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Foreword

Artificial intelligence (AI) at its core is about empowering people and 

organizations to reason and interact with the increasingly digital world 

all around us. Whether it be in health care or in financial services or in 

government, AI is helping transform customer experiences, business 

models, and operational efficiencies in a dramatic way. In this book, 

Mathew, Danielle, and Wee Hyong present a practical overview of why the 

impact of AI and deep learning has accelerated recently and illustrate how 

to build these solutions on the Microsoft Cloud AI platform. They build on 

their experiences as leading data scientists at Microsoft working both with 

the product group as well as with external customers. In this book you will 

see a fresh perspective on how to approach building AI solutions: from the 

common types of models to training and deployment considerations for 

end-to-end systems.

This topic is very near to my heart. As a Corporate Vice President 

and CTO of Artifical Intelligence at Microsoft, I have had the privilege of 

leading the development of many of our AI products mentioned in this 

book. Take Unilever, for example: They have built a collection of chat bots 

with a master bot to help their employees interact with human resources 

services and all services inside the enterprise. Jabil uses AI for quality 

control in the circuit board manufacturing process. Cochrane uses AI 

to classify medical documents and organize information for systematic 

reviews. Publicis used AI to build an app for makeup recommendations. 

eSmart Systems has a connected drone with deep learning-based defect 

detection for inspecting power lines in the energy sector. AI is even being 

used to identify and conserve snow leopards in the Himalayas. AI is 

becoming the new normal.
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Contrast these examples to enterprise IT systems of the past. We first 

developed systems of record for enterprises to operate. We had enterprise 

resource planning (ERP) systems. We had customer resource management 

(CRM) systems. Most of these were rather siloed and served specific 

individual functions, with highly structured and curated data. Then the 

Web came along, and the Internet came along, and we built systems to 

interact with our customers over the Web. We started building Software as 

a Service (SaaS) applications hosted in the cloud.

Now what we have at our disposal thanks to the type of technologies 

and techniques mentioned in this book are systems of intelligence in the 
cloud. A system of intelligence integrates data across all those systems 

of record, connects you to the systems of engagement, and creates a 

connected enterprise that understands, reasons, and interacts in a very 

natural way. Built as a collection of interoperating SaaS applications, these 

systems collect and organize all relevant data and interactions in the cloud. 

They constantly learn using AI and deliver new experiences. Live online 

experiments constantly explore a space of possibilities to teach and derive 

new AI capabilities. All this is done with the power of the cloud.

When you are building powerful systems like this, you need a very 

comprehensive platform. It’s not just one or two components, or a 

few components from open source integrated with existing enterprise 

applications. You can’t just take a deep learning tool, learn with a little 

bit of data, put the model in a virtual machine on the cloud, and build a 

system of intelligence. You need a comprehensive collection of platform 

services that only a cloud platform can bring, including systems for identity 

and security. This is the differentiation of the Microsoft AI platform. It is 

cloud-powered AI for next-generation systems of intelligence.

I am a big believer in democratizing AI for developers. A lot of AI 

itself should be almost as simple as calling a sort function. You just call a 

sort function, and you get an output. The Microsoft AI platform provides 

a wealth of prebuilt AI like speech recognition, translation, image 

understanding, optical character recognition (OCR), and handwriting 

ForewordForeword
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recognition, many of which are built on top of advanced deep learning 

technology explained in this book. Many of these prebuilt AI capabilities 

can be fine-tuned with your own data. Developers can use such prebuilt AI 

to understand the content of every type of media and information —videos, 

images, natural handwriting—and organize and reason with it. For the use 

cases where prebuilt AI can solve the problem, these services dramatically 

increase developer productivity and time to market.

When prebuilt AI isn’t flexible enough, there is the ability to build 

custom AI models on top of a powerful computing layer. This is all a part of 

the Azure cloud, and of course behind it are the innovations in hardware, 

the latest CPUs, field-programmable gate arrays (FPGAs), graphics 

processing units (GPUs), and more to come. Tools such as Azure Machine 

Learning and Visual Studio Tools for AI allow rapid AI model development 

using the state-of-the-art deep learning frameworks and open source 

toolkits. These models can be delivered as docker containers that can be 

hosted anywhere, in the cloud or on-premises.

Mathew, Danielle, and Wee Hyong have outlined in this book an 

overview of these different options for developing and deploying AI solutions 

with a specific focus on deep learning. In the last few years, deep learning 

has transformed AI, leading to an explosion of use cases. Now, software can 

learn to interpret the content and meaning of text, images, and video, almost 

as well as humans can. Applications can understand speech and text, have 

dialogues with humans in natural ways, and complete actions and tasks on 

behalf of users. The authors showcase how the best of open source, the best 

of Microsoft’s own AI technology, and the best of the cloud can all come 

together in one platform to enable you to build novel systems of intelligence.

I invite all of you to take advantage of the power of the cloud and AI 

coming together as illustrated in this book. AI-infused SaaS applications 

are the new normal!

Joseph Sirosh

Corporate Vice President and CTO of Artificial Intelligence, Microsoft

July 2018
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Introduction

This book spans topics such as general techniques and frameworks for 

deep learning, starter guides for several approaches in deep learning, 

and tools, services, and infrastructure for developing and deploying AI 

solutions using the Microsoft AI platform. This book is primarily targeted 

to data scientists who are familiar with basic machine learning techniques 

but have not used deep learning techniques or who are not familiar with 

the Microsoft AI platform. A secondary audience is developers who aim for 

an introduction to AI and getting started with the Microsoft AI platform.

It is recommended that you have a basic understanding of Python and 

machine learning before reading this book. It is also useful to have access to 

an Azure subscription to follow along with the code examples and get the 

most benefit from the material, although it is not required to read the book.

�How This Book Is Organized
In Part I of the book, we introduce the basic concepts of AI and the role 

Microsoft has related to AI solutions. Building on decades of research 

and technological innovations, Microsoft now provides services and 

infrastructure to enable others who want to build intelligent applications 

with the Microsoft AI platform built on top of the Azure cloud computing 

platform.

We introduce machine learning and deep learning in the context of AI 

and explain why these have become especially popular in the last few years 

for many different business applications. We outline example use cases 

utilizing AI, especially employing deep learning techniques, which span 

from several verticals such as manufacturing, health care, and utilities.
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In the first part of the book, we also give an overview of deep learning, 

including common types of networks and trends in the field. We also 

discuss limitations of deep learning and go over how to get started.

In Part II, we give a more in-depth overview of the Microsoft AI 

platform. For data scientists and developers getting started using AI in 

their applications, there are a range of solutions that are useful in different 

situations. The specific services and solutions will continue to evolve over 

time, but two main categories of solutions are available.

The first category is custom solutions built on the Microsoft Azure AI 

platform. Chapter 4, “Microsoft AI Platform,” discusses the services and 

infrastructure on the Microsoft AI platform that allow one to build custom 

solutions, especially Azure Machine Learning services for accelerating 

the life cycle of developing machine learning applications as well as 

surrounding services such as Batch AI training and infrastructure such as 

the Deep Learning Virtual Machine.

The second category is Microsoft’s Cognitive Services, which are 

pretrained models that are available as a REST application programming 

interface (API). In other words, the models are already built on a set of data 

and users can use the pretrained model. Some of these are ready to use 

without any customization. For example, there is a text analytics service 

that allows one to submit text and get a sentiment score for how positive 

or negative the text is. This type of service could be useful in analyzing 

product feedback, for example. Other Cognitive Services are customizable, 

where you can bring your own data to customize the model. These services 

are covered in more detail in Chapter 5, “Cognitive Services and Custom 

Vision.”

In Part III, we cover three common types of deep learning  

models—convolutional neural networks, recurrent neural networks, and 

generative adversarial networks—that are useful to understand in building 

out custom AI solutions. Each chapter includes links to code samples for 

understanding the type of network and how one can build such a network 

using the Microsoft AI platform.
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In the final part of the book, Part IV, we consider architecture choices 

for building AI solutions using the Microsoft AI platform along with 

sample code. Specifically, Chapter 9, “Training AI Models,” covers options 

for training neural networks such as Batch AI service and DL workspace. 

Chapter 10, “Operationalizing AI Models,” covers deployment options 

for scoring neural networks such as Azure Kubernetes Service for serving 

real-time models as well as Spark using the open source library MMLSpark 

from Microsoft.

Note B ibliographic information for each chapter is provided in the 
Notes section in the Appendix of the book.
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CHAPTER 1

Introduction to  
Artificial Intelligence
Intelligence can be defined in many ways, from the ability to learn to deal 

with new situations to the ability to make the right decisions according to 

some criterion, for example (Bengio, 2010). Standard computers and even 

basic calculators can be thought to be intelligent in some ways, as they can 

compute an outcome based on human-programed rules. Computers are 

extremely useful for mundane operations such as arithmetic calculations, 

and the speed and scale at which they can tackle these problems has 

greatly increased over time.

However, many tasks that come naturally to humans —such as 

perception and control tasks—are extremely difficult to write formal rules 

or programs for a machine to execute. Often it is hard to codify all the 

knowledge and thought processes behind information processing and 

decision making into a formal program on which a machine can then act. 

Humans, on the other hand, over their lifetime can gather vast amounts of 

data through observation and experience that enables this human level of 

intelligence, abstract thinking, and decision making.

Artificial intelligence (AI) is a broad field of study encompassing this 

complex problem solving and the human-like ability to sense, act, and 

reason. One goal of AI can be to create smart machines that think and 

act like humans, with the ability to simulate intelligence and produce 
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decisions through processes in a similar manner to human reasoning. 

This field encompasses approaches ranging from prescriptive, immutable 

algorithms for tasks previously performed only by intelligent beings (e.g., 

arithmetic calculators) to attempts to enable machines to learn, respond to 

feedback, and engage in abstract thought.

AI is transforming the world around us at an ever-increasing pace, 

including personalized experiences, smart personal assistants in devices 

like our phones, speech-to-speech translation, automated support agents, 

precision medicine, and autonomous driving cars that can recognize 

objects and respond appropriately, to name just a few. Even through 

products such as search or Microsoft Office 365, AI is having a useful 

impact on most people’s day-to-day lives. Technology has come a long 

way from the early days of the Internet in terms of how humans interact 

with computers. There is an increasing expectation that humans should be 

getting information in intelligent ways, and be able to interact with devices 

that hold access to information in natural ways. Creating these types of 

experiences often requires some type of AI.

AI is going to disrupt every single business app—whether an 
industry vertical like banking, retail and health care, or a  
horizontal business process like sales, marketing and customer 
support.

—Harry Shum, Microsoft Executive VP, AI and Research

Of course, with the rise of AI and intelligent systems comes potential 

drawbacks and concerns. Despite potential transformative experiences 

and solutions based on AI, there are ethical issues that are important for 

both the creators and users of AI to recognize. Technology will continue to 

shape the workforce and economy as it has in the past as AI automates some 

tasks and augments human capabilities in others (Brynjolfsson & Mitchell, 

2017). Media portrayals often pit the human versus the machine, and this is 

exacerbated through stories of computers playing games, especially against 

Chapter 1  Introduction to Artificial Intelligence 
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humans. Computers have been able to beat humans in games such as 

chess for decades, but with recent AI advances, computers can also surpass 

human abilities in more sophisticated games where brute force computing 

power isn’t practical, such as the abstract board game Go or the video arcade 

game Ms. Pac-Man (Silver et al., 2016; van Seijen, 2017).

However, we believe that the discussion should not be framed in 

a binary of human versus machine. It is important to develop AI that 

augments human capabilities, as humans hold “creativity, empathy, 

emotion, physicality, and insight” that can be combined with AI and the 

power of machines to quickly reason over large data to solve some of 

society’s biggest problems (Nadella, 2016). After all, there is an abundance 

of information in the world today from which we can learn, but we are 

constrained by our human capability to absorb this information in the 

constraints of time. AI can help us achieve more in the time that we have.

Of course, safeguards will need to be put in place as algorithms will 

not always get the answer right. Then there is debate over what “right” 

even means. Although computers are thought to be neutral and thus 

embody the value of being inclusive and respectful to everyone, there 

can be hidden biases in data and the code programmed into AI systems, 

potentially leading to unfair and inaccurate inferences. Data and privacy 

concerns also need to be addressed during the development and 

improvement of AI systems. The platforms used for AI development thus 

need to have protections for privacy, transparency, and security built into 

them. Although we are far from artificial general intelligence and from the 

many portrayals of a loss of control of AI systems due to computers with 

superintelligence from popular culture and science fiction works, these 

types of legal and ethical implications of AI are crucial to consider.

We are still in the early days of the infusion of AI in our lives, but a 

large transformation is already underway. Especially due to advances in 

the last few years and the availability of platforms such as the Microsoft 

AI Platform, upon which one can easily build AI applications, we will see 

Chapter 1  Introduction to Artificial Intelligence 
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many innovations and much change to come. Ultimately, that change will 

mean more situations where humans and machines are working together 

in a more seamless way. Just imagine what’s possible when we put our 

efforts toward using AI to solve some of the world’s greatest challenges 

such as disease, poverty, and climate change (Nadella, 2017).

�Microsoft and AI
AI is central to Microsoft’s strategy “to build best-in-class platforms and 

productivity services for an intelligent cloud and an intelligent edge 

infused with artificial intelligence (“AI”)” (Microsoft Form 10-K, 2017). 

Although this statement is new, AI is not new to Microsoft. Founder Bill 

Gates believed that computers would one day be able to see, hear, and 

understand humans and their environment. Microsoft Research was 

formed in 1991 to tackle some of the foundational AI challenges; many 

of the original solutions are now embedded within Office 365, Skype, 

Cortana, Bing, and Xbox. These are just some of the Microsoft products 

that are infused with many different applications of AI. Even in 1997, 

Hotmail with automated junk mail filtering was built on a type of AI system 

with classifications that improve with data over time.

Let’s look at just a few specific examples today. A plug-in available for 

PowerPoint called Presentation Translator displays subtitles directly on 

a PowerPoint presentation as you talk in any of more than 60 supported 

languages; you can also directly translate the text on the slides to save 

a version of your presentation in another language, thanks to speech 

recognition and natural language processing technologies (Microsoft 

Translator, 2017). SwiftKey is a smart keyboard used by more than 

300 million Android and iOS devices that has learned from 10 trillion 

keystrokes on the next word you want to type and saved 100,000 years of 

time (Microsoft News, 2017).

Chapter 1  Introduction to Artificial Intelligence 
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Bing—powered by AI with both intelligent search and intelligent 

answers—powers more than one third of all PC search volume in the 

United States. Continuing developments, such as Visual Image Search and 

a new partnership to bring Reddit conversations to Bing answers, continue 

to infuse intelligence into search (Bing, 2017b). The personal AI assistant 

Cortana helped answer more than 18 billion questions with more than 

148 million active users across 13 countries (Linn, 2017). Seeing AI was 

launched to assist the blind and low-vision community by automatically 

describing the nearby visual field of people, objects, and text.

Although these technologies are infused within many products 

and applications, Microsoft also aims to democratize AI technology so 

that others can build intelligent solutions on top of their services and 

platforms. Microsoft’s Research and AI group was founded in 2016 to bring 

together engineers and researchers to advance the state-of-the-art of AI 

and bring AI applications and services to market. Microsoft is taking a 

four-pronged approach as visualized in Figure 1-1:

	 1.	 Agents that allow us to interact with AI such as 

Cortana and bots enabled through the Microsoft Bot 

Framework.

	 2.	 Applications infused with AI such as PowerPoint 

Translator.

	 3.	 Services that allow developers to leverage this AI such 

as the Cognitive Services handwriting recognition 

application programming interface (API).

	 4.	 Infrastructure that allows data scientists and 

developers to build custom AI solutions including 

specialized tools and software for speeding up the 

development process.

Chapter 1  Introduction to Artificial Intelligence 
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Thus, the vast infrastructure of the Azure cloud and AI technology 

used within Microsoft and the larger open-source community are 

now being made available to organizations wanting to build their own 

intelligent applications. The Microsoft AI Platform on Azure is an open, 

flexible, enterprise-grade cloud computing platform that is discussed in 

more detail in Chapter 4. As a simple example of the power of Microsoft’s 

cloud platform, just one node of Microsoft’s FPGA fabric was able to 

translate all 1,440 pages of the novel War and Peace from Russian to 

English in 2.5 seconds in 2016. Then using the entire capability rather 

than just a single node, all of Wikipedia can be translated in less than 

one tenth of a second (Microsoft News, 2017). Microsoft is focused on 

creating agents and applications infused with AI, and then making this 

same technology available through services and infrastructure. We 

are at the tip of the iceberg of what is possible with AI and through the 

democratization of these AI technologies, many challenges will be solved 

across the world.

Bots Applications Services Infrastructure

Harness AI to 

change how we 

interact with 

ambient 

computing

Infuse AI into 

every 

application that 

we interact with, 

on any device

AI capabilities 

that are infused 

in our own apps 

available to 

developers 

around the 

world

Building and 

making available 

the world’s most 

powerful AI 

supercomputer 

via the cloud to 

tackle all types 

of AI challenges

Figure 1-1.  Microsoft’s four-prong approach to democratizing AI
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We are pursuing AI so that we can empower every person and 
every institution that people build with tools of AI so that they 
can go on to solve the most pressing problems of our society 
and our economy.

—Satya Nadella, Microsoft CEO

�Machine Learning
Although there are many subfields and applications within AI, machine 

learning (ML) has become extremely popular as a practical tool for many 

AI-infused applications available today and is the focus of this book. ML 

is a branch of computer science where computers are taught to process 

information and make decisions through giving access to data from which 

computers learn. There are many excellent reference materials on this 

subject that are outside the scope of this book. Typical ML tasks include 

classification, regression, recommendations, ranking, and clustering, for 

example. AI is thus a broader concept than ML, in that ML is one research 

area within AI around the idea machines can learn for themselves once 

given access to the right type of data (Marr, 2016).

With classical ML approaches, there are well-established 

methodologies for utilizing data points that are already useful features or 

representations themselves, such as data points that capture age, gender, 

number of clicks online, or a temperature sensor reading as examples. 

Computers learn how to model the relationship between these sets of 

input features and the outcome they are trying to predict; the algorithm 

chosen by the human constrains the type of model the computer is able 

to learn. Humans also hand-craft the representations of the data, a step 

often called feature engineering, and feed these representations into the 

ML model to learn. The most common type of ML is supervised machine 

learning, where the model has labels that are supposed to represent the 

ground truth against which to learn. The process of the computer learning 

the parameters within the model is often called training.

Chapter 1  Introduction to Artificial Intelligence 
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For example, suppose a telco is aiming to address issues with customer 

churn. The process with which they could approach this problem using 

traditional supervised ML techniques is described here. They would like 

to identify customers who are likely to churn so they can proactively reach 

out and give them incentives to stay. To build this model, they would 

first gather relevant raw input data such as the usage patterns of their 

customers and demographic data such as those pictured in Table 1-1.

Table 1-1.  Example Raw Tables Capturing Information from 

Customers at a Telco That Needs to Be Processed Before It Can Be Fed 

into a Machine Learning Model

Customer Information Phone Records

Name Gender Sign-Up Date Name Call Length Date

Mary F 29.01.2011 Mary 12 30.01.2011

Thomas M 20.06.2013 Mary 1 01.02.2011

Danielle F 05.05.2014 Mary 3 01.02.2011

Wee Hyong M 01.09.2012 … … …

Mathew M 15.11.2012 Thomas 22 21.06.2012

Ilia M 19.02.2013 … … …

… … …

Some preprocessing, such as structuring the data by some measure 

of time, aggregating data points as needed, and joining different tables 

together that are relevant to whether a customer churns or not, is 

completed on the raw input data. This is followed by feature engineering to 

create representations of these customer data to feed into the model, such 

as creating a feature that represents the length of time with the telco, which 

Chapter 1  Introduction to Artificial Intelligence 
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is found based on the date the customer signed up for service. Creating 

a relevant representation of the data is very important for the ML model 

to be able to discern the patterns within the data, and is usually heavily 

guided by domain knowledge, as illustrated in Figure 1-2, for example.

Figure 1-2.  The representation of data is very important; for 
example, examining the sign-up date at any given point in time 
might reveal little relationship to the probability of churn within 30 
days, but examining the length in the contract at that point in time 
might reveal a strong relationship in that individuals are more likely 
to churn within 30 days if they have been in the contract for a longer 
period of time

Then historical outcomes, a label of which customers churned or not 

within a certain amount of time, for example, would be matched to these 

data and used for the training process of the supervised ML algorithm, 

as shown in Table 1-2. Applying the trained model to a hold-out set of 

test data to understand how well it will generalize to new customers, the 

model would be evaluated based on how well it predicted the historical 

churn outcomes. After iterating on the preprocessing, feature engineering, 

and model selection process of trying different models to find the optimal 

pipeline, this would then be applied to new raw customer telco data to 

predict which customers are likely to churn in the future.

Chapter 1  Introduction to Artificial Intelligence 



12

This traditional, supervised ML approach as summarized in Figure 1-3  

works for many problems and has been used extensively across many 

industries. In operations and workforce management, ML has been used 

for predictive maintenance solutions and smart building management, as 

well as enhanced supply chain management. For example, Rockwell is able 

to save up to $300,000 a day through predictive maintenance solutions that 

monitor the health of pumps in offshore rigs (Microsoft, 2015). In marketing 

and customer relationship scenarios, ML is used to create personalized 

experiences, make product recommendations, and better predict customer 

acquisition and churn. In finance, fraud detection solutions and financial 

forecasting are often aided by ML-backed solutions.

Table 1-2.  Example Output of Simple Feature Engineering and 

Matching to the Label of Churn in the Next 30 days

Name Month Total Phone Min Months with Telco Churn Next 30 Days

Mary 2.2011 44 0 0

Mary 3.2011 51 1 0

… … … … …

Thomas 6.2013 152 0 0

Thomas 7.2013 201 1 0

Thomas 8.2013 120 2 1

Note  In this case, 0 represents that the individual did not churn, 
and 1 represents that the individual did churn.

Chapter 1  Introduction to Artificial Intelligence 
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Figure 1-3.  Approach for classical, supervised machine learning 
solutions
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�Deep Learning
Although traditional ML approaches work well for many scenarios as 

discussed earlier, much of the world is quantized in a representation that 

has no easily extractable semantics, such as audio snippets or pixels in 

an image.

For example, programming a computer to recognize whether there 

is a flamingo in each of the images in Figure 1-4 would be exceedingly 

difficult. These images are represented to a computer as a matrix of pixel 

values ranging from 0 to 255. Standard colored images have three channels 

of red, green, and blue and images can be thus represented as three 

two-dimensional matrices. It’s tough to even define which combination 

of numerical values represents the color pink, let alone process them to 

identify a flamingo. Even taking a traditional ML approach and hand-

crafting features to recognize parts of the image such as a beak and 

feathers and legs would take very specialized knowledge and a large 

investment of time to build the different representations from the raw 

pixel values well enough on top of a large set of images from which the 

computer could then learn.

Figure 1-4.  Example images where a machine with AI might be 
asked questions that require it to process, understand, and reason. 
An example is whether or not there is a flamingo in each of these 
images, and hand-crafting features for traditional machine learning 
approaches is quite difficult and time-consuming.

Chapter 1  Introduction to Artificial Intelligence 
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Similarly, traditional natural language processing requires complex 

and time-consuming task-specific feature engineering. For processing 

speech, different languages, intonations, environments, and noise create 

subtle differences that make crafting relevant features extremely difficult.

Deep learning, which is the focus of this book, is a further subfield of 

AI and ML that has especially shown promise on these types of problems 

without easily extractable semantics such as images, audio, and text data 

(Goodfellow, Bengio, & Courville, 2016). With deep learning approaches, 

a multilayer deep neural network (DNN) model is applied to vast amounts 

of data. Deep learning models often have millions of parameters; therefore 

they require extremely large training sets to avoid overfitting. The goal of 

the model is to map from an input to an output (e.g., pixels in an image to 

classification of image as flamingo; audio clip to transcript). The raw input 

is processed through a series of functions. The basic idea is that supervised 

deep learning models learn the optimal weights of the functions 

mapping this input data to the output classification through examining 

vast amounts of data and gradually correcting itself as it compares the 

predicted result with the ground truth labeled data.

The early variants of these models and concepts dating back to the 

1950s were based loosely on ideas on how the human brain might process 

information and were called artificial neural networks. The model learns 

to process data through learning patterns. First are simple patterns such 

as edges and simple shapes, which are then combined to form more 

complicated patterns through the many layers of the model. Current 

models often include many layers—some variants even boast over a 

hundred layers—and hence the terminology deep. The model thus learns 

high-level abstractions automatically through the hierarchical nature of 

processing information.

Although data still need to be processed and shaped to fit into a deep 

learning model, there is no longer a need to hand-craft features, as the 

raw input (e.g., pixel values in an image) is fed directly into the model. 

The model learns the features (attributes) of the input data automatically. 

Chapter 1  Introduction to Artificial Intelligence 
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There is thus no need for features that represent subparts of the pictures, 

such as the beak and leg in the flamingo example earlier. Deep learning 

approaches show promise for learning patterns in the input data to be 

able to classify directly based on the raw input rather than constructing 

features manually. Instead, often more time is spent selecting the structure 

of the network, also called the network architecture, and tuning the 

hyperparameters, the parameters within the model that are set before the 

learning process even begins. This has given rise to the idea that network 

architecture engineering is the new feature engineering (Merity, 2016). 

Deep learning has also shown promise in several areas of ML where 

traditional methods also work well, such as forecasting for predicting 

future values in a time series and recommendation systems that aim to 

predict the preference a user would have for a given item. More details 

on specific types of deep learning models as well as recent trends in deep 

learning are covered in Chapters 2 and 3, respectively.

�Rise of Deep Learning
The basic ideas and algorithms behind deep learning have been around 

for decades, but the massive use of deep learning in consumer and 

industrial applications has only occurred in the last few years. Two factors 

have especially driven the recent growth in AI applications, and especially 

deep learning solutions: increased computation power accelerated by 

cloud computing and growth in digital data.

Deep learning models require lots of experimentation and often run on 

large training data, thus requiring a large amount of computing resources, 

especially hardware such as GPUs and FPGAs that are magnitudes more 

efficient than traditional CPUs for the computations in a DNN. Cloud 

computing—running workloads remotely through the Internet in a data 

center with shared resources—opens access to cheaper hardware and 

computing power. Resources can be spun up on demand and suspended 
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when no longer in use to save on cost, without investments in new 

hardware.

With the Internet and connected devices, there is an increasing 

digitization of our world and massive amounts of data are being collected. 

Of course, understanding how to organize and harness this information 

is critical to advancing AI applications. One data collection project that 

changed AI research was the ImageNet data set, originally published in 

2009, which evolved into a yearly competition for AI algorithms, such as 

which algorithm could classify the images by objects with the lowest error 

rate (Russakovsky et al., 2015). Deep learning has emerged recently as a 

powerful technique thanks in large part to the collection of this ImageNet 

data set. “Indeed, if the artificial intelligence boom we see today could 

be attributed to a single event, it would be the announcement of the 2012 

ImageNet challenge results” (Gershgorn, 2017).

Specifically, in 2012, a deep learning solution drastically improved 

over the previous year’s results for classifying objects, as shown in 

Figure 1-5. This solution changed the direction of computer vision 

research, and accelerated the research of deep learning in other fields 

such as natural language processing and speech recognition. Continuing 

more advanced deep learning research, in 2015, Microsoft Research 

submitted an entry with an architecture called ResNet with 152 layers 

that was the first time an algorithm surpassed human classification  

(He, Zhang, Ren, & Sun, 2015).

Chapter 1  Introduction to Artificial Intelligence 
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This ImageNet data and competition is by no means a pure academic 

exercise. Many of the architectures used in this competition are often 

used in industry, many pretrained models on the ImageNet data are 

made available to the public, and many deep learning computer vision 

applications are seeded by this work. This is especially true for transfer 

learning approaches, which are discussed in more detail in Chapter 2.

One thing ImageNet changed in the field of AI is suddenly 
people realized the thankless work of making a dataset was 
at the core of AI research. People really recognize the impor-
tance the dataset is front and center in the research as much 
as algorithms. (Gershgorn, 2017)

—Li Fei-Fei

Figure 1-5.  Yearly winning solution’s top five classification error rate 
on ImageNet data for image classification in ILSVRC (Russakovsky 
et al., 2015)
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Of course, as one might infer from the drastic improvement in the 

ImageNet results over the last few years and discussion of the ResNet-152 

architecture from Microsoft, there have also been recent advances in 

algorithms supporting deep learning solutions and tools available to 

create such solutions. Thus, computational power accelerated by cloud 

computing, growth in data (especially open labeled data sets), and 

advanced algorithms and network architectures have together drastically 

changed what is possible with AI in just the last few years.

Not only can deep learning techniques surpass humans in image 

recognition, but they are also pushing other areas, such as approaching 

human level in speech recognition. In fact, some of the first breakthroughs 

in deep learning happened in speech recognition (Dahl, Yu, Deng, & 

Acero, 2011). Then in October 2016, Microsoft reached human parity in 

the word error rate on the Switchboard data set, a corpus of recorded 

telephone conversations used for more than 25 years to benchmark AI 

systems (Xiong et al., 2016). These type of innovations are why speech 

recognition systems on personal devices and computers have improved so 

drastically in the last few years.

Similarly for natural language processing, on January 3, 2018, Microsoft 

reached a score of 82.6% on the SQuAD machine reading comprehension 

data set comprised of Wikipedia articles. Using these data, the computer 

reads a document and answers a question, and was found to outperform 

humans on the answers (human performance is at about 82.3%; Linn, 

2017; Rajpurkar, Zhang, Lopyrev, & Liang, 2016).

However, it is important to note that these achievements are for a 

specific problem or application, and do not represent an AI system that 

can generalize to new tasks. It can also be relatively straightforward to 

create examples that the computer fails on, so-called adversarial examples 

(Jia & Liang, 2017). Additionally, the performance of the system could drop 

dramatically even if the original task is modified only slightly. For example, 

although computers might now classify general images better than 
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humans, as shown on ImageNet data discussed earlier, giving open-ended 

answers to questions about images is still far from human performance; 

there was over 10% difference in accuracy as of June 2017 on the VQA 1.0 

data set for visual question answering (AI Index, 2017).

Additionally, deep learning as a general approach still has many 

limitations such as the inability to reason and lack of understanding. In 

some cases it can also be more difficult to tune deep learning systems 

than traditional systems, such as when there is a certain aspect on which 

it is not doing well, which in some cases could be easier to account for in 

a traditional ML model with fewer parameters. Other ML and AI fields 

of research exist and solve other types of problems more accurately than 

deep-learning-based approaches. There is also much potential around 

the combination of deep learning with other AI research areas such as 

reinforcement learning. More details around recent advances, trends, and 

limitations are discussed in Chapter 3.

In this book, we focus mainly on deep learning approaches within AI 

and applications where intelligent technology can use deep learning to 

create solutions that empower people and businesses. These solutions 

include enabling better engagement with customers, transformation 

of products, and better optimization of operations, for example. Deep 

learning applications can often be developed in such a way that they 

learn and improve over time as more data are collected and often create 

experiences that connect people and technology in more seamless 

ways. This book is meant to serve as an introduction to how to develop 

deep learning solutions with the Microsoft AI Platform. For a more 

comprehensive overview of deep learning in general including more about 

the theory and advanced topics, the book by Bengio, Goodfellow, and 

Courville (2016) is highly recommended.
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�Applications of Deep Learning
Some classic computer vision problems that can be tackled using deep 

learning are shown in Figure 1-6, such as being able to classify images 

and find objects within the images. These common technical problems 

underlie many different end user applications. For example, photo search 

applications such as Microsoft’s Photo App that allow users to type in 

descriptions of objects (e.g., “car”) or concepts (e.g., “hug”) and return 

relevant results provide a useful capability built through using DNNs.

Figure 1-6.  Example computer vision problems

Many deep learning applications for computer vision surround health 

care and the medical realm, in subfields where doctors commonly inspect 

patients or test results visually, such as in dermatology, radiology, and 

ophthalmology. Imagine the possibilities in that a radiologist can inspect 

thousands of scans, but a computer can be shown and learn from millions. 

Humans globally will benefit from the democratization of these services, 

which will over time become even more accurate and efficient. Project 

InnerEye is one example, a research project from Microsoft for building 

innovative tools for automatic, quantitative analysis of three-dimensional 

radiological images to assist expert medical practitioners.
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Examples also abound in manufacturing and utilities. Take eSmarts, a 

power and utility company based in Norway that provides an automated 

energy management system, for example. They use drones to collect 

images of power lines and then analyze them using DNNs to automatically 

detect faults (Nehme, 2016). Specifically, eSmarts does object detection on 

the images to detect discs and then predict whether they are faulty. They 

mix real images with synthetic images they have created to create a large 

enough data set to be able to predict. Similarly, Jabil, one of the leading 

design and manufacturing solution providers, is optimizing manufacturing 

operations by analyzing images of their circuit board assembly line to 

automatically detect defects (Bunting, 2017). Doing this reduces the 

number of boards that have to be manually inspected by the operators 

watching the line and increases their throughput.

Analyzing natural language data is another common use of deep 

learning. The goal of these applications broadly is for computers to process 

natural language, classify text, answer questions, summarize documents, 

and translate between languages, for example. Natural language 

processing often requires several layers of processing, from the linguistic 

level of words and semantics to parts of speech and entities, to the type of 

end user applications shown in Figure 1-7 (Goldberg, 2016).
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Translating audio data to text is another common application of 

deep learning. An example application using deep learning for speech 

recognition, Starship Commander is a new virtual reality (VR) game from 

Human Interact, where players are active agents in the sci-fi universe 

(Microsoft Customer Stories, 2017). Human Interact is building the 

lifelike experiences in the game around human speech, allowing users 

to influence the storyline and direction of the game through their voice. 

To enable this, the game needs to recognize speech and understand the 

meaning of that speech based on the users’ underlying intent. Microsoft’s 

Custom Speech Service allows developers to build on top of a speech 

recognition system that, using deep learning, can overcome obstacles such 

as speaking style and background noise. Developers can even train with 

a custom script to recognize the key words and phrases from the game to 

build a truly custom speech recognition system more quickly and easily 

than building from scratch.

Figure 1-7.  Example applications of natural language processing 
from text
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This is just the first step of recognizing what words were uttered—the 

game then needs to understand what the user means. Imagine the user 

is giving a command to start the engine of a ship. There are many ways 

someone could give that command. Microsoft’s Language Understanding 

Service infers the users’ underlying intent, translating between the speech 

recognized by the game and what the user actually means.

The only reason we can build a product like this is because we 
are building on the deep learning and speech recognition 
expertise at Microsoft to deliver an entertainment experience 
that will be revolutionary.

—Alexander Mejia,  
Owner and Creative Director, Human Interact

Of course, these are just some simple examples that showcase how 

deep learning can bring value to business and consumer applications. 

Deep learning has shown tremendous potential for applications around 

speech, text, vision, forecasting, and recommenders, for example (see 

Figure 1-8), and we expect to see tremendous use of deep learning in many 

industries and more applications in the future.

Figure 1-8.  Example areas where deep learning solutions have 
demonstrated great performance
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Interacting with more applications through speech and text rather than 

menus, chatting with bots on a company’s web site or human resources 

page to solve routine problems quickly, innovative photo applications that 

allow natural search and manipulation, and finding relevant information 

quickly from documents are just some example scenarios where deep 

learning will drive forward value to businesses and consumers.

�Summary
This chapter introduced the concepts of AI, ML, and deep learning 

as summarized in Figure 1-9. Buildingon decades of research and 

technological innovations as mentioned briefly in this chapter, Microsoft 

now provides services and infrastructure to enable others who want 

to build intelligent applications—including powerful deep learning 

applications as discussed in this book—through the Microsoft AI Platform 

built on the cloud computing platform Azure.

Figure 1-9.  Visualization of relationship between artificial 
intelligence, machine learning, and deep learning
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This chapter also discussed reasons behind the recent rise of deep 

learning such as increased computational power and increased data set 

sizes, especially for labeled data such as ImageNet, which has been made 

available publicly. These have propelled forward research in areas such 

as computer vision, natural language processing, speech recognition, and 

time series analysis. We are also seeing many valuable applications built 

on deep learning in areas such as health care, manufacturing, and utilities. 

We believe this trend will continue, but that other areas of AI research will 

also be useful in the future.

In the next chapter, we introduce common deep learning models and 

aspects needed to get started with deep learning. In Chapter 3, we then 

discuss some of the emerging trends in deep learning and AI as well as 

some of the legal and ethical implications mentioned briefly in this chapter 

in more detail.
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CHAPTER 2

Overview of Deep 
Learning
In Chapter 1, we gave an overview of AI and the basic idea behind deep 

learning. We discussed how deep learning—applying artificial neural 

network models with a large number of layers—has yielded state-of-the 

art results for several research areas, such as image classification, object 

detection, speech recognition, and natural language processing.

Deep learning has also shown promise in many applications across 

areas such as health care, manufacturing, and retail. In 2017, for example, 

an AI system did as well as dermatologists in identifying skin cancer 

and a model could diagnose irregular heart rhythms from single-lead 

electrocardiogram (ECG) signals better than a cardiologist (Esteva et al., 

2017; Rajpurkar, Hannun, Haghpanahi, Bourn, & Ng, 2017). We believe 

this trend will continue: Deep learning will bring value to more scenarios 

across many industries and progress toward improved AI experiences will 

continue to accelerate.

In this chapter we briefly go over the basics of several types of 

networks that are now commonly used. We also describe the data science 

workflow for deep learning projects including a description of some of 

the popular tools and technologies that data scientists and developers 

need to get started when working on a deep learning project. This chapter 

also provides practical techniques for getting started with deep learning 
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projects, without spending significant time in training a convolutional 

neural network using large data sets like ImageNet from scratch.

This chapter is simply an overview of deep learning and the building 

blocks for developing deep-learning-based solutions. In the third part of 

this book, these basic concepts are built on for introducing in more detail 

several common network models. These later chapters (e.g., Chapter 6) 

provide sample code that one can follow. Although this chapter also covers 

the basic ideas of training and scoring deep learning models, we discuss 

more specifics along with sample code for training and scoring on Azure in 

the fourth part of this book.

�Common Network Structures
There are many variations of artificial neural network models, including 

convolutional neural networks (CNNs), recurrent neural networks (RNNs), 

generative adversarial networks (GANs), and autoencoders, for example, 

as shown in Table 2-1. Today, most problems require data scientists to 

select the appropriate network type and network structure for the problem 

at hand. Data scientists spend time trying different problem formulations 

and exploring different hyperparameters (e.g., type of network structure), 

and see which works for their specific problem. In the sections that follow, 

we describe briefly each of these types of network structures.

Table 2-1.  Common Network Structures and Common Applications

CNNs RNNs GANs Autoencoders

Image 

classification, 

object detection

Natural language 

processing, time 

series analysis

Text to image 

creation, image to 

image translation

Dimensionality 

reduction, 

anomaly detection, 

recommender systems
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�Convolutional Neural Networks
CNNs are simply neural networks that make use of the convolution 

operator in at least one of their layers. CNNs are feedforward neural 

network models that are a foundational network especially for computer 

vision problems. Feedforward implies that information is always fed in 

one direction in the network and there are not any loops in the network 

structure. CNNs have also been used in other areas such as speech 

recognition and natural language processing for certain tasks.

CNNs work on the premise of translation invariance; for images, this 

builds on the idea that an object within the image is the same object even 

if it is moved, as illustrated in Figure 2-1. This is important, as the network 

does not have to relearn what each object is in every position of the image. 

This requires significantly less data to train and can generalize better to 

learning how to process images than if we had to separately learn how to 

recognize objects at each location as would be required in a multilayer 

perceptron (MLP).

Figure 2-1.  CNNs allow for translation variance; for example, the 
handwritten digit “8” is still an 8 even if it is moved within the image. 
This concept helps the network learn how to process images more 
effectively than simply applying a vanilla neural network model with 
hidden layers.
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For example, if we want the model to be able to learn to identify what 

is a cat, no matter where the cat is located in the image it shares the same 

characteristics from which the model should learn: how to identify fur, cat 

ears, tail, and so on.

In CNNs, the input image is fed through what is often called a filter or 

kernel, which acts as a feature detector in the network. You can think of 

these feature detectors as trying to learn aspects such as edges, shapes, or 

patterns within the image. This is done by applying the feature detector 

on one patch of the image at a time through sliding windows, with the 

results of this convolution operation saved into what is called a convolved 

image or feature map. CNNs hold the property of translation invariance as 

mentioned earlier, as the filters share the same weights as applied to each 

image patch that after applying form the convolved image. The depth of 

a convolutional layer in a neural network corresponds to the number of 

filters used in that layer.

A form of down-sampling through the use of pooling layers is used 

to reduce the size of the data going through and remove the potentially 

redundant aspects that the network at that stage has learned to react to. 

A “max pooling” layer for example simply takes the maximum value from 

the output of the convolved image for each window of the image as shown 

in Figure 2-2, where the stride represents the number of pixels by which 

the window jumps. Convolution and pooling layers are used in many 

combinations, transforming an input image into an array that is then input 

into at least one fully connected layer that feeds out to the predicted output 

classes as visualized in Figure 2-3. The fully connected layers simply act as 

a classifier to predict the output class.
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In other words, CNNs can be conceptually split into two main pieces, 

both of which are optimized together:

	 1.	 The automatic feature extractor creates the hidden 

feature state—features that represent aspects of 

image that are relevant for classification—and is 

made up of layers such as convolutional and pooling 

layers.

	 2.	 The classifier is a fully connected neural network 

made up of at least one layer that classifies the 

hidden feature state.

The automatic feature extractor part of CNN enables the network to 

learn aspects such as edges and shapes of the image without having to 

explicitly program the network to compute these features as was done with 

the use of algorithms such as scale-invariant feature transform (SIFT).

Figure 2-2.  Max pooling operation with 2 by 2 filters with stride of two
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Importantly, CNNs automatically learn the values of the filters 

(“feature detectors”) through training the network on large amounts 

of labeled data using a concept called backpropagation, continuing to 

improve the weights within the network until the classification error 

is minimized. In the early layers of the networks, the network typically 

creates filters that look to be recognizing aspects of the images such as 

edges, basic shapes, and colors. Later layers learn increasingly complex 

patterns until all of these patterns put together can help the network learn 

the classification of the input.

There are many ways to combine the fundamental building blocks of 

convolutional layers, pooling layers, and fully connected layers among 

other aspects of CNNs such as stride (number of pixels by which filters 

are slid over the image), dropout (used to reduce overfitting), and types 

of activation functions that introduce nonlinearity to the network and 

process the output of each layer. There are also many ways to train and 

formulate the network, and much research centers around how to design 

the layers, connections, and aspects such as depth versus width. More 

details and sample code can be found in Chapter 6, so we only describe 

briefly the basics required for an overview of deep learning as well as to 

understand some of the trends related to CNNs that will be discussed in 

Chapter 3.

Figure 2-3.  Basic building blocks of convolutional neural networks 
(CNNs)
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�Recurrent Neural Networks
RNNs directly make use of sequential information. Sequences passed 

to the network could be in the input, output, or even both. The RNN 

processes sequences of data through what is sometimes called a “state” or 

“memory.” Unlike CNNs, which are feedforward networks, RNNs contain 

loops in the network structure, as illustrated in Figure 2-4 and Figure 2-5. 

However, note that CNNs have increasingly been shown to be useful for 

analyzing sequential information as well, as is mentioned in more detail 

in Chapter 7.

Figure 2-4.  Recurrent neural networks have a loop in the network 
structure and process data over sequences

Figure 2-5.  RNNs process information over sequences. Often this 
sequence represents information over time, such that a loop in the 
RNN can be “unrolled” to see that the output at a given point in time 
is a function of the inputs at previous points in time.
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RNNs have been successful in many natural language processing tasks, 

as the meaning of a word in a sentence is dependent on the other words 

surrounding it. RNNs have also been useful in other applications such as 

time series prediction, speech recognition, and handwriting recognition.

A “vanilla” RNN processes a sequence of vectors with a single “hidden” 

vector by applying a recurrence formula at each step. This formula takes 

both the current vector as well as the previous state. Variants of RNNs have 

been proposed that are able to better process longer sequences such as 

long short term memory networks (LSTMS). More details on RNNs along 

with sample code can be found in Chapter 7.

In Figure 2-6, an example application of both CNNs and RNNs is 

shown in the automatic generation of image descriptions in the alt text 

of images pasted within a PowerPoint file. CNNs are used to classify the 

objects within the image and RNNs are used to generate the sentence 

description based on those objects.

Figure 2-6.  Image descriptions are created automatically for images 
in PowerPoint through use of both CNNs and RNNs
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�Generative Adversarial Networks
GANs are a more recent development in deep learning that actually 

solves a given problem through training two separate network models 

in competition with each other (Goodfellow et al., 2014). In recent years, 

GANs have shown tremendous potential and have been applied in 

various scenarios, ranging from image synthesis, enhancing the quality 

of images (superresolution), image-to-image translations, to text-to-

image generation, and more. In addition, GANs are the building blocks 

for advancements in the use of AI for art, music, and creativity (e.g., music 

generation, music accompaniment, poetry generation, etc.).

GANs are emerging as powerful techniques for both unsupervised and 

semisupervised learning. A basic GAN consists of the following:

•	 A generative model (i.e., generator) generates an 

object. The generator does not know anything about 

the real objects and learns by interacting with the 

discriminator. For example, a generator can generate 

an image.

•	 A discriminative model (i.e., discriminator) 

determines whether an object is real (usually 

represented by a value close to 1) or fake (represented 

by a value close to 0).

•	 An adversarial loss (or error signal) is provided by 

the discriminator to the generator such that it enables 

the generator to generate objects that are as close as 

possible to the real objects.

More details about GANs are included along with sample code 

Chapter 8.
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We expect that GANs will become more popular in the coming years, 

even outside of the use of creative applications, as they have potential to 

address how to create unsupervised learning methods that would greatly 

expand the reach of ML applications. Today, these types of models take 

a long time to train and are notoriously difficult to tune, and we expect 

that research will continue to advance the practicality of these networks 

for real applications. As this type of technology sees more real-world 

applications, improves on quality, and expands to more mediums such as 

videos, we believe more debate will surface over their use. For example, 

the implications of not being able to discern true content from fake are 

quite far-reaching, with examples already highlighted in the media such 

as near-realistic fake words inserted into videos of politicians speaking 

(Metz & Collins, 2018).

�Autoencoders
Autoencoders are another type of a feedforward network and have 

been used for applications such as dimensionality reduction, anomaly 

detection, and learning generative models. These neural network models 

have an input layer, an output layer, and at least one hidden layer in 

between. Importantly, autoencoders have the same number of units in 

the input layer as the output layer, and their purpose is thus to reconstruct 

the original values in the input layer. Of course, these are designed in 

such a way that they do not copy the input data exactly but are restricted 

so that they can only learn approximately, such as having a smaller 

dimension than the input data, as one example. Autoencoders thus learn 

most relevant properties to reconstruct the input data. As such, they 

can be useful for unsupervised learning applications where there is no 

target value for prediction or for learning features for input into another 

algorithm. They have shown promise for many applications such as 

recommender systems (Kuchaiev & Ginsburg, 2017).
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�Deep Learning Workflow
For many AI projects, deep learning techniques are often used as the 

building block for building innovative solutions ranging from image 

classification and object detection to image segmentation, image 

similarity, and text analytics (e.g., sentiment analysis, key phrase 

extraction). Often, people will ask, “How do I get started with using deep 

learning in my team?” To get started with deep learning, it is important 

to understand the tools and technologies that are used in deep learning 

projects and the workflow for building a solution.

Given the business requirements for an innovative solution, a data 

scientist will need to map it to one or more deep learning tasks. For 

example, let’s say a retail business wants to create an end-to-end customer 

shopping experience for mobile devices, where customers can take a 

photo of a shirt or a dress, and an application running on the mobile 

device can then match it to the shirts and dresses in the shopping catalog. 

To achieve this, the data scientist maps this to an image similarity problem: 

Take a new input image, and match it against all the shirts and dresses in 

the catalog. The top N images will be returned to the mobile application. 

While working with the application developers, other requirements need 

to be addressed as well, like identifying and cropping the image to just the 

person wearing the shirt or dress, for example. This will require the use of 

both object detection and image classification.

Once the deep learning task is identified, a typical deep learning 

workflow will include the following:

	 1.	 Identify relevant data set(s).

	 2.	 Preprocess the data set.

	 3.	 Train the model.

	 4.	 Check the performance of the model.
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	 5.	 Tune the model.

	 6.	 Deploy the model.

	 7.	 Iterate and collect more data to enable retraining.

�Finding Relevant Data Set(s)
Most companies wanting to get started with deep learning projects often 

face difficultly when trying to find relevant data set(s) that they can use 

for training their deep learning models for a specific business scenario. 

In addition, the data set needs to be labeled. For example, to train a CNN 

to identify the type of clothing (e.g., polo shirt, t-shirt, dress, jeans), a data 

set consisting of images of clothing, with labels denoting whether the 

image is a shirt, dress, t-shirt, or jeans is required. These images can come 

from the existing product catalogs, public image data sets (e.g., diverse set 

of images from ImageNet, CIFAR-10, Deep Fashion), and scraped from 

various web sites.

To seed the initial training and validation data set if data are not 

already available, data scientists often use a search engine (Figure 2-7) 

for performing an image search on a specific class (e.g., jeans), where the 

image owner has labeled the image as free to use for commercial use.
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�Data Set Preprocessing
After the data scientist has acquired the relevant image data sets, he or she 

will need to prepare them for training. Often, many real-world image data 

sets are imbalanced (commonly known as the minority class problem). 

This means there might be more images for a specific class (e.g., polo 

shirts), and fewer images for another class (e.g., t-shirts). To solve the 

imbalanced data set problem, a data scientist applies various tricks to 

increase the number of images in the minority class or down-sample from 

the more frequent classes until parity is achieved.

Figure 2-7.  Results returned from an image search using Bing
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Another commonly used preprocessing technique is data augmentation 

to help the model generalize over multiple conditions, to improve its 

invariance to aspects such as rotation, translation, and scaling. This 

includes applying various transformation to the image, such as scaling, 

rotating, random cropping of the image, flipping the image, adjusting the 

brightness and contrast, and more. Various data augmentation capabilities 

are supported in the different deep learning frameworks.

�Training the Model
After the data set has been preprocessed and prepared, the data scientist is 

ready to start designing the deep learning model architecture and training 

the model. The key ingredients that enable effective modeling and training 

of deep learning models are (1) choosing a deep learning toolkit, and (2) 

training using hardware such as GPUs. This is discussed in more detail in 

the next section in this chapter.

Depending on the size of the data set, the model can be trained on a 

local machine (e.g., laptop, PC, Mac) or using infrastructure available in 

the public cloud, such as Microsoft Azure. Azure provides both NC-series 

virtual machines (VM) with Nvidia GPUs, as well as a managed service, 

called Azure Batch AI, which enable you to easily scale up and down GPUs 

that you need for your deep learning jobs. This will be covered in more 

detail in Chapters 4 and 9.

�Validating and Tuning the Model
During training of the deep neural network, there are several key metrics 

that will provide insights on the learning efficiency and the quality of the 

models at each epoch. An epoch refers to a full pass of the training data set. 

Two metrics are commonly tracked: (1) loss function, and (2) training and 

validation accuracy.
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By evaluating the loss function at each epoch, the quality of the model 

at the end of each epoch can be evaluated. A lower loss is a good indication 

of a better model. There are many hyperparameters that are set before 

the learning process even begins—the learning rate is one important 

hyperparameter that can have a significant impact on the results of the 

model. By plotting loss (y axis) and epochs (x axis), whether the learning 

rate has been set appropriately can be understood: A good learning rate 

leads to a lower loss in a shorter amount of time. Often, the learning rate 

is tracked for both the training and validation data set. However, it is 

also important to make sure that the model has not overfit the training 

data. Figure 2-8 shows an example of different learning rates. In practice, 

the learning rate curves are not smooth and it is possible to modify the 

learning rate over the training process as needed. This is just one example 

of the type of validating and tuning that is required during the process of 

training a deep learning model.

Figure 2-8.  Different learning rates. Illustration inspired by Stanford 
cs231n course available at http://bit.ly/StanfordCS231n.
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The second metric commonly tracked is the training and validation 

accuracy. By charting the accuracy (y axis) and epoch (x axis), it can be 

understood whether the model has overfit the training data set. If the 

training and validation accuracy curves are close to each other, then very 

little overfitting has occurred. If the training and validation curves are far 

apart, overfitting has occurred, and it is important to revisit the model, as 

it does not generalize to new data as expected. Figure 2-9 shows how to 

identify overfitting by looking at the accuracy curves for the training and 

validation data set.

Figure 2-9.  Identifying overfitting using training and validation 
accuracy

�Deploy the Model
Once the quality of the model is high enough for the requirements of the 

solution, the next step is to deploy it. Today, deep learning models can be 

deployed to the cloud as REST APIs, run in a batch on a schedule, deployed 

onto mobile devices (e.g., iPhones, Android phones, iPads, and more), or 

edge devices (e.g., Internet of Things [IOT] gateways). This depends on 

how you are thinking about using the trained deep learning model. For 

example, if you are developing a web application, and you are enriching 

it with AI, it makes sense to operationalize your deep learning models as 

REST APIs, which can be easily consumed by the web application. If you 
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are developing a mobile application, you should consider both connected 

and disconnected scenarios, as well as latency requirements. You will 

either have the models running offline on the mobile device, or a hybrid 

model where you have both combinations of models that run on device 

and REST APIs that provide more powerful functionality in the cloud.

To deploy the deep learning models as REST APIs, several options 

exist. You can leverage Azure Machine Learning Operationalization 

services (more details will be covered in subsequent chapters in the book) 

to host the model in a docker container, and expose one or more REST 

endpoints, or you can build your own hosting stack (e.g., use of Flask, 

CherryPy backed by high-performing web server like NGINX). You can 

easily deploy this hosting stack on Microsoft Azure, as well. Depending on 

the scenario, you might want to run the model in batch mode on a large set 

of data on a schedule. The type of hardware such as GPUs is also a relevant 

factor to consider. More details are discussed in Chapter 10.

For more consideration around approaching data science workflows 

in general, including deep learning projects, we suggest the Microsoft 

Team Data Science Process available at http://bit.ly/MSFT_TDSP. 

This includes an overview of the data science life cycle, a suggested 

standardized project structure and infrastructure, and resources for data 

science projects.

�Deep Learning Frameworks & Compute
As mentioned earlier, two key ingredients you need for performing 

deep learning training are (1) use of a deep learning framework, and 

(2) performing training using a GPU. General-purpose computing on 

GPUs especially through efficient use of matrix multiplication has been 

accelerated through frameworks such as CUDA and OpenCL. These have 

enabled higher level libraries such as cuDNN on top of CUDA for building 

deep neural nets; cuDNN underpins popular deep learning libraries.
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There are now many popular deep learning frameworks such as 

Tensorflow, PyTorch, CNTK, MXNet, and Caffe2, as well as popular higher 

level APIs such as Keras and Gluon. The choice of a deep learning toolkit 

depends on many factors, including the availability of good tutorials 

and existing implementations of model architectures and pretrained 

models, skill sets of the AI talents in the company, flexibility of the toolkit 

in expressing complex deep neural networks, availability of built-in 

helper functionalities (e.g., rich set of APIs for data augmentation and 

transformation), ability to effectively leverage both CPUs and GPUs, and 

ability to perform distributed training.

We recommend the deep learning comparison repo available at 

http://bit.ly/DLComparisons for understanding differences between 

different deep learning frameworks on a few common scenarios, with 

example frameworks considered as illustrated in Figure 2-10. This repo has 

several stated goals:

	 1.	 A “Rosetta Stone” of deep learning frameworks to 

allow data scientists to easily leverage their expertise 

from one framework to another.

	 2.	 Optimized GPU code using the most up-to-date 

highest level APIs.

	 3.	 A common setup for comparisons across GPUs 

(potentially CUDA versions and precision).

	 4.	 A common setup for comparisons across languages 

(Python, Julia, R).

	 5.	 The possibility to verify expected performance of 

own installation.

	 6.	 Collaboration between different open source 

communities.
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The comparisons in the repo are not meant to suggest anything about 

the overall performance of the different frameworks because they omit 

important comparisons such as availability of pretrained models as just 

one example. Yet they serve as a nice way to get started and compare many 

popular frameworks for common scenarios.

Note  Keras is emerging as a popular deep learning library, due to 
its ability to provide high-level abstractions for modeling deep neural 
networks, and the flexibility to choose different back ends (e.g., 
TensorFlow, CNTK, Theano).

In 2017, Facebook and Microsoft announced the ONNX open 

source format for deep learning models to enable data scientists to 

train a model in one framework but deploy it in another, for example. 

Figure 2-10.  We recommend the “Rosetta Stone” for deep learning 
frameworks available on GitHub at http://bit.ly/DLComparisons 
with timings for different variants of Azure GPU VMs available for 
running deep learning code
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Since the announcement, other companies and developers of popular 

frameworks have joined this open source interoperability standard effort 

for transferring deep learning models between frameworks. There are also 

packages that allow converting directly from one framework to another, 

such as MMdnn, which helps users directly convert between different 

frameworks as well as visualize the model architecture.

Many of the deep learning libraries also include various ML 

algorithms. Most of these deep learning libraries support distributed 

training, and this helps a lot for doing deep learning at scale. Most of the 

deep learning libraries have Python wrappers. If you are an R user, you 

can also use R interfaces for some of the deep learning libraries (e.g.,  

R interfaces to TensorFlow, Microsoft Cognitive Toolkit [CNTK], Keras, and 

more). In this book, we focus on the use of the libraries for modeling deep 

neural networks. Figure 2-11 shows several deep learning libraries, and the 

code activity on GitHub.

Figure 2-11.  GitHub Stars/Fork for deep learning libraries

Chapter 2  Overview of Deep Learning



47

Although most of the examples in this book use Tensorflow, the 

Microsoft AI Platform supports any open source framework. In addition, 

we include a few examples of using other frameworks, such as a 

pedagogical example showing how one can train a CNN model using 

many different deep learning frameworks using the Microsoft Batch AI 

service in Chapter 9.

GPUs make the training of deep learning models possible within a 

reasonable time frame. In recent years, innovations in both algorithms and 

availability of faster GPUs have enabled the training of deep learning models 

to be completed quickly. For example, the training of CNNs like ResNet-50 

using the publicly available ImageNet data set used to take 14 days or more 

before 2017. Within months in 2017, the time taken to train ResNet-50 

decreased significantly, from an hour to approximately 15 minutes. Preferred 

Network was able to train ResNet-50 CNN model with ChainerMN with 

1,024 P100 GPUs in 15 minutes in November 2017, for example.

�Jump Start Deep Learning: Transfer Learning 
and Domain Adaptation
A major trend to jump starting deep learning solutions has been to build 

prior knowledge into the development of the model so it does not learn 

solely from the data of the problem at hand. Two common ways this is 

done is through a concept called transfer learning in computer vision and 

domain adaptation mainly through the use of word embeddings in natural 

language processing.

Transfer learning is especially useful in computer vision tasks such as 

image classification and object detection. The basic idea is that we want to 

be able to transfer our learning from one application to another. Transfer 

learning enables data scientists to quickly adapt existing pretrained 

models (e.g., AlexNet, ResNet-50, InceptionV3, etc.) to new domains. 

For example, a CNN can be trained on the large ImageNet data with 
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millions of examples. This CNN then internally holds the representation 

of how to process images well, such as how to detect edges, shapes, and 

patterns to distinguish between objects. We thus want to be able to use 

this knowledge, captured within the weights of the network to use in a 

classification scenario with significantly less data, such as distinguishing 

between types of shirts on a retail web site or distinguishing between 

defects and nondefects through images taken on a manufacturing 

assembly line, for example.

Thus to jump start deep learning projects in computer vision, for 

example, we recommend data scientists leverage pretrained models that 

are trained using publicly available data sets such as ImageNet, CIFAR-10, 

and COCO. These data sets contain millions of images (from diverse 

domains) and have been carefully curated by the respective research labs 

(often through crowd-sourcing efforts) and annotated with class labels.

The pretrained models are used to jump start image classification, 

object detection, and image segmentation problems. These pretrained 

models, trained on large image data sets, are used either as featurizers for 

new images, or to further fine-tune to adapt to domain-specific images 

(e.g., medical x-ray images, PCB circuit board images, etc.) to improve 

on the quality of the predictions. Table 2-2 shows the different types of 

transfer learning. Table 2-3 shows the input and output initialization 

required for each type of transfer learning.
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Table 2-3.  Initialization of Inputs and Outputs of a Deep Learning 

Model Using Transfer Learning

Type How to Initialize Featurization Layers Output Layer Initialization

Standard DNN Random Random

Headless DNN Learn using another task Separate ML algorithm

Fine-tune DNN Learn using another task Random

Multitask DNN Random Random

Table 2-2.  Different Types of Transfer Learning

Type How Is Transfer Learning Used? How to Train?

Standard DNN None Train featurization and 

output jointly

Headless DNN Use the features learned on a  

related task

Use the features to train a 

separate classifier

Fine-tune DNN Use and fine-tune features learned  

on a related task

Retrain featurization and 

output jointly with a small 

learning rate

Multitask DNN Learned features need to solve many 

related tasks

Share a featurization 

network across both tasks

Natural language processing has also been accelerated by pretrained 

models, but in this case, it is often in the training of the representation of 

words that goes into the deep learning model known as word embeddings. 

Taking a step back, in natural language processing, words were typically 

represented through one-hot encoding, where each word is represented 

by a vector of length equal to the size of the vocabulary; all values are zeros 

except at the position that corresponds to that word in the vocabulary, 

which has the value of 1. Models would need to learn from scratch with 
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just the data of the problem at hand every time to understand how to 

process the words and what their meaning was in the context of the 

specific natural language processing task. In contrast, word embeddings 

are low-dimensional vectors that encode semantic meaning of words, 

encoding semantically related words close to each other in the embedding 

vector space.

Importantly, word embeddings can be trained on large, unlabeled data 

and many pretrained word embeddings are made available for use in other 

natural language processing tasks. By using a pretrained word embedding 

such as one trained on Google News, knowledge about how words are 

related to each other is embedded into the model built with them.

Word embedding vectors are learned using so-called word2vec 

algorithms such as Skip-Gram and CBOW. These are simple neural 

network models that aim to predict words in a window around each 

word. The concept is that semantically related words will appear in 

similar context and thus obtain similar vector representations. Of course, 

domain-specific word embeddings might be beneficial to better represent 

words within the model, and recent research has also focused on how 

to allow better domain adaptation between natural language processing 

applications.

�Models Library
Many pretrained deep neural networks are available for each of the deep 

learning libraries. For example, Microsoft CNTK and TensorFlow provide 

pretrained models for several state-of-the-art CNNs (AlexNet, GoogLeNet, 

ResNet, and VGG). Caffe’s Model Zoo provides a rich set of 40 and more 

pretrained models for state-of-the-art CNN (ResNet, Inception, VGG, 

etc.), and supporting various scenarios (e.g., car model identification, 

recognizing different landmarks and places, scene recognition, etc.). 

Google Word2Vec is a popular pretrained word-embedding model with 

many available tutorials.
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You can use these pretrained models to jump start your deep learning 

projects, or further fine-tune the network for your business scenarios. This 

will often save significant amounts of time training the base models on a 

diverse data set.

More Info F ind out more about example pretrained models:

CNTK Pretrained Image Model: http://bit.ly/CNTKModels
TensorFlow Official Model: http://bit.ly/TensorflowModels
Caffe Model Zoo: http://bit.ly/CaffeModels
Tensorflow Word2Vec: http://bit.ly/TensorflowWord2Vec

�Summary
This chapter briefly introduced several common types of neural networks 

including CNNs, RNNs, and GANs, which are discussed in more detail 

along with sample code in later chapters. We also discussed the deep 

learning workflow, the nuts and bolts of starting a deep learning project 

and some of the libraries that can be used to develop and train deep 

neural networks. To help jump start deep learning projects, data scientists 

and developers can leverage pretrained models as the foundations for 

featurizing images or use them to further customize and fine-tune to adapt 

for your business domains. In the next chapter, we discuss some of the 

trends in the deep learning field as well as some of the limitations of this 

type of modeling approach.
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CHAPTER 3

Trends in Deep 
Learning
This chapter discusses some of the trends in deep learning and related 

fields. We cover specifically which trends might be useful for what tasks as 

well as discuss some of the methods and ideas that could have far-reaching 

implications but have yet to be applied to many real-world problems. We 

finish by covering briefly some of the current limitations of deep learning 

as well as some other areas of AI that seem to hold promise for future AI 

applications, and discuss briefly some of the ethical and legal implications 

of deep learning applications.

�Variations on Network Architectures
One of the first trends in the field of deep learning was to build deeper 

networks with more layers to solve problems with increasing complexity. 

However, training such deep networks is difficult, as they are harder to 

optimize, and accuracy can degrade rather than improve. As mentioned 

in Chapter 1, Microsoft released a network structure in 2015 that builds on 

the concept of residual learning with their architecture called ResNet (He, 

Zhang, Ren, & Sun, 2015). Instead of trying to learn a direct mapping of the 

underlying relationship between an input and output within the network, 

the difference or residual between the two is learned. With this concept, 
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training of networks substantially deeper than previously used before 

became possible, with a network of 152 layers winning the 2015 ILSVRC 

competition on the ImageNet data. A class of networks called Inception 

networks alternatively focus on wide architectures where not all layers are 

simply stacked sequentially, aiming to increase both performance as well as 

computational efficiency of neural network models (Szegedy, Liu, et al., 2014).

Note  To accelerate development, practitioners should leverage 
network architectures from the research community such as 
Resnet-152 rather than trying to build and train CNNs from scratch.

�Residual Networks and Variants 
There have been many suggested network architectures in recent years, 

and this trend continues to result in more network architecture choices. 

Many architectures rely on modifications to ResNets, such as ResNeXt, 

MultiResNet, and PolyNet (Abdi & Nahavandi, 2017; Xie, Girshick, Dollár, 

Zhuowen, & He, 2017; Zhang, Li, Loy, & Lin, 2017). Combining different 

types of approaches has also been considered such as Inception-ResNet 

(Szegedy, Ioffe, & Vanhoucke, 2016). In contrast, FractalNet is an extremely 

deep architecture that does not rely on residuals (Larsson, Maire, & 

Shakhnarovi, 2017).

�DenseNet 
DenseNet is another popular network structure where each layer 

is connected to all other layers; its popularity lies in that it allows a 

substantial reduction in the number of parameters through feature reuse 

while alleviating a problem related to training of the networks called 

vanishing gradients (G. Huang, Liu, van der Maaten, & Weinberger, 2018).
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�Small Models, Fewer Parameters 
Related to the reduction of the number of parameters with DenseNet, 

another trend in CNNs is for the creation of more efficient networks that 

are built on fewer parameters and have a smaller model size. In general, 

larger networks enable more accurate predictions, but there are clever 

ways of creating architectures and conducting model compression 

to achieve performance close to or at par with larger networks. These 

networks can thus be run faster and with less processing power, which can 

be especially useful, for example, on embedded and mobile devices where 

the computational power and storage are limited.

SqueezeNet, introduced by Iandola et al. (2016), is described as 

having accuracy similar to AlexNet with 50 times fewer parameters and 

model size less than 0.5 MB, using depth-wise separable convolutions 

to reduce the number of parameters. MobileNet is another example 

that was designed specifically for mobile and embedded vision 

applications (Howard et al., 2017), which has recently been extended 

with MobileNetV2. Besides designing efficient smaller networks, 

alternatives include pruning weights from existing deep networks, 

pruning filters, and quantizing weights within the network (Mittal, 

Bhardwaj, Khapra, & Ravindran, 2018). As one example, by pruning 

certain connections in the VGG16 architecture, the size can be reduced 

by a factor of 49 without modifying the predictions from the model 

(Han, Mao, & Dally, 2016).

In practice, we recommend data scientists try many network 

structures based on the current research that are often made available 

through model zoos and different deep learning frameworks as was 

described Chapter 2. Data scientists must try the different options and 

consider the trade-offs between aspects such as ease of training and 

speed of scoring the models as required for the specific data set and 

problem at hand.
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�Capsule Networks
CNNs are a fantastic architecture and have been one of the key reasons for 

the resurgence of neural networks. As mentioned earlier, CNNs work on 

the premise of translation invariance. This translation invariance is limited, 

however, and they have significant drawbacks that stem from the fact that 

they do not deal with other translations such as size, illumination, and 

rotation of the input well as shown in Figure 3-1. This is usually overcome 

by providing many examples, augmenting the data with translated and 

generally modified examples, and as discussed earlier, pooling layers.

Figure 3-1.  CNNs do not build an internal representation of objects 
and thus struggle to understand objects when viewed from a different 
angle, and they can be fooled when parts of the object are out of order. 
In this case, a model thinks the same chair is a different object when 
viewed from above and thinks the face is a person even though parts 
of the face are moved around. Capsule networks are designed to tackle 
this problem in a more natural way using the idea of inverse graphics.

In general, CNNs do not intrinsically care about the spatial and 

orientational relationship between the items in the image; they only 

care whether these features exist. Higher level features are simply a 

combination of lower level features. Furthermore, CNNs use methods 
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that reduce the spatial dimensions of the data and in effect increase the 

receptive field, the field of view of the higher level nodes. This allows the 

nodes to detect higher level features in larger regions of the input image. 

One of the methods of doing this is max pooling, which we explained in 

Chapter 2. By using max pooling, though, the CNNs lose spatially acuity. 

For this reason, max pooling is viewed as a bit of an anathema by Hinton 

and therefore he sought to devise a new architecture, capsule networks 

(Sabour, Frosst, & Hinton, 2017).

Capsule networks are inspired by the idea of inverse graphics. In 

traditional graphics we describe an object and its pose parameters and 

through the process of rendering, the object is displayed on a screen. In 

inverse graphics we want to observe a scene and from it infer the objects 

and their poses.

A capsule in a capsule network tries to predict the presence and 

properties of a particular object at a given location in the scene. Capsules 

output vectors rather than scalars and the length of the vector encodes the 

estimated probability of the object being present at that particular location 

and the orientation encodes the pose parameters of the object.

Capsule networks also use a novel way of passing information between 

layers called dynamic routing. This means that the routing is not fixed 

beforehand, but determined dynamically during its execution. The 

method to achieve this proposed by Sabour, Frosst, and Hinton (2017) is 

called routing by agreement. The architecture of capsule networks is very 

similar to that of CNNs: Layers of capsules succeed each other with lower 

level features detected by the lower capsule and the higher level capsules 

composing these features to create higher level features. In routing by 

agreement, the lower level capsule outputs n-dimensional vectors whose 

length encodes the probability and its orientation in the n-dimensional 

space for the pose of the object detected. The subsequent capsule layer 

takes the input of all these capsules and then through an iterative process 

determines the weights of the inputs. In essence each layer’s estimation 

of the pose parameters is matched against the pose parameters of the 
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subsequent layer. The closer the match, the higher the weights between 

the subsequent capsules. The scalar product of the vectors is used as the 

measure of similarity. This means that the weights between capsules are 

not static but change depending on the capsule vectors present.

Capsule networks have demonstrated state-of-the-art results and 

require fewer training examples than CNNs due to their pose invariance. 

Training them is still slow, though, due to the iterative nature of dynamic 

routing, and they still remain to prove themselves across all the computer 

vision domains currently dominated by CNNs.

�Object Detection 
Another trend in deep learning is the use of meta-architectures, building out 

on top of previous solutions to solve other types of problems. In analyzing 

images, for example, the ideas and pieces of CNNs are used as a backbone 

beyond image classification problems to solve problems such as object 

detection and image segmentation. One foundational model in object 

detection, for example, was the R-CNN model, which simply proposed 

cropping each image externally to the model using a region proposal 

method such as selective search, extracting features from each cropped 

image based on a CNN model, and then classifying each cropped image 

with support vector machine models (SVMs; Girshick, Donahue, Darrell, & 

Malik, 2013). In object detection, the trend has been to use the latest network 

architecture as feature extractors, but also emerging, improved meta-

architectures as well as improved approaches for performance. For example, 

faster R-CNN and R-FCN are alternative meta-architectures that also build 

on standard CNNs but also predict bounding boxes using “anchors” during 

training, which are boxes overlaid on the image at different locations, scales, 

and aspect ratios (Ren, He, Girshick, & Sun, 2015; Dai, He, & Sun, 2016).

The YOLO approach (You only look once: unified real-time object 

detection; see Figure 3-2) uses a simple CNN applied to the entire image 

(Redmon, Divvala, Girshick, & Farhadi, 2015). YOLO was the first approach 
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to make real-time object detection practically possible through framing 

object detection not as a classification problem with bounding boxes, 

but as a regression problem to bounding boxes and associated class 

probabilities. Other related approaches such as SSD, MultiBox, and YoloV2 

have been released recently along the trend of providing models that run 

faster while aiming to maintain good accuracy levels (Liu et al., 2015; 

Redmon & Farhadi, 2016; Szegedy, Reed, Erhan, Anguelov, & Ioffe, 2014).

Figure 3-2.  Applying a pretrained object detection model to find 
objects using YOLO
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In practice, trade-offs might need to be made between setting up the 

solution for accuracy of results versus speed of inference depending on 

whether the application has requirements such as real-time performance. 

Different meta-architectures, choices made during training such as 

the CNN architecture used as the feature extractor, image resolution, 

hardware, and software make broad generalizations about the ideal 

approach hard to make (J. Huang et al., 2017).

�Object Segmentation
Many recent proposals explored how to reduce the need for the bounding 

box for object detection and explored segmentation neural network 

models such as LinkNet, as well as to use more specialized networks for 

other vision tasks, such as CortexNet for identifying actions on images 

rather than categorizing single frames (Culurciello, 2017). Mask R-CNN 

and focal loss for dense object detection are other recent trends in object 

detection that have been open sourced by Facebook AI Research within 

a software system called Detectron and are thus available to run on the 

Microsoft AI Platform (He, Gkioxari, Dollar, & Girshick, 2017; Lin, Goyal, 

Girshick, He, & Dollar, 2017). This marks truly exciting progress in object 

segmentation!

�More Sophisticated Networks 
The types of networks discussed in this chapter are just some examples 

within the broad space of deep learning. There are many ways to formulate 

deep neural networks as well as combine with other methodologies within 

a broader solution. As an example within the field of speech translation, 

Microsoft Research recently found state-of-the-art results on a large 

benchmark data set, the English–French translation campaign from 2014 

at http://bit.ly/2EzMeRY using what was coined a deliberation network 

(Tian, 2017). This network builds on top of a simple LSTM architecture, 
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combined with dual learning that is inspired by how humans deliberate. 

The premise is simple: A first-pass decoder goes over the sentence similar 

to creating a rough draft, whereas the second-pass decoder takes both the 

original input as well as the rough draft as input to get to the final solution. 

This is just one example, and there are numerous others of combining 

deep learning technologies together or with other methodologies as part of 

a larger solution as well.

Similar to CNNs and RNNs, there has been large growth in the variety 

of proposed types and uses of GANs. There have also already been 

many commercial applications of GANs. For example, Microsoft worked 

with Getty Images, which provides stock photos, to explore image-to-

image translation, such as turning a sunny beach photo into an overcast 

beach photo to provide more options to their customers (Liakhovich, 

Barraza, & Lanzetta, 2017). Microsoft Research also developed a “drawing 

bot” based on GANs that is able to create images based on only a text 

description, images that are based only on the computer’s “imagination” 

(Roach, 2018). The AttnGAN model proposed for this purpose was able 

to outperform previous state-of-the-art models in early 2018, producing a 

nearly threefold boost in image quality for text-to-image generation on an 

industry standard test (Xu et al., 2017).

�Automated Machine Learning 
Another area of ML that has been garnering interest the last few years 

is that of automatic ML and smart hyperparameter tuning (Bergstra, 

Yamins, & Cox, 2013; Domhan, Springenberg, & Hutter, 2015; Fusi & 

Elibol, 2017; Golovin et al., 2017; Li, Jamieson, DeSalvo, Rostamizadeh, & 

Talwalkar, 2016). Both these areas of research try to make use of historical 

information, optimization, and metalearning to be able to automatically 

or semiautomatically arrive at optimal ML pipelines, neural network 

topologies, and so on.
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Another such piece of work centered around using reinforcement 

learning and LSTMs to create new neural network architectures (Zoph & 

Le, 2016). Reinforcement learning (RL) is a subfield of AI that is designed 

to have software agents automatically determine the optimal behavior to 

maximize performance, through a reward feedback process. It is a type of 

automated learning mechanism. The resulting CNN architecture called 

NASNet achieved state-of-the-art results on the CIFAR10 data set at the 

end of 2017 and is 1.05 times faster than the previous state-of-the-art 

model. Others have recently focused on more efficient search mechanisms 

such as leveraging current networks and reusing trained network weights 

(Cai, Chen, Zhang, Yu, & Wang, 2017). In the future we will probably see 

further endeavors in this area as computation becomes even quicker and 

the scale up and out of cloud infrastructure is fully realized.

Related to architecture search, the field of neuroevolution has recently 

received more visibility in the research and industrial community. This is a 

subfield of AI that aims to understand and invoke an evolutionary process 

similar to the one that produced the form of intelligence in human brains 

within a computer. Whereas NASNet and related areas of research focus 

on trying to automate the creation of networks, most applications of deep 

learning today require a human to specify the architecture of the neural 

network. Rather than having a fixed network architecture that we aim to 

optimize, researchers in the field of neuroevolution study the process of 

learning itself.

Neuroevolution researchers have found interesting results that we 

believe will influence more strongly applications of AI in the future. One 

example from neuroevolution is the concept of novelty search, the idea 

that optimizing for novelty might provide better results than optimizing 

for the direct outcome. Stanley (2017) illustrated the concept through the 

problem of trying to find a model for a robot to learn how to walk. One 

might guess that the best way to get an amazing walking robot would be 

to artificially combine together the models of the best walkers from the 

previous generation. However, the robots who are good at walking in the 
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first generations might just be lurching forward unreliably. In contrast, 

robots that try oscillating their legs in a regular pattern fall down right away 

but could lead to more robust walking in the future, so simply breeding 

based on the best in the past might not be beneficial for the future. This 

field has also benefited tremendously by the increased computation power 

available today and we expect to see more advances and direct impact on 

the deep learning field.

Recently algorithms and processes for deriving AI from the field of 

neuroevolution have been applied to the deep learning architecture 

search problem and compared against reinforcement learning type 

approaches that resulted in NASNet. Real, Aggarwal, Huang, and Le 

(2018) found that regularized evolution approaches performed better than 

reinforcement learning at early search stages and generally found that 

they produced similar or higher accuracy results without having to retune 

parameters. The new architecture from this evolutionary search process 

called AmoebaNets resulted in state-of-the-art results for several image 

classification tasks at the beginning of 2018.

�Hardware 
Deep neural networks involve a vast amount of computation, often 

using very large data sets to calculate the composition of an extremely 

parameter-heavy model. GPUs, which were originally designed for 

computations around rendering graphics on the computer, have 

accelerated the use of deep learning because they enable a high 

degree of parallelism within the GPU card. GPUs can provide higher 

throughput and efficiency for certain categories of applications 

compared with CPUs, including the types of computations required 

for deep learning training and inference. GPUs have a well-defined 

instruction set and fixed data width (specific precision integer and 

floating-point values).
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GPUs have become increasingly more powerful over time, as 

mentioned in Chapter 2. For example, the release of the NVIDIA Tesla 

V100 in May 2017 touted 2.4 times faster training of ResNet-50 DNN than 

the P100 released a year earlier (Durant, Giroux, Harris, & Stam, 2017). 

In addition, there has been recent research on mixed precision training, 

allowing for a reduction in the memory consumption and thus shortening 

the training or inference time (Micikevicius, 2017).

�More Specialized Hardware
Hardware has continued to specialize with the specialization of field 

programmable gate arrays (FPGAs) and application-specific integrated 

circuits (ASICs) for neural network modeling, moving toward more 

specialized hardware that is more efficient, as pictured in Figure 3-3. 

FPGAs are integrated circuits that do not have a predefined instruction 

set or fixed data width like GPUs. FPGA acceleration works by having 

the FPGA handle the extremely computing-intensive tasks that have 

been designed to be accelerated by the hardware, while the CPU handles 

other operations. They provide potential for ultralow latency calculations 

through optimizing numerical precision for inference, as well as potential 

to evolve to new ML application areas. They can run low-precision 

workloads for optimal efficiency using much less power and thus run 

much cheaper than GPUs.

Increasing use of FPGA technology is an especially promising trend in 

the AI space because of FPGA’s reconfigurability and its access to both the 

hardware and software level. This is especially promising for its potential 

for compromise between flexibility and specialization. ASICs are more 

performant for the application for which they are designed, but they are 

not useful for general-purpose computing, as they cannot be reconfigured 

after manufacturing.

Chapter 3  Trends in Deep Learning



65

In other words, FPGAs are more flexible than ASICs as they can be 

used and then repurposed for workloads beyond just deep learning and 

AI applications, including graph analytics, database acceleration, and 

data encryption, for example. Programming FPGAs requires support from 

specialized compilers, and it is relatively much harder than compilers used 

for traditionasl processors.

�Hardware on Azure
Microsoft has been investing in specialized hardware for use both in 

their own products as well as for others to use through their Azure cloud 

computing platform. To accelerate Bing’s search ranking algorithm, for 

example, FPGAs were programmed for that sole purpose and resulted in 

double the throughput at just 10 percent more power (Feldman, 2016). 

In 2016, Altera FPGAs were installed across every Azure cloud server 

datacenter at the time as Microsoft prepared to release capabilities as 

third-party offering. The ability to use FPGAs for deep learning inference that 

was announced in early 2018 is mentioned in more detail in Chapter 10.

�Quantum Computing 
As hardware such as more advanced GPUs and FPGAs continues to advance 

and specialize to enable deep learning, the future of how computing is 

conducted might also change dramatically in the longer term thanks 

Figure 3-3.  Alternatives for processing computations such as those in 
deep learning models
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to ongoing research in areas such as quantum computing. Quantum 

computing is a fundamentally different way of computing compared to 

today’s computers. Rather than the foundational building block of a bit in 

today’s computers, quantum computing builds on quantum bits called 

qubits that exist as a mixture of states at a given point in time and that can 

be manipulated all at once. It’s not clear yet what types of problems are 

most applicable to quantum computing, although there are some clear 

applications such as cryptography. Unfortunately, building quantum 

computers is extremely difficult and they are extremely hard to use as well as 

scale. So far, they can only be used for a limited set of computing tasks. Qubits 

are extremely sensitive to the surrounding environment and interference 

results in calculation errors. Microsoft is working on developing more general-

purpose quantum computers to help solve today’s intractable problems 

through research on “topological qubits” that has the potential to completely 

revolutionize AI by opening up completely new computing potential.

The problems we’re looking at solving with a quantum com-
puter are the problems that, today, require age-of-the-universe 
time scales. … Some of these problems literally require billions 
and billions and billions of years to solve. And on a quantum 
computer, what we’ve shown in some recent research, is that 
you can solve some of these problems in a matter of say, weeks, 
days, hours, seconds.

—Krysta Svore, Microsoft Research

Although this is an area of active research, Microsoft has released 

quantum computing development tools and programming language 

for quantum algorithm development. Other areas of research include 

approximate computing, using less precision as well as allowing random 

small mistakes that can cancel out over time, to save energy and increase 

efficiency of computations. Many believe quantum computing has much 

potential to accelerate the development and application of AI, but the full 

power and potential is yet to be seen.
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�Limitations of Deep Learning
Deep learning has led to many incredible advances in the application of AI.  

Deep neural networks work by transforming an input vector to a target 

output vector, a complicated transformation created simply through a 

series of simple transformations. With massive data and computing power, 

the relatively simple concept of neural network models can be used to 

effectively map between many inputs and outputs such as recognizing 

speech from audio snippets. We believe deep learning will continue to 

play a large role in the advancement of AI applications, but that we need to 

understand the limits and capabilities to apply the technology in the right 

scenarios and in appropriate ways.

�Be Wary of Hype
In fact, we should be careful not to overestimate the abilities of deep 

learning models. They do not learn abstract concepts or “understand” in 

a way that is relatable to humans. From an early age, humans are able to 

reason and maintain abstract models of the world, consider hypothetical 

situations, and make decisions through critical thinking. These neural 

networks importantly cannot reason or do long-term planning in this way 

and by themselves do not represent any type of general intelligence. After 

all, even if an algorithm can predict what an object is, that does not imply 

the algorithm actually understands the properties of the object, how it 

would interact with its environment, what it is used for, or where it came 

from. So, although computers can learn from massive data to distinguish 

between different types of birds better than humans, for example, humans 

are still far superior at extrapolation, interpretation, and inference, such as 

understanding a complex scene.

Similarly, in natural language processing, humans are able to understand 

nuances in aspects such as word ordering and context, whereas neural 

network models struggle to understand broader abstract concepts and 
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contextual information that can be useful to understanding language. For 

example, when someone says, “The couch will not fit through the door, as it’s 

too big,” it is obvious to a human that “it” refers to the couch as we understand 

the concepts of couch and door and that the statement would not make sense 

if “it” referred to the door. Although there have been many advancements 

in using sequences of words and broader associations between words in 

language models, they still do not learn in the same way as humans.

Note D eep learning is an incredibly powerful technique, but we 
believe it will not lead to artificial general intelligence by itself. Deep 
learning also has limitations—such as inability to understand higher 
level concepts—of which developers of AI applications should be 
cognizant.

�Limits on Ability to Generalize
As stated by Chollet (2017), “Models can only perform local generalization, 

adapting to new situations that must stay very close from past data, while 

human cognition is capable of extreme generalization, quickly adapting 

to radically novel situations, or planning for long-term future situations.” 

In fact, there might often be less to the accuracy of the models than we 

actually attribute to them; for instance, Ribeiro, Singh, and Guestrin (2016) 

found that the model was able to distinguish between wolves and dogs 

because of the white snow patches in the background of wolf images, not 

because it actually understood the difference between them. Jo and Bengio 

(2017) also provided quantitative evidence that deep CNNs do not learn 

higher level abstract concepts, but rather surface statistical regularities. 

They showed that CNNs trained with one class of Fourier image statistics 

but validated on different types of Fourier image statistics showed up to a 

28 percent gap in accuracy, even though perceptually to a human they are 

not far off the original unfiltered data set.
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This limitation of deep learning models to understand abstract or fully 

realized representations of concepts is well-illustrated in a recent trend in 

deep learning around both the creation as well as aim to defend against 

adversarial examples, synthetic examples that are created by modifying an 

input image in a particular fashion such that it makes the model believe 

the image belongs to another class with high confidence, as illustrated in 

Figure 3-4. It is very straightforward to create adversarial examples that are 

undetectable to the human eye—the equivalent of optical illusions that fool 

humans, only for a computer. There has been significant recent research on 

defending from adversarial examples, trying to make a model or algorithm 

robust such that these types of perturbations do not fool the model. As 

of early 2018, there are still no robust defenses to adversarial attacks, and 

research has only shown how robust adversarial attacks can be, even in 

the physical world. For instance, some adversarial examples can even be 

printed out on standard paper, photographed with a smartphone, and 

continue to fool the model (Kurakin, Goodfellow, & Bengio, 2016).

Figure 3-4.  Example adversarial examples. With slight changes to 
the pixel values (often unnoticeable to the human eye), the model can 
be tricked to incorrectly classify the quail as other objects, such as a 
desktop computer or a bath towel.

Chapter 3  Trends in Deep Learning



70

�Data Hungry Models, Especially Labels
Deep learning models also are limited by the vast amount of data that 

is required to train the network. This is especially made difficult by the 

requirement for high-quality, curated labels from which the model 

can learn. Although techniques such as transfer learning and word 

embeddings as mentioned earlier are able to somewhat alleviate this 

problem in some contexts, deep learning is not able to learn from explicit 

definitions or complete many types of tasks that are not simple input 

to output pairings. Although incredibly powerful, it is clear that deep 

learning alone is not a solution for artificial general intelligence. As 

another example, deep learning even struggles to represent a basic sorting 

algorithm.

Many of these limitations of deep learning are actually limitations of 

ML algorithms in general, such as the inability to inherently distinguish 

correlation from causation. After all, deep learning is simply a statistical 

technique that excels at optimizing a mapping from an input to an output. 

However, unlike some simpler methodologies, explaining the solutions of 

deep neural networks can be extremely difficult. Engineering the network 

as needed can also be quite hard, such as trying to debug when something 

goes wrong or when one wants to tune a specific aspect of the modeling 

results. Although deep learning has many limits and is just one tool that 

can be used among many, we believe that deep learning will serve as a 

stepping stone to many future advances in AI, as we discuss later.

�Reproducible Research and Underlying Theory 
With the rise in popularity of deep learning, the number of research 

papers has increased dramatically every year. Recently, researchers 

have begun raising more concerns about the reproducibility of these 

papers, for example, when code is not released or specific details 

that are important to reproduce the result are not included. This is 
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exacerbated by the lack of theoretical understanding about how to best 

develop these type of networks as well as optimize them, in addition to 

how many of the papers in the field require vast computing resources to 

reproduce. In practice, overfitting is common and very different results 

can be obtained depending on the type of evaluation method and split 

of the data.

Rahimi recently brought this issue of lack of theoretical underpinning 

to light in his December 2017 NIPS talk “Machine Learning Has Become 

Alchemy.” His point was that we lack clear theoretical explanations 

of why deep learning works and how to understand when it does not, 

often called the black box problem. An example exception is the idea 

of information bottleneck, which posits a network gets rid of the noisy 

extraneous details like squeezing the information through a bottleneck, 

and only the features that are relevant to general concepts are retained 

(Tishby & Zaslavsky, 2015). Others have also cautioned that theory in 

general often lags behind empirical results and that being too cautious 

has the risk of leading to another “AI Winter,”1 when instead continued 

research into how models can be used to solve real problems can propel 

us forward.

Nonetheless, it is clear that deep learning works for many 

applications in practice and is a useful tool for practitioners, and we 

need to understand both its usefulness and its weaknesses so that AI 

can continue bringing more value to society in the future. We believe 

the more open the community can be, in terms of publishing code 

associated with research as well as data when possible, the more it will 

help the field progress forward.

1�Lighthill released a report in 1973 that suggested AI was a failure and too superficial 
to be used in practice, leading to a massive reduced interest in the field.
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�Looking Ahead: What Can We Expect 
from Deep Learning?
Although acknowledging deep neural networks are a statistical 

methodology with many limits, we are optimistic that deep neural 

networks will be used as a foundational building block within an 

increasing number of more sophisticated methodologies that will emerge 

over time. The use of dynamic networks, for example, which uses deep 

neural networks but allows the networks to change dynamically as a 

function of the data fed into the model over time, has risen recently.2 The 

combination of deep neural networks embedded within reinforcement 

learning systems has also solved increasingly complex problems. LeCun 

(2018) suggested that “differentiable programming” should be the 

rebranding of deep learning to mark the transformation toward a new 

type of software that is differentiable and optimizable. Karpathy (2017) 

suggested that “[n]eural networks are not just another classifier, they 

represent the beginning of a fundamental shift in how we write software … 

they are Software 2.0.”.

We expect research will continue to propel the practicality of deep 

learning forward, such as potential breakthroughs in optimizing neural 

network architectures as discussed earlier. Some areas of research are 

also still largely unsolved, such as the ability to learn from unlabeled 

data, also known as unsupervised learning, where there is much room 

for innovation. Additionally, we expect more work to focus on program 

synthesis and graph networks, as well as more applications of adversarial 

networks.

2�Frameworks such as MXNet/Gluon, PyTorch, and Chainer support these types of 
networks, and we expect this trend to continue.
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�Ethics and Regulations 
Finally, it is clear that there are ethical concerns, around aspects such 

as bias, security, privacy, and appropriate use of deep learning and AI 

technologies. These ethical considerations will start to increasingly affect 

the development of AI systems as laws and regulations are enacted to 

constrain the impact of these systems. As mentioned earlier, for example, 

deep learning systems today are vulnerable to adversarial examples, 

even in the physical world, which poses a security risk. Then besides the 

security implications, there are ethical considerations around bias as well.

Bias in AI and ML algorithms is typically described and studied 

in terms of statistical bias, a mathematical construct to describe the 

difference between an expected value and the true value of the parameter 

being estimated. Depending on the type of model, bias can be introduced 

in different ways. But even when a system is not mathematically biased, it 

can be biased in the popular culture’s interpretation of the word.

The popular culture definition of bias is normally associated with some 

form of prejudice or preferential treatment toward a particular group. This is 

usually felt to be unfair. It should be noted that fairness is culturally defined 

and varies throughout history. Therefore, unfairness is really in the application 

of bias. The tricky part about this is that people normally assume that 

computers will be unbiased, and that the outcomes made from mathematical 

models will be fairer than those made by humans. By their very nature, 

though, deep learning models will display some bias in this sense of the 

word, because the driving force in them is the real-world data on which these 

models are built. Unfortunately, these true historical data are rooted with bias.

For some applications of deep learning where there are high-stakes 

outcomes such as hiring or loan applications, it is clear that this can have 

very detrimental effects. Take, for example, the use of word embeddings 

that represent words in a lower dimensional space. It is clear that word 

embeddings are biased, an example being word embeddings trained on 

Google News articles. These word embeddings have biased embedded 
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relationships between words that can be extracted very easily such as 

“man is to computer programmer as women is to homemaker” (Bolukbasi, 

Chang, Zou, Saligrama, & Kalai, 2016). This can have detrimental effects on 

applications of deep learning with word embeddings when applied without 

consideration of these type of issues. For example, recruiters are increasingly 

using algorithms to automatically match resumes to job openings. If word 

embeddings are applied blindly within this process, however, and historical 

data favors that “successful” people in the role were mostly men, the 

outcomes of this process can be argued to be detrimental. O’Neil (2016), 

in her book Weapons of Math Destruction, outlined many ways in which 

algorithms can be used to a detrimental effect in the era of big data, and it is 

important to be cognizant of the potential for harm.

Unfortunately, bias can be difficult to detect and remove. In 2015 as 

another example, a photo application improperly labeled a dark-skinned 

person as a “gorilla,” which prompted a quick and immediate apology. Had 

the company been aware of this, they surely would not have deployed this 

technology. AI and ML predictive modeling is inherently more difficult to 

test than traditional software applications, however. After all, in a classical 

software system, an input will generate a known output, but this is not 

true for AI-based systems. AI-based systems are evaluated based on their 

statistical results and these results can often change from one run of the 

data to the next. Unless adequate testing methodologies for AI-based 

systems are developed, deploying AI-based systems could encounter 

major roadblocks to deployment.

Not only are there ethical and cultural issues, but there are a host of 

legal implications as well. Fortunately, bias in ML applications has become 

increasingly discussed in both the research and industry communities. 

However, it is important to recognize that technological advances alone 

will not solve the problem; there is no one-size-fits-all solution to this. 

Testing of AI models and development of fair systems will undoubtedly 

require an interdisciplinary approach to achieve the goal of building safe, 

widely distributed AI.
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�Summary
This chapter discussed some of the trends in the deep learning space, 

such as the search for optimal network architectures both for accuracy as 

well as speed. We also went through two recent exciting developments in 

neural networks for computer vision, the first tackling the limitations of 

CNNs through capsule networks and the other using neural networks to try 

and define optimal architectures with minimal human intervention with 

automated ML techniques.

We discussed several other trends in deep learning, including more 

specialized hardware as well as the use of pretrained models to seed 

solutions with fewer data than required to build a deep learning solution 

from scratch. We finally discussed some limitations of deep learning 

of which developers should be cognizant, such as the inability of these 

models to understand abstract concepts, as well as some of the legal and 

ethical concerns, including adversarial examples and bias in models from 

the underlying data on which they are built.

Next Chapter 4 describes how you can use the tools, infrastructure, 

and services on the Microsoft AI Platform to manage the development life 

cycle of your deep learning projects and models, to train at scale, and to 

operationalize it quickly as web APIs.
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CHAPTER 4

Microsoft AI Platform
This chapter introduces the Microsoft AI Platform, which is a set of 

services, infrastructure, and tools for building intelligent applications 

powered by AI. The Microsoft AI Platform runs on the Microsoft Azure 

cloud computing environment, which provides computing as a utility 

where you pay for what you use rather than what you own. For more 

details on the broader Azure Platform, please see the e-book Developer’s 

Guide to Microsoft Azure (Crump & Luijbregts, 2017). The Microsoft AI 

Platform enables data scientists and developers to create AI solutions in an 

efficient and cost-effective manner.

Although Microsoft has other offerings for developing AI solutions 

such as Machine Learning Server, which can be deployed on-premises 

in addition to the cloud as well as hybrid offerings, this chapter focuses 

primarily on the cloud computing platform that for reasons described later 

is most applicable to developing deep learning solutions. In practice, the 

models developed with the Microsoft AI Platform can then be deployed 

in many locations such as on the cloud for real-time highly scalable 

applications, on the edge through Azure IOT, or within a database such as 

a stored procedure hosted within SQL Server, for example. The Microsoft 

AI Platform is a flexible, open, enterprise-grade set of services, tools, and 

infrastructure that allow developers and data scientists to maximize their 

productivity in developing AI solutions.
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Developing a deep learning solution requires lots of experimentation, 

lots of computing power—often using advanced hardware such as GPUs and 

FPGAs as discussed in Chapter 3, and often lots of training data. There is a 

need to be able to run training at scale. Cloud computing, with the ability 

to scale up and down easily with various levels of management—from raw 

infrastructure to managed services—makes doing data science including 

training and scoring deep learning models a more practical reality.

In fact, developing a deep learning solution requires carefully setting 

up many aspects, such as data storage, development environment, 

scheduling for training and scoring, cluster management, and managing 

costs, among other aspects. Deep learning solutions are notorious for 

their difficult configurations, such as ensuring drivers and software 

compatibility. It is important to store data in a location that can scale with 

increasing volume and enable collecting more data to improve solutions 

over time. These data must also be stored in a location that is secure and 

compliant with local regulations. Development environments must fit 

the needs of the developer or data scientist creating the code and allow 

workflows such as moving from a laptop to the cloud. Deep learning 

training workflows must be scheduled and monitored. The Azure cloud 

computing environment enables scaling up and down for cost control, 

has various levels of product offerings to address these aspects, from 

raw infrastructure with VMs already configured for deep learning to fully 

managed services with pretrained models ready to consume.

Of course, not all these services are necessary for a single given 

solution, but rather taken together provide a platform on which any type 

of intelligent application can be built leveraging the best of open-source 

technology as well as decades of research within Microsoft on both AI 

algorithms as well as tooling for development. By building on top of the 

Azure platform, developers and data scientists can leverage infrastructure 

that scales virtually infinitely, with enterprise-grade security, availability, 

compliance, and manageability. In the sections that follow, the main 
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services, infrastructure, and tools available on the Microsoft AI Platform 

are outlined as visualized in Figure 4-1. To use the platform, an Azure 

subscription is required. For a free trial, please visit http://bit.ly/

TrialAzureFree.

Figure 4-1.  Microsoft AI Platform

After outlining the Microsoft AI Platform, steps for setting up a deep 

learning VM (DLVM)  are described, which is required for running the 

code samples provided in later chapters as well as Part IV.

�Services
The Microsoft AI Platform is composed of a series of services from fully 

managed software services to services for building custom AI applications. 

Depending on the scenario and flexibility required, different solutions 

might be applicable. The services are broken into three main areas:

	 1.	 Prebuilt AI. These leverage prebuilt models within 

an application through algorithms that are already 

built to see, hear, speak, and understand with 

Cognitive Services.

Chapter 4  Microsoft AI Platform



82

	 2.	 Conversational AI. These build natural interaction 

into an application through the Bot Framework, 

which has connectors to common channels such as 

Facebook Messenger, Slack, Skype, and Bing.

	 3.	 Custom AI Services. These adapt to a scenario with 

the flexibility of Azure Machine Learning services, 

Batch AI service or both.

�Prebuilt AI: Cognitive Services
Cognitive Services are a set of services available to developers and data 

scientists to build AI solutions, with capabilities around vision, speech, 

language, knowledge, and search (see Table 4-1). The Cognitive Services 

are of two main types:

	 1.	 Pretrained models available as REST APIs, ready 

to consume in end user applications without any 

customization required.

	 2.	 Bring-your-own-data services, such as Custom 

Vision Service, which allows a developer to create 

a custom image classification model without any 

background in computer vision or deep learning by 

simply uploading images of different classes and 

clicking a button to train the model.
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As just one example, the ability to search is a feature in almost 

every application but is often difficult to implement as it requires 

natural language processing and language-specific linguistics among 

other aspects. Azure Search provides the underlying search engine—

developers need to create an index to help search and fill it with data, 

and Azure Search takes care of everything underneath, with rich features 

such as intelligent filtering, search suggestions, word decompounding, 

and geo-search.

Table 4-1.  Example Cognitive Services Available on the Microsoft AI 

Platform

Vision Language Speech Search Knowledge

Computer 

vision

Text analytics Speaker 

recognition

Web search Academic 

knowledge

Face Spell check Speech Image search Entity linking 

service

Emotion Web language 

model

Speech 

Servicea

Video search Knowledge 

exploration

Content 

Moderator

Linguistic 

analysis

News search Recommendations

Video 

Indexer

Translator Autosuggest QnA maker

Vision 

Servicea

Language 

Understandinga

Searcha Decision Servicea

aCustom Cognitive Service with bring-your-own-data capabilities.
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These services are popular, as they are simple to add into applications. 

Just a few lines of code are required to integrate a model such as an emotion 

detection model into a customer service experience application. Given the 

breadth of Cognitive Services and Custom Cognitive Services available for 

use today, these services are described in more depth in the Chapter 5.

�Conversational AI: Bot Framework
The Bot Framework includes tools and services to enable developers to 

build bots that converse with users. For example, a developer can easily 

develop a bot that interacts with users on a web site to guide them through 

purchasing a product or service rather than having to navigate through 

the web page. Through this framework, one can develop once and then 

expose the bot through many channels that are included within the Bot 

Framework, such as Skype, Facebook, and the Web. Bots can be built with 

the Bot Builder Software Development Kit (SDK) using C# or Node.js or 

with the Azure Bot Service.

Bots can be built to converse naturally, especially using advanced 

capabilities with integration of Cognitive Services such as the Language 

Understanding Intelligence Service (LUIS) and integrations with other 

cognitive services. As a managed service in Azure, it is scalable, and costs 

are only occurred for the resources that are used.

�Custom AI: Azure Machine Learning Services
Azure Machine Learning services were released in public preview in late 

2017. These services are useful for building custom AI solutions and helping 

to accelerate the end-to-end development of intelligent applications.

•	 Develop, deploy, and manage models at scale.

•	 Develop with the tools and frameworks popular in the 

open source community.
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Azure Machine Learning services provide a framework to manage a 

data science project. With these services, one can bring the computing 

environment most applicable for training their AI models, for example:

	 1.	 Data Science Virtual Machine.

	 2.	 Spark on Databricks or HDInsight.

	 3.	 Azure Batch AI.

These computing environments are described later in this chapter.

The experimentation service helps to manage project dependencies, 

scale out training jobs, and enable sharing of data science projects. Model 

management service uses docker container-based deployment to help 

data scientists and developers deploy solutions on a single node (on the 

cloud or on-premises) as well as scale out cluster deployments such as 

Azure Container Services, as well as edge deployment via Azure IOT Edge.

As of this writing, Azure Machine Learning services works with 

Python and is available in several Azure regions. In addition, there are 

AI extensions for Visual Studio and Visual Studio Code discussed in the 

“Tools” section later in this chapter that allow interacting with the Azure 

Machine Learning platform (http://bit.ly/aivisstdio). As the service 

is updating frequently, we focused on the core computing environments 

in this book and suggest reading the current documentation on Azure 

Machine Learning services available at http://bit.ly/AMLservices.

�Custom AI: Batch AI
Batch AI is a managed service that enables data scientists and developers 

to easily train deep learning and other AI models at scale with clusters 

of GPUs. With Batch AI, one can create a clusters of nodes including 

GPUs when required, and then turn the cluster off when the job is 

complete and thus stop the bill. It allows one to construct a framework-

specific configuration using either containers or VMs. This is ideal for 
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experimentation, such as doing parameter sweeps or experiments, 

testing different network architectures, or doing hyperparameter tuning 

in general. It also enables multi-GPU training for frameworks that allow 

training across nodes when training data are very large. An example 

with associated code for training deep learning models with Batch AI 

is included in Chapter 9. Batch AI can also be used for embarrassingly 

parallel batch scoring scenarios.

Batch AI is built on top of Azure Batch, which is a cloud-scale 

resource management and task execution tool. With Batch AI, you only 

pay for the computing that you use, with both standard and low-priority 

VMs available. There is no added charge for job scheduling or cluster 

management in general. Low-priority VMs provide a cost-efficient solution 

for jobs that are lower priority, such as learning and experimentation.

Related to Batch AI, Batch Shipyard is an open source tool that is a 

precursor to the managed Batch AI service that also runs on top of the 

Azure Batch infrastructure. Batch Shipyard supports both Docker and 

Singularity containers and scenarios important to developing deep 

learning solutions such as hyperparameter tuning. Batch Shipyard can also 

be utilized for batch scoring of deep learning models. More details about 

Batch AI and Batch Shipyard can be found in Part IV of the book.

�Infrastructure
In this section, we outline infrastructure available for AI computing, 

such as the Data Science Virtual Machine (DSVM), Spark clusters, 

and infrastructure for managing deployment of containers as well as 

infrastructure for storing data on which AI can be built such as SQL DB, 

SQL Datawarehouse, Cosmos DB, and Data Lake.
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�Data Science Virtual Machine
The DSVM is a preconfigured environment in the cloud for data science 

and AI modeling, development, and deployment. It comes in a Windows 

Server version as well as Linux, and a specialized version for deep learning 

known as DLVM, which runs on a GPU. As can be seen in Figure 4-2, 

popular languages for data science development such as Python, R, and 

Julia are ready to use immediately, and data connected from many data 

stores such as SQL Data Warehouse, Azure Data Lake, Azure Storage, and 

Azure Cosmos DB are available. Many ML and AI tools come preinstalled, 

such as many of the popular deep learning frameworks. Data scientists 

and developers can then customize the VM as needed for their use. There 

is also a variant specialized for geospatial analysis, the Geo AI DSVM: 

http://aka.ms/dsvm/geoai/docs.

DSVMs are extremely popular with data scientists for the following 

reasons:

•	 They provide an analytics desktop in the cloud with 

easy setup, and the ability to transfer projects more 

easily between colleagues.

•	 They have on-demand elastic capacity, ability to turn 

off and on (e.g., stopping the VM at night if no jobs are 

running).

•	 There are examples and templates built in to get started 

with data science and deep learning.

•	 There is an ability to connect into other services such as 

using DSVM as the computing target within a project 

managed through Azure Machine Learning services or 

as compute for Batch AI service.

•	 They are easy to use for data science training and 

education due to ease of setup and cost savings versus 

purchasing hardware and managing the software oneself.
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Especially relevant for deep learning, setting up a GPU-based 

system can be extremely difficult with all of the necessary drivers and 

configurations. The DLVM makes the setup significantly easier, and can 

be provisioned with up to four GPU cards on a single VM. There are no 

software costs to the VM, and the pricing starts at $0.90/hour for NC6 series.

DSVM can be used both for experimentation and for simple 

deployment scenarios, such as running simple web services using Flask 

combined with capabilities such as Azure Automation, Azure Functions, 

and Azure Data Factory to trigger jobs running using a DSVM.

�Spark
There are several options for running Spark on Azure, including Azure 

Databricks, Azure HDInsight, and leveraging the Azure Distributed Data 

Engineering Toolkit (AZTK) as core examples. Databricks is a managed 

Figure 4-2.  Features of the Data Science Virtual Machine as 
described at http://bit.ly/DataScienceVM
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platform for Spark with a rich experience for both data scientists and 

developers, such as a team collaboration experience and version control 

capabilities. The service handles much of the tuning of the cluster for 

developers, so is thus ideal for users who might not know or want to 

configure Spark, but it is not as flexible in terms of how the cluster can be 

configured. HDInsight is a fully managed cloud service for open source 

analytics such as HBase, Hive, Storm, and others in addition to Spark.

The AZTK is an open source Python Command-Line Interface (CLI) 

application for provisioning on-demand Spark clusters in Azure. The Spark 

clusters run in Docker containers with bring-your-own Docker image 

flexibility and are provisioned within 5 minutes on average, with low-priority 

VMs available for an 80 percent discount. This toolkit is useful for running 

a distributed Spark workload on demand such as batch workloads and 

can be scheduled to spin up and down such as through the use of Azure 

Functions. It has a rich Python SDK for programmatic control of clusters and 

jobs. AZTK is the most flexible option in terms of supporting all VM types 

including GPUs, which is especially helpful for deep learning scenarios.

For all of these Spark infrastructure options, Microsoft Machine 

Learning for Apache Spark (MMLSpark) provides a number of deep 

learning and data science tools for Apache Spark including integration 

with the deep learning framework CVTK. Spark has also seen recent 

improvements in support for deep learning applications through 

collaborations aimed toward improving support for aspects such as image 

data support as discussed at http://bit.ly/SparkImage.

�Container Hosting
Azure Kubernetes Service (AKS) is a fully managed Kubernetes container 

orchestration service. Users might also choose other orchestrators through 

the original version, known as ACS. With the fully managed version of 

AKS, the only cost is for the VMs that are used for the tasks at hand; in 

other words, the management infrastructure is completely free. AKS is 
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a generic computing platform and extremely flexible. For AI workloads, 

this type of service is often used to host scalable AI models for real-time 

scoring, although AKS can also be used for scalable AI training as well. 

Azure Machine Learning services include a model management service 

that eases the deployment of AI models as a REST API to Azure Container 

Services as illustrated in Figure 4-3.

Figure 4-3.  Example deep learning solution architecture where data 
are stored in SQL Server, code is developed with a Deep Learning 
Virtual Machine managed by Azure Machine Learning services, and 
it is deployed as a Rest API to Azure Container Services as described at 
http://bit.ly/DLArch.

Azure Container Services gives customers the benefit of open source 

Kubernetes along with built-in management to ease the complexity and 

operational overhead. AKS comes with automated upgrade, scaling ability, 

and self-healing accessible through a control plane hosted on Azure. 

For those who want even more flexibility, ACS Engine is an open source 
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project that allows developers to build and use custom Docker-enabled 

container clusters.

Developers can also host containers using Azure Container Instances, 

where a container can be hosted without a container orchestrator, which 

is especially useful for testing or hosting a simple application that does 

not require scaling. Azure App Service is a collection of hosting and 

orchestration services comprised of Web App, Web App for Containers, 

and Mobile App. Web App, for example, enables developers to host web 

applications or APIs whereas Web App for Containers enables one to 

deploy and run containerized web apps with images from Docker Hub or a 

private Azure Container Registry.

�Data Storage
Azure SQL Database is a relational cloud database as a service, with built-

in intelligence, specially built for applications with individual updates, 

inserts, and deletes (OLTP). Azure SQL Data Warehouse is a warehouse not 

strictly for OLTP workloads in that it is desired to be more straightforward 

to use for larger databases, with additional feature ability to pause to save 

on costs. SQL Database supports more active connections and concurrent 

queries than SQL Data Warehouse, whereas SQL Data Warehouse supports 

Polybase, which is a technology that accesses data outside of the database 

via the T-SQL language. Often these services are used in conjunction with 

a larger data architecture.

Azure Cosmos DB is a globally distributed, multimodel database 

service that enables extremely low latency and massively scalable 

applications. It has native support for NoSQL and can support key-value, 

graph, column, and document data all in one service. Several different 

APIs including SQL, Apache Cassandra, and MongoDB can be used to 

access data, and multiple consistency choices are offered for low-latency 

and high-availability options such as strong, bounded staleness, and 

eventual. This offering is extremely useful for disparate types of data.
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Azure Data Lake Store is a no-limits data lake that stores unstructured, 

semistructured, and structured data, which are optimized for big data 

analytics workloads. It is massively scalable and built to the open Hadoop 

Distributed File System (HDFS) standard, thus integrating into many tools 

easily and allowing a straightforward migration of existing Hadoop and 

Spark data to the cloud. Data Lake Store can store trillions of files and a 

single file can be larger than one petabyte in size. Azure Blob Storage is 

a separate storage option that is a more general-purpose object store, 

including for big data analytics workloads, and comparison between them 

can be found at http://bit.ly/LakeVBlob.

�Tools
Several tools and toolkits for developing and deploying AI solutions were 

mentioned within the previous sections as they related to services and 

infrastructure for AI, such as AZTK for deploying a Spark infrastructure and 

Batch Shipyard for executing batch and High Performance Computing (HPC) 

container workloads. In this section, we include a nonexhaustive summary of 

several other tools that are available on the Microsoft AI Platform.

�Azure Machine Learning Studio
Azure Machine Learning Studio is a serverless environment for training 

and deploying ML models. Studio provides a graphical user interface 

(GUI) with the ability to drag and drop easily configured modules for data 

preparation, training, scoring, and evaluation. Many prebuilt algorithms 

are included for common scenarios such as regression and classification, 

and extensibility is enabled through R and Python scripting modules 

where custom code can be inserted and connected to other modules. 

Although it is extremely useful for quickly developing custom ML solutions 

on smaller data set sizes, we do not recommend Azure Machine Learning 
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Studio for developing deep learning solutions, as the size of input data is 

limited, as well as the hardware it is run on. Today, there is no ability to 

bring your own computing environment or manage scale-out computing 

across nodes with Azure Machine Learning Studio. Because of these 

factors, we recommend Azure Machine Learning services for developing 

deep learning solutions instead.

�Integrated Development Environments
With Microsoft Azure, any integrated development environment (IDE)  or 

editor can be used to create AI applications. In several of the popular IDEs, 

there are plug-ins or extensions available that make it even simpler, such 

as publishing directly to Azure. For example, Visual Studio Code Tools 

for AI is an extension for Visual Studio Code that is a cross-platform open 

source IDE. Visual Studio Tools for AI is an extension for Visual Studio 

for developing AI applications with an ability to set remote computing 

contexts. At the time of this writing, we recommend using Visual Studio 

Tools for AI and include an example using this later in this chapter.

These IDEs have nice features to accelerate development, but, of 

course, other popular IDEs such as PyCharm and RStudio can be used 

to develop the code that will run on the Microsoft AI Platform and 

more extensions will become available over time. In addition, Jupyter 

notebooks can be leveraged and is already set up for development on the 

DSVM. Azure Notebooks are another option for running code with hosted 

Jupyter notebooks; Azure Notebooks is completely free, but these do not 

run on GPUs so are not as practical for deep learning solutions.

�Deep Learning Frameworks
The Microsoft AI Platform is an open platform that builds on the best 

of open source technology. Deep learning frameworks such as the 

Microsoft Cognitive Toolkit (CNTK), Tensorflow, Caffe, and PyTorch, 
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which are all open source projects, are supported throughout many of 

the tools, services, and infrastructure already mentioned. The DLVM 

comes preconfigured with many of the popular frameworks, and these 

frameworks can be used to develop AI solutions and be deployed on 

Azure, on Azure IOT Edge, or Windows Machine Learning, for example. 

These frameworks were discussed in more detail in Chapter 2.

�Broader Azure Platform
In practice, there are many other components of Azure that are often used 

to build AI solutions, to complement the AI-specific services with other 

requirements such as dealing with ingestion and processing of streaming 

data flows, authentication, and dashboarding. For example, Azure IOT 

Hub allows developers to securely connect IOT assets to the cloud, Azure 

Stream Analytics enables SQL-like processing of real-time data, and Power 

BI builds on top of many different data sources to enable rich, interactive 

visualizations surfaced in dashboards.

A couple of other commonly used services are Azure Functions and 

Azure Logic Apps, illustrated in an architecture in Figure 4-4. Azure 

Functions is a serverless service that enables developers to simply write 

the code they would like to execute without worrying about the underlying 

infrastructure on which to run the code, paying only when the code is 

run. The function that is written—in languages such as C#, Node.js, and 

Java—can be run on a schedule or triggered by an event such as an HTTP 

request or event in another Azure service. For example, a function can 

be triggered every time a new image is uploaded into Azure Blob Storage, 

which resizes the image and calls out to an AI model hosted through one of 

the example. Azure Logic Apps are also serverless and paid only when run, 

and can automate a business process. As a simple example, Azure Logic 

Apps can be activated when an e-mail arrives in Office 365, which then 

triggers a process to check on data in SQL Server and send a text message 
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to an end user after verification. In addition to the services from Microsoft, 

there is also a marketplace of services and tools built on top of the Azure 

ecosystem.

Figure 4-4.  Example architecture with the integrated components on 
the Azure Platform to manage data flows into end applications from 
http://bit.ly/AzureSQLArch.

�Getting Started with the Deep Learning 
Virtual Machine
In the code examples that follow in the third part of this book, a GPU-

enabled machine will be needed. If you are planning on using your own 

GPU-enabled machine to follow along with the code examples, you 

can skip this section; if not, read on. As we mentioned earlier, Azure 

offers a VM already preconfigured with many deep learning and ML 

libraries called DSVM/DLVM. We can create a DLVM using the portal or 

the Azure CLI. For instruction on provisioning a VM, see http://bit.

ly/CreateDLVM. You can install the Azure CLI locally by following the 

instructions at http://bit.ly/AzureCLI. If you don’t want to install 

anything, you can simply go to https://shell.azure.com/ and use the 

CLI from there. Instructions on how to provision a DLVM/DSVM using the 

CLI can be found at http://bit.ly/DLVM-CLI.

Chapter 4  Microsoft AI Platform



96

To save you time and effort, Listing 4-1 is a snippet of a set of 

commands that will create a Linux DSVM for you on an NC6 VM. It will 

also increase the drive size to 150 GB, open the appropriate port for the 

Jupyter notebook server, and create a Domain Name Service (DNS) name 

based on the name you gave the VM. The Azure CLI and by extension the 

Azure cloud shell are very powerful and accessible tools that can save you 

a lot of time.

Listing 4-1.  Create VM

BASH

location=eastus

resource_group=myvmrg

name=myvm

username=username

password=password

az group create --location $location --name $resource_group

az vm create \

    --resource-group $resource_group \

    --name $name \

    --location $location \

    --authentication-type password \

    --admin-username $username \

    --admin-password $password \

    --public-ip-address-dns-name $name \

    �--image microsoft-ads:linux-data-science-vm-

ubuntu:linuxdsvmubuntu:latest \

    --size Standard_NC6 \

    --os-disk-size-gb 150

az vm open-port -g $resource_group -n $name --port 9999 

--priority 1010
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Please make sure that you change the username and password to 

something appropriate in Listing 4-1. Also, the code in Listing 4-1 will 

create the VM in the EastUS region; if you would rather have it in a 

different region, feel free to change it. Once the VM is up and running you 

should be able to Secure shell (ssh) into it using the DNS name given to 

your VM as well as the username and password you specified.

�Running the Notebook Server
We are assuming that you have a Linux DLVM/DSVM set up and you 

are able to ssh into it. Once you have ssh’d into the machine, start the 

Jupyter notebook server. You can download the notebooks to the VM from 

http://bit.ly/Ch06Notebooks. Then navigate to the folder to which you 

downloaded the notebooks and run the code shown in Listing 4-2 in the 

terminal.

Listing 4-2.  Start Notebook Server

BASH

source activate py35

jupyter notebook –ip=* --port=9999 –no-browser

Navigate to your browser and enter the IP or DNS of your VM such as 

mydlvm.southcentralus.cloudapp.azure.com:9999. Don’t forget the 

port number at the end.1 You will be asked to enter an authorization token, 

which can be seen in the terminal. If you want to configure your Jupyter 

notebook to use a username and password or set it up so that you don’t 

have to enter the port number or the other arguments, follow the guide at 

http://bit.ly/jupyternbook.

1�The appropriate port must be open on the VM. For instructions on how to do this, 
please refer to the section on DSVM earlier in chapter.
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�Summary
This chapter outlined the Microsoft AI Platform set of services, tools, and 

infrastructure for building AI solutions. Building AI solutions requires 

lots of experimentation and specialized hardware for deep learning, and 

leveraging cloud computing combined with service and tools accelerates 

the development process of intelligence applications.

Additionally, AI is being infused in other ways across Microsoft’s 

products as well, such as on-premises solutions for AI such as SQL Server 

2017 and Microsoft Machine Learning Server. SQL Server 2017 runs on 

Windows Server, Linux, and Docker and enables advanced in-database 

ML with scalable Python and R-based analytics. With SQL Server, models 

can be trained within the database without having to move data and 

predictions can be made naturally through stored procedures and native 

ML functions within the database engine. This capability is included 

within Azure SQL DB as well.

In the next chapter, a more detailed overview is available on the 

prebuilt AI that is available to infuse directly into applications.
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CHAPTER 5

Cognitive Services 
and Custom Vision
Chapter 4 introduced the tools, infrastructure, and services that are 

available to build the next generation of intelligent applications. These 

together form a platform that empowers data scientists and developers to 

build, train, and deploy ML and deep learning models on the intelligent 

cloud and intelligent edge.

As one option within the Microsoft AI Platform, organizations getting 

started on AI have the flexibility to use prebuilt AI capabilities using 

Cognitive Services. This enables organizations to jump start their AI efforts 

quickly and use Cognitive Services as the basis for developing intelligent, 

innovative applications. In this chapter, we describe how to use Cognitive 

Services. We also illustrate how to customize deep neural network models 

for computer vision tasks using the Custom Vision service as one example 

of a customizable cognitive service.

�Prebuilt AI: Why and How?
For years, researchers in the deep learning communities have been making 

tremendous progress on algorithms and leveraging state-of-art hardware 

to train deep learning models using publicly available large data sets (e.g., 

ImageNet, CIFAR-10, CIFAR-100, Places2, COCO, MegaFace, Switchboard, 

and many more). These public data sets are often used in competitions, 
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and as a method for benchmarking for deep learning algorithms. In 

addition, many commercial and research organizations leverage private 

data sets to further improve the quality of their models.

To train a high-performing deep learning model often requires a 

significant amount of computing resources. Chapter 2 described the 

amount of computing resources required to train a classifier on ImageNet 

(ranging from 256 to 1,024 Nvidia P100 GPUs). Even though training time 

has been decreasing significantly over time (from days to minutes), not 

every organization has at their disposal a large amount of GPU resources, 

nor the means to keep these GPU resources updated with both the latest 

hardware and software over time.

Researchers spend a significant amount of time fine-tuning their 

models. For example, the accuracy of classifying objects in the ImageNet 

data set has improved significantly from 71.8 percent to 97.3 percent 

(Russakovsky et al., 2015). Another example is the significant improvement 

made by researchers working on speech recognition using the Switchboard 

data set. Using a combination of neural-network-driven acoustic and 

language models, CNNs, and bidirectional long- and short-term memory 

models, Microsoft researchers reduce the error rate for speech recognition to 

5.1 percent (Xiong et al., 2016). The deep-learning-based speech recognition  

models surpass the performance of professional human transcribers.

Pretrained deep learning models enable organizations to leverage 

the significant innovations made by researchers over the years and use 

the models immediately to solve common AI problems. For example, we 

can leverage speech-to-text APIs that are backed by high-quality speech 

models, or computer vision APIs that are trained on large data sets of 

faces, scenes, celebrities, and more. These enable organizations to quickly 

develop intelligent applications without spending a significant amount of 

time training the models.
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In Chapter 2, we introduce how transfer learning can be applied for 

computer vision tasks, where you can leverage pretrained models as 

base models and adapt them to new domains by providing new labeled 

images. To make it easier for organizations to use custom deep learning 

models, Custom Vision (one of the Cognitive Services) enables you to 

upload your images and train a custom image classifier quickly with the 

press of a few buttons. Similarly, you can customize acoustic models using 

Custom Speech (another cognitive service) through uploading domain-

specific data (.wav files, text files, or both) to improve accuracy in various 

environments.

More Info  Find out more about creating custom acoustic and 
language model using Custom Speech Service at http://bit.ly/
CustomSpeech/.

In this chapter, we focus on computer vision services. We walk through 

different types of prebuilt computer vision services that you can use out of 

the box. We then describe how to use the Custom Vision Service to train 

custom image classifiers.

�Cognitive Services
Cognitive Services enables developers to get started quickly by leveraging 

prebuilt AI models. To develop an AI application that uses one or more 

of the Cognitive Services, developers leverage the APIs provided by each 

of the Cognitive Services. This enables developers to develop intelligent 

applications using various programming languages (e.g., C#, Java, 

JavaScript, PHP, Python, Ruby, etc.).

Figure 5-1 shows how an application interacts with Cognitive Services. 

The application issues a request to a Cognitive Services URL. For example, 

a Request URL for using Cognitive Services to tag an image (identify what 
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are the tags for objects found in an image) is https://[location].api.

cognitive.microsoft.com/vision/v1.0/tag, where location refers to one 

of the support geographical regions where the APIs are created (e.g., West 

US, West US 2, East US, East US 2, West Europe, Southeast Asia, etc.). For 

a list of supported regions for Cognitive Services, refer to http://bit.ly/

CogServices.

Figure 5-1.  Application using Cognitive Services

Figure 5-2 shows the REST API documentation for Computer Vision 

APIs. When issuing a request to Cognitive Services, you will need to 

provide the content type and subscription key (referred to as Ocp-Apim-

Subscription-Key) in the Request header. After the request has been 

processed, the results are returned as a JSON object. In Figure 5-3, you 

can see the tags (e.g., grass, outdoor, sky, etc.) that are returned after the 

application submits an image for tagging.
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Figure 5-2.  REST API documentation for Computer Vision API. 
Source: http://bit.ly/ComVisionAPIv1.
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�What Types of Cognitive Services Are 
Available?
Cognitive Services provides a powerful set of prebuilt AI services, as 

follows.

•	 Vision: Provides state-of-the-art image processing 

algorithms that provide image classification, 

captioning, optical character recognition (OCR), and 

content moderation.

Figure 5-3.  JSON response for tag image request
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•	 Knowledge: Provides APIs to enable you to quickly 

extract question–answer pairs from user-provided 

frequently answered questions (FAQs), documents, 

and content. Other Knowledge APIs include custom 

decision service, knowledge exploration, and named 

entity recognition and disambiguation.

•	 Language: Language Understanding (LUIS) enables 

developers to integrate powerful natural language 

understanding capabilities into various applications. 

Other Language services include Bing Spell Check, Text 

Analytics, Translations, and more.

•	 Speech: Provides APIs for real-time speech translation, 

converting speech to text, speaker recognition, and 

customizing speech models.

•	 Search: Provides APIs that provide developers with 

instant access to various Bing capabilities. These 

include the ability to perform autosuggestion, news 

search, web search, image search, video search, and 

custom search.

In this chapter, we describe how to use the Computer Vision APIs 

that are available as part of Cognitive Services. We refer the interested 

reader to continue exploring other Cognitive Services by visiting 

http://bit.ly/MSFTCogServices. All Cognitive Services follow a 

similar request–response pattern, and you will be able to apply and 

adapt what you have learned from using the Computer Vision APIs to 

the other Cognitive Services.
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�Computer Vision APIs
Computer Vision APIs provide you with information about the objects 

that are found in an image. These APIs are based on years of research in 

applying deep learning algorithms to understand the content of an image. 

In this book, we describe some of these techniques for performing image 

classification and more. Using the Computer Vision APIs, these powerful 

image processing techniques are now available as prebuilt AI that you can 

use as the basis for creating innovative applications.

After the image is analyzed, the Computer Vision APIs return the tags 

that are most relevant to the image, and a caption describing the image. 

Figure 5-4 shows how to use the Computer Vision APIs to analyze an image 

and the returned results. The caption “a person standing in front of a 

screen” is also returned with a confidence score of 0.74.

Figure 5-4.  Using the Computer Vision APIs
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In addition, the Computer Vision APIs identified the faces in the image 

and returned information about the predicted gender and age for each 

of the faces. Figure 5-5 shows that there are two faces found in the image. 

One of the faces is a male, age 34, and the other face is a female, age 27. 

The bounding boxes for each of the faces are returned. The predicted age 

is dependent on many factors within the image.

Figure 5-5.  Using Computer Vision APIs to analyze the image

Other information about the image is returned as well. For example, 

the image is analyzed for whether it contains adult or inappropriate 

content. This is extremely useful for developers who are building web sites 

that enable user-contributed content. This enables developers to moderate 

the content that has been uploaded by analyzing the uploaded images for 

objectionable content.
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More Info T o learn more about the Computer Vision APIs, visit 
http://bit.ly/MSFTCompVision.

Using the Computer Vision APIs, developers can build innovative 

applications. For example, the How-Old.net site (shown in Figure 5-6) was 

built using Computer Vision APIs. You see the results returned in Figure 5-7.

Figure 5-6.  How-Old.net
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Another example of an innovative application built using Computer 

Vision APIs is the Intelligent Kiosk. The Intelligent Kiosk consists of a set 

of intelligent experiences that showcase how to use Cognitive Services. It 

enables any ordinary web camera to be connected to a PC and turned into 

an intelligent camera.

One of the intelligent experiences, available as part of the kiosk, is the 

Realtime Crowd Insights samples (shown in Figure 5-8). Realtime Crowd 

Insights uses the Computer Vision APIs as the foundation for capturing 

real-time information about the people interacting with the kiosk. These 

include understanding the number of unique people that are standing 

Figure 5-7.  Results from How-Old.Net
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in front of the kiosk, counting of unique faces, and looking at the overall 

emotions. This sample provides the basis for developing interactive  

and intelligent experiences for kiosks that are deployed in retail malls  

and more.

Figure 5-8.  Intelligent Kiosk Realtime Crowd Insights

More Info T he code for Intelligent Kiosk is open source and is 
available at http://bit.ly/IntelligentKiosk.

�How to Use Optical Character Recognition–

The Computer Vision APIs enable you to perform OCR for printed and 

handwritten text. To do this, you can upload an image or provide the 

URL where the image is stored. The APIs will detect the text in the image 

and return in a JSON payload the characters that are recognized. Various 
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languages are supported, including UNK (Autodetecting the language), 

English, Danish, Dutch, French, German, and many more. In Figure 5-9, 

we uploaded an image (shown on the left). You will see that the OCR APIs 

analyzed the image and returned the text found in the image (shown on 

the right).

Figure 5-9.  Using the OCR APIs

More Info T o learn more on using the OCR capabilities for Cognitive 
Services, visit http://bit.ly/MSFTocr.

�How to Recognize Celebrities and Landmarks

The Computer Vision APIs enable you to recognize celebrities and 

landmarks. Cognitive Services refer to these as domain-specific models. 

To find out about the different domains (e.g., celebrities, landmarks) 

supported, you can use the /models GET request. Figure 5-10 shows how 

this is used to recognize “Donald E. Knuth” from the image provided on 

the right. Cognitive Services recognizes up to 200,000 celebrities.
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In addition, the Computer Vision APIs can also recognize landmarks. 

Figure 5-11 shows how the API recognized Raffles Hotel, a tourist 

attraction in Singapore. Cognitive Services recognizes up to 9,000 natural 

and man-made landmarks.

Figure 5-10.  Using domain-specific models for celebrities

Figure 5-11.  Using domain-specific models for landmarks

More Info T o learn more on using Cognitive Services to recognize 
celebrities and landmarks, visit http://bit.ly/CelebLand.
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�How Do I Get Started with Cognitive Services?
To get started with using Cognitive Services, log in to the Azure Portal 

(portal.azure.com). After you have logged in to the Azure Portal, you can 

choose to create a New Azure Resource. Select AI + Cognitive Services. In 

Figure 5-12 you will see all the Cognitive Services listed in the window.

Figure 5-12.  Creating a new Cognitive Services instance
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For illustration, let us select the Computer Vision API. Figure 5-13 

shows the screenshot for creating a new Computer Vision API. After you 

click Create, you will be asked to name the API (shown in Figure 5-14) and 

select the pricing tier for the API. For Computer Vision APIs, two tiers are 

available: FO Free and S1 Standard. The FO Free tier supports up to 20 calls 

per minute and 5,000 calls per month. The S1 Standard tier supports 600 

calls per minute. Both tiers enable you to use the Computer Vision APIs to 

analyze the content of an image, identify the most relevant tags, perform 

auto-captioning, perform OCR, and generate the thumbnail.

Figure 5-13.  Create a new Cognitive Services Computer Vision API
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Figure 5-14.  Configuring the Computer Vision APIs
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After the Computer Vision API has been created, you can manage it 

using the Azure Portal. Figure 5-15 shows how you can manage the newly 

created Computer Vision API. To use the API in your application, you 

will need to specify the API key. You can click Keys in the management 

window, which will show you the keys that are available. Figure 5-16 

shows the two keys that are available. You can make use of the Primary 

and Secondary key during key rotation. You can use either of the keys in 

your application. This is specified as part of the Request header. If you 

are developing a .NET application to use Cognitive Services, the key is 

specified as part of the API call. Listing 5-1 shows the sample code for 

accessing the Computer Vision APIs. For example, you should replace the 

"{subscription key}" placeholder in the code with the subscription key 

that you obtained from the Azure Portal.

Figure 5-15.  Managing Cognitive Services
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Listing 5-1.  Sample Code to use Cognitive Services (Computer 

Vision APIs)

C#

using System;

using System.Net.Http.Headers;

using System.Text;

using System.Net.Http;

using System.Web;

namespace CSHttpClientSample {

  static classProgram {

    static voidMain() {

       MakeRequest();

       Console.WriteLine("Hit ENTER to exit...");

       Console.ReadLine();

    }

    static async voidMakeRequest() {

      var client = new HttpClient();

      var queryString =

        HttpUtility.ParseQueryString(string.Empty);

Figure 5-16.  Obtain the keys for Cognitive Services
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      // Request headers

      client.DefaultRequestHeaders.Add(

        "Ocp-Apim-Subscription-Key",

        "{subscription key}");

      // Request parameters

      queryString["visualFeatures"] = "Categories";

      queryString["details"] = "{string}";

      queryString["language"] = "en";

      var uri =

"https://westcentralus.api.cognitive.microsoft.com/vision/v1.0/

analyze?" + queryString;

      HttpResponseMessage response;

      // Request body

      byte[] byteData =

        Encoding.UTF8.GetBytes("{body}");

      using (

         var content =

           new ByteArrayContent(byteData))

         {

            content.Headers.ContentType =

              new MediaTypeHeaderValue("<content>");

            response =

              await client.PostAsync(uri, content);

         }

     } // method MakeRequest

   } // Program

} // namespace

Chapter 5  Cognitive Services and Custom Vision



119

Figure 5-17.  Custom Vision (customvision.ai)

�Custom Vision
In Chapter 2, we described how data scientists can make use of transfer 

learning to adapt CNNs to new domains. For example, a Resnet-50 CNN 

trained on ImageNet data can be adapted for image classification in other 

domains (e.g., health care, retail, manufacturing, etc.).

Custom Vision is part of the family of Cognitive Services. Custom 

Vision enables you to quickly customize state-of-the-art computer vision 

models for your scenario, with a small set of labeled images. Underneath 

the hood, Custom Vision uses transfer learning and data augmentation 

techniques to train a custom model for your scenario. Figure 5-17 shows 

the main page for the Custom Vision service.
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More Info D id you know that you can use Custom Vision 
programmatically? Using C# or Python, you can programmatically 
create a Custom Vision project, add tags, upload images, and train 
the project. After the custom vision models are trained, you can 
retrieve the prediction URL and test the custom image classifier. To 
find out more, visit http://bit.ly/CustomVisionProg.

�Hello World! for Custom Vision
In this section, we will learn how to get started with Custom Vision. On 

the customvision.ai page, click Sign In. During the first sign in to Custom 

Vision, you will need to accept the terms of use. You will be prompted to 

indicate whether you want to use an Azure account, which will enable you 

to work with more Custom Vision projects. If you do not sign in to Azure, 

you will have access to fewer quotas. Figure 5-18 shows the initial page 

after you sign in. If you do not have an Azure subscription, you can click I’ll 

Do It Later.
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After you sign in, you can create your first Custom Vision project by 

clicking New Project. As shown in Figure 5-19, we create our first Hello 

World Custom Vision project. Several domains are provided that will 

enable you to customize the base model that is most relevant to your 

scenario. In this example, we selected General (Compact). Compact 

domains enable you to export the trained models, which we cover in a 

later section.

Figure 5-18.  Custom Vision first sign in
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Figure 5-20 shows an example of the intelligent zoo app that we want 

to develop. After you click Create Project, we are ready to get started 

(shown in Figure 5-21). In this scenario, we want to develop an application 

that will enable children who are visiting the zoo to be able to take a 

picture of an animal and find out more information about each animal.

Figure 5-19.  Creating your first Custom Vision project
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Figure 5-20.  Scenario: Intelligent Zoo app

Figure 5-21.  Hello World Custom Vision project
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Figure 5-22.  Uploading pictures of giraffes to Custom Vision

We will need to build a custom image classifier for animals. To do this, 

we will leverage Custom Vision to train a custom classifier to distinguish 

between different types of animals, giraffes and elephants. To train the 

classifier, we upload training images of a giraffe (shown in Figure 5-22) and 

elephants to Custom Vision. You can find images of giraffes and elephants 

using an image search in a search engine (e.g., Bing). After all the images 

are uploaded (shown in Figure 5-23), we are ready to train the classifier. 

Click Train.
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Figure 5-23.  Training images for giraffes and elephants

After training is completed, you will see the evaluation results shown 

in Figure 5-24. The overall precision and recall metrics are returned. In 

addition, the performance for each tag (i.e., label or class) is also shown 

below. To use the Custom Vision mode, click Prediction URL. This 

corresponds to a REST endpoint that can be used in any application.
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In addition, we can test the model by clicking Quick Test. We can 

either provide a URL to an image or upload an image to test the custom 

Computer Vision model. Figure 5-25 shows the result of uploading a test 

image and the results returned by the classifier.

Figure 5-24.  Evaluation results from Training Iteration 1

Figure 5-25.  Quick Test using a test image of a giraffe
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Congratulations! We have just completed the training of a custom 

deep learning model using training images, corresponding to giraffes and 

elephants. To fully realize the scenario shown in Figure 5-20, we need to 

continue improving the custom image classifier by uploading images of 

other animals found in the zoo to Custom Vision. Using a limited set of 

training images per animal, we can quickly build a custom image classifier 

for animals.

�Exporting Custom Vision Models
After we have trained the model, we can develop an application that uses 

the prediction URL provided. We might also want the model to run on 

devices (e.g., iPhone, iPads, Android tablets). The choice of whether you 

use a prediction URL or running devices on models depends on your use 

case. In situations where you want to be able to perform inferences when 

Internet connectivity is not available, or where you require low latency, 

having the models running on the device will be a good design choice.

To do this, and to develop applications that can consume the model 

offline, Custom Vision enables you to export the model. Click Export. This 

button is available only if we are using Compact models. You can export 

the models as CoreML, TensorFlow, or ONNX models. In addition, you can 

also export the Dockerfile to enable you to build a container that is able to 

serve the model.

Figure 5-26 shows the platforms that are available when exporting the 

models. Once we choose the relevant platform to export, the relevant files 

can be downloaded (e.g., .mlmodel for CoreML, .zip for TensorFlow, and 

.onnx for ONNX models). These models can then be easily integrated into 

iOS, Android, or Windows applications.
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�Summary
This chapter discussed the different types of Cognitive Services that are 

available as part of the Microsoft AI Platform. These prebuilt AI capabilities 

enable developers in your organization to get started immediately with 

realizing the value of AI to develop innovative applications. In addition, we 

also illustrated how to adapt pretrained deep learning models for computer 

vision to new data using Custom Vision. This enables you to quickly train 

an image classification model by bringing your own data. To enable you to 

do AI on the intelligent edge (IoT edge device, iOS and Android devices), 

Custom Vision enables you to explore CoreML and TensorFlow models. This 

chapter only touched the surface of the different Cognitive Services available 

on the Microsoft AI Platform. We encourage you to explore others in more 

depth as well, such the Language Understanding service, Azure Search, and 

Custom Speech service, depending on your use case and needs.

In the next set of chapters, rather than focus on using prebuilt AI 

capabilities as discussed here, we instead focus on an overview of how to 

build custom deep learning models, starting with an overview of common 

models such as CNNs in the next chapter.

Figure 5-26.  Exporting Custom Vision models to CoreML or TensorFlow
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CHAPTER 6

Convolutional Neural 
Networks
CNNs are a prime example of neuroscience influencing deep learning 

(LeCun, Bottou, Bengio, & Haffner, 1998). These neural networks are based 

on the seminal work done by Hubel and Wiesel (1962). They discovered 

that individual neuronal cells in the visual cortex responded only to the 

presence of visual features such as edges of certain orientations. From their 

experiments they deduced that the visual cortex contains a hierarchical 

arrangement of neuronal cells. These neurons are sensitive to specific 

subregions in the visual field, with these subregions being tiled to cover 

the entire visual field. They in fact act as localized filters over the input 

space, making them well suited to exploiting the strong spatial correlation 

found in natural images. CNNs have been immensely successful in many 

computer vision tasks not just because of the inspiration drawn from 

neuroscience, but also due to the clever engineering principles employed. 

Although they have traditionally been used for applications in the field of 

computer vision such as face recognition and image classification, CNNs 

have also been used in other areas such as speech recognition and natural 

language processing for certain tasks.

This chapter briefly describes what convolution is and how it relates 

to neural networks. It then explains the various elements that make up 

the CNN architecture and what effects they have, and why CNNs do so 

well. Finally, it covers the usual steps to training CNNs before diving into a 
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number of practical examples, using the CIFAR10 data set to train a CNN 

using Jupyter notebooks.

One of the first successful applications of CNNs was in the 1990s, 

reading zip codes using the LeNet architecture from Yann LeCun and 

colleagues (LeCun, Boser, et al., 1989). However, CNNs were widely 

popularized in 2012 with the AlexNet (Krizhevsky, Sutskever, & Hinton, 

2012) architecture, which won the ImageNet Large Scale Visual 

Recognition Competition (ILSVRC) as mentioned in Chapter 1 and led 

to a breakthrough in the computer vision field. Since then, there have 

been many useful developments and recommended architectures from 

researchers such as VGGNet (Simonyan & Zisserman, 2014) and ResNet 

(He, Zhang, Ren, & Sun, 2016). We do not recommend a specific neural 

network architecture because this is still a fast-moving field with new 

breakthroughs happening frequently. Instead, we recommend that 

practitioners pick out an architecture already available that has been 

developed and tested by researchers, and if necessary tweak it.

�The Convolution in Convolution Neural 
Networks
To keep things simple when talking about convolution we will be 

talking about discrete convolution. Mathematically, convolution is the 

simple summation of the pointwise multiplication of two functions. The 

summations can take place in one or more dimensions, so for grayscale 

images the summation would take place over two dimensions and over 

three dimensions in color images.

Convolution is similar to cross-correlation and in many deep learning 

libraries the implementation is actually cross-correlation even though it 

is referred to as convolution. For all practical purposes in the CNNs this 

is just an implementation detail and does not really affect the resulting 

behavior of the model. To get an intuitive feeling of how convolution 

behaves, there is a simple example illustrated in Figure 6-1.
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In this example the image is represented by a 5 × 5 matrix and each 

pixel can only take on two values, 1 or 0. We have a convolution kernel 

that detects diagonal lines. Convolution kernels are sometimes referred 

to as filters or feature detectors. By convolving our kernel with the image 

we get our feature and activation map. The top left value of our feature 

map is created by multiplying all the values in the overlapping matrices 

and then summing the result. In the bottom row of the image we can see 

that applying the kernel to our image we get a value of three. The kernel 

is applied to the nine pixels in the top left area of our image. If we were to 

flatten out the values row wise we would have the vector [1,1,1,0,1,1,0,1,1]. 

The kernel would correspond to the vector [1,0,0,0,1,0,0,0,1]. If we multiply 

the two vectors element wise as so [ 1*1, 1*0, 1*0, 0*0 …] we will end up 

with the vector [1,0,0,0,1,0,0,0,1], which we sum to get the value 3. In 

essence we are computing the dot product of the two vectors to end up 

with a scalar value.

Figure 6-1.  Convolution in CNNs

Chapter 6  Convolutional Neural Networks



134

We then shift the kernel right by one—this is often referred to as the 

stride—and do the same thing again. Notice that the feature map is smaller 

than the original image. To mitigate this, CNNs often employ padding 

of the input image so that the resulting feature map does not reduce in 

size, as this constant reduction would limit the number of successive 

convolutions that could be applied. This is just a simple example, as real 

color images have three color channels—red, green, and blue—and the 

pixel value of each channel is represented by an integer between 0 and 

255. For a single image, our input would be a three-dimensional matrix 

with the width, height, and number of channels. Depending on the deep 

learning framework you use, some expect the channels to be first CHW or 

channels to be last HWC.

�Convolution Layer
CNNs employ convolution in what are referred to as convolution layers, 

which are simply a number of convolution kernels represented by the 

weights of each convolution layer. The dimensions and stride of the 

convolution are usually predefined, but the weights are learned as the 

network is trained. A CNN will typically have many convolution layers and 

each convolution layer will have its own set of learned kernels or filters.

Figure 6-2 is a selection of convolution filters taken from a pretrained 

CNN. The top row is of six filters from the first convolution layer. The 

bottom row is from the last convolution layer in the CNN. Going from the 

top to the bottom, it looks like the convolution layers are looking at ever 

more complex patterns. The first layer is encoding direction and color. 

The second layer seems to be more interested in spot and grid textures. 

The final layer looks like a complex combination of various textures. From 

this we can see that as we go through the network the patterns become 

more intricate, so the deeper the network the more complex patterns the 

convolution layers will learn to extract.
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Another interesting thing to note is that if we look at the first and 

last filter on the middle row it seems like they could be slightly rotated 

variations of the same filter. This highlights one of the deficiencies of 

CNNs: They are not rotation invariant. This is something Hinton has tried 

to overcome with capsule networks, as discussed in Chapter 3.

�Pooling Layer
Convolution is not equivariant, meaning that on their own they do not deal 

well with scaling and rotation of the input (Sabour, Frosst, & Hinton, 2017). 

A common type of layer in modern CNNs to help deal with this is a pooling 

layer, with the most popular pooling layer being the max pooling layer. 

Max pooling replaces the output of spatially adjacent outputs with the max 

of those values. Generally pooling layers replace the outputs with some 

form of summary statistic based on those outputs.

Figure 6-2.  Visualization of convolution layers. For more detailed 
visualizations take a look at Zeiler and Fergus (2013).
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Generally, the pooling layer’s purpose is to make neural networks 

locally invariant to small translations of the input, and its essence to care 

more about whether a feature is detected rather than where exactly it is in 

the input. This does, in turn, reduce the spatial acuity of the model and is 

considered a limitation of CNNs; however, pooling layers have proven to 

be extremely useful.

�Activation Functions
Activation functions are very important in CNNs and artificial neural networks 

in general. Without them CNNs would simply be a series of linear operations 

and would not be able to do the amazing things they do today. Activation 

functions are simply nonlinear transformations of the output of a neuron in 

a layer. They are referred to as activation functions because they draw their 

inspiration from the threshold and fire activation of biological neurons. 

There are a number of different activation functions with different properties 

and specialization, but we go over only the most common types here.

�Sigmoid

Sigmoid or logistic is a nonlinear function, which squashes the input 

between the values of 0 and 1 (Figure 6-3).
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In recent years it has fallen out of favor due to a number of drawbacks:

•	 It suffers from the vanishing gradient problem. Near 

the extreme values of 1 and 0 the gradient is flat, 

meaning as values approach those extremes the 

neurons saturate, and the weights do not update during 

backpropagation. Furthermore, neurons connected 

to this neuron get very tiny weight updates, in essence 

starving them of the much-needed information.

•	 The output is not zero centered.

�Tanh

Tanh or hyperbolic tangent functions are very similar to sigmoid functions; 

in fact, they are a simply scaled version of sigmoid functions so that they 

are centered around 0. Tanh squashes the output between the values of -1 

and 1 (Figure 6-4). In practice Tanh is often preferred to sigmoid, but it still 

suffers from the vanishing gradient problem.
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Figure 6-3.  Sigmoid function
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�Rectified Linear Unit

The rectified linear unit (ReLU; see Figure 6-5) is probably the most used 

activation function nowadays (LeCun, Bengio, & Hinton, 2015).

f x x( ) = ( )max 0,

Figure 6-4.  Tanh

Figure 6-5.  Rectified linear unit (ReLU)
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With the ReLU activation function, when the input is greater than zero, 

then output is the same as the input; when it is less than zero, the output 

is zero. Its popularity is mainly due to a couple of facts. First, it does not 

saturate or suffer from the vanishing gradient problem in the positive 

region. Second, it is a computationally efficient function and it also leads 

to sparse activations that also confer computational benefits. It does still 

suffer from a couple of drawbacks though:

•	 If the output of the function is less than zero during 

the forward pass, no gradient is propagated backward 

during the backward pass. This means that weights 

do not get updated. If neurons in the CNN exhibit this 

behavior consistently, the neurons are said to be dead, 

which means they no longer contribute to the network 

and are in essence useless. If this happens to a significant 

portion of your CNN, it will stall and fail to learn.

•	 For classification tasks, it cannot be used in the output 

layer because its output isn’t constrained between well-

defined boundaries.

�CNN Architecture
CNNs are typically constructed by stacking multiple layers on top of each 

other (Figure 6-6). A common configuration is the following: First, there 

is a convolution layer where multiple kernels convolve the input and 

produce a number of feature maps. These then pass through a nonlinear 

activation function such as ReLU, which is then followed by a pooling 

layer. These three stages are often combined in various ways to create the 

first few layers of a CNN. The output of the final layer is flattened and then 

fed through one or more fully connected layers. The activation function 

of the final layer is usually a softmax or sigmoid that squashes the output 

between 0 and 1.
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�Training Classification CNN
So far we have defined what a CNN looks like and how the information is 

propagated forward, but we have not described how it learns. The process 

of training a CNN is as follows:

	 1.	 We have a predefined architecture with a number 

of convolution and polling layers, plus our final 

fully connected layers. The weights of the CNN are 

initialized randomly based on some distribution.

	 2.	 We present the training images as a minibatch to 

our CNN, a four-dimensional matrix (batch size, 

width, height, and channels).

Figure 6-6.  CNN architecture
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	 3.	 We complete a forward pass through the 

networks with the images being passed through 

the convolution, pooling layers, and activation 

functions, and finally we get the output probabilities 

for each class for each image in the minibatch.

	 4.	 We compare the probabilities to the true labels and 

calculate the error.

	 5.	 We use backpropagation to calculate the gradients 

of the error with respect to the weights of the CNN 

and we use gradient descent to update the weights.

	 6.	 This process is repeated either for a set of epochs1 or 

until other conditions are met.

This is a simplified view of what happens, but it captures the core of 

what it takes to train a CNN, an objective function, a method to calculate 

the gradients, and an optimization method.

The objective or loss function determines how we will calculate the 

difference between what we expected the network to do and what it did.  

In essence it will calculate the error for our model. Common loss functions 

are mean squared error (MSE) and cross-entropy. Now once we have the 

error, we need to update the weights of the network in the right direction 

so that our predictions become a little better next time. This is done by a 

method called backpropagation.

The optimization method most commonly used by CNNs is minibatch 

gradient descent, often referred to as stochastic gradient descent (SGD), 

even though SGD is slightly different from minibatch gradient descent. 

Minibatch gradient descent seeks to optimize the objective function by 

iteratively updating the weights of the CNN based on the gradients in 

each minibatch. Due to the nonlinearities in CNNs, the solution space is 

1�Epoch refers to the CNN having seen the whole training set.
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often nonconvex and therefore there are no guarantees of convergence. 

For practitioners this can be quite frustrating, but CNNs work surprisingly 

well even without this guarantee. The main parameter in all variants of 

gradient descent is the learning rate, which determines the magnitude of 

the updates applied to the weight of the network. A variant of SGD also 

includes a momentum term that tries to accelerate learning by preserving 

the direction of travel through the parameter space. It does this by adding a 

fraction of the weight update of the previous time step to the current update. 

Other optimization algorithms include Adam, RMSProp, and so on.

�Why CNNs
As mentioned earlier, CNNs were inspired by neuroscience but they also 

make use of sound engineering principles that also confer advantages. 

These are sparse connectivity and parameter sharing. Current research 

indicates neurons also share these features. A typical human neuron has 

7,000 connections (cf. 1011 neurons in the brain). Similarly, each neuronal 

cell type shares specific functional parameters. A great example of the latter 

are retinal ganglion cells, which all implement effectively the same type 

of convolutional kernel (opposing center-surround). The weights of these 

kernels were “learned” through evolution of gene expression patterns.

In traditional neural networks such as multilayer perceptrons (MLPs), 

every layer is fully connected to every single node of the next layer. As you 

increase the number of layers and the number of nodes, the number of 

parameters explodes. In CNNs the connections are usually much smaller 

than the input because the kernel is convolved over the input, which is 

represented by the previous layer. Therefore in an image that is made of 

thousands of pixels, the convolution kernel can be just a few tens of pixels. 

This reduction in parameters improves the efficiency of the model both in 

terms of memory and also in terms of computation due to the reduction in 

the amount of computation required.
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The second benefit is parameter sharing. In standard neural networks, 

the input weights for each node in the next layer are only used for that 

node, whereas in CNNs the same kernel is used many times. Therefore, 

instead of learning different parameters for each node, we learn a set of 

kernels for all the nodes.

�Training CNN on CIFAR10
In this next section, we go step by step in training a CNN on the CIFAR10 

data set (Krizhevsky 2009; Krizhevsky, Nair, & Hinton, n.d.). We use 

TensorFlow as the deep learning library to build our CNN with. The CIFAR102 

data set is an often used data set that in total contains 60,000 32 × 32 

color images across 10 classes (see Figure 6-7). These are split into 50,000 

training and 10,000 test. The code for this section can also be found in the 

notebook Chapter_06_01.ipynb (http://bit.ly/Nbook_ch06_01).

More Info W e recommend provisioning an Azure DLVM to run the 
code examples in this chapter. Please see the Chapter 4 for more 
information.

2�CIFAR stands for the Canadian Institute for Advanced Research. They are partly 
responsible for funding Hinton and LeCun during the neural network winter, 
leading to the eventual resurgence of neural networks as deep learning.

Chapter 6  Convolutional Neural Networks



144

The first thing we will do is define our CNN (see Listing 6-1). It isn’t 

very deep and only has two convolutional layers. The first convolution 

layer has 50 filters and the second 25, each with a dimension of 3 × 3. The 

first convolution layer uses ReLU activation and the second convolution 

layer carries out ReLU activation before using max pooling. After that we 

need to reshape our Tensor into a 2D matrix with the first dimension being 

the size of our batch. After that we pass it into a fully connected layer of 512 

nodes with ReLU activation. Finally, we introduce our final dense layer, 

which has 10 outputs, one for each of our classes.

Listing 6-1.  CNN with Two Convolution Layers

PYTHON

def create_model(model_input,

                 n_classes=N_CLASSES,

                 data_format='channels_last'):

Figure 6-7.  CIFAR10 data set
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    conv1 = tf.layers.conv2d(model_input,

                             filters=50,

                             kernel_size=(3, 3),

                             padding='same',

                             data_format=data_format,

                             activation=tf.nn.relu)

    conv2 = tf.layers.conv2d(conv1,

                             filters=50,

                             kernel_size=(3, 3),

                             padding='same',

                             data_format=data_format,

                             activation=tf.nn.relu)

    pool1 = tf.layers.max_pooling2d(conv2,

                                    pool_size=(2, 2),

                                    strides=(2, 2),

                                    padding='valid',

                                    data_format=data_format)

    flatten = tf.reshape(pool1, shape=[-1, 50*16*16])

    fc1 = tf.layers.dense(flatten, 512, activation=tf.nn.relu)

    logits = tf.layers.dense(fc1, n_classes, name='output')

    return logits

An important element in training neural networks is defining the 

loss function and optimization to use (see Listing 6-2). Here we are 

using cross-entropy as our loss function and SGD with momentum as 

our optimization function. SGD is the standard optimization method for 

deep learning. The two parameters we have to define are the learning 

rate and momentum.
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Listing 6-2.  Initialize Model with Optimization and Loss Method

PYTHON

def init_model_training(m, labels, learning_rate=LR, 

momentum=MOMENTUM):

    cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(

                                                 �logits=m, 

labels=labels)

    loss = tf.reduce_mean(cross_entropy)

    �optimizer = tf.train.MomentumOptimizer(learning_rate= 

learning_rate,

                                           momentum=momentum)

    return optimizer.minimize(loss)

Now we have the functions to create and train our CNN, so we need 

the methods to prepare the data and feed it to our CNN in batches, shown 

in Listing 6-3.

Listing 6-3.  Prepare the CIFAR 10 Data

PYTHON

def prepare_cifar(x_train, y_train, x_test, y_test):

    # Scale pixel intensity

    x_train = x_train / 255.0

    x_test = x_test / 255.0

    # Reshape

    x_train = x_train.reshape(-1, 3, 32, 32)

    x_test = x_test.reshape(-1, 3, 32, 32)

    x_train = np.swapaxes(x_train, 1, 3)

    x_test = np.swapaxes(x_test, 1, 3)
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    return (x_train.astype(np.float32),

            y_train.astype(np.int32),

            x_test.astype(np.float32),

            y_test.astype(np.int32))

The prepare_cifar function accepts the training images and test 

images as arrays and the labels as vectors. Before we can use the images 

with our CNN we need to do some preprocessing. First we scale the pixel 

values between 0 and 1, then we reshape it so that the matrix is in the 

channels last configuration. This means that the image data will be shaped 

(examples, height, width, channels). Channels refers to the RGB channels 

in the image.

Next we define the minibatch function that will return a matrix of 

shape (BATCHSIZE, 32, 32, 3) if we have defined our data to be channel last 

(see Listing 6-4). We also need to shuffle the data, as we do not want to 

feed the CNN the training samples in any meaningful order as this might 

bias the optimization algorithm.

Listing 6-4.  Minibatch Generator

PYTHON

def minibatch_from(X, y, batchsize=BATCHSIZE, shuffle=False):

    if len(X) != len(y):

        raise Exception("The length of X {} and y {} don't \

                         match".format(len(X), len(y)))

    if shuffle:

        X, y = shuffle_data(X, y)

    for i in range(0, len(X), batchsize):

        yield X[i:i + batchsize], y[i:i + batchsize]
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Next, we load the data, as shown in Listing 6-5.

Listing 6-5.  Load Data

PYTHON

x_train, y_train, x_test, y_test = prepare_cifar(*load_cifar())

Then we create placeholders for our data and labels, as shown in 

Listing 6-6, and create the model.

Listing 6-6.  Placeholders for the Data and Labels

PYTHON

X = tf.placeholder(tf.float32, shape=[None, 32, 32, 3])

y = tf.placeholder(tf.int32, shape=[None])

# Initialise model

model = create_model(X, training)

We then initialize the model and start the TensorFlow session.

Listing 6-7.  Initialize Model and Start the Session

PYTHON

train_model = init_model_training(model, y)

init = tf.global_variables_initializer()

sess = tf.Session()

sess.run(init)

Next we train the model for the desired number of epochs. During this 

process we execute the forward pass, calculate the loss, and then propagate 

the error backward and update the weights. This can take a considerable 

amount of time depending on the computational resources you have at your 

disposal. Azure notebooks run the deep learning training on CPU and have 
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limited computational resources. One of the preferred environments to train 

these neural networks on is the DSVM or DLVM, which come in multiple 

configurations, including with GPUs. See Listing 6-8.

Listing 6-8.  Loop over the Training Data for N Epochs and Train Model

PYTHON

for j in range(EPOCHS):

    �for data, label in minibatch_from(x_train, y_train, 

shuffle=True):

        sess.run(train_model, feed_dict={X: data,

                                         y: label})

    # Log

    acc_train = sess.run(accuracy, feed_dict={X: data,

                                              y: label})

    �print("Epoch {} training accuracy: {:0.4f}".format(j,acc_train))

Now that we have the trained model, we want to evaluate it on our test 

data, as shown in Listing 6-9.

Listing 6-9.  Evaluate Model on Test Data

PYTHON

y_guess = list()

for data, label in minibatch_from(x_test, y_test):

    pred=tf.argmax(model,1)

    output=sess.run(pred,feed_dict={X:data})

    y_guess.append(output)

This piece of code feeds minibatches to the CNN and appends them to 

a list.

Finally, we evaluate the performance of the model against the true 

labels, as shown in Listing 6-10.

Chapter 6  Convolutional Neural Networks



150

Listing 6-10.  Print out the Accuracy of Our Model

PYTHON

print("Accuracy: ", sum(np.concatenate(y_guess) ==

                        y_test)/float(len(y_test)))

Depending on how long you trained the network, you will get 

differing error rates. After three epochs the network achieved an accuracy 

of 64 percent on the test set.

This was just a simple exercise to illustrate how you can create and 

train your own neural network. Feel free to play around with the layers and 

see how it affects performance.

Creating your own architecture is fun but optimizing these structures 

can be laborious and frustrating. For an ML practitioner, a more fruitful 

strategy is to use state-of-the-art architectures that researchers have 

published and cut out the laborious process of trying to generate your 

own network.

�Training a Deep CNN on GPU
In this section we are going to build on what we learned in the previous 

section and construct a deeper CNN. For this you almost definitely 

need a GPU-enabled machine whether this is your own or in the cloud. 

We are going to be using the CIFAR10 data set, but this time we will be 

basing our CNN architecture on the VGG architecture (Simonyan & 

Zisserman, 2014). We slowly build up the network using the standard 

building blocks used in CNNs and see how adding these to our network 

affects performance. All the steps can been found in the notebook 

Chapter_06_03.ipynb (http://bit.ly/Nbook_ch06_03).

If you feel that this is a bit of a leap, there is another notebook that we 

do not cover here that goes into how the outputs of each layer are affected 

by the properties set for that layer (see http://bit.ly/Nbook_ch06_02).
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�Model 1
As mentioned earlier, we will be using the CIFAR10 data set, so our inputs 

will be 32 × 32 color images and the task is to classify them into one of ten 

classes. We will be basing our model on the VGG architecture (Simonyan & 

Zisserman, 2014). With this in mind, our first network is shown in Listing 6-11.

Listing 6-11.  CNN with Two Convolution Layers

PYTHON

conv1_1 = tf.layers.conv2d(X,

                           filters=64,

                           kernel_size=(3,3),

                           padding='same',

                           data_format=data_format,

                           activation=tf.nn.relu)

conv1_2 = tf.layers.conv2d(conv1_1,

                           filters=64,

                           kernel_size=(3,3),

                           padding='same',

                           data_format=data_format,

                           activation=tf.nn.relu)

pool1_1 = tf.layers.max_pooling2d(conv1_2,

                                  pool_size=(2,2),

                                  strides=(2,2),

                                  padding='valid',

                                  data_format=data_format)

relu2 = tf.nn.relu(pool1_1)

flatten = tf.reshape(relu2, shape=[-1, 64*16*16])

fc1 = tf.layers.dense(flatten, 4096, activation=tf.nn.relu)

fc2 = tf.layers.dense(fc1, 4096, activation=tf.nn.relu)

model = tf.layers.dense(fc2, N_CLASSES, name='output')

Chapter 6  Convolutional Neural Networks



152

We have two convolution layers followed by a max pooling layer, which 

makes up the featurizing portion of our CNN. The classification part of our 

CNN is made up of two fully connected dense layers and our final output is 

the same size as the number of classes we expect.

Our model gets an accuracy of 72.1 percent on the test set after training 

for 20 epochs. We can also see that it achieves 100 percent on the training 

set a few epochs before we stop training. It would usually be prudent to stop 

the model earlier, and there are usually callbacks that can be used in any 

of the frameworks to do this. We are simply not using these here to try and 

keep things simple. By running the notebook you should get similar results.

�Model 2
With the second model we add a second convolution block. In keeping 

with the VGG architecture, we add two convolution layers each with  

128 filters as well as a max pooling layer (see Listing 6-12). This time we 

will train it for 10 epochs.

Listing 6-12.  CNN with Four Convolution Layers

PYTHON

# Block 1

conv1_1 = tf.layers.conv2d(X,

                           filters=64,

                           kernel_size=(3,3),

                           padding='same',

                           data_format=data_format,

                           activation=tf.nn.relu)

conv1_2 = tf.layers.conv2d(conv1_1,

                           filters=64,

                           kernel_size=(3,3),

                           padding='same',
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                           data_format=data_format,

                           activation=tf.nn.relu)

pool1_1 = tf.layers.max_pooling2d(conv1_2,

                                  pool_size=(2,2),

                                  strides=(2,2),

                                  padding='valid',

                                  data_format=data_format)

# Block 2

conv2_1 = tf.layers.conv2d(pool1_1,

                           filters=128,

                           kernel_size=(3,3),

                           padding='same',

                           data_format=data_format,

                           activation=tf.nn.relu)

conv2_2 = tf.layers.conv2d(conv2_1,

                           filters=128,

                           kernel_size=(3,3),

                           padding='same',

                           data_format=data_format,

                           activation=tf.nn.relu)

pool2_1 = tf.layers.max_pooling2d(conv2_2,

                                  pool_size=(2,2),

                                  strides=(2,2),

                                  padding='valid',

                                  data_format=data_format)

relu2 = tf.nn.relu(pool2_1)

flatten = tf.reshape(relu2, shape=[-1, 128*8*8])

fc1 = tf.layers.dense(flatten, 4096, activation=tf.nn.relu)

fc2 = tf.layers.dense(fc1, 4096, activation=tf.nn.relu)

model = tf.layers.dense(fc2, N_CLASSES, name='output')
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After training it for 10 epochs you should find the performance of your 

model has improved slightly.

�Model 3
Let’s add another convolution block. This time, though, we increase the 

number of filters to 256, again in keeping with the VGG architecture. 

See Listing 6-13.

Listing 6-13.  CNN with Seven Convolution Layers

PYTHON

# Block 1

conv1_1 = tf.layers.conv2d(X,

                           filters=64,

                           kernel_size=(3,3),

                           padding='same',

                           data_format=data_format,

                           activation=tf.nn.relu)

conv1_2 = tf.layers.conv2d(conv1_1,

                           filters=64,

                           kernel_size=(3,3),

                           padding='same',

                           data_format=data_format,

                           activation=tf.nn.relu)

pool1_1 = tf.layers.max_pooling2d(conv1_2,

                                  pool_size=(2,2),

                                  strides=(2,2),

                                  padding='valid',

                                  data_format=data_format)
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# Block 2

conv2_1 = tf.layers.conv2d(pool1_1,

                           filters=128,

                           kernel_size=(3,3),

                           padding='same',

                           data_format=data_format,

                           activation=tf.nn.relu)

conv2_2 = tf.layers.conv2d(conv2_1,

                           filters=128,

                           kernel_size=(3,3),

                           padding='same',

                           data_format=data_format,

                           activation=tf.nn.relu)

pool2_1 = tf.layers.max_pooling2d(conv2_2,

                                  pool_size=(2,2),

                                  strides=(2,2),

                                  padding='valid',

                                  data_format=data_format)

# Block 3

conv3_1 = tf.layers.conv2d(pool2_1,

                           filters=256,

                           kernel_size=(3,3),

                           padding='same',

                           data_format=data_format,

                           activation=tf.nn.relu)

conv3_2 = tf.layers.conv2d(conv3_1,

                           filters=256,

                           kernel_size=(3,3),

                           padding='same',

                           data_format=data_format,

                           activation=tf.nn.relu)
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conv3_3 = tf.layers.conv2d(conv3_2,

                           filters=256,

                           kernel_size=(3,3),

                           padding='same',

                           data_format=data_format,

                           activation=tf.nn.relu)

pool3_1 = tf.layers.max_pooling2d(conv3_3,

                                  pool_size=(2,2),

                                  strides=(2,2),

                                  padding='valid',

                                  data_format=data_format)

relu2 = tf.nn.relu(pool3_1)

flatten = tf.reshape(relu2, shape=[-1, 256*4*4])

fc1 = tf.layers.dense(flatten, 4096, activation=tf.nn.relu)

fc2 = tf.layers.dense(fc1, 4096, activation=tf.nn.relu)

model = tf.layers.dense(fc2, N_CLASSES, name='output')

Once you have trained the model for 10 epochs you should find that 

the performance has increased again, albeit by a smaller margin. You 

should notice that with each additional layer we get better results, but the 

returns diminish with each successive block.

�Model 4
Due to the large number of free parameters CNNs can benefit from 

regularization. One way to regularize is to use dropout (see Listing 6-14), 

which we talked about in Chapter 2. The dropout layer will randomly 

during the forward pass zero a certain proportion of its outputs. This 

means it will not participate in the forward calculations but also not 

receive any weight updates (Srivastava, Hinton, Krizhevsky, Sutskever, & 

Salakhutdinov, 2014). Dropout can reduce the dependence of the CNN or 

any deep learning on one or a small number of neurons. This in turn can 

make the model robust to absence of information.
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Listing 6-14.  CNN with Seven Convolution Layers and Dropout

PYTHON

# Block 1

conv1_1 = tf.layers.conv2d(X,

                           filters=64,

                           kernel_size=(3,3),

                           padding='same',

                           data_format=data_format,

                           activation=tf.nn.relu)

conv1_2 = tf.layers.conv2d(conv1_1,

                           filters=64,

                           kernel_size=(3,3),

                           padding='same',

                           data_format=data_format,

                           activation=tf.nn.relu)

pool1_1 = tf.layers.max_pooling2d(conv1_2,

                                  pool_size=(2,2),

                                  strides=(2,2),

                                  padding='valid',

                                  data_format=data_format)

# Block 2

conv2_1 = tf.layers.conv2d(pool1_1,

                           filters=128,

                           kernel_size=(3,3),

                           padding='same',

                           data_format=data_format,

                           activation=tf.nn.relu)

conv2_2 = tf.layers.conv2d(conv2_1,

                           filters=128,

                           kernel_size=(3,3),

                           padding='same',
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                           data_format=data_format,

                           activation=tf.nn.relu)

pool2_1 = tf.layers.max_pooling2d(conv2_2,

                                  pool_size=(2,2),

                                  strides=(2,2),

                                  padding='valid',

                                  data_format=data_format)

# Block 3

conv3_1 = tf.layers.conv2d(pool2_1,

                           filters=256,

                           kernel_size=(3,3),

                           padding='same',

                           data_format=data_format,

                           activation=tf.nn.relu)

conv3_2 = tf.layers.conv2d(conv3_1,

                           filters=256,

                           kernel_size=(3,3),

                           padding='same',

                           data_format=data_format,

                           activation=tf.nn.relu)

conv3_3 = tf.layers.conv2d(conv3_2,

                           filters=256,

                           kernel_size=(3,3),

                           padding='same',

                           data_format=data_format,

                           activation=tf.nn.relu)

pool3_1 = tf.layers.max_pooling2d(conv3_3,

                                  pool_size=(2,2),

                                  strides=(2,2),

                                  padding='valid',

                                  data_format=data_format)
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relu2 = tf.nn.relu(pool3_1)

flatten = tf.reshape(relu2, shape=[-1, 256*4*4])

fc1 = tf.layers.dense(flatten, 4096, activation=tf.nn.relu)

drop1 = tf.layers.dropout(fc1, 0.5, training=training)

fc2 = tf.layers.dense(drop1, 4096, activation=tf.nn.relu)

drop2 = tf.layers.dropout(fc2, 0.5, training=training)

model = tf.layers.dense(drop2, N_CLASSES, name='output')

When we ran this model we saw our accuracy increase further to 80 

percent. Dropout is a very effective regularization technique and almost all 

CNN architectures make use of it, including VGG.

The VGG architecture actually has even more layers than our final model, 

but it was designed to tackle the ImageNet data set, which contains a lot 

more data than the CIFAR10 data set. Adding further layers with the limited 

data available would quickly prove untenable. We would have to spend a lot 

of effort to try and ensure that our model does not overfit the data.3

�Transfer Learning
Training a CNN from scratch often requires a large amount of data. 

One strategy to overcome this limitation is to use transfer learning, as 

mentioned in Chapter 2. This means that we use a predefined network that 

has been trained on a much larger but similar data set. We then use that 

network for our problem; in other words, transferring the learning that the 

network has from other data onto our problem. The simplest approach 

is to simply remove the topmost layers and use the output from these 

penultimate layers as features in our own ML model. This can be another 

neural network such as MLP or a classical ML model such as Support 

Vector Machines or Random Forest.

3�We also implemented the same notebooks using Keras, which can be found at 
http://bit.ly/Ch06Keras.
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Another approach is to replace the topmost fully connected layers and 

then freeze certain layers and retrain it. Freezing layers means that the 

weights of these layers are not updated during training. Which layers to 

freeze depends on a number of factors, including the similarity between 

the data sets used and so on. Retraining more layers can often improve the 

accuracy of the model, but also increases the possibility of overfitting.

Almost all network topologies published have pretrained weights for 

the ImageNet data set, one of the largest image classification data sets and 

more or less the standard for image classification problems. This data set 

consists of millions of images spanning multiple classes (ImageNet, n.d.). 

Using pretrained CNNs trained on ImageNet is an easy way to get very 

good results for image classification tasks.

�Summary
This chapter briefly described what constitutes a CNN. We have explained 

why convolution is useful in computer vision tasks, as well as what the 

shortcomings of CNNs are. We went through a simple example of creating 

a CNN in TensorFlow and then expanded on it through a series of steps 

and observed the effect it had on the performance of the model. This 

chapter has only scratched the surface of the vast information on CNNs, 

with many great books covering the theory behind them. The next chapter 

goes over a different deep learning architecture, RNNs, which are well 

suited to the tasks of sequence modeling such as language translation.
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CHAPTER 7

Recurrent Neural 
Networks
The previous chapter showed how a deep learning model—specifically 

CNNs—could be applied to images. The process could be decoupled into 

a feature extractor that figures out the optimal hidden-state representation 

of the input (in this case a vector of feature maps) and a classifier 

(typically a fully connected layer). This chapter focuses on the hidden-

state representation of other forms of data and explores RNNs. RNNs are 

especially useful for analyzing sequences, which is particularly helpful for 

natural language processing and time series analysis.

Even images can be thought of as a subset of sequence data; if we 

shuffle the rows and columns (or channels) then the image becomes 

unrecognizable. This is not the case for spreadsheet data, for example. 

However, CNNs have a very weak notion of order and typically the kernel 

size for a convolution is in the single digits. As these convolutions are 

stacked on top of each other, the receptive field increases, but the signal 

also gets dampened. This means that CNNs typically only care about 

temporary spatial relationships, such as a nose or eye. In Figure 7-1, we 

can imagine that we have shuffled a sequence, preserving order only 

within local groups, but most CNNs will still classify it the same, even 

though it makes no sense overall.
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For some other forms of data, the relationship between members of the 

sequence becomes even more important. Music, text, time series data, and 

more all depend heavily on a clear representation of history. For example 

the sentence, “I did not watch this movie yesterday but I did really like it,” 

differs from “I did watch this movie yesterday but I did not really like it,” or 

even “This is a lie—I really did not like the movie I watched yesterday.” Not 

surprisingly, word order is key. For a CNN to capture a relationship across 

so many words, the kernel size has to be much larger than the number of 

hidden units required for an RNN to capture the same relationship (and at 

some point, it will no longer be possible).

To see why we need a new deep learning structure for these kinds of 

sequences, let’s first examine what happens if we try to hack together a 

basic neural network to predict the last digit of a sequence. If we imagine 

that we have a sequence of numbers (from 0–9) such as [0, 1, 2, 3, 4] and 

[9, 8, 7, 6, 5], we can represent each number as a 10-dimensional vector 

Figure 7-1.  CNNs have a weak concept of order, as can be seen by 
applying ResNet-121 trained on ImageNet to a shuffled image
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that is one-hot encoded. For example, the number 2 could be encoded as 

[0, 0, 1, 0, 0, 0, 0, 0, 0, 0] and 6 as [0, 0, 0, 0, 0, 0, 1, 0, 0, 0]. To train a network 

to predict the last digit of the sequence we can attempt two different 

approaches.

First, we can concatenate the four one-hot encoded vectors and thus 

create a hidden state that exists in 40-dimensional space. The neural 

network then adjusts a weights matrix (size 40 × 10) and a bias matrix 

(size 10 × 1) to map this to the label (the last number), which exists in a 

10-dimensional space. Second, we can sum the input vectors together 

and create a hidden state that exists in 10-dimensional space and train the 

network to map this to the label instead.

The issue with the second approach is that by summing the one-hot 

encoded vector for 2 and 3, for example, we get [0, 0, 1, 1, 0, 0, 0, 0, 0, 0] 

and with this hidden state it is not possible to know whether the input 

sequence was [2, 3] or [3, 2] and thus whether the next number should be 4 

or 1. The first approach does not have this issue because we can clearly see 

that [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0] corresponds to [2, 3]. 

However, another issue arises when we see that we have learned a weights 

matrix that is of size (40 × 10). Our neural network can only work with an 

input of four numbers.

Hence, by summing inputs we can work with variable-length 

sequences, but we cannot preserve order. In contrast, by concatenating 

inputs we can preserve order, but we have to work with a sequence of a 

fixed size. RNNs solve this by representing history as a fixed-dimension 

vector that handles inputs that are variable-length sequences (and as 

we will see in the sequences-to-sequence section, also variable-length 

outputs).

The operation of an RNN can be represented as the second neural 

network in the preceding example: summing input vectors, but with the 

modification that after every summation we multiply the hidden state 

by some number. This number remains the same for all time steps and 

thus RNNs make use of weight sharing, in a similar manner to CNNs. 
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If we imagine this number to be 0.5 then we can represent [2] as [0, 0, 

1*0.5, 0, 0, 0, 0, 0, 0, 0] and [2, 3] as [0, 0, 1*0.5*0.5, 1*0.5, 0, 0, 0, 0, 0, 0], 

which is now a fixed-size hidden state and different from [3, 2], which is 

represented as [0, 0, 1*0.5, 1*0.5*0.5, 0, 0, 0, 0, 0, 0]. In practice, we also 

apply a nonlinearity (add a bias term, and use a different weights matrix 

for input X and hidden); however, as seen earlier, those are not necessary 

to understand the fundamental concept behind RNNs.

We can see that the hidden state in any given time period is a 

function of all previous hidden states. This means if we have a very long 

sequence (perhaps 100 entries) then we will end up with an entry that gets 

multiplied by the weights matrix 100 times. If we imagine this matrix to be 

scalar (like earlier), if it is less than 1 then the entry will tend to 0, and if 

it is above 1 then it will explode toward infinity. We cover this later as the 

vanishing/exploding gradient problem.

�RNN Architectures
One of the most exciting features of RNNs is their ability to work in 

different design patterns. In contrast with CNNs, which are constrained 

to operate with fixed input and output structures like images, RNNs offer 

more flexibility due their ability to manage variable sequences of inputs 

and outputs.

Figure 7-2 shows different design patterns for RNNs. Figure 7-2(a) 

shows the typical structure of a vanilla neural network (no RNN) with 

a fixed-size input and output sequence; one example of this is image 

classification. Figure 7-2(b) shows the one-to-many pattern, which is the 

typical structure used in image captioning, where the input is an image, and 

the output is a sequence of words describing the image. Figure 7-2(c) shows 

the many-to-one pattern. One application of this pattern is sentiment 

analysis, where the input is a text and the output is a boolean (positive or 

negative). Figure 7-2(d) shows the synchronous many-to-many pattern. 
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An example of this could be video captioning, where we want to set a tag 

to each video frame. Finally, Figure 7-2(e) shows the asynchronous many-

to-many representation, which is the typical case of machine translation, 

where the input could be text in English and the output text in Spanish.

Figure 7-2.  Bottom layer is the inputs, in the middle are the hidden 
states, and the top layer is the outputs. (a) Vanilla network (no RNN) 
with single input, hidden state, and single output. (b) One-to-many 
pattern. (c) Many-to-one pattern. (d) Synchronous many-to-many 
pattern. (e) Asynchronous many-to-many pattern, also referred as 
encoder–decoder.

Apart from the previous design patterns, RNNs vary depending on 

how the interconnection between the different layers is performed. The 

standard case is where the RNN has recurrent connections between 

hidden units, as depicted in Figure 7-3. In this case, the RNN is Turing-

complete (Siegelmann, 1995), and therefore can simulate any arbitrary 

program. In essence, an RNN repeatedly applies a nonlinear function, 

with trainable parameters to a hidden state, which make them suitable for 

sequence modeling tasks.
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However, their recurrent structure constrains each step computation 

to depend on completing the previous step, making the network difficult 

to parallelize and scale. Similar to CNNs, training an RNN involves 

computing the gradient of the loss function with respect to the weights. 

This operation involves computing a forward propagation, moving from 

left to right through in Figure 7-3(b), followed by a backward propagation, 

moving from right to left, to update the weights. This training process is 

expensive because the forward propagation is inherently sequential, and 

thus cannot be parallelized. The backpropagation algorithm applied in 

RNNs is called backpropagation through time (BPTT), and is discussed in 

detail later in this chapter.

A solution to the slow training limitation can be found in the output 

recurrent structure shown in Figure 7-4. The RNNs from this family 

connect each output with the future hidden state, eliminating the hidden-

to-hidden connections. In this scenario, any loss function comparing the 

prediction and target at a specific time step can be decoupled; therefore, 

the gradient for each step is computed independently and parallelized.

Figure 7-3.  (a) RNN with recurrent connection between hidden 
states. (b) Unrolled RNN, showing the connection between hidden 
states.
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Unfortunately, RNNs with output recurrent connections are 

less powerful than their counterparts containing hidden-to-hidden 

connections (Goodfellow et al., 2016). For example, they cannot simulate 

a universal Turing machine. Due to the lack of hidden-to-hidden 

connections, the only signal that is transferred to the next step is the 

output, which unless it is very high dimensional and rich, could miss 

important information from the past.

The structures seen until now share the idea that all sequences are 

forward sequences, meaning that the network captures information of the 

present state based on past states. However, there are some cases where 

the relationships in the opposite direction are also valuable. Such is the 

case of speech recognition or text understanding. In some languages, the 

linguistic relationships between the different words can be dependent on 

the future or the past. In English, for example, the verb is usually located in 

the middle of the sentence, whereas in German, the verb tends to be at the 

end of the sentence. To address this phenomenon, bidirectional recurrent 

neural networks were proposed (Schuster & Paliwal, 1997).

Figure 7-4.  (a) RNN with output recurrent connection. (b) Unrolled 
structure of an RNN with output recurrence.
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Bidirectional recurrent neural networks (BiRNNs) have a layer of 

hidden connections that moves forward through time and a layer that 

moves backward (see Figure 7-5). This structure allows the output to learn 

representations of its near future and past states, at the price of making the 

training process computationally more expensive.

Figure 7-5.  Bidirectional RNN. BiRNNs contain a layer of forward 
connections to encode future dependencies, h, and a layer of 
backward connections to encode past dependencies, g. In the 
presented structure, each hidden unit is connected to another hidden 
unit and to the output.
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�Training RNNs
RNN training shares some similarities with the CNN training method that 

we saw in the previous chapter, but in the RNN case, the algorithm used is 

called BPTT (Werbos, 1990). The underlying idea behind BPTT is simply 

to apply the same generalized backpropagation algorithm to the unrolled 

computational graph. The steps of training an RNN are as follows:

	 1.	 We have an RNN architecture like the ones shown in 

Figure 7-3, Figure 7-4, and Figure 7-5. The weights 

are initialized based on some distribution.

	 2.	 We input the sequences as minibatches to the RNN 

as (batch size, sequence size). The sequence size can 

have a variable length depending on the framework 

you are using.

	 3.	 We compute the forward propagation by unrolling 

the graph and obtaining the predicted output at 

each time step.

	 4.	 We compare the predicted output with the true 

labels and accumulate the error (or loss) across each 

time step.

	 5.	 We apply backpropagation by computing the 

gradient of the loss with respect to the weights and 

use gradient descent to update the weights.

	 6.	 This process is repeated for a number of epochs or 

until some exit criteria are met.

For long sequences, there is a high cost of updating the weights. 

For instance, the gradient of an RNN with sequences of length 1,000 is 

equivalent to a forward and a backward pass in a neural network with 

1,000 layers (Sutskever, 2013).
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Therefore, a practical approach for training RNNs is to compute 

BPTT in a sliding window of the unrolled graph, which is referred as 

truncated BPTT (Williams & Peng, 1990). The idea is simple: Each 

complete sequence is sliced into a number of smaller subsequences 

and BPTT is applied to each of these parts. This approach works well in 

practice, especially in word modeling problems (Mikolov, Karafiát, Burget, 

Černocký, & Khudanpur, 2010), but the algorithm is blind to dependencies 

between different windows.

�Gated RNNs
Due to the iterative nature of the propagation error in RNNs, in some cases, 

the loss gradients can vanish as they get backpropagated in time. This 

is referred to as vanishing gradients (Bengio, Simard, & Frasconi, 1994). 

A vanishing gradient means in practice that the loss gradient is a small 

quantity, therefore the process of updating the weights can take too long. 

More rarely, the gradient can explode, producing gradients exponentially 

large, referred to as exploding gradients. This also makes RNNs difficult to 

train on sequences with long temporal dependencies.

A solution to the vanishing and exploding gradient problem is 

the LSTM RNN (Gers, Schmidhuber, & Cummins, 2000; Hochreiter & 

Schmidhuber, 1997), which is a network type specially designed to learn 

long-term relationships. For it, they substitute the hidden units of standard 

RNNs with a new block called the LSTM cell. The intuition behind these 

cells is that they allow control of the amount of information that is going 

to be passed to the next state and use a forgetting mechanism to stop the 

information that is not useful anymore.

The LSTM block (see Figure 7-6) is composed of a state unit and three 

gating units: forget gate, input gate, and output gate. At a high level, the 

state unit handles the information transfer between the input and the 

output, and contains a self-loop. The gating units, which simply set their 
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weights to a value between 0 and 1 via a sigmoid function, control the 

amount of information that is going to come from the input, go to the 

output, and be forgotten from the state unit.

Figure 7-6.  Schema of an LSTM. It has three units: input x, state s, 
and output y, which are controlled by three gates: input gate gi, forget 
gate gf, and output gate go. The state unit contains a self-loop.

Empirical work has shown that the key components of the LSTM are 

the forget gate and the output activation functions, and that there is no 

significant difference in terms of accuracy when comparing an LSTM with 

its other variants (Greff, Srivastava, Koutník, Steunebrink, & Schmidhuber, 

2017).

A variant of the LSTM is the gated recurrent unit (GRU; Cho et al., 

2014), which simplifies the structure of the LSTM using a slightly different 

combination of gating units. Specifically, they lack the output gate, which 

exposes the full hidden content to the output. In contrast, the LSTM 

unit uses the output gate to control the amount of memory that is seen. 
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This lack of the output gate in GRUs makes them computationally less 

expensive, but it could lead to a suboptimal memory representation, which 

might be the reason an LSTM tends to remember longer sequences. For 

a more detailed comparison between LSTMs and GRUs, please refer to 

Chung, Gulcehre, Cho, & Bengio, 2014).

�Sequence-to-Sequence Models 
and Attention Mechanism
Sequence-to-sequence models (Cho et al., 2014; Sutskever, Vinyals, & 

Le, 2014) are a relatively recent architecture that have created many 

exciting possibilities for machine translation, speech recognition, and text 

summarization. The basic principle is to map an input sequence to an 

output sequence, which can be of a different length, a variant of Figure 7-2(e) 

This is accomplished by combining an input RNN (or an encoder) that maps 

a variable-length sequence to a fixed-length vector with an output RNN (or 

a decoder) that maps a fixed-length vector to a variable-length sequence. As 

an example, see the blog post with associated tutorial for generating music 

using an LSTM sequence-to-sequence model with Azure Machine Learning 

from Erika Menezes available at http://bit.ly/MusicGenAzure.

Sequence-to-sequence models in the realm of machine translation 

(called neural machine translation [NMT]) have largely replaced phrase-

based machine translation because they do not require lots of manual 

tuning for each subcomponent (and for each language). NMT (shown in 

Figure 7-7) models might have different RNN structures for the encoder 

and the decoder component; the structure of the RNNs can vary in several 

ways: cell type such as GRU or LSTM, number of layers, and directionality 

(unidirectional or bidirectional).
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It has been empirically observed (Cho et al., 2014) that NMT models 

struggle to translate long sentences. This is because the network must 

compress all the information from the input sentence into a single fixed-

length vector, irrespective of the length of the sentence.

Consider this sentence: “I went to the park yesterday to play 

badminton and my dog jumped into the pond.” We can see there are (at 

least) two components: “I went to the park yesterday to play badminton” 

and “my dog jumped into the pond.” We might not care about the first 

component when attempting to translate the second component (and 

vice versa). However, an NMT model has no choice but to use the hidden 

vector that would contain both components to produce an input. Ideally, 

we would have a model that assigns importance to the input words for 

Figure 7-7.  Example of a simple NMT architecture during training 
for English–French
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each output word. In that case the relative importance of the words in the 

first component would be very low when parts of the second component 

are being translated. Not everything is required in a sentence to translate 

some words.

The attention mechanism (Bahdanau, Cho, & Bengio, 2014; Yang 

et al., 2016) attempts to do just that: It tries to create a weighted average 

that aligns the important components from the input sentence for each 

word in the output sentence. The main difference from a standard NMT 

model is that instead of encoding the whole input sentence into a single 

fixed-length vector, the input sequence is encoded into a sequence of 

fixed-length vectors, a “random access memory,” and different vectors are 

weighted differently for each word in the translation. This means that the 

model is now free to create longer sequences of hidden vectors for longer 

sentences and learn which of those to focus on during the decoder stage.

Putting these components together, the mechanism might look like 

Figure 7-8. The network first encodes each unit of the input sentence 

(usually a word) into a distributed feature vector. The hidden state 

becomes the collection of these feature vectors. Then during the decoder 

stage, the model predicts each word iteratively using all previously 

generated predictions along with the sequence of feature vectors, where 

it has learned how much attention to place on each feature vector (input 

word) for each of target words it predicts.
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This approach of jointly aligning words (which words from input 

are needed to predict output) and translating has empirically achieved 

state-of-the-art results over hand-crafted methods and basic sequence-

to-sequence models and is the core component behind most of the online 

translation services (Klein, Kim, Deng, Senellart, & Rush, 2017).

Figure 7-8.  Example of attention being applied. Note that “student” 
has the highest weighting (represented by line thickness) during 
prediction of “étudiant.”
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�RNN Examples
In this section, we are going to study two examples of RNNs implemented 

in TensorFlow. The code is available at http://bit.ly/AzureRNNCode. 

The first example runs sentiment analysis in TensorFlow as well as 

several other frameworks. The second example builds off the example in 

Chapter 6 to illustrate the differences between CNNs and RNNs on image 

classification. The third example uses RNNs for time series analysis.

More Info W e recommend provisioning an Azure DLVM to run 
the code examples in this chapter. Please see Chapter 4 for more 
information.

�Example 1: Sentiment Analysis
We first highly recommend the examples available at http://bit.ly/

DLComparisons, which at the time of this writing include six different 

Python deep learning framework implementations for an RNN (GRU) 

to predict sentiment on the IMDB movie review data set, as well as an 

implementation in R (Keras with TensorFlow back end) as well as Julia 

(Knet). These examples include training times for an NC series DLVM 

(NVIDIA Tesla K80 GPU) as well as an NC_v2 series DLVM (NDIVIA Tesla 

P100 GPU) so one can follow along and also compare timings to make sure 

the setup is correct.

�Example 2: Image Classification
In Chapter 6, we saw how a CNN is typically used to classify an image. 

Here, we examine how to do the same but with an RNN. Although this is 

not a traditional application of RNNs, it illustrates that it is often possible 

Chapter 7  Recurrent Neural Networks



177

to decouple the neural network architecture to the problem type and to 

illustrate some differences between CNNs and RNNs.

The data for a CNN is loaded as [number of examples, height, width, 

channels]. For an RNN we simply reshape this to [number of examples, 

height, width*channels] (see Listing 7-1).1 This means that for the CIFAR 

data we will have 32 time steps (rows of pixels) where each row contains 

32*3 (number of columns * number of channels) variables. For example, 

the first time step will contain [row1_column1_red_pixel, row1_column1_

green_pixel, row1_column1_blue_pixel, row1_column2_red_pixel, … , 

row1_column32_bue_pixel].

Listing 7-1.  Loading Data

PYTHON

# Original data for CNN

x_train, x_test, y_train, y_test = cifar_for_library(channel_

first=False)

# RNN: Sequences of 32 time-steps, each containing 32*3 units

N_STEPS = 32 # Each step is a row

N_INPUTS = 32*3 # Each step contains 32 columns * 3 channels

x_train = x_train.reshape(x_train.shape[0], N_STEPS, N_INPUTS)

x_test = x_test.reshape(x_test.shape[0], N_STEPS, N_INPUTS)

We can then create a network architecture consisting of 64 basic RNN 

cells and apply that to each time step of our input tensor, as shown in 

Listing 7-2. We will collect the output from the last time step and apply a 

fully connected layer with 10 neurons.

1�This might be different between CPU and GPU.
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Listing 7-2.  Create Network Architecture

PYTHON

def create_symbol(X, n_steps=32, nhid=64, n_classes=10):

    # �Convert x to a list[steps] where element has shape=2 

[batch_size, inputs]

    # This is the format that rnn.static_rnn expects

    x=tf.unstack(X,n_steps,axis=1)

    cell=tf.nn.rnn_cell.BasicRNNCell(nhid)

    �outputs,states=tf.contrib.rnn.static_rnn(cell,x,dtype=tf.

float32)

    �logits=tf.layers.dense(outputs[-1],n_

classes,activation=None)

    return logits

To train a model, we need to create a training operator that is an 

optimizer (in this example, Adam) that works on a loss (and the loss is a 

function of the prediction and ground-truth labels), as shown in Listing 7-3.

Listing 7-3.  Define How Model Will Be Trained

PYTHON

def init_model(m, y, lr=LR, b1=BETA_1, b2=BETA_2, eps=EPS):

    �xentropy=tf.nn.sparse_softmax_cross_entropy_with_

logits(logits=m,labels=y)

    training_op= (tf.train.AdamOptimizer(lr,b1,b2,eps)

                           .minimize(tf.reduce_mean(xentropy)))

    return training_op

To start training we need to create our placeholders and initialize the 

variables in the graph, as displayed in Listing 7-4.

Chapter 7  Recurrent Neural Networks



179

Listing 7-4.  Placeholders and Initialization

PYTHON

# Placeholders

X = tf.placeholder(tf.float32, shape=[None, N_STEPS, N_INPUTS])

y=tf.placeholder(tf.int32,shape=[None])  # Sparse

# Initialize model

sym = create_symbol(X)

model = init_model(sym, y)

sess = tf.Session()

sess.run(tf.global_variables_initializer())

We can then train our model as shown in Listing 7-5.

Listing 7-5.  Training Model

PYTHON

for j in range(EPOCHS):

    �for data,label in yield_mb(x_train,y_train,BATCHSIZE, 

shuffle=True):

        sess.run(model,feed_dict={X:data,y:label})

The generator to supply our data is created as shown in Listing 7-6.

Listing 7-6.  Generator to Supply Data to Model

PYTHON

def shuffle_data(X, y):

    s=np.arange(len(X))

    np.random.shuffle(s)

    X=X[s]

    y=y[s]

    return X,y
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def yield_mb(X, y, batchsize=64, shuffle=False):

    if shuffle:

        X,y=shuffle_data(X,y)

    # Only complete batches are submitted

    for i in range(len(X) //batchsize):

        �yield X[i*batchsize:(i+1) *batchsize], 

y[i*batchsize:(i+1) *batchsize]

To get a prediction on our test data we apply an argmax() operation on 

the model’s predictions to pick the most likely class (see Listing 7-7). If we 

wanted class probabilities, we would first apply a softmax transformation; 

however, this is only needed for training and comes bundled with the loss 

function for computational efficiency.

Listing 7-7.  Get Prediction

PYTHON

for data, label in yield_mb(x_test, y_test, BATCHSIZE):

    pred=tf.argmax(sym,1)

    output=sess.run(pred,feed_dict={X:data})

Note that creating generators, creating placeholders, initializing 

variables, and training with feed_dict is a rather low-level API and useful 

only to help show how everything works. In practice, all of these can be 

abstracted away by using TensorFlow’s Estimator API.

�Example 3: Time Series
In the next example we are going to predict Microsoft stock using an LSTM. 

We will start by getting the data into a data frame, as shown in Listing 7-8. 

The data are the stock value of Microsoft from 2012 to 2017, obtained from 

http://bit.ly/MSFThist. The .csv file contains a first column with the 

date, four columns with the price of the share (open, high, low, and close) 
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and some other information that we are not going to use. From the four 

price values, we are going to take the mean for simplicity. We are going 

to predict just one step into the future because the longer we predict, 

the less accurate the prediction will be. You can also play with different 

hyperparameters.

Listing 7-8.  Define Hyperparameters and Read in Historical Data

PYTHON

EPOCHS = 5

TEST_SIZE = 0.3

TIME_AHEAD = 1 #prediction step

BATCH_SIZE = 1

UNITS = 25

df = pd.read_csv('https://ikpublictutorial.blob.core.windows.

net/book/MSFT_2012_2017.csv')

df = df.drop(['Adj Close', 'Volume'], axis=1)

mean_price = df.mean(axis = 1)

The next step is to normalize the data and generate the train and test 

sets, as shown in Listing 7-9.

Listing 7-9.  Normalize Data and Create Training and Test Sets

PYTHON

scaler = MinMaxScaler(feature_range=(0, 1))

mean_price = scaler.fit_transform(np.reshape(mean_price.values, 

(len(mean_price),1)))

train, test = train_test_split(mean_price, test_size=TEST_SIZE, 

shuffle=False)

print(train.shape) #(1056, 1)

print(test.shape) #(453, 1)
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Then we need to perform a reshaping, so the data can be added to the 

model, as shown in Listing 7-10. We also define the time ahead that we are 

going to predict; normally, the smaller this value is, the more accurate the 

prediction will be.

Listing 7-10.  Reshape Data for Model

PYTHON

def to_1dimension(df, step_size):

    X,y= [], []

    for i in range(len(df)-step_size-1):

        data=df[i:(i+step_size),0]

        X.append(data)

        y.append(df[i+step_size,0])

    X,y=np.array(X),np.array(y)

    X=np.reshape(X, (X.shape[0],1,X.shape[1]))

        return X,y

X_train, y_train = to_1dimension(train, TIME_AHEAD)

X_test, y_test = to_1dimension(test, TIME_AHEAD)

The next step is to define and train the model, as displayed in 

Listing 7-11. In this case we use a basic LSTM cell, but you can try to 

use a GRU or a BiLSTM.

Listing 7-11.  Define and Train Model

PYTHON

def create_symbol(X, units=10, activation='linear',  

time_ahead=1):

    cell=tf.contrib.rnn.LSTMCell(units)

    outputs,states=tf.nn.dynamic_rnn(cell,X,dtype=tf.float32)
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    �sym=tf.layers.dense(outputs[-1],1,activation=None,name='out

put')

    return sym

X = tf.placeholder(tf.float32, shape=[None, 1, TIME_AHEAD])

y = tf.placeholder(tf.float32, shape=[None])

sym = create_symbol(X, units=UNITS, time_ahead=TIME_AHEAD)

loss = tf.reduce_mean(tf.squared_difference(sym, y)) #mse

optimizer = tf.train.AdamOptimizer()

model = optimizer.minimize(loss)

init = tf.global_variables_initializer()

sess = tf.Session()

sess.run(init)

for i in range(EPOCHS):

    ii=0

    while(ii+BATCH_SIZE) <=len(X_train):

        X_batch=X_train[ii:ii+BATCH_SIZE,:,:]

        y_batch=y_train[ii:ii+BATCH_SIZE]

        sess.run(model,feed_dict={X:X_batch,y:y_batch})

        ii+=BATCH_SIZE

    loss_train=sess.run(loss,feed_dict={X:X_batch,y:y_batch})

    �print('Epoch {}/{}'.format(i+1,EPOCHS),' Current loss: {}'.

format(loss_train))

Finally, we are going to calculate the root mean squared error (RMSE) 

of the test set prediction, as shown in Listing 7-12.
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Listing 7-12.  Calculate Test Set RMSE

PYTHON

y_guess = np.zeros(y_test.shape[0], dtype=np.float32)

ii = 0

while(ii + BATCH_SIZE) <= len(X_test):

    X_batch=X_test[ii:ii+BATCH_SIZE,:,:]

    output=sess.run(sym,feed_dict={X:X_batch})

    y_guess[ii:ii+BATCH_SIZE] =output

    ii+=BATCH_SIZE

y_test_inv = scaler.inverse_transform([y_test])

pred_test = scaler.inverse_transform([y_guess])

score = math.sqrt(mean_squared_error(y_test_inv, pred_test))

print('Test RMSE: %.2f' % (score)) #3.52

Looking at Figure 7-9, it seems that the LSTM is predicting the stocks 

well. Now you can play with different time horizons or LSTM parameters. 

This was a simple example of using LSTMs for time series analysis to 

illustrate the concept of using LSTMs in forecasting.
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For another example of using LSTMs for time series analysis, 

we recommend the tutorial for predictive maintenance using Azure 

Machine Learning services available at http://bit.ly/DLforPM. We 

also recommend the blog post by Andrej Karpathy on the Unreasonable 

Effectiveness of Recurrent Neural Networks available at http://bit.ly/

RNNEffective.

Figure 7-9.  Stock forecasting using an LSTM
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�Summary
This chapter introduced RNNs and different variants that are useful for 

building applications on top of sequence data. These models are especially 

useful for natural language processing and time series analysis, although 

the application of RNNs can be quite broad. The chapter finished with two 

practical “how-to” examples, and a reference to a recommended resource 

for trying different deep learning frameworks for an RNN (GRU) example for 

sentiment analysis on the Azure DLVM. In the chapter that follows, we next 

dive into a completely different type of deep learning network that is a more 

recent development and shows promise for many applications as well.

RNNs have become increasingly popular in the last few years, but 

recently we have seen a trend back to CNN architectures for sequence 

data, perhaps partly owing to CNN being easier to train (both from a bare-

metal and parameter-tuning perspective).

Stacking attention-encoded vectors in a hierarchical tree can also 

preserve order within a sequence and capture long-term dependencies. 

These types of networks are called hierarchical neural attention and are 

similar to WaveNet, which has been used to synthesize speech.

Temporal convolutional networks that (1) have no information 

leakage from future to past (i.e., casual), and (2) can take variable-length 

sequences just like RNNs, have become increasingly popular for pure-

sequence tasks that have been previously commonly regarded as RNN 

territory.
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CHAPTER 8

Generative 
Adversarial Networks
For many AI projects, deep learning techniques are increasingly being 

used as the building blocks for innovative solutions ranging from image 

classification to object detection, image segmentation, image similarity, 

and text analytics (e.g., sentiment analysis, key phrase extraction). GANs, 

first introduced by Goodfellow et al. (2014), are emerging as a powerful new 

approach toward teaching computers how to do complex tasks through a 

generative process. As noted by Yann LeCun (at http://bit.ly/LeCunGANs), 

GANs are truly the “coolest idea in machine learning in the last 20 years.”

In recent years, GANs have shown tremendous potential and have 

been applied in various scenarios, ranging from image synthesis to 

enhancing the quality of images (superresolution), image-to-image 

translations, text-to-image generation, and more. In addition, GANs 

are the building blocks for advancements in the use of AI for art, music, 

and creativity (e.g., music generation, music accompaniment, poetry 

generation, etc.).

This chapter describes the secrets behind GANs. We first walk through 

how GANs are used in various AI applications and scenarios. We then 

step through code samples for one of the novel GANs, called CycleGAN, 

to understand how GANs work. For this, we use an Azure DLVM as the 

computing environment. For details on setting up the DLVM to run the 

code sample, please see Chapter 4.
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�What Are Generative Adversarial Networks?
GANs are emerging as powerful techniques for both unsupervised and 

semisupervised learning. A basic GAN consists of the following:

•	 A generative model (i.e., generator) generates an 

object. The generator does not know anything about 

the real objects and learns by interacting with the 

discriminator. For example, a generator can generate 

an image.

•	 A discriminative model (i.e., discriminator) determines 

whether an object is real (usually represented by a 

value close to 1) or fake (represented by a value  

close to 0).

•	 An adversarial loss (or error signal) is provided by the 

discriminator to the generator such that it enables 

the generator to generate objects that are as close as 

possible to the real objects.

Figure 8-1 shows the interaction between the generator and the 

discriminator. The discriminator is a classifier that determines whether 

the image given to it is a real or fake image. The generator uses the noise 

vector and feedback from the discriminator to try its best to generate 

images that are as close to real images as possible. This continues until the 

GAN algorithm converges. In many GANs, the generator and discriminator 

usually consist of common network architectures modeled after DenseNet, 

U-Net, and ResNet. Some example network architectures were discussed 

in Chapter 3.
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Figure 8-2 (inspired by work by Goodfellow et al., 2014) describes 

the theoretical basis for how a GAN works. The generator (G) and 

discriminator (D) are represented by the solid line and the dashed lines, 

respectively. The data generating distribution is denoted by the dotted 

lines. The two horizontal lines in Figure 8-2 denote the domain from which 

z is sampled uniformly (lower line), and the domain of x (upper line). The 

arrows from the lower to the upper line denote the mapping x = G(z). From 

Figure 8-2, you will notice that over time, as the GAN converges, the solid 

line and the dotted lines are close to each other (or almost similar). At that 

point the discriminator D can no longer distinguish between the real and 

the fake objects generated.

Figure 8-1.  Basic GAN to show the interaction between the generator 
and discriminator
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In the early version of GANs, the generator and the discriminator 

are implemented as fully connected neural networks (Goodfellow et al., 

2014). These GANs are used for generating images from various data sets 

commonly used in deep learning: CIFAR10, MNIST (handwritten digits), 

and the Toronto Face Dataset, for example. As the architecture of GANs has 

evolved, CNNs are increasingly being used. An example of a GAN that uses 

deep CNNs is DCGANs (Radford, Metz, & Chintala, 2016). A comprehensive 

overview of different types of GANs can be found in Creswell et al. (2017).

Since 2014, very innovative approaches to using GANs have emerged. 

GANs have shown promise in the use of AI for creativity, such as art 

and music generation and computer-aided design (CAD). One of these 

approaches is to automate the generation of images using text descriptions. 

InfoGAN (Chen et al., 2016) is an unsupervised approach that can distill 

the semantic and hidden representations from several well-known data 

sets (e.g., Digits [MNIST], CelebA Faces, and House Numbers [SVHN]). The 

secret behind InfoGAN is maximizing the mutual information between 

latent variables and the observations. The stacked Generative Adversarial 

Networks (StackGAN; Zhang et al., 2016) was proposed to generate 

photorealistic images using text descriptions. For example, given the text 

Figure 8-2.  How GANs work: The generator is generating objects 
that are so real that the discriminator can no longer tell the difference 
between real and fake. Source: Goodfellow et al. (2014).
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“This bird has a yellow belly and tarsus, grey back, wings, and brown throat, 

nape with a black face,” StackGAN will generate the picture of a bird using 

two stages. In Stage 1, a low-resolution image is computed, which consists 

of basic shapes and colors. In Stage 2, the results from Stage 1 and the text 

descriptions are used to create photorealistic high-resolution images.

Figure 8-3 shows the two stages of the StackGAN.

Figure 8-3.  StackGAN: Generation of image from text. Source: Zhang 
et al. (2016).

Like StackGAN, Attentional Generative Adversarial Network 

(AttnGAN) uses a multistage approach. In addition, AttnGan introduced 

a novel attention-driven approach that focuses (or pays attention) to the 

different words in the text description and uses this to synthesize fine-

grained details for each of the subregions of an image. Figure 8-4 shows 

how AttnGAN works, and the different parts of the image that it is focusing 

on for the different words. The first row shows the image generated by 

different generators, each producing images of different dimension (from 

64 × 64, to 128 × 128, to 256 × 256). The second and third row show the top 

five most attended words (i.e., words with the highest values as defined by 

each attention model).
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Before we dive into the implementation of some of these GANs, it is 

important to note that many of today’s GAN implementations are designed 

for generating data (e.g., images) from a real-valued continuous data 

distribution. When trying to apply GANs to generate discrete sequences of 

data (e.g., text, poetry, music), many existing GAN implementations will 

not be able to handle it well. In addition, GANs are designed to determine 

the loss (or adversarial loss) only when the entire sequence of data (e.g., 

the image) has been generated.

Figure 8-4.  How an AttnGAN uses different parts of the text 
description to generate details for each region of the image
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Another interesting type of GAN is SeqGAN (Yu, Zhang, Wang, & 

Yu, n.d.). SeqGAN is a novel approach toward integrating reinforcement 

learning concepts into GANs to overcome the various challenges faced 

by existing GANs when used to generate discrete sequences of data. In 

a SeqGAN, the generator is designed to be an agent of reinforcement 

learning, where its current state is the generated discrete tokens so far, and 

the action is the next token to be generated. The discriminator evaluates 

the generated tokens and provides feedback to help the generator to learn. 

SeqGAN is shown to be effective in poetry generation, music generation, 

and application to language and speech tasks.

Today, GANs work well for several types of problems, but they are 

notoriously difficult to train, as they are not guaranteed to converge on 

a solution that is optimal, or even stable. Another common issue with 

GANs is known as mode collapse, where the generator creates samples 

that have extremely low variety. They require very careful selection of the 

hyperparameters and parameter initialization among other factors to work 

well. At the 2016 NIPS workshop on adversarial training, for example, 

how to explain and fix the issues in training GANs was a main topic (video 

recordings can be watched at http://bit.ly/NIPS2016). Fortunately, 

though, many tricks have been used to stabilize the training of GANs. 

One such trick is to include additional information either in the input 

space (e.g., adding continuous noise to the input of the discriminator) or 

adding the information to the output space (e.g., different classes of true 

examples). Other tricks look at introducing a regularization scheme during 

training.

Note L earn about the evolution of GANs at http://bit.ly/
GANsEvolve.
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This chapter walks through one of the GANs, known as Cycle-

Consistent Adversarial Networks (CycleGANs). We learn how CycleGANs 

can be used for image-to-image translation. By walking through the 

code, we will jump start our understanding of GANs and the innovative 

applications of GANs in your AI projects. You can leverage the Microsoft 

AI Platform to train and deploy these GANs to the cloud, mobile, and edge 

devices.

�Cycle-Consistent Adversarial Networks
CycleGANs are a novel approach for translating an image from a source 

domain X to a target domain Y. One of the strengths of CycleGANs is that 

the training of the GAN does not require the training data to have matching 

image pairs. As noted in Zhu, Park, Isola, and Efros (2017), CycleGANs 

have been successfully applied in the following use cases:

•	 Translating Monet paintings to photos.

•	 Style transfer for photos using styles from various 

famous artists (Monet, Van Gogh, Cezanne, and 

Ukiyo-e).

•	 Object transfiguration, where it is used for changing the 

type of objects found in photos. Figure 8-5 shows how 

CycleGANs are used in object transfiguration (horse to 

zebra, zebra to horse, apple to orange, orange to apple, 

etc.).

•	 Translating a photo from one season (e.g., summer) to 

another (e.g., winter).

•	 Photo enhancement by narrowing the depth of field, 

and more.
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The goal of CycleGANs is to learn how to map images from one domain 

X to another domain Y. Figure 8-6 shows the use of two mapping functions 

G and F, and two discriminators DX and DY. The discriminator DX is used 

to verify the images from X and the translated images F(y). Similarly, the 

discriminator DY is used to verify the images from Y and the translated 

images G(x). The secret behind the effectiveness of using CycleGANs for 

image translation is the use of a cycle consistency loss. Intuitively, the cycle 

consistency loss is used to determine whether images from the domain X 

can be recovered from the translated image.

Figure 8-5.  Object transfiguration (horse to zebra, apple to orange). 
Source: Zhu, Park, Isola, and Efros (2017).

Figure 8-6.  CycleGANs model with two mapping functions G and F, 
and two adversarial discriminators DX and DY
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Note  CycleGANs were first introduced in Zhu et al. (2017). The 
original implementation of CycleGANs (in PyTorch) is available at 
http://bit.ly/CycleGAN.

�The CycleGAN Code
Let us first walk through the overall CycleGAN code that will be used for 

training the CycleGANs and then testing it by translating images from a 

source domain A to a target domain B. For example, the trained CycleGAN 

will perform object transfiguration and translate a photo consisting of 

a horse to a zebra (and vice versa). The results are then visualized as an 

HTML file.

Let us first import the Python libraries that we will use in this code. 

From Listing 8-1, you will see that we are using TensorFlow, and importing 

the definition of the CycleGAN from a model.py file. We will dive into the 

details of the model.py fie in the later parts of this section.

Note W e recommend provisioning an Azure DLVM to run the code 
examples in this chapter. Please see Chapter 4 for more information.

Listing 8-1.  Importing the Required Python Libraries

PYTHON

import os

import tensorflow as tf

from model import cyclegan

Next, we define the argument that will be used for training and testing 

the CycleGAN. From Listing 8-2, you will see that we specified a learning 

rate of 0.0002 for 200 epochs (denoted by lr and epoch_step). In addition, 
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we also specified the locations of the directories that we will be using to 

load the training data, output the test images, and storing the checkpoint 

files. To enable the value of phase (i.e., train or test) to be modified, we also 

specified it as a property called phase, and defined the relevant getter or 

setter for it.

Listing 8-2.  Specifying the Training and Testing Arguments

PYTHON

# Define the argument class

class args:

  dataset_dir='horse2zebra'

  epoch=1

  lr=0.0002

  epoch_step=200

  batch_size=1

  train_size=1e8

  load_size=286

  fine_size=256

  ngf=64

  ndf=64

  input_nc=3

  output_nc=3

  beta1=0.5

  which_direction='AtoB'

  save_freq=1000

  print_freq=100

  continue_train=False,

  checkpoint_dir='./checkpoint'

  sample_dir='./sample'

  test_dir='./test'

  L1_lambda=10.0
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  use_resnet=True

  use_lsgan=True

  max_size=50

  _phase='train'

  @property

  def phase(self):

    return type(self)._phase

  @phase.setter

  def phase(self,val):

    type(self)._phase=val

Next, we create the relevant directories on the local file system that 

will be used to load the training data, store the output images, and the 

checkpoint files (shown in Listing 8-3).

Listing 8-3.  Create the Directories for Output, Sample, and 

Checkpoint

PYTHON

os.makedirs(args.checkpoint_dir, exist_ok=True)

os.makedirs(args.sample_dir, exist_ok=True)

os.makedirs(args.test_dir, exist_ok=True)

We are now ready to train the CycleGAN (shown in Listing 8-4). As 

a machine might have multiple devices (CPU or GPU) that can be used 

for training, we specify allow_soft_placement to be True. The setting 

allow_soft_placement specifies that if an operation does not have a GPU 

implementation, it will be run on the CPU.

Next, we specify gpu_options.allow_growth to be True. TensorFlow 

defaults to mapping all the GPU memory that is available to the 

process. This helps in reducing GPU memory fragmentation. By setting 

gpu_options.allow_growth to True, the process will start with only the 
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required memory needed, and grow the memory allocated as needed 

during training.

We are now ready to start training the CycleGAN. After creating the 

TensorFlow session, we invoke the train method of the CycleGAN object, 

and pass it the arguments that we defined earlier, as shown in Listing 8-4.

Listing 8-4.  Training the CycleGAN

PYTHON

tfconfig = tf.ConfigProto(allow_soft_placement=True)

tfconfig.gpu_options.allow_growth = True

with tf.Session(config=tfconfig) as sess:

  model=cyclegan(sess,args)

  model.train(args)

Note  Using a single Tesla K80 GPU, the training of the CycleGAN 
with 200 epochs will take a while. If you want to test the code, you 
should reduce the number of epochs.

Later in this chapter, we describe the architecture of the 

CycleGAN. Before that, let us first look at the training code. Once 

the training of CycleGAN completes, you are ready to test the 

CycleGAN. Listing 8-5 shows how we invoke the test method of the 

CycleGAN object. From the arguments shown in Listing 8-2, we are 

performing a translation of images from Domain A to Domain B. The 

resulting images are stored in the test folder. In addition, an HTML file, 

AtoB_index.html, is written to the test folder to enable you to see the 

image before and after the CycleGAN has performed the translation.
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Listing 8-5.  Testing the CycleGAN

PYTHON

tfconfig = tf.ConfigProto(allow_soft_placement=True)

tfconfig.gpu_options.allow_growth = True

tf.reset_default_graph()

args.phase='test'

with tf.Session(config=tfconfig) as sess:

  model=cyclegan(sess,args)

  model.test(args)

�Network Architecture for the Generator 
and Discriminator
To build any type of GAN, it is important to first define the discriminator 

and generator. Let us explore the network architecture for the generator 

and discriminator. The role of the generator in any GAN is to generate 

images that will fool the discriminator. The network architecture for the 

CycleGAN generator is adapted from the Fast-Neural Style transfer work 

(Justin, Alexandre, & Li, 2016).

The generator code is shown in Listing 8-6. The generator consists 

of nine residual blocks that will be used for training with 256 × 256 

images (from g_r1 to g_r9). Each residual block has two 3 × 3 layers with 

convolution, instance normalization, and ReLU applied.

Note  Zhu et al. (2017) noted the use of instance normalization in 
the residual block improves image quality.
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Listing 8-6.  CycleGAN generator

PYTHON

def generator_resnet(image, options, reuse=False,

         name="generator"):

    with tf.variable_scope(name):

        # image is 256 x 256 x input_c_dim

        if reuse:

            tf.get_variable_scope().reuse_variables()

        else:

            assert tf.get_variable_scope().reuse is False

        def residual_block(x,dim,ks=3,s=1,name='res'):

            p=int((ks-1)/2)

            y=tf.pad(x, [[0,0], [p,p], [p,p], [0,0]],

              "REFLECT")

            y=instance_norm(conv2d(y,dim,ks,s,

              padding='VALID',name=name+'_c1'),name+'_bn1')

            y=tf.pad(tf.nn.relu(y), [[0,0], [p,p], [p,p],

               [0,0]],"REFLECT")

            y=instance_norm(conv2d(y,dim,ks,s,

               padding='VALID',name=name+'_c2'),name+'_bn2')

            return y+x

        # Justin Johnson's model from

        # https://github.com/jcjohnson/fast-neural-style/

        c0=tf.pad(image, [[0,0], [3,3], [3,3], [0,0]],

             "REFLECT")
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        c1=tf.nn.relu(instance_norm(conv2d(c0,options.gf_dim,

           7,1,padding='VALID',name='g_e1_c'),'g_e1_bn'))

        c2=tf.nn.relu(instance_norm(conv2d(c1,options.gf_dim*2,

           3,2,name='g_e2_c'),'g_e2_bn'))

        c3=tf.nn.relu(instance_norm(conv2d(c2,options.gf_dim*4,

           3,2,name='g_e3_c'),'g_e3_bn'))

        # define G network with 9 resnet blocks

        r1=residule_block(c3,options.gf_dim*4,name='g_r1')

        r2=residule_block(r1,options.gf_dim*4,name='g_r2')

        r3=residule_block(r2,options.gf_dim*4,name='g_r3')

        r4=residule_block(r3,options.gf_dim*4,name='g_r4')

        r5=residule_block(r4,options.gf_dim*4,name='g_r5')

        r6=residule_block(r5,options.gf_dim*4,name='g_r6')

        r7=residule_block(r6,options.gf_dim*4,name='g_r7')

        r8=residule_block(r7,options.gf_dim*4,name='g_r8')

        r9=residule_block(r8,options.gf_dim*4,name='g_r9')

        d1=deconv2d(r9,options.gf_dim*2,3,2,name='g_d1_dc')

        d1=tf.nn.relu(instance_norm(d1,'g_d1_bn'))

        d2=deconv2d(d1,options.gf_dim,3,2,name='g_d2_dc')

        d2=tf.nn.relu(instance_norm(d2,'g_d2_bn'))

        d2=tf.pad(d2, [[0,0], [3,3], [3,3], [0,0]],

               "REFLECT")

        pred=tf.nn.tanh(conv2d(d2,options.output_c_dim,7,1,

                  padding='VALID',name='g_pred_c'))

        return pred

The discriminator for the CycleGAN (shown in Listing 8-7) takes an 

input image and predicts whether it is an original image or an image that is 

generated by the generator.
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Listing 8-7.  CycleGAN Discriminator

PYTHON

def discriminator(image, options, reuse=False, 

name="discriminator"):

    with tf.variable_scope(name):

        # image is 256 x 256 x input_c_dim

        if reuse:

            tf.get_variable_scope().reuse_variables()

        else:

            assert tf.get_variable_scope().reuse is False

        h0=lrelu(conv2d(image,options.df_dim,

           name='d_h0_conv'))

        # h0 is (128 x 128 x self.df_dim)

        h1=lrelu(instance_norm(conv2d(h0,options.df_dim*2,

           name='d_h1_conv'),'d_bn1'))

        # h1 is (64 x 64 x self.df_dim*2)

        h2=lrelu(instance_norm(conv2d(h1,options.df_dim*4,

           name='d_h2_conv'),'d_bn2'))

        # h2 is (32x 32 x self.df_dim*4)

        h3=lrelu(instance_norm(conv2d(h2,options.df_dim*8,s=1,

            name='d_h3_conv'),'d_bn3'))

        # h3 is (32 x 32 x self.df_dim*8)

        h4=conv2d(h3,1,s=1,name='d_h3_pred')

        # h4 is (32 x 32 x 1)

        return h4
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The discriminator consists of a first layer that applies a LeakyRelu and 

convolution to the image. For the subsequent three layers, convolution, 

instance normalization, and ReLU are applied. A final convolution 

is applied in the final layer (denoted by h4), which produces a one-

dimensional output.

More Info T he code for this chapter is based on the work 
by Xiaowei Hu, and available on Github at http://bit.ly/
GANsCode1. A Jupyter notebook is created to enable you to get 
started with running the CycleGAN code quickly. The notebook is 
available on Github at http://bit.ly/GANsCode2. We tested the 
code on an Azure DLVM, with a single Tesla K80 GPU.

�Defining the CycleGAN Class
Next, let us look into the CycleGAN class. In the Train method found in the 

model.py file, we use the Adam optimizer with a batch size of 1. Listing 8-8 

shows how we specify the optimizer that will be used by the discriminator 

and generator.

Listing 8-8.  CycleGAN (model.py): Defining the Optimizer Used for 

the Generator and Discriminator

PYTHON

self.d_optim = tf.train.AdamOptimizer(self.lr, beta1=args.

beta1) \

            .minimize(self.d_loss,var_list=self.d_vars)

self.g_optim = tf.train.AdamOptimizer(self.lr, beta1=args.

beta1) \

           .minimize(self.g_loss,var_list=self.g_vars)
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A CycleGAN consists of two generators (XtoY and YtoX) and two 

discriminators (DX and DY), as shown earlier in Figure 8-6. You will see 

this defined in the _build_model method in model.py. From the code in 

Listing 8-9, you will see how we set the value of the reuse argument to be 

False during the initial definition of generatorA2B and generatorB2A, 

and uses the variables real_A and fake_B, respectively. This determines 

whether variables are reused. In the subsequent definition of 

generatorB2A and generatorA2B, the value of reuse is set to True, and 

uses the variables real_B and fake_A. The two discriminators are defined 

in model.py, as shown in Listing 8-10. The interested reader should deep 

dive into the code provided to understand the details of the generator.

Listing 8-9.  Defining the two generators, generatorA2B and 

generatorB2A

PYTHON

self.real_data = tf.placeholder(tf.float32,

                [None,self.image_size,self.image_size,

                self.input_c_dim+self.output_c_dim],

                name='real_A_and_B_images')

self.real_A = self.real_data[:, :, :, :self.input_c_dim]

self.real_B = self.real_data[:, :, :, self.input_c_dim:self.

input_c_dim + self.output_c_dim]

self.fake_B = self.generator(self.real_A, self.options,

                            False,name="generatorA2B")

self.fake_A_ = self.generator(self.fake_B, self.options,

                             False,name="generatorB2A")
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self.fake_A = self.generator(self.real_B, self.options,

                            True,name="generatorB2A")

self.fake_B_ = self.generator(self.fake_A, self.options,

                             True,name="generatorA2B")

Listing 8-10.  Defining the Two Discriminators: discriminatorB 

and discriminatorA

PYTHON

self.DB_fake = self.discriminator(self.fake_B, self.options,

                   reuse=False,name="discriminatorB")

self.DA_fake = self.discriminator(self.fake_A, self.options,

                   reuse=False,name="discriminatorA")

�Adversarial and Cyclic Loss
During the training of the GAN, the generator G generates images G(x) that 

are like the images found in Domain Y. At the same time, the discriminator 

DY needs to differentiate between generated images G(x) and the real 

samples from y. Hence, G is always trying to minimize its adversarial loss, 

whereas the discriminator D is trying to maximize its loss.

As noted in Zhu et al. (2017), if the capacity of the network is large, 

the mappings G and F can potentially map input images from the source 

domain X to any random permutation of images in Domain Y. Hence, it is 

important to reduce the space of possible mapping functions. One of the 

secrets of a CycleGAN is the use of a cycle consistency loss. The intuition 

behind the use of a cycle consistency loss is that the learned mapping 

function should be able to bring a translated image back to its original 

image.
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�Results
After we ran the CycleGAN training for 150 epochs, we ran the testing 

code shown in Listing 8-5. This applies the CycleGAN model to the images 

found in the dataset directory and output the translated image to the test 

directory. An HTML file is also generated. This allows you to visualize the 

original and the translated image side by side. In the Jupyter notebook 

provided, the code (shown in Listing 8-11) enables the HTML file to be 

viewed in a notebook cell.

Listing 8-11.  Python Code to Visualize HTML File in the Cell

PYTHON

from IPython.display import HTML

HTML(filename='test/AtoB_index.html')

In Figure 8-7, we show a subset of the images generated.

Figure 8-7.  Output from CycleGAN test (after 150 epochs)
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�Summary
GANs have tremendous potential to be used in AI for creativity, music, 

and the arts. Since it was first proposed in 2014, GANs innovations are 

happening at a breathtaking pace. This chapter described how GANs can 

be applied to various use cases. We showed the use of the generator and 

the discriminator in the GAN architecture, and how they are used.

Next, we discussed how CycleGAN works, and showed how it can be 

used for translation of objects from one domain to another. In the code 

example given in this chapter, we focus on how to train and test a novel 

type of GAN, called CycleGAN.

All the code in this chapter is run on a Linux DLVM, available on Azure. 

More details on choices for training AI models (e.g., GANs), such as the 

computing environments and how to do training at scale, are discussed in 

the next chapter.
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CHAPTER 9

Training AI Models
Training AI models is usually more demanding than training standard 

ML models because they are processing intensive and often the data sets 

involved are larger. That is why if you are serious about deep learning you 

have to have access to GPUs. In Azure there are a number of ways you 

can make use of GPUs, on single VMs or in orchestrated clusters of them. 

In this chapter, we summarize several of the most common methods 

available as well as the pros and cons of each. Then we expand on the code 

we wrote in Chapter 6, which used a VGG-like CNN to tackle the CIFAR10 

data set using the DLVM as the computing environment. In this chapter, 

we extend to other training options such as Batch AI and Batch Shipyard, 

which can both be useful for scaling up or scaling out training. We finish 

by highlighting briefly some of the other methods of training AI models 

on Azure that are not as common but might be useful depending on the 

problem at hand.

�Training Options
Azure has a vast number of options for training AI models. We will limit 

ourselves here to the select few that we feel fulfill the requirements of most 

workload types. The four ways that we discuss to train AI models are DLVM, 

Batch AI, Batch Shipyard, and DL Workspace. There is no best way to train 

an AI model; each method has its benefits and drawbacks and some will be 

more suited to certain solutions than others. The training of a deep learning 
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model can take place on a single GPU machine or distributed across a 

number of GPU machines. The most common scenario is to use a single 

GPU machine per model, as training the model in a distributed fashion 

needs additional considerations that can be quite tricky to get right but 

might be necessitated by factors such as the model being too big to fit onto a 

single GPU machine or wanting to reduce training time.

In this chapter, we do not mention the data processing that is often 

needed before training an AI model. For example, the raw data will often 

have to be processed to be readable by a deep learning model, the labels 

on which the ML algorithm should learn might be stored in a database, or 

the raw data might come from many sources. There are many tools and 

options available within the Microsoft AI Platform for this type of work, 

such as Azure SQL Data Warehouse and CosmosDB for storing different 

types of data, and Azure Data Factory for data movement, which are 

outside the scope of this chapter. We assume for purposes here that the 

data are available in a format that is ready to be trained by an AI model.

�Distributed Training
Distributed training is used when the whole data set cannot be stored on a 

single machine or the model cannot fit on a single GPU, but most often it is 

used to achieve faster training. The two main types of distributed training 

are data parallelism or model parallelism.

With data parallelism, the same model will be replicated across many 

GPUs and will receive different batches of training data. The gradients are 

then aggregated and then the updates distributed back to the models. In 

this scenario the communication overhead can be quite substantial so 

an active area of exploration is how to make this process more efficient 

by exploring asynchronous updates (Calauzènes & Roux, 2017; Dean 

et al., 2012; Recht, Re, Wright, & Niu, 2011) or reducing the overhead by 

compressing or quantizing the weight updates (Lin, Han, Mao, Wang, & 

Dally, 2017; Recht et al., 2011).
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With model parallelism the model is split over multiple GPUs. An 

example of this might be different layers placed on different GPUs 

and the forward and backward passes over the model involve network 

communication across the nodes. This is a far less common scenario and 

is only necessary if the model cannot fit on a single GPU.

In these scenarios it is assumed that there is only one GPU per VM, often 

referred to as multinode multi-GPU, but in fact Azure has configurations 

where there can be up to four GPUs on a single VM. All of the scenarios just 

explained can be executed on a single-node multi-GPU scenario except the 

scenario where the data are too large to fit on a single VM. Communication 

overhead is usually less of a concern in this scenario because it takes place 

on a single node and can perform even better if the deep learning framework 

uses Nvidia’s NCCL multi-GPU library (http://bit.ly/nvidianccl).

�Deep Learning Virtual Machine
The DLVM is a single VM that comes in a number of different 

configurations, some of which have GPUs, and is a specially configured 

variant of the DSVM. The VM types that have GPUs at the moment are NC, 

NV, ND, NCv2, and NCv3, with the cheapest being the NC series. These 

have the corresponding GPUs installed with NVIDIA Tesla K80, M60, P40, 

P100, and finally V100. They are loosely ordered from the least powerful to 

the most powerful, with a single K80 providing around 4.4 teraflops and a 

single V100 offering around 14 teraflops.1

Note E ven the least powerful GPU (K80) provides significant 
reductions in training time compared to training AI models on CPUs.

1�Order and numbers are based on single precision FLOPS; cards with two chips 
are treated as individual GPUs.
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Each VM series can come in three configurations: one GPU, two 

GPUs, or four GPUs. See the current documentation on all VMs available 

on Azure at http://bit.ly/AzureVMs and the DSVM at http://bit.ly/

AzureDSVM.

By using the DLVM, we can jump straight into tackling our data 

science problems because all the libraries come preinstalled in a premade 

Anaconda environment, as illustrated in Figure 9-1. The DLVM is a great 

option for experimentation but if you want to do large-scale model/data 

parallel training or simply explore various hyperparameters in parallel, 

one of the latter options will be better.

Figure 9-1.  The Data Science Virtual Machine is a preconfigured 
environment in the cloud for data science and AI modeling, 
development, and deployment. The Deep Learning Virtual Machine is 
a special configuration for deep learning workloads
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�Batch Shipyard
Batch Shipyard is a general-purpose tool for running container-based 

batch processing and High Performance Computing (HPC) workloads. 

By building on top of Azure Batch, Batch Shipyard is able to benefit from 

its features, such as handling the complexities surrounding large-scale 

parallel and HPC applications in the cloud, managing aspects such as 

the VM deployment and management, job scheduling, and autoscaling 

requirements. There is no extra cost to use Azure Batch when running jobs 

on Azure; it is a free, value-added service where costs are only incurred for 

the computing resources consumed and related datacenter movement and 

storage costs.

Batch Shipyard uses Docker containers, which makes it easy to manage 

the complex dependencies that come with AI workloads. Batch Shipyard 

is available as a CLI that can be run locally or in the cloud using the Azure 

Cloud Shell. The orchestration is managed through easy-to-understand 

configuration files, which makes it easy to reuse scripts. It already contains 

a large number of examples for some of the most popular deep learning 

frameworks (see http://bit.ly/shipyard24c3).

The following are some of the pros of using Batch Shipyard:

•	 It is tied to Azure Batch infrastructure so it is well 

supported.

•	 It is easy to use from the CLI and also available in the 

cloud shell.

•	 It supports many different types of VMs, including 

GPUs.

•	 It supports low-priority nodes, which makes it very 

efficient.

•	 It has factory methods to support easy hyperparameter 

tuning.

Chapter 9  Training AI Models



216

Among the disadvantages of using Batch Shipyard are the following:

•	 It is tied to Batch infrastructure, so there is no support 

for its own clusters.

•	 There is no REST API or web front end, only the CLI.

�Batch AI
Batch AI is very similar to Batch Shipyard, as it runs on Azure Batch and 

allows you to run various AI workloads. The core differences between 

Batch Shipyard and Batch AI are the following:

	 1.	 It is a managed service. This means that with Batch 

Shipyard the CLI is calling out to Azure Batch 

and setting everything up. With Batch AI there is 

a service in the cloud that we call to use the CLI, 

REST API, or SDK, and it orchestrates everything. 

In practice, this means is there is a far richer way to 

interact with Batch AI and it is easier to orchestrate 

as part of a pipeline.

	 2.	 Batch AI can execute on a DSVM or DLVM, giving 

it the ability to run things without containers. This 

makes it very easy to get started if you do not want to 

deal with the complexities of containers.

	 3.	 Batch AI provides specialized support for running 

distributed training on a number of deep learning 

frameworks such as PyTorch, TensorFlow, and 

so on. In practice, this means that some of the 

complexities such as setting up Message Passing 

Interface (MPI) are automatically configured by 

Batch AI.
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These are some of the pros of Batch AI:

•	 It is a managed service.

•	 It has multiple ways to interact with the CLI, SDK, and 

REST APIs.

•	 It is tied to Azure Batch infrastructure so it is well supported.

•	 It supports many different types of VM including GPUs.

•	 It supports low-priority nodes that are very cost-efficient.

•	 It can support DSVM and DLVM as computing targets.

The following are some of the disadvantages of using Batch AI:

•	 It does not have feature parity with Batch Shipyard. 

Batch Shipyard offers some nice methods for 

hyperparameter search that have not yet made their 

way to Batch AI.

•	 It is still in previews and not available in all regions.

�Deep Learning Workspace
Deep Learning Workspace (DLWorkspace) is an open source project from 

Microsoft that allows AI scientists to spin up clusters, either locally or in 

the cloud, in a turn-key fashion. DLWorkspace uses Kubernetes to manage 

the jobs across the various nodes. Kubernetes is a popular open source 

container orchestrator and we will talk more about it in Chapter 10.  

DLWorkspace provides a web user interface (UI) and a REST API from 

which one can submit, monitor, and manage jobs. This is quite different 

from Batch AI and Batch Shipyard, as it does not rely on the Batch 

infrastructure to manage things, nor is it tied to the Azure infrastructure. 

This does mean it requires more management by the end user than the 

other two options, but it offers the greatest amount of flexibility. It is also 

less mature than the other two options.

Chapter 9  Training AI Models



218

The following are some of the advantages of DLWorkspace:

•	 It is not tied to a particular infrastructure, so it can run 

on local clusters and in the cloud.

•	 It uses Kubernetes, a well-known container 

orchestrator.

Some of the disadvantages of DLWorkspace are as follows:

•	 It requires more setup than Batch Shipyard or Batch AI.

•	 It is harder to integrate into a pipeline.

•	 It is still under heavy development.

�Examples to Follow Along
In many of the previous chapters we have demonstrated how to train a 

deep learning model on a GPU-enabled DLVM, so we do not go over that 

here. In the sections that immediately follow, we will be making use of 

the code we wrote in Chapter 6, which used a VGG-like CNN to tackle the 

CIFAR10 data set, to expand to use Batch Shipyard and Batch AI. If you 

do not remember what we did there, it would be prudent to go back and 

refresh your memory.

�Training DNN on Batch Shipyard
In this section we go over general steps of how to train a CNN on Batch 

Shipyard. The steps that we follow to execute our AI script are detailed in 

the notebook Chapter_09_01.ipynb2 and shown in Figure 9-2.

2�All the steps are detailed in the notebook Chapter_09_01.ipynb which can be 
found in the Chapter_09 folder http://bit.ly/CH09Notebooks.
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	 1.	 As you can see from the steps in Figure 9-2, there are 

a number of prerequisites required for training your 

model on Batch Shipyard. The script that will train 

your model.

	 2.	 The Docker container that contains all the 

dependencies for the script such as the deep 

learning framework, and so on.

	 3.	 An Azure storage account and Azure Batch account.

	 4.	 Batch Shipyard configuration files. These can be 

either YAML or JSON files that will hold all the 

necessary information to define what we want Batch 

Shipyard to do for us.

Figure 9-2.  The steps involved in running things on Batch Shipyard. 
(1) Create the necessary Azure resources, configuration files, and 
scripts. (2) Call pool create, which will start the process of creating our 
cluster. At the same time this will pull the script we created into the 
fileshare. It will also pull the Docker image and make it available to 
the nodes in the pool. (3) Tell Batch Shipyard to execute the job and 
detail the output. Once it is all done we will delete the job, cluster, 
and Azure resources.
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Our model script will be very similar to what we wrote in the 

Chapter_06_03.ipynb notebook, except it will be a Python file rather than 

a Jupyter notebook and we will add the ability to pass arguments to it. The 

reason for doing this is to simplify the execution and so that we can see 

how the model performs with different hyperparameter configurations. 

This is usually referred to as hyperparameter search and it is an important 

step in creating AI models. The script will download the CIFAR10 data, 

create and train our model, and finally evaluate it on the test data set.

With the script prepared, we need to either create our own Docker 

image or reference a prebuilt one. Many of the most popular deep learning 

frameworks either provide you with a Docker image or at the very least a 

Dockerfile you can use to create your image. For people who have not 

used Docker before, this can be quite daunting. Thankfully there are a 

number of guides online and the Docker documentation is very good 

(see http://bit.ly/dockerstarted). Here we simply use the Docker 

image we created for this book.

We will assume that you have created the Azure storage and Batch 

account. The steps for doing this are outlined in the “Create Azure 

Resources” section of the accompanying notebook. For Batch Shipyard 

there are four configuration files:

•	 credentials.yaml: Here we put the credentials for all 

the resources we use. In our case it is simply the storage 

account and Batch account.

•	 config.yaml: Specifies the configuration for Batch 

Shipyard. Here we will simply specify which storage 

account to use as well as the location of the image we 

want to use.

•	 pool.yaml: This configuration file defines the properties 

of our pool, in essence the number of VMs we want to 

allocate and the types of VMs we wish to allocate.
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•	 jobs.yaml: In this configuration file we specify the 

jobs we wish to execute. We can specify one or more 

jobs and each job can have one or more tasks. How 

you split things up will be dependent on the tasks you 

want to run and how much they share in common. In 

this file we generally specify what Docker image to use, 

where to ingress the data from, and what commands 

to execute. For more details see http://bit.ly/

shipyardjobs.

From here on in we will be assuming you are running things from 

a Linux terminal or a Jupyter notebook running on Linux. Now that we 

have defined our configuration files and our script, we need to create our 

cluster, which we do in Listing 9-1.

Listing 9-1.  Command to Create a Batch Cluster

BASH

shipyard pool add --configdir config

This command tells Batch Shipyard to create the pool as specified in 

our pool.yaml file located in the config directory. This will start the VMs 

and ingress any files we specified in the configuration files, which in our 

case is just our model script. Provisioning the pool can take from 5 to 15 

minutes depending on the number of VMs specified. The number of VMs 

you can create is dependent on the quota on your Batch account. If you 

require more VMs for your Batch account, you can simply request a quota 

increase through the Azure portal (http://bit.ly/azbatchquota).

After the pool has been created, we simply add the jobs. Here in 

Listing 9-2 we submit the job but also interactively tail the output of  

the task.
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Listing 9-2.  Submit Job to Batch Shipyard and Tail Output

BASH

shipyard jobs add --configdir config --tail stdout.txt

If everything goes well you should start seeing the output being 

streamed to your notebook or terminal. The script will first download the 

CIFAR data, train the model, and evaluate it. You can also view the state 

of your cluster and job by visiting the Azure portal, where you should see 

something similar to Figure 9-3.

Figure 9-3.  Batch dashboard in Azure portal

By running Listing 9-3, we stream the output of stderr.txt. This can 

be useful to review errors and debug our scripts.

Listing 9-3.  Stream Output to Help Review Errors and Debug Scripts

BASH

shipyard data files stream -v --filespec my_job_id,my_task_

id,stderr.txt
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Once you are done with your job, it is best to delete it so it does not 

count against your active job quota, as we do in Listing 9-4.

Listing 9-4.  Delete Batch Shipyard Jobs

BASH

shipyard jobs del --configdir config -y –wait

Finally, delete your pool with the code shown in Listing 9-5 so you do 

not incur charges for the VM while not in use.

Listing 9-5.  Delete Batch Shipyard Pool

BASH

shipyard pool del --configdir config -y

This seems like a lot of overhead for executing a single task, but when 

you need to execute a large number of tasks the initial overhead is tiny 

compared to the time saved.

�Hyperparameter Tuning

Training an AI model or even any type of ML model requires tuning 

of various hyperparameters that constrain the behavior of our model. 

Doing so sequentially is laborious and time consuming. By running 

these experiments in parallel we can save a lot of time and find optimal 

configurations quicker. One of the key benefits of the cloud and the types 

of service such as Batch Shipyard and Batch AI is the ability to scale out 

our computing as needed. This means that we can explore large numbers 

of configurations and only pay for the computing we need, greatly 

accelerating the data science process.
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As mentioned earlier, Batch Shipyard offers a convenient way for 

generating hyperparameter tasks called Task Factories. With Task Factories 

we can generate task parameters in a number of ways such as from 

random distributions, uniform, gamma, beta, exponential, Gaussian, and 

so on.

We would define our task factory in the jobs.yaml file. Let us imagine 

we wanted to parameterize our VGG architecture and explore the effects 

of learning rate on our model. We can achieve this with the task factory 

specification in Listing 9-6.

Listing 9-6.  Task Factory Specification to Generate Hyperparameter 

Tasks

YAML

task_factory:

  random:

    distribution:

      uniform:

        a:0.001

        b:0.1

    generate:10

command: /bin/bash -c "python -m model.py –lr {}"

This block of YAML will instruct Batch Shipyard to sample 10 values 

randomly from a uniform distribution of 0.001 to 0.1 and run the model.py 

script.

Task factories are not limited to generating values from distributions; 

they can also generate tasks based on custom generators for more complex 

hyperparameter regimes. For more details on task factories, please check 

out http://bit.ly/shipyardtfactory.
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�Distributed Training

In the multinode, multi-GPU training scenario, Batch Shipyard handles 

the setting up of the cluster and distribution of the jobs but does not 

handle the communication between the nodes. This has to be handled 

by the deep learning frameworks themselves. Different frameworks use 

different protocols to pass information between them such as MPI (CNTK, 

Horovod) or gRPC (TensorFlow). It is important that the appropriate ports 

are opened and the appropriate processes are started, and this can differ 

between deep learning frameworks. In Batch Shipyard, such tasks are 

called multi-instance tasks and need to be specified as such in the jobs 

configuration file. An example configuration file can be seen in Listing 9-7.

Listing 9-7.  Multi-Instance Tasks to Specify Multinode, Multi-GPU 

Tasks

YAML

job_specifications:

- id: tensorflow

  auto_complete:true

  tasks:

  -docker_image:alfpark/tensorflow:1.2.1-gpu

    multi_instance:

      num_instances:pool_current_dedicated

command: /bin/bash -c "/shipyard/launcher.sh /shipyard/mnist_

replica.py"

For a detailed walkthrough on how to perform data parallel training in 

Batch Shipyard, take a look at http://bit.ly/shipyarddist.
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�Training CNNs on Batch AI

Batch AI is in many ways very similar to Batch Shipyard (see Figure 9-4). 

It offers a Python SDK as well as a CLI. In our example, we outline how 

to use the CLI because it is slightly easier than the SDK. All of the steps 

mentioned here are in the accompanying notebook, which you can use to 

run the example for yourself (Chapter_09_02.ipynb).

Figure 9-4.  Batch AI training steps: (1) Create the necessary Zzure 
resources, job configuration files, and scripts, and upload scripts to 
fileshare. (2) Call cluster create, which will start the process of creating 
our cluster. It will also pull the Docker image and make it available to 
the nodes in the pool and mount the fileshare. (3) Run the command 
specified in the job configuration. Call job stream-file to tail the 
output from the job. Once training is done delete the job, cluster, and 
Azure resources.

Batch AI uses the Azure CLI, which we installed earlier. To register for 

Batch AI run the code shown in Listing 9-8.
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Listing 9-8.  Register for Batch AI Service

BASH

az provider register -n Microsoft.BatchAI

az provider register -n Microsoft.Batch

At the time of writing, Batch AI was only available in the East US 

region, so that is where we will be creating all our resources. We are 

going to assume that you have already created a storage account and a 

fileshare, and have uploaded the script to the fileshare. These steps are in 

the accompanying notebook (Chapter_09_02.ipynb) under the sections 

“Create Azure Resources” and “Define Our Model.” To create our cluster, 

we run the code in Listing 9-9.

Listing 9-9.  Create Batch AI Cluster

BASH

az batchai cluster create -l eastus -w workspace --name 

my_cluster --vm- size STANDARD_NC6 --image UbuntuLTS --min 1 

--max 1 --storage- account- name my_storage_account --storage-

account-key my_ storage_account_key --afs-name my_fileshare 

--afs-mount-path azurefileshare --user-name my_username 

--password my_password

All the values prefixed by my should be defined by you and wherever 

they are intended to should match the Azure resources you already created. 

In the preceding command, we used the az batchai cluster create 

command to create a Batch AI cluster called my_cluster consisting of a 

single GPU VM node. In this example, the VM runs the default Ubuntu LTS 

image. If you wish to use the DSVM as the execution target, simply specify 

image UbuntuDSVM instead. The VM specified is an NC6, which has one 

NVIDIA K80 GPU. We also tell it to mount the fileshare at a folder named 

azurefileshare. The full path of this folder on the GPU compute node is 
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$AZ_BATCHAI_MOUNT_ROOT/azurefileshare. AZ_BATCHAI_MOUNT_ROOT is 

an environment variable that is set by Batch AI. Make sure that the storage 

account and fileshare information match what you created; otherwise the 

share will fail to mount and your nodes will become unusable.

Creating the pool will take a similar amount of time as Batch Shipyard, 

around 5 to 15 minutes. To check the status of the cluster, simply run the 

code shown in Listing 9-10.

Listing 9-10.  Check on the Status of the Batch AI Cluster

BASH

az batchai cluster list -w workspace -o table

To submit a job we have to create a configuration file in a similar way 

we did for Batch Shipyard. For our purposes the configuration file looks 

like the code in Listing 9-11.

Listing 9-11.  Example Configuration File for Batch AI

JSON

{

  "�$schema": "https://raw.githubusercontent.com/Azure/BatchAI/

master/schemas/2017-09-01-preview/job.json",

  "properties": {

    "containerSettings": {

      "imageSourceRegistry": {

        "image": "masalvar/keras_bait"

      }

    },

    "customToolkitSettings": {

      "�commandLine": "python $AZ_BATCHAI_INPUT_SCRIPT/cifar10_

cnn.py"

    },
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    "inputDirectories": [

      {

        "id": "SCRIPT",

        "�path": "$AZ_BATCHAI_MOUNT_ROOT/azurefileshare/cnn_example"

      }

    ],

    "nodeCount": 1,

    "stdOutErrPathPrefix": "$AZ_BATCHAI_MOUNT_ROOT/azurefileshare"

  }

}

For more examples, take a look at http://bit.ly/baistart. In the 

jobs configuration we define our inputDirectories, what container we 

want to use and the commands to execute. In the jobs definition you will 

notice that under inputDirectories we defined an input directory with 

the id script. This location gets mapped by Batch AI to the environment 

variable AZ_BATCHAI_INPUT_SCRIPT, which we refer to in the commandLine 

variable. Once we have created the job JSON file we execute the job by 

running the code in Listing 9-12.

Listing 9-12.  Execute the Batch AI Job

BASH

az batchai job create -w workspace -e experiment --name my_job 

--cluster-name my_cluster --config job.json

We can monitor the job by running the code in Listing 9-13.

Listing 9-13.  Monitor the Batch AI Job

BASH

az batchai job list -w workspace -e experiment -o table
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If you go to the Azure portal and click on the cluster you should see 

something similar to the image in Figure 9-5. The portal also provides 

other diagnostics such as the state of each job and the number of jobs in 

the resource group (see Figure 9-6 and Figure 9-7). This is very convenient 

for long running jobs when you simply want to check on the state of things 

from any browser. The information you get from the portal with Batch AI is 

richer than what you get with Batch Shipyard.

Figure 9-5.  Batch AI cluster dashboard in the Azure portal
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To tail the output of stdout in the same way we did for Batch Shipyard, 

we simply run the code in Listing 9-14.

Listing 9-14.  Stream Output to Help Review Errors and Debug 

Scripts with Batch AI

BASH

az batchai job file stream -w workspace -e experiment --j  

my_job --output-directory-id stdouterr --f stdout.txt

Once the job is completed, to delete the job we run the code in 

Listing 9-15.

Figure 9-6.  Job dashboard for Batch AI

Figure 9-7.  Information displayed in the portal for our resource 
group. Note that our cluster is called gpupool and the job keras-
training-job; these are the names used in the example in the 
accompanying notebook.
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Listing 9-15.  Delete Batch AI Job

BASH

az batchai job delete -w workspace -e experiment --name myjob

Now we delete the cluster with the code in Listing 9-16 so that we stop 

incurring any charges for computing.

Listing 9-16.  Delete Batch AI Cluster

BASH

az batchai cluster delete -w workspace -e experiment --name 

mycluster

Then finally if we don’t want to keep the storage account and the 

other resources we created we can clear it all up by executing the code in 

Listing 9-17.

Listing 9-17.  If No Longer Needed, Delete Storage Account and 

Other Resources

BASH

az group delete --name myResourceGroup

�Hyperparameter Tuning and Distributed Training

Hyperparameter tuning in Batch AI is not yet as simple as it is in Batch 

Shipyard. There is no notion of task factories, so it requires that we create 

a number of jobs where we pass different parameters to our model. In 

our jobs example, therefore, the JSON file would be very similar between 

our jobs, the only difference being the command, and specifically the 

arguments we pass to the script. The process of hyperparameter tuning 

can be made easier by using the Batch AI Python SDK rather than the 

CLI. Have a look at http://bit.ly/baitsdk for further details on the 

Python SDK.
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Distributed training is slightly easier in Batch AI than Batch Shipyard 

for frameworks supported by Batch AI because Batch AI takes care 

of configuring the necessary internode communication layer such as 

MPI. At the time of writing, the frameworks supported are Chainer, CNTK, 

TensorFlow, PyTorch, and Caffe2. For frameworks that are not supported, 

it is up to the user to supply the appropriate configuration and will be the 

same as Batch Shipyard. For examples on how to do this, see http://bit.

ly/bairecipes.

�Variation of Batch AI with Python SDK

In the earlier example, we illustrated using Batch AI with the Azure CLI, 

which is the easiest way to get started. Batch AI can also be used through 

a Python SDK. The demo example described in this section can be 

reproduced following the instructions given at http://bit.ly/deepbait. 

In this example, rather than showcasing an example of hyperparameter 

tuning or distributed training for which there are already examples, nine 

different deep learning frameworks are used to train a simple CNN on 

the CIFAR10 data set. In practice, being able to quickly utilize different 

frameworks can be very useful because state-of-the-art implementations 

of certain models might only be available in one or a small number of 

frameworks. Often, though, one would select a single framework and 

use that framework to do hyperparameter tuning or distributed training 

as described in this chapter. However, this example also serves the 

pedagogical purpose of showcasing the flexibility of the Batch AI service as 

well as different ways one might interact with the service.

In this example, the project was developed and tested on an Azure 

Ubuntu DLVM. Anaconda Project is used in this case to create the 

environment and install dependencies, download the data, and allow 

the user to interact with the project in a straightforward manner to 

reproduce the demo, such as asking through a command-line prompt 

for the Azure subscription identifier and name of the resource group in 
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which the Batch AI cluster should be created. The project also comes 

with makefiles to help with local testing and debugging to allow one to 

more easily modify the project.

This example also differs from the earlier Batch AI example in the use 

of Jupyter Notebooks, which are sent directly to the Batch AI cluster rather 

than Python scripts, as illustrated in Figure 9-8. Using Jupyter Notebooks 

directly, the code can be processed and output stored directly within the 

notebooks. This is useful for data scientists already developing within 

Jupyter Notebooks who would like to showcase results through them 

(e.g., visualizations created during or after processing). In this case, nine 

different Jupyter notebooks are created (one for each of the deep learning 

frameworks), along with associated Docker containers within which the 

notebooks are run using Batch AI.

Executed in 
Parallel 
using Batch 
AI

Figure 9-8.  Rather than having to run Jupyter Notebooks in sequence 
to test different options, they can be executed in parallel using Batch AI
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Each of the notebooks was written to have parameters that can be 

modified when they are run on the Batch AI cluster. In the example 

project for illustrative purposes, the number of epochs that are run are 

modified from the original file when they are run on Batch AI. Specifically, 

the original notebooks that are sent to the cluster have the following 

parameters in Listing 9-18 at the top of the notebook as examples.

Listing 9-18.  Example Parameters at Top of Script That Are 

Modified When Run by Batch AI

PYTHON

# Parameters

EPOCHS = 10

N_CLASSES=10

BATCHSIZE = 64

LR = 0.01

MOMENTUM = 0.9

GPU = True

In the job submission, the Batch AI cluster is told in this case to 

modify the number of epochs to run (as just one example of a parameter 

change), and the notebook is modified and run with a different number of 

epochs. At the end of the run, the notebook contains a cell with all of the 

parameters it was run with, as well as the output from each cell running 

stored within the notebook itself. This makes it easy to look through 

the results: All of the important information is stored right within the 

notebook.

The steps followed to use nine different deep learning frameworks to 

run a simple CNN are as follows, illustrated in Figure 9-9.

	 1.	 Create Jupyter notebooks to run on Batch AI and 

transfer them to file storage.

	 2.	 Write the data to file storage.
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	 3.	 Create the Docker containers for each deep learning 

framework and transfer them to a container registry.

	 4.	 Create a Batch AI Pool.

	 5.	 Each job will pull in the appropriate container and 

notebook, and load data from the fileshare.

	 6.	 Once the job is completed the executed notebook 

will be written to the fileshare.

These steps are very similar to those described before in using 

Batch AI with the CLI, only with Jupyter Notebooks. Besides the parallel 

processing ability that allows for a reduction in the experimentation time 

enabled through Batch AI, this scenario also illustrates the power of cloud 

computing in that many machines can be spun up on demand, used for 

the processing they are needed for, and then the cluster can be shut down. 

This provides the data scientist more flexibility at a large reduction in cost, 

with no special hardware to procure or systems to manage.
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A number of helper functions are included to make interaction with 

the Batch AI cluster easy, such as the setup_cluster( ) function shown in 

Figure 9-10 and print_jobs_summary( ) as shown in Figure 9-11.

I
A
I

1

2

3

Batch AI Pool 4
5

6

Figure 9-9.  Steps required to run a simple CNN using nine different 
deep learning frameworks for illustration purposes of the flexibility 
of Batch AI, with code processed and output stored within Jupyter 
Notebooks.
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Figure 9-11.  The ExploringBatchAI.ipynb file is used to submit the 
jobs to Batch AI

Figure 9-10.  After the Anaconda Project is set up on a DLVM, the 
example is run through a Jupyter notebook that contains helper 
functions to interact with the cluster
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�Azure Machine Learning Services
This chapter focused mainly on the computing environments and setup 

of running AI jobs, which can be done with DLVM, Batch Shipyard, Batch 

AI, and DLWorkspace as four main examples. Azure Machine Learning 

services, which were introduced in more depth in Chapter 4, are a set of 

services that enable building, deploying, and managing AI models in an 

end-to-end fashion. Azure Machine Learning manages the data science 

life cycle, such as providing capabilities for model versioning and run 

history (see http://bit.ly/amllogging), tracking models in production, 

and helping AI developers develop faster. Azure Machine Learning 

services also aim to ease the deployment process, for example running 

Docker containers with AI models within a Kubernetes cluster with Azure 

Kubernetes Services to enable scalable real-time predictions or to run on 

an edge device using Azure IoT (see Figure 9-12).

Figure 9-12.  Azure Machine Learning is an open source compatible, 
end-to-end data science platform. Source: http://bit.ly/AMLservices.
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Some of the services mentioned in this chapter, such as the DLVM and 

Batch AI, can be set up as the computing context within an Azure Machine 

Learning project. As of this writing, Azure Machine Learning services 

works with Python and is available in several Azure regions. In addition, 

there are AI extensions for Visual Studio and Visual Studio Code that allow 

interacting with the Azure Machine Learning platform (see http://bit.

ly/aivisstdio). As the service is updating frequently, we focused on the 

core computing environments in this chapter and suggest reading the 

current documentation on Azure Machine Learning services available at 

http://bit.ly/AMLservices.

�Other Options for AI Training on Azure
There are numerous other options for AI training on Azure that we do not 

describe in depth, but some of which we mention briefly here. The first 

example builds on Apache Spark, which is a popular general-purpose engine 

for big data processing. There are several offerings of Apache Spark on Azure 

such as Azure Databricks and Azure HDInsight. One popular option for 

training AI models with Spark is through the use of the MMLSpark library by 

Microsoft, which provides a number of deep learning and data science tools, 

available as open source on Github at http://bit.ly/mmlSpark. MMLSpark 

integrates Spark ML pipelines with the deep learning framework CNTK as 

well as OpenCV. This is especially useful if the data for an AI solution already 

reside in SPARK. MMLSpark can be used to train deep learning models on 

GPU nodes and can thus be used on a DLVM attached to the HDInsight 

Spark cluster as described at http://bit.ly/MMLSparkGPU.

Another alternative to attaching a GPU VM to a Spark cluster is utilizing 

transfer learning to apply a pretrained model using MMLSpark in a parallel 

fashion on a Spark cluster and then train a classifier using one of the many 

ML packages in Spark. This was used for snow leopard conservation to 

predict images containing snow leopards and assist conservation efforts as 

described in a blog post by Hamilton, Sengupta, and Astala (2017).
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AI training can also be scaled out through the use of a cluster of 

Docker containers such as through the use of Kubernetes. Although we 

have seen the use of Kubernetes clusters mainly for the deployment and 

hosting of AI models to date, it is also possible to use them for large-scale 

training. Zhang and Buchwalter (2017) described how they used Azure 

Container Services Engine (ACS-engine) that generates Azure Resource 

Manager templates that are needed to deploy the cluster with everything 

configured. In their case working alongside the startup Litbit, a Kubernetes 

cluster was used to scale different types of VM pools (CPU, GPUs) up and 

down based on the demand of the given workload. Tok (2017) gave an 

overview of using CNTK with Kubernetes through ACS-engine along with 

a detailed walkthrough of how to set up the cluster, for both training and 

deploying deep learning models at scale.

�Summary
This chapter presented various options you can use to train your AI model. 

If you simply want to experiment, then the DLVM is probably the best 

choice because it is the quickest and easiest to set up. If you are looking 

to run hyperparameter tuning, distributed training, or model training as 

part of an automated pipeline, then Batch AI or Batch Shipyard will be the 

best tools for the job. DLWorkspace is also a good choice for large-scale 

experimentation, but today we would mostly recommend it only if the 

other two options are not suitable. The cluster-based method of training 

might seem daunting at first, but it quickly confers benefits. Batch AI is the 

easiest to use and set up and Batch Shipyard is the most feature rich. We 

have only scratched the surface of what is possible with these powerful 

tools. For detailed documentation, check out http://bit.ly/azbai, 

http://bit.ly/azshipyard, and http://bit.ly/azdlwork. In the next 

chapter, we give an overview of different options for deploying trained 

deep learning models so they can be used within AI applications.
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CHAPTER 10

Operationalizing  
AI Models
The previous chapter covered what constitutes an AI model, the different 

types of models we can create, and how to train and build these models. 

An AI model does not become useful until it is deployed somewhere and 

consumed by the end user. This chapter describes the various options 

available on Azure to deploy your models. We provide general guidelines 

on what to use and when, but this is by no means an exhaustive guide to 

the Azure platform. In the following sections we discuss the metrics over 

which we compare the various deployment platforms. Then we discuss 

the platforms we have found to be suitable for deploying ML models 

and highlight their pros and cons. We also present simple use cases 

and architectures for each of them so that you get an idea of how they 

would fit into a larger solution. We also provide a step-by-step tutorial for 

deployment of a CNN to Azure Kubernetes Services (AKS) with GPU nodes 

as a hands-on guide for one recommended option for building a real-time 

request–response AI system.

�Operationalization Platforms
A common dichotomy when looking at operationalization of a model is 

whether the scoring requests will be batch or real time. An example of 

a batch workload is when we have large number of records given to us 
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infrequently such as every 24 hours, that need to be scored. These records 

could be images or other types of data. A real-time workload is when 

the service must always be up and receives a small number of records to 

score relatively frequently. An example might be a phone app that sends 

a picture to determine what type of animal is in the picture. The examples 

provided fit quite nicely into their respective classifications, but in reality 

things are often a lot less discrete. For example, we might have a real-time 

workload that requires massive amounts of computing or other constraints 

on our solution that break key architecture assumptions. That is why it 

is often better to think about these solutions belonging to a continuum 

where each solution can be partially stretched beyond what it is ideally 

suited for.

A key consideration when deploying models is dependency and 

environment management. This is not a problem unique to AI models: It is 

common for all types of deployed applications, but it becomes especially 

acute for AI applications due to their often complicated dependencies 

and hardware requirements. For this reason, services that use Docker 

containers are often preferred because this makes it easy to keep the 

same environment for development and test as well as ensure that all 

dependencies are satisfied. If you are new to Docker, we recommend the 

basic overview at http://bit.ly/DockerDS.

As we mentioned earlier, AI models also have hardware requirements; 

these are often less demanding than the training environments but 

depending on the scenario might still require a reasonable amount 

of computing resources. That is why another consideration for the 

deployment options is the hardware available on the platform and 

specifically the availability of GPUs. Without the GPUs the throughput 

could be quite limited, meaning that the service will either have to deal 

with slow responses or have to scale out the compute.
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�DLVM
The simplest way to operationalize something is to use the same platform 

that we recommend for experimentation: a VM, and specifically a data 

science or DLVM. You will already have the dependencies installed 

and you know that your code will run on the platform. On top of that 

by using a VM you have the greatest amount of flexibility as far as the 

hardware configuration is concerned even access to GPUs. This kind of 

operationalization is only recommended for proof of concepts and pilot 

workloads because there is no management infrastructure and no way to 

scale out or distribute the load. With VMs it is also possible to use Docker 

containers, which would be the recommended way to deploy things as this 

will make it easier to move to different VMs, but also move to other more 

suitable platforms that use Docker containers.

�Azure Container Instances
Another simple platform to use for operationalization is Azure Container 

Instances (ACI). ACI is the simplest and fastest way to run a container 

on Azure; you do not have to know anything about orchestrators such 

as Kubernetes or provision and manage VMs. It is well suited for hosting 

simple apps and task automation. It just takes one command to deploy 

your prebuilt container (see Listing 10-1). For further details on deploying 

using ACI, go to http://bit.ly/ACIstart.

Listing 10-1.  Deploy Container on ACI

BASH

az container create --resource-group myResourceGroup --name 

mycontainer --image microsoft/aci-helloworld --dns-name-label 

aci-demo --ports 80
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Although you can specify the CPU and memory requirements of your 

application, at the time of writing GPUs were not available for ACI; thus, 

for workloads requiring GPU, ACI is not an option. The suggested use 

for ACI would be for short-lived applications that are either triggered or 

stood up for short periods of time. A typical model deployment scenario 

using ACI would be to deploy a simple Flask application as a short-lived 

demo, such as a simple image classification model where there are not 

any latency or bandwidth requirements. In Figure 10-1 we can see an 

example scenario. In this scenario the user develops a model and Flask 

application on a DSVM, and then packages it up into a container that 

the user can also test on the DSVM before upload to an Azure Container 

Registry. They then call for the model to be pulled out of our container 

registry and finally have it deployed on an ACI. With the deployed model 

they can simply call the endpoint with an image and the classification will 

be returned back to them.

Figure 10-1.  ACI scenario. (1) Develop on DSVM; (2) Push container 
to container registry; (3) Deploy to ACI; and (4) Send images to 
deployed model to be scored.
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�Azure Web Apps
Azure Web Apps is another quick and easy way of deploying models. They 

can either be standard Web Apps that are Windows based or Linux Web 

Apps. Both support a number of programming languages and Linux Web 

Apps support Docker containers. The use case for Azure Web Apps is the 

same as ACI. They can be a little harder to set up and configure, but they 

are also cheaper for longer running deployments. The web apps also offer 

nice features such as deploying from a git repository as well as a CLI to 

install packages. For further information on web apps, see http://bit.ly/

AzureWebApps.

�Azure Kubernetes Services
AKS is a managed Kubernetes cluster configuration. It is like a standard 

Kubernetes cluster except that the management of the master nodes 

is handled by Azure. This translates to reduced overhead and cost 

because you only have to pay for the compute of the agent nodes. It uses 

Kubernetes, which is a popular open source Docker orchestrator, so it is 

easy to navigate for those familiar with Kubernetes and because it is an 

open source project there is lots of information from which to draw.

AKS recently enabled deployment to GPU VMs, opening the possibility 

to run GPU AI models on it. In fact, AKS is our recommended way to 

deploy real-time workloads. A typical scenario for AKS would be where 

we need to set up a real-time service that needs to scale with demand and 

also be fault tolerant. Because we can use any size (SKU) of VM including 

GPUs this is the ideal solution for demanding applications. The setup and 

management is considerably more involved than what was shown for the 

ACI. An example of how to deploy things on an orchestrated container 

cluster can be found at http://bit.ly/ACSTutorial. This uses the older 

Azure Container Services service, so some of the commands will differ.
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The scenario is very similar to the one explained for ACI deployment 

except that we also have a load balancer so that when a request is made 

the load can be distributed appropriately between the deployed pods (see 

Figure 10-2). The creation of the container is omitted from the diagram 

but would be identical to what is shown in Figure 10-1. Using AKS we can 

also set up autoscaling rules so that the number of pods and nodes in our 

cluster can change based on demand.

Figure 10-2.  AKS scenario: (1) Develop on DSVM, (2) Push container 
to container registry, (3) Deploy to AKS, and (4) Send images to 
service, which get balanced across the pods using load balancer.

To deploy an AI model on AKS you need the following:

	 1.	 Your model and an API to call it.

	 2.	 The Flask web application that will handle the requests.

	 3.	 A Docker container that contains the model, Flask 

application, and necessary dependencies.

Once you have these you can create the cluster with the command 

shown in Listing 10-2. The command will create a cluster called 

myGPUCluster with one node that is an NC6 VM. An NC6 VM has a 

single K80 GPU that will speed up the inference of our deep learning 
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model considerably compared to CPU. As an example, a single NC6 can 

handle a throughput of 20 images per second using a ResNet-152 model 

implemented in TensorFlow. In contrast, a single DS15 with 20 CPU cores 

can handle a throughput of around 7 images per second. The GPU-based 

configuration therefore provides nearly three times the throughput at 

around half the price.

Listing 10-2.  Command to Create AKS Cluster

BASH

az aks create --resource-group myResourceGroup --name 

myGPUCluster --node-count 1 --generate-ssh-keys -s Standard_NC6

Once we have the cluster up and running we need to create a manifest 

file that specifies what we want to deploy and how. The manifest file we 

are using for this example can be found at http://bit.ly/AIManifest. In 

the manifest file we specify that we want to create a service based on our 

container, that it requires a GPU, and that we want a load balancer on port 

80. We deploy our pod with the command shown in Listing 10-3.

Listing 10-3.  Command to Deploy Service Based on Manifest

BASH

kubectl create -f ai_manifest.json

After around five minutes, our pod should be ready and we can get the 

IP of our service with the command shown in Listing 10-4 with the output 

shown in Listing 10-5.

Listing 10-4.  Command to Get Service IP

BASH

kubectl get service azure-dl
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Listing 10-5.  Results of Command Shown in Listing 10-4

BASH-OUTPUT

AME       TYPE          CLUSTER-IP   EXTERNAL-IP   PORT(S)       AGE

azure-dl  LoadBalancer  10.0.155.14  13.82.238.75  80:30532/TCP  11m

The IP of our service is under EXTERNAL-IP. We can then send our 

requests to that service and get the response back. We have created a step-

by-step tutorial on how to deploy a CNN based on ResNet-152 written in 

TensorFlow or Keras with a TensorFlow back end and you can find it at 

http://bit.ly/AKSAITutorial.

�Azure Service Fabric
Azure Service Fabric (ASF) is a cluster management and orchestration 

service similar to Kubernetes. ASF has been used internally by Microsoft 

for many services, including Azure SQL Database, Azure Cosmos DB, 

and many core Azure services. The draw of ASF is that it is simpler to use 

than Kubernetes because one can deploy an application simply knowing 

Docker and does not need to understand a completely new orchestration 

service. Theoretically it should be possible to run ASF on GPUs, but there 

are currently no concrete examples of doing so. The use case for service 

fabric would be identical to the one for AKS with the only caveat that 

GPU-dependent workloads have been proven on AKS but not ASF  

(see Figure 10-3).
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�Batch AI
In Chapter 9, we discussed Batch AI, and all the benefits we mentioned 

previously in terms of flexibility of compute and scalability transfer to 

operationalization as well. Batch AI is most suited to massively parallel batch 

scenarios where the cluster can be quickly spun up, the job executed in 

parallel, and then spun down. Because Batch AI itself does not cost anything, 

you only need to pay for the compute you use, making it an extremely 

efficient solution. A scenario for using Batch AI is shown in Figure 10-4. 

We assume you have already trained the model and have wrapped it in an 

appropriate API and Docker container and pushed it all to an ACR. The user 

uploads one or more videos to be processed by our deep learning model. An 

Azure function receives the notification that data have been uploaded to a 

blob and spins up the Batch AI cluster. Meanwhile, another Azure function 

reads the videos and queues them up in an Azure Service Bus. As the cluster 

comes online it pulls in the appropriate container and spins it up. The 

application in the container subscribes to the appropriate topic and sees 

what jobs are available. Each VM now will independently pull a message 

Figure 10-3.  Service Fabric scenario: (1) Develop on DSVM, (2) Push 
container to container registry, (3) Deploy container to Service Fabric, 
and (4) Send images to the service to be scored.
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from the service bus and based on the message will pull the appropriate 

video from blob storage, process it, and push it back. Once all the jobs are 

done, the Azure function will destroy the cluster.

Figure 10-4.  Batch AI scenario: (1) Push videos to storage. (2) The 
storage triggers Azure function to create a cluster. (3) Azure function 
starts queuing up the videos found in storage to a service bus. (4) 
Batch AI cluster spins up. (5) Cluster pulls appropriate image from 
container registry. (6) The job running on each VM pulls a single 
message from the service bus and based on the image pulls the 
appropriate video from storage. (7) Once the video is processed, the 
results are written back to storage.

Batch Shipyard is very similar to Batch AI and might offer features that 

have not made it into Batch AI yet. Batch Shipyard can more or less be 

brought in as a drop-in replacement for Batch AI in the preceding scenario.

�AZTK
Spark is the most popular framework for massively data parallel and High 

Performance Computing (HPC) workloads. The Azure Distributed Data 

Engineering Toolkit (AZTK) is a Python CLI application for provisioning 

on-demand Spark clusters in Azure. It is a convenient and cheap way to get 
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up and running with a Spark cluster. AZTK is able to provision a cluster in 5 

to 10 minutes and it is able to make use of dedicated and low-priority VMs, 

making it very cost-efficient.

AZTK is suited to scenarios where lots of the components are 

dependent on Spark and the requirement is for ephemeral clusters. 

AZTK uses Docker containers, meaning it can be quite easy to manage 

dependencies and ensure that your production environment matches 

your deployment environment. AZTK can also use GPUs, making it great 

for solutions that require the data parallelization that Spark offers in 

combination of the computation power of GPUs. The AZTK version of the 

scenario shown in Figure 10-4 can be seen in Figure 10-5. In the AZTK 

scenario we have no need for the Azure Subscription service because we 

can distribute things using Spark’s built-in parallelization. For AZTK we are 

also using an ACI rather than calling it from the Azure Function because 

AZTK is written in Python and Python support on Azure Functions was 

experimental at the time of writing.

Figure 10-5.  AZTK scenario: (1) Push videos to storage. (2) The 
storage triggers Azure Function. (3) Azure Function calls ACI that 
have AZTK installed and spins up an AZTK cluster. (4) The PySpark 
job starts and begins pulling data from storage and processing it. 
(5) As the processing of each video is completed the results are written 
back to storage.
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�HDInsight and Databricks
HDInsight (HDI) is a Spark offering from Microsoft. It tends to be a little 

more expensive than AZTK for on-demand processing and cannot use 

GPUs. Azure Databricks is another Spark-based platform on Azure, a 

generally available “first party” Microsoft service. It has a simple single-click 

start and integrates with Azure services such as Azure Active Directory. 

Databricks provides an interactive and collaborative notebook experience, 

as well as monitoring and security tools in the optimized Spark platform.

On-demand Spark clusters can be created using Azure Functions as 

in the AZTK and Batch AI scenarios, but because of its tighter integration 

with Azure, on-demand clusters for either Databricks or HDI can be 

created using Azure Data Factory (see http://bit.ly/ADFCreateHDI and 

http://bit.ly/DBwithADF). HDI and Databricks unfortunately do not use 

Docker containers so dependency management is a little trickier. Because 

of the tighter integration, the pipeline using HDI and Databricks will be a 

little simpler but less flexible due to the constraints of Azure Data Factory 

(see Figure 10-6).

Figure 10-6.  Example Databricks or HDInsight scenario: (1) Push 
videos to storage. (2) ADF reads the data from storage. (3) It calls 
HDInsight or Databricks to process the data. (4-5) The data are then 
streamed back and stored.

See example deep learning notebooks for Azure Databricks available at 

http://bit.ly/DB_DL.
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�SQL Server
To perform computig close to where the data are, SQL Server is a great 

option for deployment when data are already stored in SQL. The ideal 

scenario for such a deployment would be that SQL Server is already being 

used or the scenario would benefit from having the model execute as close 

to the data as possible. The data proximity requirement is usually the result 

of two things, data gravity and data sensitivity. Data gravity refers to the fact 

that large volumes of data cause a “gravitational pull” on the computation 

due to the costs of moving the data around. Data sensitivity refers to privacy 

and security concerns when having data cross different systems and the 

possibility of data being left behind or the security weakened due to the 

multiple data transfers. SQL Server is very flexible, as it can be installed on 

Windows and Linux and can be deployed on VMs with GPU to accelerate 

deep learning scenarios (see http://bit.ly/SQLServerDeepL). Both 

Python and R integration are available for SQL Server so data scientists can 

use whatever language they are most comfortable with. More examples on 

deploying models on SQL Server can be found at http://bit.ly/SQLML.

�Operationalization Overview
We have presented a number of operationalization platforms and it can be 

hard to choose among them. As we mentioned earlier it is good to think 

about these services belonging on a continuum that ranges from strictly 

batch to real time, with services like Batch AI and AZTK belonging to 

the batch end of the spectrum and services like AKS and ASF belonging 

to the real-time end of the spectrum. In Figure 10-7 you can see a visual 

representation of this continuum: On the left are the more batch-like 

platforms and on the right the more real-time platforms. Figure 10-7 does 

not imply that the leftmost or rightmost options are the recommended 

approaches for batch and real-time processing, respectively, only that 

these platforms are most appropriate for that type of processing.
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Figure 10-7.  Batch to real-time continuum

Figure 10-7 is just a general guideline, as it is possible to use these 

options in many ways. For example, even though Spark on HDI or Azure 

Databricks are typically associated with batch workloads, there are 

options for creating real-time workloads, enabled, for example, through 

MMLSpark Serving as described at http://bit.ly/MMLSparkStreaming.

You will have also gleaned from the sections on each of the services 

that each have strengths and weaknesses. In Figure 10-8 you can see a 

visual representation of the attributes of each of the services. The services 

are listed on the left side of the heatmap and the metrics along the top. 

Each service receives a rating indicated by the color of the box that is based 

on the color bar on right side of the heatmap. We compare the service 

across five metrics: speed, scalability, data proximity, debug environment, 

and ease of deployment.
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Speed refers to the hardware available to each of the services; for AI 

models this mainly revolves around whether GPUs are available for it 

or not. Scalability refers to whether the service can be easily scaled up 

and out. Data proximity refers to how close the compute is to the data; 

this is mainly a consideration when we don’t want to move the data due 

to either volume or security reasons. Debug environment refers to how 

easy it is to develop for the platform; the main consideration across this 

axis is whether the service uses Docker containers or not. Finally, ease of 

deployment refers to how easy it is to deploy the model and whether there 

is a steep learning curve to get things working.

Although there are many nuances and reasons to deviate from this 

recommendation, for real-time processing of deep learning models, we 

recommend AKS using GPU nodes. As mentioned earlier, we have created a 

step-by-step tutorial on how to deploy a CNN based on ResNet-152 written 

in TensorFlow or Keras with a TensorFlow back end, and you can find it 

at http://bit.ly/AKSAITutorial. For batch processing of deep learning 

models, at the time of this writing we recommend using Batch AI. An 

example using TensorFlow can be found at http://bit.ly/BatchAIEx.

Figure 10-8.  Heatmap of deployment services
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We focused primarily here on operationalizing deep learning models 

on Azure. Deep learning models can also be trained on the cloud and then 

operationalized in different environments, such as IoT edge as discussed 

in the next section, as well as natively on Windows devices through ONNX 

as described at http://bit.ly/WindowsONNX.

�Azure Machine Learning Services
The preceding example to deploy an AI model to AKS can be a little 

daunting, especially to those not familiar with Docker. To this end, AML 

offers options that make operationalization of AI models easier: You 

simply supply the model file, your dependencies in a YAML file, and finally 

the model driver file, and it will create the appropriate Docker container 

and deploy it to AKS (see http://bit.ly/amldeploy). It offers easy and 

convenient ways to test your deployment locally as well as scale the service 

as needed. See the blog post by Zhu, Iordanescu, and Karmanov (2018) as 

an example of using Azure Machine Learning to deploy a deep learning 

model for detecting diseases from chest x-ray images. Azure Machine 

Learning also assists in the deployment of deep learning models to IoT 

edge devices as described at http://bit.ly/DLtoIOT.

In previous chapters we mentioned the usefulness of transfer learning 

and in this chapter we also highlighted the benefits of using GPUs for 

inference. AML services now offers the ability to use a pretrained ResNet 

50 model on FPGAs for inference. FPGAs offer a considerable speed 

increase over CPUs and GPUs at a very low cost. Benchmarking showed 

that a single FPGA could score around 500 images per second and cost less 

than 0.2 cents to score 10,000 images. To use this service simply follow the 

instructions given at http://bit.ly/msfpga. It has a number of Jupyter 

Notebooks that go through how to train your model based on the features, 

but also how to deploy and test the model.
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�Summary
This chapter covered a number of operationalization options offered 

on Azure. It went through the options of deploying models using simple 

managed services such as ACI and Azure Web Apps to more complicated 

setups with GPU support such as AKS and Batch AI. We also covered 

both request–response scenarios as well as batch scenarios. We gave a 

comparative overview of what we believe the strengths and weaknesses 

of each of the services offered are. With this guidance you should be able 

to choose the most appropriate option for your scenario and deploy your 

model to make your model available within a production AI solution.
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