name_2
0 1 5
1 2 6
2 3 7

Or a function:

df.rename(columns=lambda x: x.replace('old_', '_new'), inplace=True)
print(df)
Output:
new_name_1 new_name_2
0 1 5
1 2 6
2 3 7

You can also set df.columns as the list of the new names:

df.columns = ['new_name_1','new_name_2']
print(df)
Output:
new_name_1 new_name_2
0 1 5
1 2 6

https://riptutorial.com/ 143

2 3 7

More details can be found here.

Adding a new column

df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})

print(df)
Output:
A B
0 1 4
1 2 5
2 3 6

Directly assign

df['C'] = [7, 8, 9]

print(df)
Output:
A B C
0 1 4 7
1 2 5 8
2 3 6 9

Add a constant column

df['C'] = 1

print(df)

Output:
A B C
0 1 4 1
1 2 5 1
2 3 6 1

Column as an expression in other columns

df['C'] = df['A'] + df['B']

print(df)
Output:
A B C
0 1 4 5
1 2 5 7
2 3 6 9

df['C'] = df['A']**df['B']

print(df)

https://riptutorial.com/ 144

Output:
A B C
0 1 4 1
1 2 5 32
2 3 6 729

Operations are computed component-wise, so if we would have columns as lists

a = [1, 2, 3]
b = [4, 5, 6]

the column in the last expression would be obtained as

c = [x**y for (x,y) in zip(a,b)]

print(c)
Output:
[1, 32, 729]

Create it on the fly

df_means = df.assign(D=[10, 20, 30]).mean()

print(df_means)
Output:
A 2.0
B 5.0
C 7.0
D 20.0 # adds a new column D before taking the mean
dtype: float64

add multiple columns

df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})
df[['A2','B2']] = np.square(df)

print(df)
Output:
A B A2 B2
0 1 4 1 16
1 2 5 4 25
2 3 6 9 36

add multiple columns on the fly

new_df = df.assign(A3=df.A*df.A2, B3=5*df.B)

print(new_df)
Output:
A B A2 B2 A3 B3
0 1 4 1 16 1 20

https://riptutorial.com/ 145

1 2 5 4 25 8 25
2 3 6 9 36 27 30

Locate and replace data in a column

import pandas as pd

df = pd.DataFrame({'gender': ["male", "female","female"],
 'id': [1, 2, 3] })
>>> df
 gender id
0 male 1
1 female 2
2 female 3

To encode the male to 0 and female to 1:

df.loc[df["gender"] == "male","gender"] = 0
df.loc[df["gender"] == "female","gender"] = 1

>>> df
 gender id
 0 0 1
 1 1 2
 2 1 3

Adding a new row to DataFrame

Given a DataFrame:

s1 = pd.Series([1,2,3])
s2 = pd.Series(['a','b','c'])

df = pd.DataFrame([list(s1), list(s2)], columns = ["C1", "C2", "C3"])
print df

Output:

 C1 C2 C3
0 1 2 3
1 a b c

Lets add a new row, [10,11,12]:

df = pd.DataFrame(np.array([[10,11,12]]), \
 columns=["C1", "C2", "C3"]).append(df, ignore_index=True)
print df

Output:

 C1 C2 C3
0 10 11 12

https://riptutorial.com/ 146

1 1 2 3
2 a b c

Delete / drop rows from DataFrame

let's generate a DataFrame first:

df = pd.DataFrame(np.arange(10).reshape(5,2), columns=list('ab'))

print(df)
Output:
a b
0 0 1
1 2 3
2 4 5
3 6 7
4 8 9

drop rows with indexes: 0 and 4 using drop([...], inplace=True) method:

df.drop([0,4], inplace=True)

print(df)
Output
a b
1 2 3
2 4 5
3 6 7

drop rows with indexes: 0 and 4 using df = drop([...]) method:

df = pd.DataFrame(np.arange(10).reshape(5,2), columns=list('ab'))

df = df.drop([0,4])

print(df)
Output:
a b
1 2 3
2 4 5
3 6 7

using negative selection method:

df = pd.DataFrame(np.arange(10).reshape(5,2), columns=list('ab'))

df = df[~df.index.isin([0,4])]

print(df)
Output:
a b
1 2 3
2 4 5
3 6 7

https://riptutorial.com/ 147

Reorder columns

get a list of columns
cols = list(df)

move the column to head of list using index, pop and insert
cols.insert(0, cols.pop(cols.index('listing')))

use ix to reorder
df2 = df.ix[:, cols]

Read Simple manipulation of DataFrames online: https://riptutorial.com/pandas/topic/6694/simple-
manipulation-of-dataframes

https://riptutorial.com/ 148

Chapter 39: String manipulation

Examples

Regular expressions

Extract strings with a specific regex
df= df['col_name'].str.extract[r'[Aa-Zz]']

Replace strings within a regex
df['col_name'].str.replace('Replace this', 'With this')

For information on how to match strings using regex, see Getting started with Regular Expressions
.

Slicing strings

Strings in a Series can be sliced using .str.slice() method, or more conveniently, using brackets
(.str[]).

In [1]: ser = pd.Series(['Lorem ipsum', 'dolor sit amet', 'consectetur adipiscing elit'])
In [2]: ser
Out[2]:
0 Lorem ipsum
1 dolor sit amet
2 consectetur adipiscing elit
dtype: object

Get the first character of each string:

In [3]: ser.str[0]
Out[3]:
0 L
1 d
2 c
dtype: object

Get the first three characters of each string:

In [4]: ser.str[:3]
Out[4]:
0 Lor
1 dol
2 con
dtype: object

Get the last character of each string:

In [5]: ser.str[-1]

https://riptutorial.com/ 149

Out[5]:
0 m
1 t
2 t
dtype: object

Get the last three characters of each string:

In [6]: ser.str[-3:]
Out[6]:
0 sum
1 met
2 lit
dtype: object

Get the every other character of the first 10 characters:

In [7]: ser.str[:10:2]
Out[7]:
0 Lrmis
1 dlrst
2 cnett
dtype: object

Pandas behaves similarly to Python when handling slices and indices. For example, if an index is
outside the range, Python raises an error:

In [8]:'Lorem ipsum'[12]
IndexError: string index out of range

However, if a slice is outside the range, an empty string is returned:

In [9]: 'Lorem ipsum'[12:15]
Out[9]: ''

Pandas returns NaN when an index is out of range:

In [10]: ser.str[12]
Out[10]:
0 NaN
1 e
2 a
dtype: object

And returns an empty string if a slice is out of range:

In [11]: ser.str[12:15]
Out[11]:
0
1 et
2 adi
dtype: object

https://riptutorial.com/ 150

Checking for contents of a string

str.contains() method can be used to check if a pattern occurs in each string of a Series.
str.startswith() and str.endswith() methods can also be used as more specialized versions.

In [1]: animals = pd.Series(['cat', 'dog', 'bear', 'cow', 'bird', 'owl', 'rabbit', 'snake'])

Check if strings contain the letter 'a':

In [2]: animals.str.contains('a')
Out[2]:
0 True
1 False
2 True
3 False
4 False
5 False
6 True
7 True
8 True
dtype: bool

This can be used as a boolean index to return only the animals containing the letter 'a':

In [3]: animals[animals.str.contains('a')]
Out[3]:
0 cat
2 bear
6 rabbit
7 snake
dtype: object

str.startswith and str.endswith methods work similarly, but they also accept tuples as inputs.

In [4]: animals[animals.str.startswith(('b', 'c'))]
Returns animals starting with 'b' or 'c'
Out[4]:
0 cat
2 bear
3 cow
4 bird
dtype: object

Capitalization of strings

In [1]: ser = pd.Series(['lORem ipSuM', 'Dolor sit amet', 'Consectetur Adipiscing Elit'])

Convert all to uppercase:

In [2]: ser.str.upper()
Out[2]:
0 LOREM IPSUM

https://riptutorial.com/ 151

1 DOLOR SIT AMET
2 CONSECTETUR ADIPISCING ELIT
dtype: object

All lowercase:

In [3]: ser.str.lower()
Out[3]:
0 lorem ipsum
1 dolor sit amet
2 consectetur adipiscing elit
dtype: object

Capitalize the first character and lowercase the remaining:

In [4]: ser.str.capitalize()
Out[4]:
0 Lorem ipsum
1 Dolor sit amet
2 Consectetur adipiscing elit
dtype: object

Convert each string to a titlecase (capitalize the first character of each word in each string,
lowercase the remaining):

In [5]: ser.str.title()
Out[5]:
0 Lorem Ipsum
1 Dolor Sit Amet
2 Consectetur Adipiscing Elit
dtype: object

Swap cases (convert lowercase to uppercase and vice versa):

In [6]: ser.str.swapcase()
Out[6]:
0 LorEM IPsUm
1 dOLOR SIT AMET
2 cONSECTETUR aDIPISCING eLIT
dtype: object

Aside from these methods that change the capitalization, several methods can be used to check
the capitalization of strings.

In [7]: ser = pd.Series(['LOREM IPSUM', 'dolor sit amet', 'Consectetur Adipiscing Elit'])

Check if it is all lowercase:

In [8]: ser.str.islower()
Out[8]:
0 False
1 True
2 False

https://riptutorial.com/ 152

dtype: bool

Is it all uppercase:

In [9]: ser.str.isupper()
Out[9]:
0 True
1 False
2 False
dtype: bool

Is it a titlecased string:

In [10]: ser.str.istitle()
Out[10]:
0 False
1 False
2 True
dtype: bool

Read String manipulation online: https://riptutorial.com/pandas/topic/2372/string-manipulation

https://riptutorial.com/ 153

Chapter 40: Using .ix, .iloc, .loc, .at and .iat to
access a DataFrame

Examples

Using .iloc

.iloc uses integers to read and write data to a DataFrame.

First, let's create a DataFrame:

df = pd.DataFrame({'one': [1, 2, 3, 4, 5],
 'two': [6, 7, 8, 9, 10],
 }, index=['a', 'b', 'c', 'd', 'e'])

This DataFrame looks like:

 one two
a 1 6
b 2 7
c 3 8
d 4 9
e 5 10

Now we can use .iloc to read and write values. Let's read the first row, first column:

print df.iloc[0, 0]

This will print out:

1

We can also set values. Lets set the second column, second row to something new:

df.iloc[1, 1] = '21'

And then have a look to see what happened:

print df

 one two
a 1 6
b 2 21
c 3 8
d 4 9
e 5 10

https://riptutorial.com/ 154

Using .loc

.loc uses labels to read and write data.

Let's setup a DataFrame:

df = pd.DataFrame({'one': [1, 2, 3, 4, 5],
 'two': [6, 7, 8, 9, 10],
 }, index=['a', 'b', 'c', 'd', 'e'])

Then we can print the DataFrame to have a look at the shape:

print df

This will output

 one two
a 1 6
b 2 7
c 3 8
d 4 9
e 5 10

We use the column and row labels to access data with .loc. Let's set row 'c', column 'two' to the
value 33:

df.loc['c', 'two'] = 33

This is what the DataFrame now looks like:

 one two
a 1 6
b 2 7
c 3 33
d 4 9
e 5 10

Of note, using df['two'].loc['c'] = 33 may not report a warning, and may even work, however,
using df.loc['c', 'two'] is guaranteed to work correctly, while the former is not.

We can read slices of data, for example

print df.loc['a':'c']

will print rows a to c. This is inclusive.

 one two
a 1 6
b 2 7
c 3 8

https://riptutorial.com/ 155

And finally, we can do both together:

print df.loc['b':'d', 'two']

Will output rows b to c of column 'two'. Notice that the column label is not printed.

b 7
c 8
d 9

If .loc is supplied with an integer argument that is not a label it reverts to integer indexing of axes
(the behaviour of .iloc). This makes mixed label and integer indexing possible:

df.loc['b', 1]

will return the value in 2nd column (index starting at 0) in row 'b':

7

Read Using .ix, .iloc, .loc, .at and .iat to access a DataFrame online:
https://riptutorial.com/pandas/topic/7074/using--ix---iloc---loc---at-and--iat-to-access-a-dataframe

https://riptutorial.com/ 156

Chapter 41: Working with Time Series

Examples

Creating Time Series

Here is how to create a simple Time Series.

import pandas as pd
import numpy as np

The number of sample to generate
nb_sample = 100

Seeding to obtain a reproductible dataset
np.random.seed(0)

se = pd.Series(np.random.randint(0, 100, nb_sample),
 index = pd.date_range(start = pd.to_datetime('2016-09-24'),
 periods = nb_sample, freq='D'))
se.head(2)

2016-09-24 44
2016-09-25 47

se.tail(2)

2016-12-31 85
2017-01-01 48

Partial String Indexing

A very handy way to subset Time Series is to use partial string indexing. It permits to select
range of dates with a clear syntax.

Getting Data

We are using the dataset in the Creating Time Series example

Displaying head and tail to see the boundaries

se.head(2).append(se.tail(2))

2016-09-24 44
2016-09-25 47
2016-12-31 85
2017-01-01 48

https://riptutorial.com/ 157

Subsetting

Now we can subset by year, month, day very intuitively.

By year

se['2017']

2017-01-01 48

By month

se['2017-01']

2017-01-01 48

By day

se['2017-01-01']

48

With a range of year, month, day according to your needs.

se['2016-12-31':'2017-01-01']

2016-12-31 85
2017-01-01 48

pandas also provides a dedicated truncate function for this usage through the after and before
parameters -- but I think it's less clear.

se.truncate(before='2017')

2017-01-01 48

se.truncate(before='2016-12-30', after='2016-12-31')

2016-12-30 13
2016-12-31 85

Read Working with Time Series online: https://riptutorial.com/pandas/topic/7029/working-with-
time-series

https://riptutorial.com/ 158

Credits

S.
No

Chapters Contributors

1
Getting started with
pandas

Alexander, Andy Hayden, ayhan, Bryce Frank, Community,
hashcode55, Nikita Pestrov, user2314737

2
Analysis: Bringing it
all together and
making decisions

piRSquared

3
Appending to
DataFrame

shahins

4
Boolean indexing of
dataframes

firelynx

5 Categorical data jezrael, Julien Marrec

6
Computational
Tools

Ami Tavory

7
Creating
DataFrames

Ahamed Mustafa M, Alexander, ayhan, Ayush Kumar Singh,
bernie, Gal Dreiman, Geeklhem, Gorkem Ozkaya, jasimpson,
jezrael, JJD, Julien Marrec, MaxU, Merlin, pylang, Romain,
SerialDev, user2314737, vaerek, ysearka

8
Cross sections of
different axes with
MultiIndex

Julien Marrec

9 Data Types Andy Hayden, ayhan, firelynx, jezrael

10
Dealing with
categorical
variables

Gorkem Ozkaya

11 Duplicated data ayhan, Ayush Kumar Singh, bee-sting, jezrael

12
Getting information
about DataFrames

Alexander, ayhan, Ayush Kumar Singh, bernie, Romain, ysearka

13 Gotchas of pandas vlad.rad

14
Graphs and
Visualizations

Ami Tavory, Nikita Pestrov, Scimonster

https://riptutorial.com/ 159

15 Grouping Data
Andy Hayden, ayhan, danio, Geeklhem, jezrael, ℕʘʘḆḽḘ, QM.py,
Romain, user2314737

16
Grouping Time
Series Data

ayhan, piRSquared

17 Holiday Calendars Romain

18
Indexing and
selecting data

amin, Andy Hayden, ayhan, double0darbo, jasimpson, jezrael,
Joseph Dasenbrock, MaxU, Merlin, piRSquared, SerialDev,
user2314737

19
IO for Google
BigQuery

ayhan, tworec

20 JSON PinoSan, SerialDev, user2314737

21

Making Pandas
Play Nice With
Native Python
Datatypes

DataSwede

22 Map Values EdChum, Fabio Lamanna

23
Merge, join, and
concatenate

ayhan, Josh Garlitos, MaThMaX, MaxU, piRSquared, SerialDev,
varunsinghal

24
Meta:
Documentation
Guidelines

Andy Hayden, ayhan, Stephen Leppik

25 Missing Data Andy Hayden, ayhan, EdChum, jezrael, Zdenek

26 MultiIndex Andy Hayden, benten, danielhadar, danio, Pedro M Duarte

27 Pandas Datareader Alexander, MaxU

28
Pandas IO tools
(reading and saving
data sets)

amin, Andy Hayden, bernie, Fabich, Gal Dreiman, jezrael, João
Almeida, Julien Spronck, MaxU, Nikita Pestrov, SerialDev,
user2314737

29 pd.DataFrame.apply ptsw, Romain

30
Read MySQL to
DataFrame

andyabel, rrawat

31
Read SQL Server to
Dataframe

bernie, SerialDev

Reading files into 32 Arthur Camara, bee-sting, Corey Petty, Sirajus Salayhin

https://riptutorial.com/ 160

pandas DataFrame

33 Resampling jezrael

34
Reshaping and
pivoting

Albert Camps, ayhan, bernie, DataSwede, jezrael, MaxU, Merlin

35
Save pandas
dataframe to a csv
file

amin, bernie, eraoul, Gal Dreiman, maxliving, Musafir Safwan,
Nikita Pestrov, Olel Daniel, Stephan

36 Series Alexander, daphshez, EdChum, jezrael, shahins

37
Shifting and
Lagging Data

ASGM

38
Simple manipulation
of DataFrames

Alexander, ayhan, Ayush Kumar Singh, Gal Dreiman, Geeklhem,
MaxU, paulo.filip3, R.M., SerialDev, user2314737, ysearka

39 String manipulation ayhan, mnoronha, SerialDev

40

Using .ix, .iloc, .loc,
.at and .iat to
access a
DataFrame

bee-sting, DataSwede, farleytpm

41
Working with Time
Series

Romain

https://riptutorial.com/ 161

