
Deep Learning
with Azure

Building and Deploying Artificial
Intelligence Solutions on
the Microsoft AI Platform
—
Mathew Salvaris
Danielle Dean
Wee Hyong Tok

www.allitebooks.com

Deep Learning
with Azure

Building and Deploying
Artificial Intelligence Solutions

on the Microsoft AI Platform

Mathew Salvaris
Danielle Dean
Wee Hyong Tok

www.allitebooks.com

Deep Learning with Azure

ISBN-13 (pbk): 978-1-4842-3678-9 	    ISBN-13 (electronic): 978-1-4842-3679-6 
https://doi.org/10.1007/978-1-4842-3679-6

Library of Congress Control Number: 2018953705

Copyright © 2018 by Mathew Salvaris, Danielle Dean, Wee Hyong Tok

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images
only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Joan Murray
Development Editor: Laura Berendson
Coordinating Editor: Jill Balzano

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@
springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the
sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM
Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions
and licenses are also available for most titles. For more information, reference our Print and eBook
Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484236789. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Mathew Salvaris
London, United Kingdom

Danielle Dean
Westford, Massachusetts, USA

Wee Hyong Tok
Redmond, Washington, USA

www.allitebooks.com

Dedicated to our families and friends
who supported us as we took away from our personal time

to learn, develop, and write materials for this book.

Special dedication to Juliet, Nathaniel,
Jayden, and Adrian

www.allitebooks.com

v

Table of Contents

Part I: Getting Started with AI���1

Chapter 1: �Introduction to Artificial Intelligence�����������������������������������3

Microsoft and AI���6

Machine Learning��9

Deep Learning��14

Rise of Deep Learning��16

Applications of Deep Learning��21

Summary���25

Chapter 2: �Overview of Deep Learning��27

Common Network Structures���28

Convolutional Neural Networks��29

Recurrent Neural Networks��33

Generative Adversarial Networks���35

Autoencoders���36

About the Authors���xiii

About the Guest Authors of Chapter 7���xv

About the Technical Reviewers���xvii

Acknowledgments��xix

Foreword��xxi

Introduction���xxv

www.allitebooks.com

vi

Deep Learning Workflow��37

Finding Relevant Data Set(s)��38

Data Set Preprocessing��39

Training the Model��40

Validating and Tuning the Model��40

Deploy the Model��42

Deep Learning Frameworks & Compute���43

Jump Start Deep Learning: Transfer Learning and Domain Adaptation����������47

Models Library��50

Summary���51

Chapter 3: �Trends in Deep Learning���53

Variations on Network Architectures��53

Residual Networks and Variants ��54

DenseNet ���54

Small Models, Fewer Parameters ��55

Capsule Networks��56

Object Detection ��58

Object Segmentation��60

More Sophisticated Networks ���60

Automated Machine Learning ���61

Hardware ��63

More Specialized Hardware���64

Hardware on Azure���65

Quantum Computing ��65

Limitations of Deep Learning���67

Be Wary of Hype���67

Limits on Ability to Generalize��68

Table of ContentsTable of Contents

vii

Data Hungry Models, Especially Labels��70

Reproducible Research and Underlying Theory ���70

Looking Ahead: What Can We Expect from Deep Learning?��������������������������������72

Ethics and Regulations ��73

Summary���75

Part II: �Azure AI Platform and Experimentation Tools���������77

Chapter 4: �Microsoft AI Platform���79

Services���81

Prebuilt AI: Cognitive Services��82

Conversational AI: Bot Framework���84

Custom AI: Azure Machine Learning Services��84

Custom AI: Batch AI��85

Infrastructure���86

Data Science Virtual Machine���87

Spark��88

Container Hosting���89

Data Storage���91

Tools���92

Azure Machine Learning Studio��92

Integrated Development Environments��93

Deep Learning Frameworks���93

Broader Azure Platform��94

Getting Started with the Deep Learning Virtual Machine�������������������������������������95

Running the Notebook Server��97

Summary���98

Table of ContentsTable of Contents

viii

Chapter 5: �Cognitive Services and Custom Vision�������������������������������99

Prebuilt AI: Why and How?���99

Cognitive Services���101

What Types of Cognitive Services Are Available?���104

Computer Vision APIs��106

How Do I Get Started with Cognitive Services?���113

Custom Vision��119

Hello World! for Custom Vision���120

Exporting Custom Vision Models��127

Summary���128

Part III: AI Networks in Practice��129

Chapter 6: �Convolutional Neural Networks��131

The Convolution in Convolution Neural Networks��132

Convolution Layer���134

Pooling Layer��135

Activation Functions���136

CNN Architecture��139

Training Classification CNN��140

Why CNNs��142

Training CNN on CIFAR10���143

Training a Deep CNN on GPU��150

Model 1���151

Model 2���152

Model 3���154

Model 4���156

Transfer Learning���159

Summary���160

Table of ContentsTable of Contents

ix

Chapter 7: �Recurrent Neural Networks��161

RNN Architectures��164

Training RNNs��169

Gated RNNs��170

Sequence-to-Sequence Models and Attention Mechanism�������������������������������172

RNN Examples���176

Example 1: Sentiment Analysis��176

Example 2: Image Classification���176

Example 3: Time Series��180

Summary���186

Chapter 8: �Generative Adversarial Networks������������������������������������187

What Are Generative Adversarial Networks?���188

Cycle-Consistent Adversarial Networks���194

The CycleGAN Code��196

Network Architecture for the Generator and Discriminator��������������������������200

Defining the CycleGAN Class��204

Adversarial and Cyclic Loss��206

Results���207

Summary���208

Part IV: �AI Architectures and Best Practices���������������������209

Chapter 9: �Training AI Models���211

Training Options���211

Distributed Training��212

Deep Learning Virtual Machine��213

Table of ContentsTable of Contents

x

Batch Shipyard���215

Batch AI��216

Deep Learning Workspace��217

Examples to Follow Along��218

Training DNN on Batch Shipyard��218

Azure Machine Learning Services��239

Other Options for AI Training on Azure��240

Summary���241

Chapter 10: �Operationalizing AI Models��243

Operationalization Platforms��243

DLVM��245

Azure Container Instances��245

Azure Web Apps��247

Azure Kubernetes Services��247

Azure Service Fabric��250

Batch AI��251

AZTK���252

HDInsight and Databricks���254

SQL Server��255

Operationalization Overview��255

Azure Machine Learning Services���258

Summary���259

Table of ContentsTable of Contents

xi

�Appendix: Notes���261

�Chapter 1���261

�Chapter 2���264

�Chapter 3���265

�Chapter 4���270

�Chapter 5���270

�Chapter 6���270

�Chapter 7���272

�Chapter 8���274

�Chapter 9���275

�Chapter 10���276

�Index��277

Table of ContentsTable of Contents

xiii

About the Authors

Mathew Salvaris, PhD is a senior data scientist

at Microsoft in Azure CAT, where he works

with a team of data scientists and engineers

building machine learning and AI solutions for

external companies utilizing Microsoft’s Cloud

AI platform. He enlists the latest innovations

in machine learning and deep learning to

deliver novel solutions for real-world business

problems, and to leverage learning from

these engagements to help improve Microsoft’s Cloud AI products. Prior

to joining Microsoft, he worked as a data scientist for a fintech startup,

where he specialized in providing machine learning solutions. Previously,

he held a postdoctoral research position at University College London in

the Institute of Cognitive Neuroscience, where he used machine learning

methods and electroencephalography to investigate volition. Prior to

that position, he worked as a postdoctoral researcher in brain–computer

interfaces at the University of Essex. Mathew holds a PhD and MSc in

computer science. 

Danielle Dean, PhD is a principal data science

lead at Microsoft in Azure CAT, where she

leads a team of data scientists and engineers

building artificial intelligence solutions with

external companies utilizing Microsoft’s Cloud

AI platform. Previously, she was a data scientist

at Nokia, where she produced business value

and insights from big data through data mining

xiv

and statistical modeling on data-driven projects that affected a range

of businesses, products, and initiatives. She has a PhD in quantitative

psychology from the University of North Carolina at Chapel Hill, where she

studied the application of multilevel event history models to understand

the timing and processes leading to events between dyads within social

networks. 

Wee Hyong Tok, PhD is a principal data science manager at Microsoft in

the Cloud and AI division. He leads the AI for Earth Engineering and Data

Science team, a team of data scientists and engineers who are working

to advance the boundaries of state-of-the-art deep learning algorithms

and systems. His team works extensively with deep learning frameworks,

ranging from TensorFlow to CNTK, Keras, and PyTorch. He has worn

many hats in his career as developer, program and product manager,

data scientist, researcher, and strategist. Throughout his career, he has

been a trusted advisor to the C-suite, from Fortune 500 companies to

startups. He coauthored one of the first books on Azure machine learning,

Predictive Analytics Using Azure Machine Learning, and authored another

demonstrating how database professionals can do AI with databases,

Doing Data Science with SQL Server. He has a PhD in computer science

from the National University of Singapore, where he studied progressive

join algorithms for data streaming systems.

About the AuthorsAbout the Authors

xv

About the Guest
Authors of Chapter 7

Ilia Karmanov writes code and does

data science for Microsoft. He also models

part-time for indoor bouldering. 

Miguel González-Fierro, PhD is a data

scientist in AzureCAT at Microsoft UK, where

his job consists of helping customers leverage

their processes using big data and machine

learning. Previously, he was CEO and founder

of Samsamia Technologies, a company that

created a visual search engine for fashion items

allowing users to find products using images

instead of words, and founder of the Robotics

Society of Universidad Carlos III, which developed different projects

related to UAVs, mobile robots, small humanoids competitions, and 3D

printers. Miguel also worked as a robotics scientist at Universidad Carlos

III of Madrid and King’s College London, where his research focused on

learning from demonstration, reinforcement learning, computer vision,

and dynamic control of humanoid robots. He holds a BSc and MSc in

electrical engineering and an MSc and PhD in robotics.  

xvii

Mary Wahl, PhD is a data scientist at Microsoft

within AzureCAT in the Cloud and AI division.

She currently works on helping conservation

science nongovernmental organizations

apply machine learning to geospatial data and

imagery through the AI for Earth initiative. She

previously worked in the Algorithms and Data

Science Solutions Team within Microsoft’s AI

and Research Group, where she developed

custom machine learning pipelines for enterprise customers. Mary holds

her PhD in molecular and cellular biology from Harvard University.  

Thomas Delteil is an applied scientist

currently employed at Amazon in the AWS

Deep Learning team. He has a background in

machine learning and software engineering

and previously worked for the Microsoft

Cloud AI team as an applied scientist. He

holds an MSc from Imperial College London

in advanced computing and another MSc

from ISAE-Supaero, Toulouse, in aerospace

engineering. 

About the Technical Reviewers

xix

Acknowledgments

Thank you to Ilia Karmanov and Miguel González-Fierro for writing

Chapter 7, “Recurrent Neural Networks,” and for many suggestions for

improvement across the rest of the book. Thanks also to Mary Wahl and

Thomas Delteil for their technical review of the book; the book wouldn’t

be the same without them. Finally, thank you to our many colleagues who

developed, shaped, and used the products and techniques mentioned in

this book that influenced our presentation of them.

xxi

Foreword

Artificial intelligence (AI) at its core is about empowering people and

organizations to reason and interact with the increasingly digital world

all around us. Whether it be in health care or in financial services or in

government, AI is helping transform customer experiences, business

models, and operational efficiencies in a dramatic way. In this book,

Mathew, Danielle, and Wee Hyong present a practical overview of why the

impact of AI and deep learning has accelerated recently and illustrate how

to build these solutions on the Microsoft Cloud AI platform. They build on

their experiences as leading data scientists at Microsoft working both with

the product group as well as with external customers. In this book you will

see a fresh perspective on how to approach building AI solutions: from the

common types of models to training and deployment considerations for

end-to-end systems.

This topic is very near to my heart. As a Corporate Vice President

and CTO of Artifical Intelligence at Microsoft, I have had the privilege of

leading the development of many of our AI products mentioned in this

book. Take Unilever, for example: They have built a collection of chat bots

with a master bot to help their employees interact with human resources

services and all services inside the enterprise. Jabil uses AI for quality

control in the circuit board manufacturing process. Cochrane uses AI

to classify medical documents and organize information for systematic

reviews. Publicis used AI to build an app for makeup recommendations.

eSmart Systems has a connected drone with deep learning-based defect

detection for inspecting power lines in the energy sector. AI is even being

used to identify and conserve snow leopards in the Himalayas. AI is

becoming the new normal.

xxii

Contrast these examples to enterprise IT systems of the past. We first

developed systems of record for enterprises to operate. We had enterprise

resource planning (ERP) systems. We had customer resource management

(CRM) systems. Most of these were rather siloed and served specific

individual functions, with highly structured and curated data. Then the

Web came along, and the Internet came along, and we built systems to

interact with our customers over the Web. We started building Software as

a Service (SaaS) applications hosted in the cloud.

Now what we have at our disposal thanks to the type of technologies

and techniques mentioned in this book are systems of intelligence in the
cloud. A system of intelligence integrates data across all those systems

of record, connects you to the systems of engagement, and creates a

connected enterprise that understands, reasons, and interacts in a very

natural way. Built as a collection of interoperating SaaS applications, these

systems collect and organize all relevant data and interactions in the cloud.

They constantly learn using AI and deliver new experiences. Live online

experiments constantly explore a space of possibilities to teach and derive

new AI capabilities. All this is done with the power of the cloud.

When you are building powerful systems like this, you need a very

comprehensive platform. It’s not just one or two components, or a

few components from open source integrated with existing enterprise

applications. You can’t just take a deep learning tool, learn with a little

bit of data, put the model in a virtual machine on the cloud, and build a

system of intelligence. You need a comprehensive collection of platform

services that only a cloud platform can bring, including systems for identity

and security. This is the differentiation of the Microsoft AI platform. It is

cloud-powered AI for next-generation systems of intelligence.

I am a big believer in democratizing AI for developers. A lot of AI

itself should be almost as simple as calling a sort function. You just call a

sort function, and you get an output. The Microsoft AI platform provides

a wealth of prebuilt AI like speech recognition, translation, image

understanding, optical character recognition (OCR), and handwriting

ForewordForeword

xxiii

recognition, many of which are built on top of advanced deep learning

technology explained in this book. Many of these prebuilt AI capabilities

can be fine-tuned with your own data. Developers can use such prebuilt AI

to understand the content of every type of media and information —videos,

images, natural handwriting—and organize and reason with it. For the use

cases where prebuilt AI can solve the problem, these services dramatically

increase developer productivity and time to market.

When prebuilt AI isn’t flexible enough, there is the ability to build

custom AI models on top of a powerful computing layer. This is all a part of

the Azure cloud, and of course behind it are the innovations in hardware,

the latest CPUs, field-programmable gate arrays (FPGAs), graphics

processing units (GPUs), and more to come. Tools such as Azure Machine

Learning and Visual Studio Tools for AI allow rapid AI model development

using the state-of-the-art deep learning frameworks and open source

toolkits. These models can be delivered as docker containers that can be

hosted anywhere, in the cloud or on-premises.

Mathew, Danielle, and Wee Hyong have outlined in this book an

overview of these different options for developing and deploying AI solutions

with a specific focus on deep learning. In the last few years, deep learning

has transformed AI, leading to an explosion of use cases. Now, software can

learn to interpret the content and meaning of text, images, and video, almost

as well as humans can. Applications can understand speech and text, have

dialogues with humans in natural ways, and complete actions and tasks on

behalf of users. The authors showcase how the best of open source, the best

of Microsoft’s own AI technology, and the best of the cloud can all come

together in one platform to enable you to build novel systems of intelligence.

I invite all of you to take advantage of the power of the cloud and AI

coming together as illustrated in this book. AI-infused SaaS applications

are the new normal!

Joseph Sirosh

Corporate Vice President and CTO of Artificial Intelligence, Microsoft

July 2018

ForewordForeword

xxv

Introduction

This book spans topics such as general techniques and frameworks for

deep learning, starter guides for several approaches in deep learning,

and tools, services, and infrastructure for developing and deploying AI

solutions using the Microsoft AI platform. This book is primarily targeted

to data scientists who are familiar with basic machine learning techniques

but have not used deep learning techniques or who are not familiar with

the Microsoft AI platform. A secondary audience is developers who aim for

an introduction to AI and getting started with the Microsoft AI platform.

It is recommended that you have a basic understanding of Python and

machine learning before reading this book. It is also useful to have access to

an Azure subscription to follow along with the code examples and get the

most benefit from the material, although it is not required to read the book.

�How This Book Is Organized
In Part I of the book, we introduce the basic concepts of AI and the role

Microsoft has related to AI solutions. Building on decades of research

and technological innovations, Microsoft now provides services and

infrastructure to enable others who want to build intelligent applications

with the Microsoft AI platform built on top of the Azure cloud computing

platform.

We introduce machine learning and deep learning in the context of AI

and explain why these have become especially popular in the last few years

for many different business applications. We outline example use cases

utilizing AI, especially employing deep learning techniques, which span

from several verticals such as manufacturing, health care, and utilities.

xxvi

In the first part of the book, we also give an overview of deep learning,

including common types of networks and trends in the field. We also

discuss limitations of deep learning and go over how to get started.

In Part II, we give a more in-depth overview of the Microsoft AI

platform. For data scientists and developers getting started using AI in

their applications, there are a range of solutions that are useful in different

situations. The specific services and solutions will continue to evolve over

time, but two main categories of solutions are available.

The first category is custom solutions built on the Microsoft Azure AI

platform. Chapter 4, “Microsoft AI Platform,” discusses the services and

infrastructure on the Microsoft AI platform that allow one to build custom

solutions, especially Azure Machine Learning services for accelerating

the life cycle of developing machine learning applications as well as

surrounding services such as Batch AI training and infrastructure such as

the Deep Learning Virtual Machine.

The second category is Microsoft’s Cognitive Services, which are

pretrained models that are available as a REST application programming

interface (API). In other words, the models are already built on a set of data

and users can use the pretrained model. Some of these are ready to use

without any customization. For example, there is a text analytics service

that allows one to submit text and get a sentiment score for how positive

or negative the text is. This type of service could be useful in analyzing

product feedback, for example. Other Cognitive Services are customizable,

where you can bring your own data to customize the model. These services

are covered in more detail in Chapter 5, “Cognitive Services and Custom

Vision.”

In Part III, we cover three common types of deep learning

models—convolutional neural networks, recurrent neural networks, and

generative adversarial networks—that are useful to understand in building

out custom AI solutions. Each chapter includes links to code samples for

understanding the type of network and how one can build such a network

using the Microsoft AI platform.

IntroductionIntroduction

xxvii

In the final part of the book, Part IV, we consider architecture choices

for building AI solutions using the Microsoft AI platform along with

sample code. Specifically, Chapter 9, “Training AI Models,” covers options

for training neural networks such as Batch AI service and DL workspace.

Chapter 10, “Operationalizing AI Models,” covers deployment options

for scoring neural networks such as Azure Kubernetes Service for serving

real-time models as well as Spark using the open source library MMLSpark

from Microsoft.

Note B ibliographic information for each chapter is provided in the
Notes section in the Appendix of the book.

IntroductionIntroduction

PART I

Getting Started with AI

3© Mathew Salvaris, Danielle Dean, Wee Hyong Tok 2018
M. Salvaris et al., Deep Learning with Azure,
https://doi.org/10.1007/978-1-4842-3679-6_1

CHAPTER 1

Introduction to
Artificial Intelligence
Intelligence can be defined in many ways, from the ability to learn to deal

with new situations to the ability to make the right decisions according to

some criterion, for example (Bengio, 2010). Standard computers and even

basic calculators can be thought to be intelligent in some ways, as they can

compute an outcome based on human-programed rules. Computers are

extremely useful for mundane operations such as arithmetic calculations,

and the speed and scale at which they can tackle these problems has

greatly increased over time.

However, many tasks that come naturally to humans —such as

perception and control tasks—are extremely difficult to write formal rules

or programs for a machine to execute. Often it is hard to codify all the

knowledge and thought processes behind information processing and

decision making into a formal program on which a machine can then act.

Humans, on the other hand, over their lifetime can gather vast amounts of

data through observation and experience that enables this human level of

intelligence, abstract thinking, and decision making.

Artificial intelligence (AI) is a broad field of study encompassing this

complex problem solving and the human-like ability to sense, act, and

reason. One goal of AI can be to create smart machines that think and

act like humans, with the ability to simulate intelligence and produce

4

decisions through processes in a similar manner to human reasoning.

This field encompasses approaches ranging from prescriptive, immutable

algorithms for tasks previously performed only by intelligent beings (e.g.,

arithmetic calculators) to attempts to enable machines to learn, respond to

feedback, and engage in abstract thought.

AI is transforming the world around us at an ever-increasing pace,

including personalized experiences, smart personal assistants in devices

like our phones, speech-to-speech translation, automated support agents,

precision medicine, and autonomous driving cars that can recognize

objects and respond appropriately, to name just a few. Even through

products such as search or Microsoft Office 365, AI is having a useful

impact on most people’s day-to-day lives. Technology has come a long

way from the early days of the Internet in terms of how humans interact

with computers. There is an increasing expectation that humans should be

getting information in intelligent ways, and be able to interact with devices

that hold access to information in natural ways. Creating these types of

experiences often requires some type of AI.

AI is going to disrupt every single business app—whether an
industry vertical like banking, retail and health care, or a
horizontal business process like sales, marketing and customer
support.

—Harry Shum, Microsoft Executive VP, AI and Research

Of course, with the rise of AI and intelligent systems comes potential

drawbacks and concerns. Despite potential transformative experiences

and solutions based on AI, there are ethical issues that are important for

both the creators and users of AI to recognize. Technology will continue to

shape the workforce and economy as it has in the past as AI automates some

tasks and augments human capabilities in others (Brynjolfsson & Mitchell,

2017). Media portrayals often pit the human versus the machine, and this is

exacerbated through stories of computers playing games, especially against

Chapter 1 Introduction to Artificial Intelligence

5

humans. Computers have been able to beat humans in games such as

chess for decades, but with recent AI advances, computers can also surpass

human abilities in more sophisticated games where brute force computing

power isn’t practical, such as the abstract board game Go or the video arcade

game Ms. Pac-Man (Silver et al., 2016; van Seijen, 2017).

However, we believe that the discussion should not be framed in

a binary of human versus machine. It is important to develop AI that

augments human capabilities, as humans hold “creativity, empathy,

emotion, physicality, and insight” that can be combined with AI and the

power of machines to quickly reason over large data to solve some of

society’s biggest problems (Nadella, 2016). After all, there is an abundance

of information in the world today from which we can learn, but we are

constrained by our human capability to absorb this information in the

constraints of time. AI can help us achieve more in the time that we have.

Of course, safeguards will need to be put in place as algorithms will

not always get the answer right. Then there is debate over what “right”

even means. Although computers are thought to be neutral and thus

embody the value of being inclusive and respectful to everyone, there

can be hidden biases in data and the code programmed into AI systems,

potentially leading to unfair and inaccurate inferences. Data and privacy

concerns also need to be addressed during the development and

improvement of AI systems. The platforms used for AI development thus

need to have protections for privacy, transparency, and security built into

them. Although we are far from artificial general intelligence and from the

many portrayals of a loss of control of AI systems due to computers with

superintelligence from popular culture and science fiction works, these

types of legal and ethical implications of AI are crucial to consider.

We are still in the early days of the infusion of AI in our lives, but a

large transformation is already underway. Especially due to advances in

the last few years and the availability of platforms such as the Microsoft

AI Platform, upon which one can easily build AI applications, we will see

Chapter 1 Introduction to Artificial Intelligence

6

many innovations and much change to come. Ultimately, that change will

mean more situations where humans and machines are working together

in a more seamless way. Just imagine what’s possible when we put our

efforts toward using AI to solve some of the world’s greatest challenges

such as disease, poverty, and climate change (Nadella, 2017).

�Microsoft and AI
AI is central to Microsoft’s strategy “to build best-in-class platforms and

productivity services for an intelligent cloud and an intelligent edge

infused with artificial intelligence (“AI”)” (Microsoft Form 10-K, 2017).

Although this statement is new, AI is not new to Microsoft. Founder Bill

Gates believed that computers would one day be able to see, hear, and

understand humans and their environment. Microsoft Research was

formed in 1991 to tackle some of the foundational AI challenges; many

of the original solutions are now embedded within Office 365, Skype,

Cortana, Bing, and Xbox. These are just some of the Microsoft products

that are infused with many different applications of AI. Even in 1997,

Hotmail with automated junk mail filtering was built on a type of AI system

with classifications that improve with data over time.

Let’s look at just a few specific examples today. A plug-in available for

PowerPoint called Presentation Translator displays subtitles directly on

a PowerPoint presentation as you talk in any of more than 60 supported

languages; you can also directly translate the text on the slides to save

a version of your presentation in another language, thanks to speech

recognition and natural language processing technologies (Microsoft

Translator, 2017). SwiftKey is a smart keyboard used by more than

300 million Android and iOS devices that has learned from 10 trillion

keystrokes on the next word you want to type and saved 100,000 years of

time (Microsoft News, 2017).

Chapter 1 Introduction to Artificial Intelligence

7

Bing—powered by AI with both intelligent search and intelligent

answers—powers more than one third of all PC search volume in the

United States. Continuing developments, such as Visual Image Search and

a new partnership to bring Reddit conversations to Bing answers, continue

to infuse intelligence into search (Bing, 2017b). The personal AI assistant

Cortana helped answer more than 18 billion questions with more than

148 million active users across 13 countries (Linn, 2017). Seeing AI was

launched to assist the blind and low-vision community by automatically

describing the nearby visual field of people, objects, and text.

Although these technologies are infused within many products

and applications, Microsoft also aims to democratize AI technology so

that others can build intelligent solutions on top of their services and

platforms. Microsoft’s Research and AI group was founded in 2016 to bring

together engineers and researchers to advance the state-of-the-art of AI

and bring AI applications and services to market. Microsoft is taking a

four-pronged approach as visualized in Figure 1-1:

	 1.	 Agents that allow us to interact with AI such as

Cortana and bots enabled through the Microsoft Bot

Framework.

	 2.	 Applications infused with AI such as PowerPoint

Translator.

	 3.	 Services that allow developers to leverage this AI such

as the Cognitive Services handwriting recognition

application programming interface (API).

	 4.	 Infrastructure that allows data scientists and

developers to build custom AI solutions including

specialized tools and software for speeding up the

development process.

Chapter 1 Introduction to Artificial Intelligence

8

Thus, the vast infrastructure of the Azure cloud and AI technology

used within Microsoft and the larger open-source community are

now being made available to organizations wanting to build their own

intelligent applications. The Microsoft AI Platform on Azure is an open,

flexible, enterprise-grade cloud computing platform that is discussed in

more detail in Chapter 4. As a simple example of the power of Microsoft’s

cloud platform, just one node of Microsoft’s FPGA fabric was able to

translate all 1,440 pages of the novel War and Peace from Russian to

English in 2.5 seconds in 2016. Then using the entire capability rather

than just a single node, all of Wikipedia can be translated in less than

one tenth of a second (Microsoft News, 2017). Microsoft is focused on

creating agents and applications infused with AI, and then making this

same technology available through services and infrastructure. We

are at the tip of the iceberg of what is possible with AI and through the

democratization of these AI technologies, many challenges will be solved

across the world.

Bots Applications Services Infrastructure

Harness AI to

change how we

interact with

ambient

computing

Infuse AI into

every

application that

we interact with,

on any device

AI capabilities

that are infused

in our own apps

available to

developers

around the

world

Building and

making available

the world’s most

powerful AI

supercomputer

via the cloud to

tackle all types

of AI challenges

Figure 1-1.  Microsoft’s four-prong approach to democratizing AI

Chapter 1 Introduction to Artificial Intelligence

9

We are pursuing AI so that we can empower every person and
every institution that people build with tools of AI so that they
can go on to solve the most pressing problems of our society
and our economy.

—Satya Nadella, Microsoft CEO

�Machine Learning
Although there are many subfields and applications within AI, machine

learning (ML) has become extremely popular as a practical tool for many

AI-infused applications available today and is the focus of this book. ML

is a branch of computer science where computers are taught to process

information and make decisions through giving access to data from which

computers learn. There are many excellent reference materials on this

subject that are outside the scope of this book. Typical ML tasks include

classification, regression, recommendations, ranking, and clustering, for

example. AI is thus a broader concept than ML, in that ML is one research

area within AI around the idea machines can learn for themselves once

given access to the right type of data (Marr, 2016).

With classical ML approaches, there are well-established

methodologies for utilizing data points that are already useful features or

representations themselves, such as data points that capture age, gender,

number of clicks online, or a temperature sensor reading as examples.

Computers learn how to model the relationship between these sets of

input features and the outcome they are trying to predict; the algorithm

chosen by the human constrains the type of model the computer is able

to learn. Humans also hand-craft the representations of the data, a step

often called feature engineering, and feed these representations into the

ML model to learn. The most common type of ML is supervised machine

learning, where the model has labels that are supposed to represent the

ground truth against which to learn. The process of the computer learning

the parameters within the model is often called training.

Chapter 1 Introduction to Artificial Intelligence

10

For example, suppose a telco is aiming to address issues with customer

churn. The process with which they could approach this problem using

traditional supervised ML techniques is described here. They would like

to identify customers who are likely to churn so they can proactively reach

out and give them incentives to stay. To build this model, they would

first gather relevant raw input data such as the usage patterns of their

customers and demographic data such as those pictured in Table 1-1.

Table 1-1.  Example Raw Tables Capturing Information from

Customers at a Telco That Needs to Be Processed Before It Can Be Fed

into a Machine Learning Model

Customer Information Phone Records

Name Gender Sign-Up Date Name Call Length Date

Mary F 29.01.2011 Mary 12 30.01.2011

Thomas M 20.06.2013 Mary 1 01.02.2011

Danielle F 05.05.2014 Mary 3 01.02.2011

Wee Hyong M 01.09.2012 … … …

Mathew M 15.11.2012 Thomas 22 21.06.2012

Ilia M 19.02.2013 … … …

… … …

Some preprocessing, such as structuring the data by some measure

of time, aggregating data points as needed, and joining different tables

together that are relevant to whether a customer churns or not, is

completed on the raw input data. This is followed by feature engineering to

create representations of these customer data to feed into the model, such

as creating a feature that represents the length of time with the telco, which

Chapter 1 Introduction to Artificial Intelligence

11

is found based on the date the customer signed up for service. Creating

a relevant representation of the data is very important for the ML model

to be able to discern the patterns within the data, and is usually heavily

guided by domain knowledge, as illustrated in Figure 1-2, for example.

Figure 1-2.  The representation of data is very important; for
example, examining the sign-up date at any given point in time
might reveal little relationship to the probability of churn within 30
days, but examining the length in the contract at that point in time
might reveal a strong relationship in that individuals are more likely
to churn within 30 days if they have been in the contract for a longer
period of time

Then historical outcomes, a label of which customers churned or not

within a certain amount of time, for example, would be matched to these

data and used for the training process of the supervised ML algorithm,

as shown in Table 1-2. Applying the trained model to a hold-out set of

test data to understand how well it will generalize to new customers, the

model would be evaluated based on how well it predicted the historical

churn outcomes. After iterating on the preprocessing, feature engineering,

and model selection process of trying different models to find the optimal

pipeline, this would then be applied to new raw customer telco data to

predict which customers are likely to churn in the future.

Chapter 1 Introduction to Artificial Intelligence

12

This traditional, supervised ML approach as summarized in Figure 1-3

works for many problems and has been used extensively across many

industries. In operations and workforce management, ML has been used

for predictive maintenance solutions and smart building management, as

well as enhanced supply chain management. For example, Rockwell is able

to save up to $300,000 a day through predictive maintenance solutions that

monitor the health of pumps in offshore rigs (Microsoft, 2015). In marketing

and customer relationship scenarios, ML is used to create personalized

experiences, make product recommendations, and better predict customer

acquisition and churn. In finance, fraud detection solutions and financial

forecasting are often aided by ML-backed solutions.

Table 1-2.  Example Output of Simple Feature Engineering and

Matching to the Label of Churn in the Next 30 days

Name Month Total Phone Min Months with Telco Churn Next 30 Days

Mary 2.2011 44 0 0

Mary 3.2011 51 1 0

… … … … …

Thomas 6.2013 152 0 0

Thomas 7.2013 201 1 0

Thomas 8.2013 120 2 1

Note  In this case, 0 represents that the individual did not churn,
and 1 represents that the individual did churn.

Chapter 1 Introduction to Artificial Intelligence

13

Figure 1-3.  Approach for classical, supervised machine learning
solutions

Chapter 1 Introduction to Artificial Intelligence

14

�Deep Learning
Although traditional ML approaches work well for many scenarios as

discussed earlier, much of the world is quantized in a representation that

has no easily extractable semantics, such as audio snippets or pixels in

an image.

For example, programming a computer to recognize whether there

is a flamingo in each of the images in Figure 1-4 would be exceedingly

difficult. These images are represented to a computer as a matrix of pixel

values ranging from 0 to 255. Standard colored images have three channels

of red, green, and blue and images can be thus represented as three

two-dimensional matrices. It’s tough to even define which combination

of numerical values represents the color pink, let alone process them to

identify a flamingo. Even taking a traditional ML approach and hand-

crafting features to recognize parts of the image such as a beak and

feathers and legs would take very specialized knowledge and a large

investment of time to build the different representations from the raw

pixel values well enough on top of a large set of images from which the

computer could then learn.

Figure 1-4.  Example images where a machine with AI might be
asked questions that require it to process, understand, and reason.
An example is whether or not there is a flamingo in each of these
images, and hand-crafting features for traditional machine learning
approaches is quite difficult and time-consuming.

Chapter 1 Introduction to Artificial Intelligence

15

Similarly, traditional natural language processing requires complex

and time-consuming task-specific feature engineering. For processing

speech, different languages, intonations, environments, and noise create

subtle differences that make crafting relevant features extremely difficult.

Deep learning, which is the focus of this book, is a further subfield of

AI and ML that has especially shown promise on these types of problems

without easily extractable semantics such as images, audio, and text data

(Goodfellow, Bengio, & Courville, 2016). With deep learning approaches,

a multilayer deep neural network (DNN) model is applied to vast amounts

of data. Deep learning models often have millions of parameters; therefore

they require extremely large training sets to avoid overfitting. The goal of

the model is to map from an input to an output (e.g., pixels in an image to

classification of image as flamingo; audio clip to transcript). The raw input

is processed through a series of functions. The basic idea is that supervised

deep learning models learn the optimal weights of the functions

mapping this input data to the output classification through examining

vast amounts of data and gradually correcting itself as it compares the

predicted result with the ground truth labeled data.

The early variants of these models and concepts dating back to the

1950s were based loosely on ideas on how the human brain might process

information and were called artificial neural networks. The model learns

to process data through learning patterns. First are simple patterns such

as edges and simple shapes, which are then combined to form more

complicated patterns through the many layers of the model. Current

models often include many layers—some variants even boast over a

hundred layers—and hence the terminology deep. The model thus learns

high-level abstractions automatically through the hierarchical nature of

processing information.

Although data still need to be processed and shaped to fit into a deep

learning model, there is no longer a need to hand-craft features, as the

raw input (e.g., pixel values in an image) is fed directly into the model.

The model learns the features (attributes) of the input data automatically.

Chapter 1 Introduction to Artificial Intelligence

16

There is thus no need for features that represent subparts of the pictures,

such as the beak and leg in the flamingo example earlier. Deep learning

approaches show promise for learning patterns in the input data to be

able to classify directly based on the raw input rather than constructing

features manually. Instead, often more time is spent selecting the structure

of the network, also called the network architecture, and tuning the

hyperparameters, the parameters within the model that are set before the

learning process even begins. This has given rise to the idea that network

architecture engineering is the new feature engineering (Merity, 2016).

Deep learning has also shown promise in several areas of ML where

traditional methods also work well, such as forecasting for predicting

future values in a time series and recommendation systems that aim to

predict the preference a user would have for a given item. More details

on specific types of deep learning models as well as recent trends in deep

learning are covered in Chapters 2 and 3, respectively.

�Rise of Deep Learning
The basic ideas and algorithms behind deep learning have been around

for decades, but the massive use of deep learning in consumer and

industrial applications has only occurred in the last few years. Two factors

have especially driven the recent growth in AI applications, and especially

deep learning solutions: increased computation power accelerated by

cloud computing and growth in digital data.

Deep learning models require lots of experimentation and often run on

large training data, thus requiring a large amount of computing resources,

especially hardware such as GPUs and FPGAs that are magnitudes more

efficient than traditional CPUs for the computations in a DNN. Cloud

computing—running workloads remotely through the Internet in a data

center with shared resources—opens access to cheaper hardware and

computing power. Resources can be spun up on demand and suspended

Chapter 1 Introduction to Artificial Intelligence

17

when no longer in use to save on cost, without investments in new

hardware.

With the Internet and connected devices, there is an increasing

digitization of our world and massive amounts of data are being collected.

Of course, understanding how to organize and harness this information

is critical to advancing AI applications. One data collection project that

changed AI research was the ImageNet data set, originally published in

2009, which evolved into a yearly competition for AI algorithms, such as

which algorithm could classify the images by objects with the lowest error

rate (Russakovsky et al., 2015). Deep learning has emerged recently as a

powerful technique thanks in large part to the collection of this ImageNet

data set. “Indeed, if the artificial intelligence boom we see today could

be attributed to a single event, it would be the announcement of the 2012

ImageNet challenge results” (Gershgorn, 2017).

Specifically, in 2012, a deep learning solution drastically improved

over the previous year’s results for classifying objects, as shown in

Figure 1-5. This solution changed the direction of computer vision

research, and accelerated the research of deep learning in other fields

such as natural language processing and speech recognition. Continuing

more advanced deep learning research, in 2015, Microsoft Research

submitted an entry with an architecture called ResNet with 152 layers

that was the first time an algorithm surpassed human classification

(He, Zhang, Ren, & Sun, 2015).

Chapter 1 Introduction to Artificial Intelligence

18

This ImageNet data and competition is by no means a pure academic

exercise. Many of the architectures used in this competition are often

used in industry, many pretrained models on the ImageNet data are

made available to the public, and many deep learning computer vision

applications are seeded by this work. This is especially true for transfer

learning approaches, which are discussed in more detail in Chapter 2.

One thing ImageNet changed in the field of AI is suddenly
people realized the thankless work of making a dataset was
at the core of AI research. People really recognize the impor-
tance the dataset is front and center in the research as much
as algorithms. (Gershgorn, 2017)

—Li Fei-Fei

Figure 1-5.  Yearly winning solution’s top five classification error rate
on ImageNet data for image classification in ILSVRC (Russakovsky
et al., 2015)

Chapter 1 Introduction to Artificial Intelligence

19

Of course, as one might infer from the drastic improvement in the

ImageNet results over the last few years and discussion of the ResNet-152

architecture from Microsoft, there have also been recent advances in

algorithms supporting deep learning solutions and tools available to

create such solutions. Thus, computational power accelerated by cloud

computing, growth in data (especially open labeled data sets), and

advanced algorithms and network architectures have together drastically

changed what is possible with AI in just the last few years.

Not only can deep learning techniques surpass humans in image

recognition, but they are also pushing other areas, such as approaching

human level in speech recognition. In fact, some of the first breakthroughs

in deep learning happened in speech recognition (Dahl, Yu, Deng, &

Acero, 2011). Then in October 2016, Microsoft reached human parity in

the word error rate on the Switchboard data set, a corpus of recorded

telephone conversations used for more than 25 years to benchmark AI

systems (Xiong et al., 2016). These type of innovations are why speech

recognition systems on personal devices and computers have improved so

drastically in the last few years.

Similarly for natural language processing, on January 3, 2018, Microsoft

reached a score of 82.6% on the SQuAD machine reading comprehension

data set comprised of Wikipedia articles. Using these data, the computer

reads a document and answers a question, and was found to outperform

humans on the answers (human performance is at about 82.3%; Linn,

2017; Rajpurkar, Zhang, Lopyrev, & Liang, 2016).

However, it is important to note that these achievements are for a

specific problem or application, and do not represent an AI system that

can generalize to new tasks. It can also be relatively straightforward to

create examples that the computer fails on, so-called adversarial examples

(Jia & Liang, 2017). Additionally, the performance of the system could drop

dramatically even if the original task is modified only slightly. For example,

although computers might now classify general images better than

Chapter 1 Introduction to Artificial Intelligence

20

humans, as shown on ImageNet data discussed earlier, giving open-ended

answers to questions about images is still far from human performance;

there was over 10% difference in accuracy as of June 2017 on the VQA 1.0

data set for visual question answering (AI Index, 2017).

Additionally, deep learning as a general approach still has many

limitations such as the inability to reason and lack of understanding. In

some cases it can also be more difficult to tune deep learning systems

than traditional systems, such as when there is a certain aspect on which

it is not doing well, which in some cases could be easier to account for in

a traditional ML model with fewer parameters. Other ML and AI fields

of research exist and solve other types of problems more accurately than

deep-learning-based approaches. There is also much potential around

the combination of deep learning with other AI research areas such as

reinforcement learning. More details around recent advances, trends, and

limitations are discussed in Chapter 3.

In this book, we focus mainly on deep learning approaches within AI

and applications where intelligent technology can use deep learning to

create solutions that empower people and businesses. These solutions

include enabling better engagement with customers, transformation

of products, and better optimization of operations, for example. Deep

learning applications can often be developed in such a way that they

learn and improve over time as more data are collected and often create

experiences that connect people and technology in more seamless

ways. This book is meant to serve as an introduction to how to develop

deep learning solutions with the Microsoft AI Platform. For a more

comprehensive overview of deep learning in general including more about

the theory and advanced topics, the book by Bengio, Goodfellow, and

Courville (2016) is highly recommended.

Chapter 1 Introduction to Artificial Intelligence

21

�Applications of Deep Learning
Some classic computer vision problems that can be tackled using deep

learning are shown in Figure 1-6, such as being able to classify images

and find objects within the images. These common technical problems

underlie many different end user applications. For example, photo search

applications such as Microsoft’s Photo App that allow users to type in

descriptions of objects (e.g., “car”) or concepts (e.g., “hug”) and return

relevant results provide a useful capability built through using DNNs.

Figure 1-6.  Example computer vision problems

Many deep learning applications for computer vision surround health

care and the medical realm, in subfields where doctors commonly inspect

patients or test results visually, such as in dermatology, radiology, and

ophthalmology. Imagine the possibilities in that a radiologist can inspect

thousands of scans, but a computer can be shown and learn from millions.

Humans globally will benefit from the democratization of these services,

which will over time become even more accurate and efficient. Project

InnerEye is one example, a research project from Microsoft for building

innovative tools for automatic, quantitative analysis of three-dimensional

radiological images to assist expert medical practitioners.

Chapter 1 Introduction to Artificial Intelligence

22

Examples also abound in manufacturing and utilities. Take eSmarts, a

power and utility company based in Norway that provides an automated

energy management system, for example. They use drones to collect

images of power lines and then analyze them using DNNs to automatically

detect faults (Nehme, 2016). Specifically, eSmarts does object detection on

the images to detect discs and then predict whether they are faulty. They

mix real images with synthetic images they have created to create a large

enough data set to be able to predict. Similarly, Jabil, one of the leading

design and manufacturing solution providers, is optimizing manufacturing

operations by analyzing images of their circuit board assembly line to

automatically detect defects (Bunting, 2017). Doing this reduces the

number of boards that have to be manually inspected by the operators

watching the line and increases their throughput.

Analyzing natural language data is another common use of deep

learning. The goal of these applications broadly is for computers to process

natural language, classify text, answer questions, summarize documents,

and translate between languages, for example. Natural language

processing often requires several layers of processing, from the linguistic

level of words and semantics to parts of speech and entities, to the type of

end user applications shown in Figure 1-7 (Goldberg, 2016).

Chapter 1 Introduction to Artificial Intelligence

23

Translating audio data to text is another common application of

deep learning. An example application using deep learning for speech

recognition, Starship Commander is a new virtual reality (VR) game from

Human Interact, where players are active agents in the sci-fi universe

(Microsoft Customer Stories, 2017). Human Interact is building the

lifelike experiences in the game around human speech, allowing users

to influence the storyline and direction of the game through their voice.

To enable this, the game needs to recognize speech and understand the

meaning of that speech based on the users’ underlying intent. Microsoft’s

Custom Speech Service allows developers to build on top of a speech

recognition system that, using deep learning, can overcome obstacles such

as speaking style and background noise. Developers can even train with

a custom script to recognize the key words and phrases from the game to

build a truly custom speech recognition system more quickly and easily

than building from scratch.

Figure 1-7.  Example applications of natural language processing
from text

Chapter 1 Introduction to Artificial Intelligence

24

This is just the first step of recognizing what words were uttered—the

game then needs to understand what the user means. Imagine the user

is giving a command to start the engine of a ship. There are many ways

someone could give that command. Microsoft’s Language Understanding

Service infers the users’ underlying intent, translating between the speech

recognized by the game and what the user actually means.

The only reason we can build a product like this is because we
are building on the deep learning and speech recognition
expertise at Microsoft to deliver an entertainment experience
that will be revolutionary.

—Alexander Mejia,
Owner and Creative Director, Human Interact

Of course, these are just some simple examples that showcase how

deep learning can bring value to business and consumer applications.

Deep learning has shown tremendous potential for applications around

speech, text, vision, forecasting, and recommenders, for example (see

Figure 1-8), and we expect to see tremendous use of deep learning in many

industries and more applications in the future.

Figure 1-8.  Example areas where deep learning solutions have
demonstrated great performance

Chapter 1 Introduction to Artificial Intelligence

25

Interacting with more applications through speech and text rather than

menus, chatting with bots on a company’s web site or human resources

page to solve routine problems quickly, innovative photo applications that

allow natural search and manipulation, and finding relevant information

quickly from documents are just some example scenarios where deep

learning will drive forward value to businesses and consumers.

�Summary
This chapter introduced the concepts of AI, ML, and deep learning

as summarized in Figure 1-9. Buildingon decades of research and

technological innovations as mentioned briefly in this chapter, Microsoft

now provides services and infrastructure to enable others who want

to build intelligent applications—including powerful deep learning

applications as discussed in this book—through the Microsoft AI Platform

built on the cloud computing platform Azure.

Figure 1-9.  Visualization of relationship between artificial
intelligence, machine learning, and deep learning

Chapter 1 Introduction to Artificial Intelligence

26

This chapter also discussed reasons behind the recent rise of deep

learning such as increased computational power and increased data set

sizes, especially for labeled data such as ImageNet, which has been made

available publicly. These have propelled forward research in areas such

as computer vision, natural language processing, speech recognition, and

time series analysis. We are also seeing many valuable applications built

on deep learning in areas such as health care, manufacturing, and utilities.

We believe this trend will continue, but that other areas of AI research will

also be useful in the future.

In the next chapter, we introduce common deep learning models and

aspects needed to get started with deep learning. In Chapter 3, we then

discuss some of the emerging trends in deep learning and AI as well as

some of the legal and ethical implications mentioned briefly in this chapter

in more detail.

Chapter 1 Introduction to Artificial Intelligence

27© Mathew Salvaris, Danielle Dean, Wee Hyong Tok 2018
M. Salvaris et al., Deep Learning with Azure,
https://doi.org/10.1007/978-1-4842-3679-6_2

CHAPTER 2

Overview of Deep
Learning
In Chapter 1, we gave an overview of AI and the basic idea behind deep

learning. We discussed how deep learning—applying artificial neural

network models with a large number of layers—has yielded state-of-the

art results for several research areas, such as image classification, object

detection, speech recognition, and natural language processing.

Deep learning has also shown promise in many applications across

areas such as health care, manufacturing, and retail. In 2017, for example,

an AI system did as well as dermatologists in identifying skin cancer

and a model could diagnose irregular heart rhythms from single-lead

electrocardiogram (ECG) signals better than a cardiologist (Esteva et al.,

2017; Rajpurkar, Hannun, Haghpanahi, Bourn, & Ng, 2017). We believe

this trend will continue: Deep learning will bring value to more scenarios

across many industries and progress toward improved AI experiences will

continue to accelerate.

In this chapter we briefly go over the basics of several types of

networks that are now commonly used. We also describe the data science

workflow for deep learning projects including a description of some of

the popular tools and technologies that data scientists and developers

need to get started when working on a deep learning project. This chapter

also provides practical techniques for getting started with deep learning

28

projects, without spending significant time in training a convolutional

neural network using large data sets like ImageNet from scratch.

This chapter is simply an overview of deep learning and the building

blocks for developing deep-learning-based solutions. In the third part of

this book, these basic concepts are built on for introducing in more detail

several common network models. These later chapters (e.g., Chapter 6)

provide sample code that one can follow. Although this chapter also covers

the basic ideas of training and scoring deep learning models, we discuss

more specifics along with sample code for training and scoring on Azure in

the fourth part of this book.

�Common Network Structures
There are many variations of artificial neural network models, including

convolutional neural networks (CNNs), recurrent neural networks (RNNs),

generative adversarial networks (GANs), and autoencoders, for example,

as shown in Table 2-1. Today, most problems require data scientists to

select the appropriate network type and network structure for the problem

at hand. Data scientists spend time trying different problem formulations

and exploring different hyperparameters (e.g., type of network structure),

and see which works for their specific problem. In the sections that follow,

we describe briefly each of these types of network structures.

Table 2-1.  Common Network Structures and Common Applications

CNNs RNNs GANs Autoencoders

Image

classification,

object detection

Natural language

processing, time

series analysis

Text to image

creation, image to

image translation

Dimensionality

reduction,

anomaly detection,

recommender systems

Chapter 2 Overview of Deep Learning

29

�Convolutional Neural Networks
CNNs are simply neural networks that make use of the convolution

operator in at least one of their layers. CNNs are feedforward neural

network models that are a foundational network especially for computer

vision problems. Feedforward implies that information is always fed in

one direction in the network and there are not any loops in the network

structure. CNNs have also been used in other areas such as speech

recognition and natural language processing for certain tasks.

CNNs work on the premise of translation invariance; for images, this

builds on the idea that an object within the image is the same object even

if it is moved, as illustrated in Figure 2-1. This is important, as the network

does not have to relearn what each object is in every position of the image.

This requires significantly less data to train and can generalize better to

learning how to process images than if we had to separately learn how to

recognize objects at each location as would be required in a multilayer

perceptron (MLP).

Figure 2-1.  CNNs allow for translation variance; for example, the
handwritten digit “8” is still an 8 even if it is moved within the image.
This concept helps the network learn how to process images more
effectively than simply applying a vanilla neural network model with
hidden layers.

Chapter 2 Overview of Deep Learning

30

For example, if we want the model to be able to learn to identify what

is a cat, no matter where the cat is located in the image it shares the same

characteristics from which the model should learn: how to identify fur, cat

ears, tail, and so on.

In CNNs, the input image is fed through what is often called a filter or

kernel, which acts as a feature detector in the network. You can think of

these feature detectors as trying to learn aspects such as edges, shapes, or

patterns within the image. This is done by applying the feature detector

on one patch of the image at a time through sliding windows, with the

results of this convolution operation saved into what is called a convolved

image or feature map. CNNs hold the property of translation invariance as

mentioned earlier, as the filters share the same weights as applied to each

image patch that after applying form the convolved image. The depth of

a convolutional layer in a neural network corresponds to the number of

filters used in that layer.

A form of down-sampling through the use of pooling layers is used

to reduce the size of the data going through and remove the potentially

redundant aspects that the network at that stage has learned to react to.

A “max pooling” layer for example simply takes the maximum value from

the output of the convolved image for each window of the image as shown

in Figure 2-2, where the stride represents the number of pixels by which

the window jumps. Convolution and pooling layers are used in many

combinations, transforming an input image into an array that is then input

into at least one fully connected layer that feeds out to the predicted output

classes as visualized in Figure 2-3. The fully connected layers simply act as

a classifier to predict the output class.

Chapter 2 Overview of Deep Learning

31

In other words, CNNs can be conceptually split into two main pieces,

both of which are optimized together:

	 1.	 The automatic feature extractor creates the hidden

feature state—features that represent aspects of

image that are relevant for classification—and is

made up of layers such as convolutional and pooling

layers.

	 2.	 The classifier is a fully connected neural network

made up of at least one layer that classifies the

hidden feature state.

The automatic feature extractor part of CNN enables the network to

learn aspects such as edges and shapes of the image without having to

explicitly program the network to compute these features as was done with

the use of algorithms such as scale-invariant feature transform (SIFT).

Figure 2-2.  Max pooling operation with 2 by 2 filters with stride of two

Chapter 2 Overview of Deep Learning

32

Importantly, CNNs automatically learn the values of the filters

(“feature detectors”) through training the network on large amounts

of labeled data using a concept called backpropagation, continuing to

improve the weights within the network until the classification error

is minimized. In the early layers of the networks, the network typically

creates filters that look to be recognizing aspects of the images such as

edges, basic shapes, and colors. Later layers learn increasingly complex

patterns until all of these patterns put together can help the network learn

the classification of the input.

There are many ways to combine the fundamental building blocks of

convolutional layers, pooling layers, and fully connected layers among

other aspects of CNNs such as stride (number of pixels by which filters

are slid over the image), dropout (used to reduce overfitting), and types

of activation functions that introduce nonlinearity to the network and

process the output of each layer. There are also many ways to train and

formulate the network, and much research centers around how to design

the layers, connections, and aspects such as depth versus width. More

details and sample code can be found in Chapter 6, so we only describe

briefly the basics required for an overview of deep learning as well as to

understand some of the trends related to CNNs that will be discussed in

Chapter 3.

Figure 2-3.  Basic building blocks of convolutional neural networks
(CNNs)

Chapter 2 Overview of Deep Learning

33

�Recurrent Neural Networks
RNNs directly make use of sequential information. Sequences passed

to the network could be in the input, output, or even both. The RNN

processes sequences of data through what is sometimes called a “state” or

“memory.” Unlike CNNs, which are feedforward networks, RNNs contain

loops in the network structure, as illustrated in Figure 2-4 and Figure 2-5.

However, note that CNNs have increasingly been shown to be useful for

analyzing sequential information as well, as is mentioned in more detail

in Chapter 7.

Figure 2-4.  Recurrent neural networks have a loop in the network
structure and process data over sequences

Figure 2-5.  RNNs process information over sequences. Often this
sequence represents information over time, such that a loop in the
RNN can be “unrolled” to see that the output at a given point in time
is a function of the inputs at previous points in time.

Chapter 2 Overview of Deep Learning

34

RNNs have been successful in many natural language processing tasks,

as the meaning of a word in a sentence is dependent on the other words

surrounding it. RNNs have also been useful in other applications such as

time series prediction, speech recognition, and handwriting recognition.

A “vanilla” RNN processes a sequence of vectors with a single “hidden”

vector by applying a recurrence formula at each step. This formula takes

both the current vector as well as the previous state. Variants of RNNs have

been proposed that are able to better process longer sequences such as

long short term memory networks (LSTMS). More details on RNNs along

with sample code can be found in Chapter 7.

In Figure 2-6, an example application of both CNNs and RNNs is

shown in the automatic generation of image descriptions in the alt text

of images pasted within a PowerPoint file. CNNs are used to classify the

objects within the image and RNNs are used to generate the sentence

description based on those objects.

Figure 2-6.  Image descriptions are created automatically for images
in PowerPoint through use of both CNNs and RNNs

Chapter 2 Overview of Deep Learning

35

�Generative Adversarial Networks
GANs are a more recent development in deep learning that actually

solves a given problem through training two separate network models

in competition with each other (Goodfellow et al., 2014). In recent years,

GANs have shown tremendous potential and have been applied in

various scenarios, ranging from image synthesis, enhancing the quality

of images (superresolution), image-to-image translations, to text-to-

image generation, and more. In addition, GANs are the building blocks

for advancements in the use of AI for art, music, and creativity (e.g., music

generation, music accompaniment, poetry generation, etc.).

GANs are emerging as powerful techniques for both unsupervised and

semisupervised learning. A basic GAN consists of the following:

•	 A generative model (i.e., generator) generates an

object. The generator does not know anything about

the real objects and learns by interacting with the

discriminator. For example, a generator can generate

an image.

•	 A discriminative model (i.e., discriminator)

determines whether an object is real (usually

represented by a value close to 1) or fake (represented

by a value close to 0).

•	 An adversarial loss (or error signal) is provided by

the discriminator to the generator such that it enables

the generator to generate objects that are as close as

possible to the real objects.

More details about GANs are included along with sample code

Chapter 8.

Chapter 2 Overview of Deep Learning

36

We expect that GANs will become more popular in the coming years,

even outside of the use of creative applications, as they have potential to

address how to create unsupervised learning methods that would greatly

expand the reach of ML applications. Today, these types of models take

a long time to train and are notoriously difficult to tune, and we expect

that research will continue to advance the practicality of these networks

for real applications. As this type of technology sees more real-world

applications, improves on quality, and expands to more mediums such as

videos, we believe more debate will surface over their use. For example,

the implications of not being able to discern true content from fake are

quite far-reaching, with examples already highlighted in the media such

as near-realistic fake words inserted into videos of politicians speaking

(Metz & Collins, 2018).

�Autoencoders
Autoencoders are another type of a feedforward network and have

been used for applications such as dimensionality reduction, anomaly

detection, and learning generative models. These neural network models

have an input layer, an output layer, and at least one hidden layer in

between. Importantly, autoencoders have the same number of units in

the input layer as the output layer, and their purpose is thus to reconstruct

the original values in the input layer. Of course, these are designed in

such a way that they do not copy the input data exactly but are restricted

so that they can only learn approximately, such as having a smaller

dimension than the input data, as one example. Autoencoders thus learn

most relevant properties to reconstruct the input data. As such, they

can be useful for unsupervised learning applications where there is no

target value for prediction or for learning features for input into another

algorithm. They have shown promise for many applications such as

recommender systems (Kuchaiev & Ginsburg, 2017).

Chapter 2 Overview of Deep Learning

37

�Deep Learning Workflow
For many AI projects, deep learning techniques are often used as the

building block for building innovative solutions ranging from image

classification and object detection to image segmentation, image

similarity, and text analytics (e.g., sentiment analysis, key phrase

extraction). Often, people will ask, “How do I get started with using deep

learning in my team?” To get started with deep learning, it is important

to understand the tools and technologies that are used in deep learning

projects and the workflow for building a solution.

Given the business requirements for an innovative solution, a data

scientist will need to map it to one or more deep learning tasks. For

example, let’s say a retail business wants to create an end-to-end customer

shopping experience for mobile devices, where customers can take a

photo of a shirt or a dress, and an application running on the mobile

device can then match it to the shirts and dresses in the shopping catalog.

To achieve this, the data scientist maps this to an image similarity problem:

Take a new input image, and match it against all the shirts and dresses in

the catalog. The top N images will be returned to the mobile application.

While working with the application developers, other requirements need

to be addressed as well, like identifying and cropping the image to just the

person wearing the shirt or dress, for example. This will require the use of

both object detection and image classification.

Once the deep learning task is identified, a typical deep learning

workflow will include the following:

	 1.	 Identify relevant data set(s).

	 2.	 Preprocess the data set.

	 3.	 Train the model.

	 4.	 Check the performance of the model.

Chapter 2 Overview of Deep Learning

38

	 5.	 Tune the model.

	 6.	 Deploy the model.

	 7.	 Iterate and collect more data to enable retraining.

�Finding Relevant Data Set(s)
Most companies wanting to get started with deep learning projects often

face difficultly when trying to find relevant data set(s) that they can use

for training their deep learning models for a specific business scenario.

In addition, the data set needs to be labeled. For example, to train a CNN

to identify the type of clothing (e.g., polo shirt, t-shirt, dress, jeans), a data

set consisting of images of clothing, with labels denoting whether the

image is a shirt, dress, t-shirt, or jeans is required. These images can come

from the existing product catalogs, public image data sets (e.g., diverse set

of images from ImageNet, CIFAR-10, Deep Fashion), and scraped from

various web sites.

To seed the initial training and validation data set if data are not

already available, data scientists often use a search engine (Figure 2-7)

for performing an image search on a specific class (e.g., jeans), where the

image owner has labeled the image as free to use for commercial use.

Chapter 2 Overview of Deep Learning

39

�Data Set Preprocessing
After the data scientist has acquired the relevant image data sets, he or she

will need to prepare them for training. Often, many real-world image data

sets are imbalanced (commonly known as the minority class problem).

This means there might be more images for a specific class (e.g., polo

shirts), and fewer images for another class (e.g., t-shirts). To solve the

imbalanced data set problem, a data scientist applies various tricks to

increase the number of images in the minority class or down-sample from

the more frequent classes until parity is achieved.

Figure 2-7.  Results returned from an image search using Bing

Chapter 2 Overview of Deep Learning

40

Another commonly used preprocessing technique is data augmentation

to help the model generalize over multiple conditions, to improve its

invariance to aspects such as rotation, translation, and scaling. This

includes applying various transformation to the image, such as scaling,

rotating, random cropping of the image, flipping the image, adjusting the

brightness and contrast, and more. Various data augmentation capabilities

are supported in the different deep learning frameworks.

�Training the Model
After the data set has been preprocessed and prepared, the data scientist is

ready to start designing the deep learning model architecture and training

the model. The key ingredients that enable effective modeling and training

of deep learning models are (1) choosing a deep learning toolkit, and (2)

training using hardware such as GPUs. This is discussed in more detail in

the next section in this chapter.

Depending on the size of the data set, the model can be trained on a

local machine (e.g., laptop, PC, Mac) or using infrastructure available in

the public cloud, such as Microsoft Azure. Azure provides both NC-series

virtual machines (VM) with Nvidia GPUs, as well as a managed service,

called Azure Batch AI, which enable you to easily scale up and down GPUs

that you need for your deep learning jobs. This will be covered in more

detail in Chapters 4 and 9.

�Validating and Tuning the Model
During training of the deep neural network, there are several key metrics

that will provide insights on the learning efficiency and the quality of the

models at each epoch. An epoch refers to a full pass of the training data set.

Two metrics are commonly tracked: (1) loss function, and (2) training and

validation accuracy.

Chapter 2 Overview of Deep Learning

41

By evaluating the loss function at each epoch, the quality of the model

at the end of each epoch can be evaluated. A lower loss is a good indication

of a better model. There are many hyperparameters that are set before

the learning process even begins—the learning rate is one important

hyperparameter that can have a significant impact on the results of the

model. By plotting loss (y axis) and epochs (x axis), whether the learning

rate has been set appropriately can be understood: A good learning rate

leads to a lower loss in a shorter amount of time. Often, the learning rate

is tracked for both the training and validation data set. However, it is

also important to make sure that the model has not overfit the training

data. Figure 2-8 shows an example of different learning rates. In practice,

the learning rate curves are not smooth and it is possible to modify the

learning rate over the training process as needed. This is just one example

of the type of validating and tuning that is required during the process of

training a deep learning model.

Figure 2-8.  Different learning rates. Illustration inspired by Stanford
cs231n course available at http://bit.ly/StanfordCS231n.

Chapter 2 Overview of Deep Learning

42

The second metric commonly tracked is the training and validation

accuracy. By charting the accuracy (y axis) and epoch (x axis), it can be

understood whether the model has overfit the training data set. If the

training and validation accuracy curves are close to each other, then very

little overfitting has occurred. If the training and validation curves are far

apart, overfitting has occurred, and it is important to revisit the model, as

it does not generalize to new data as expected. Figure 2-9 shows how to

identify overfitting by looking at the accuracy curves for the training and

validation data set.

Figure 2-9.  Identifying overfitting using training and validation
accuracy

�Deploy the Model
Once the quality of the model is high enough for the requirements of the

solution, the next step is to deploy it. Today, deep learning models can be

deployed to the cloud as REST APIs, run in a batch on a schedule, deployed

onto mobile devices (e.g., iPhones, Android phones, iPads, and more), or

edge devices (e.g., Internet of Things [IOT] gateways). This depends on

how you are thinking about using the trained deep learning model. For

example, if you are developing a web application, and you are enriching

it with AI, it makes sense to operationalize your deep learning models as

REST APIs, which can be easily consumed by the web application. If you

Chapter 2 Overview of Deep Learning

43

are developing a mobile application, you should consider both connected

and disconnected scenarios, as well as latency requirements. You will

either have the models running offline on the mobile device, or a hybrid

model where you have both combinations of models that run on device

and REST APIs that provide more powerful functionality in the cloud.

To deploy the deep learning models as REST APIs, several options

exist. You can leverage Azure Machine Learning Operationalization

services (more details will be covered in subsequent chapters in the book)

to host the model in a docker container, and expose one or more REST

endpoints, or you can build your own hosting stack (e.g., use of Flask,

CherryPy backed by high-performing web server like NGINX). You can

easily deploy this hosting stack on Microsoft Azure, as well. Depending on

the scenario, you might want to run the model in batch mode on a large set

of data on a schedule. The type of hardware such as GPUs is also a relevant

factor to consider. More details are discussed in Chapter 10.

For more consideration around approaching data science workflows

in general, including deep learning projects, we suggest the Microsoft

Team Data Science Process available at http://bit.ly/MSFT_TDSP.

This includes an overview of the data science life cycle, a suggested

standardized project structure and infrastructure, and resources for data

science projects.

�Deep Learning Frameworks & Compute
As mentioned earlier, two key ingredients you need for performing

deep learning training are (1) use of a deep learning framework, and

(2) performing training using a GPU. General-purpose computing on

GPUs especially through efficient use of matrix multiplication has been

accelerated through frameworks such as CUDA and OpenCL. These have

enabled higher level libraries such as cuDNN on top of CUDA for building

deep neural nets; cuDNN underpins popular deep learning libraries.

Chapter 2 Overview of Deep Learning

44

There are now many popular deep learning frameworks such as

Tensorflow, PyTorch, CNTK, MXNet, and Caffe2, as well as popular higher

level APIs such as Keras and Gluon. The choice of a deep learning toolkit

depends on many factors, including the availability of good tutorials

and existing implementations of model architectures and pretrained

models, skill sets of the AI talents in the company, flexibility of the toolkit

in expressing complex deep neural networks, availability of built-in

helper functionalities (e.g., rich set of APIs for data augmentation and

transformation), ability to effectively leverage both CPUs and GPUs, and

ability to perform distributed training.

We recommend the deep learning comparison repo available at

http://bit.ly/DLComparisons for understanding differences between

different deep learning frameworks on a few common scenarios, with

example frameworks considered as illustrated in Figure 2-10. This repo has

several stated goals:

	 1.	 A “Rosetta Stone” of deep learning frameworks to

allow data scientists to easily leverage their expertise

from one framework to another.

	 2.	 Optimized GPU code using the most up-to-date

highest level APIs.

	 3.	 A common setup for comparisons across GPUs

(potentially CUDA versions and precision).

	 4.	 A common setup for comparisons across languages

(Python, Julia, R).

	 5.	 The possibility to verify expected performance of

own installation.

	 6.	 Collaboration between different open source

communities.

Chapter 2 Overview of Deep Learning

45

The comparisons in the repo are not meant to suggest anything about

the overall performance of the different frameworks because they omit

important comparisons such as availability of pretrained models as just

one example. Yet they serve as a nice way to get started and compare many

popular frameworks for common scenarios.

Note  Keras is emerging as a popular deep learning library, due to
its ability to provide high-level abstractions for modeling deep neural
networks, and the flexibility to choose different back ends (e.g.,
TensorFlow, CNTK, Theano).

In 2017, Facebook and Microsoft announced the ONNX open

source format for deep learning models to enable data scientists to

train a model in one framework but deploy it in another, for example.

Figure 2-10.  We recommend the “Rosetta Stone” for deep learning
frameworks available on GitHub at http://bit.ly/DLComparisons
with timings for different variants of Azure GPU VMs available for
running deep learning code

Chapter 2 Overview of Deep Learning

46

Since the announcement, other companies and developers of popular

frameworks have joined this open source interoperability standard effort

for transferring deep learning models between frameworks. There are also

packages that allow converting directly from one framework to another,

such as MMdnn, which helps users directly convert between different

frameworks as well as visualize the model architecture.

Many of the deep learning libraries also include various ML

algorithms. Most of these deep learning libraries support distributed

training, and this helps a lot for doing deep learning at scale. Most of the

deep learning libraries have Python wrappers. If you are an R user, you

can also use R interfaces for some of the deep learning libraries (e.g.,

R interfaces to TensorFlow, Microsoft Cognitive Toolkit [CNTK], Keras, and

more). In this book, we focus on the use of the libraries for modeling deep

neural networks. Figure 2-11 shows several deep learning libraries, and the

code activity on GitHub.

Figure 2-11.  GitHub Stars/Fork for deep learning libraries

Chapter 2 Overview of Deep Learning

47

Although most of the examples in this book use Tensorflow, the

Microsoft AI Platform supports any open source framework. In addition,

we include a few examples of using other frameworks, such as a

pedagogical example showing how one can train a CNN model using

many different deep learning frameworks using the Microsoft Batch AI

service in Chapter 9.

GPUs make the training of deep learning models possible within a

reasonable time frame. In recent years, innovations in both algorithms and

availability of faster GPUs have enabled the training of deep learning models

to be completed quickly. For example, the training of CNNs like ResNet-50

using the publicly available ImageNet data set used to take 14 days or more

before 2017. Within months in 2017, the time taken to train ResNet-50

decreased significantly, from an hour to approximately 15 minutes. Preferred

Network was able to train ResNet-50 CNN model with ChainerMN with

1,024 P100 GPUs in 15 minutes in November 2017, for example.

�Jump Start Deep Learning: Transfer Learning
and Domain Adaptation
A major trend to jump starting deep learning solutions has been to build

prior knowledge into the development of the model so it does not learn

solely from the data of the problem at hand. Two common ways this is

done is through a concept called transfer learning in computer vision and

domain adaptation mainly through the use of word embeddings in natural

language processing.

Transfer learning is especially useful in computer vision tasks such as

image classification and object detection. The basic idea is that we want to

be able to transfer our learning from one application to another. Transfer

learning enables data scientists to quickly adapt existing pretrained

models (e.g., AlexNet, ResNet-50, InceptionV3, etc.) to new domains.

For example, a CNN can be trained on the large ImageNet data with

Chapter 2 Overview of Deep Learning

48

millions of examples. This CNN then internally holds the representation

of how to process images well, such as how to detect edges, shapes, and

patterns to distinguish between objects. We thus want to be able to use

this knowledge, captured within the weights of the network to use in a

classification scenario with significantly less data, such as distinguishing

between types of shirts on a retail web site or distinguishing between

defects and nondefects through images taken on a manufacturing

assembly line, for example.

Thus to jump start deep learning projects in computer vision, for

example, we recommend data scientists leverage pretrained models that

are trained using publicly available data sets such as ImageNet, CIFAR-10,

and COCO. These data sets contain millions of images (from diverse

domains) and have been carefully curated by the respective research labs

(often through crowd-sourcing efforts) and annotated with class labels.

The pretrained models are used to jump start image classification,

object detection, and image segmentation problems. These pretrained

models, trained on large image data sets, are used either as featurizers for

new images, or to further fine-tune to adapt to domain-specific images

(e.g., medical x-ray images, PCB circuit board images, etc.) to improve

on the quality of the predictions. Table 2-2 shows the different types of

transfer learning. Table 2-3 shows the input and output initialization

required for each type of transfer learning.

Chapter 2 Overview of Deep Learning

49

Table 2-3.  Initialization of Inputs and Outputs of a Deep Learning

Model Using Transfer Learning

Type How to Initialize Featurization Layers Output Layer Initialization

Standard DNN Random Random

Headless DNN Learn using another task Separate ML algorithm

Fine-tune DNN Learn using another task Random

Multitask DNN Random Random

Table 2-2.  Different Types of Transfer Learning

Type How Is Transfer Learning Used? How to Train?

Standard DNN None Train featurization and

output jointly

Headless DNN Use the features learned on a

related task

Use the features to train a

separate classifier

Fine-tune DNN Use and fine-tune features learned

on a related task

Retrain featurization and

output jointly with a small

learning rate

Multitask DNN Learned features need to solve many

related tasks

Share a featurization

network across both tasks

Natural language processing has also been accelerated by pretrained

models, but in this case, it is often in the training of the representation of

words that goes into the deep learning model known as word embeddings.

Taking a step back, in natural language processing, words were typically

represented through one-hot encoding, where each word is represented

by a vector of length equal to the size of the vocabulary; all values are zeros

except at the position that corresponds to that word in the vocabulary,

which has the value of 1. Models would need to learn from scratch with

Chapter 2 Overview of Deep Learning

50

just the data of the problem at hand every time to understand how to

process the words and what their meaning was in the context of the

specific natural language processing task. In contrast, word embeddings

are low-dimensional vectors that encode semantic meaning of words,

encoding semantically related words close to each other in the embedding

vector space.

Importantly, word embeddings can be trained on large, unlabeled data

and many pretrained word embeddings are made available for use in other

natural language processing tasks. By using a pretrained word embedding

such as one trained on Google News, knowledge about how words are

related to each other is embedded into the model built with them.

Word embedding vectors are learned using so-called word2vec

algorithms such as Skip-Gram and CBOW. These are simple neural

network models that aim to predict words in a window around each

word. The concept is that semantically related words will appear in

similar context and thus obtain similar vector representations. Of course,

domain-specific word embeddings might be beneficial to better represent

words within the model, and recent research has also focused on how

to allow better domain adaptation between natural language processing

applications.

�Models Library
Many pretrained deep neural networks are available for each of the deep

learning libraries. For example, Microsoft CNTK and TensorFlow provide

pretrained models for several state-of-the-art CNNs (AlexNet, GoogLeNet,

ResNet, and VGG). Caffe’s Model Zoo provides a rich set of 40 and more

pretrained models for state-of-the-art CNN (ResNet, Inception, VGG,

etc.), and supporting various scenarios (e.g., car model identification,

recognizing different landmarks and places, scene recognition, etc.).

Google Word2Vec is a popular pretrained word-embedding model with

many available tutorials.

Chapter 2 Overview of Deep Learning

51

You can use these pretrained models to jump start your deep learning

projects, or further fine-tune the network for your business scenarios. This

will often save significant amounts of time training the base models on a

diverse data set.

More Info F ind out more about example pretrained models:

CNTK Pretrained Image Model: http://bit.ly/CNTKModels
TensorFlow Official Model: http://bit.ly/TensorflowModels
Caffe Model Zoo: http://bit.ly/CaffeModels
Tensorflow Word2Vec: http://bit.ly/TensorflowWord2Vec

�Summary
This chapter briefly introduced several common types of neural networks

including CNNs, RNNs, and GANs, which are discussed in more detail

along with sample code in later chapters. We also discussed the deep

learning workflow, the nuts and bolts of starting a deep learning project

and some of the libraries that can be used to develop and train deep

neural networks. To help jump start deep learning projects, data scientists

and developers can leverage pretrained models as the foundations for

featurizing images or use them to further customize and fine-tune to adapt

for your business domains. In the next chapter, we discuss some of the

trends in the deep learning field as well as some of the limitations of this

type of modeling approach.

Chapter 2 Overview of Deep Learning

53© Mathew Salvaris, Danielle Dean, Wee Hyong Tok 2018
M. Salvaris et al., Deep Learning with Azure,
https://doi.org/10.1007/978-1-4842-3679-6_3

CHAPTER 3

Trends in Deep
Learning
This chapter discusses some of the trends in deep learning and related

fields. We cover specifically which trends might be useful for what tasks as

well as discuss some of the methods and ideas that could have far-reaching

implications but have yet to be applied to many real-world problems. We

finish by covering briefly some of the current limitations of deep learning

as well as some other areas of AI that seem to hold promise for future AI

applications, and discuss briefly some of the ethical and legal implications

of deep learning applications.

�Variations on Network Architectures
One of the first trends in the field of deep learning was to build deeper

networks with more layers to solve problems with increasing complexity.

However, training such deep networks is difficult, as they are harder to

optimize, and accuracy can degrade rather than improve. As mentioned

in Chapter 1, Microsoft released a network structure in 2015 that builds on

the concept of residual learning with their architecture called ResNet (He,

Zhang, Ren, & Sun, 2015). Instead of trying to learn a direct mapping of the

underlying relationship between an input and output within the network,

the difference or residual between the two is learned. With this concept,

54

training of networks substantially deeper than previously used before

became possible, with a network of 152 layers winning the 2015 ILSVRC

competition on the ImageNet data. A class of networks called Inception

networks alternatively focus on wide architectures where not all layers are

simply stacked sequentially, aiming to increase both performance as well as

computational efficiency of neural network models (Szegedy, Liu, et al., 2014).

Note  To accelerate development, practitioners should leverage
network architectures from the research community such as
Resnet-152 rather than trying to build and train CNNs from scratch.

�Residual Networks and Variants
There have been many suggested network architectures in recent years,

and this trend continues to result in more network architecture choices.

Many architectures rely on modifications to ResNets, such as ResNeXt,

MultiResNet, and PolyNet (Abdi & Nahavandi, 2017; Xie, Girshick, Dollár,

Zhuowen, & He, 2017; Zhang, Li, Loy, & Lin, 2017). Combining different

types of approaches has also been considered such as Inception-ResNet

(Szegedy, Ioffe, & Vanhoucke, 2016). In contrast, FractalNet is an extremely

deep architecture that does not rely on residuals (Larsson, Maire, &

Shakhnarovi, 2017).

�DenseNet
DenseNet is another popular network structure where each layer

is connected to all other layers; its popularity lies in that it allows a

substantial reduction in the number of parameters through feature reuse

while alleviating a problem related to training of the networks called

vanishing gradients (G. Huang, Liu, van der Maaten, & Weinberger, 2018).

Chapter 3 Trends in Deep Learning

55

�Small Models, Fewer Parameters
Related to the reduction of the number of parameters with DenseNet,

another trend in CNNs is for the creation of more efficient networks that

are built on fewer parameters and have a smaller model size. In general,

larger networks enable more accurate predictions, but there are clever

ways of creating architectures and conducting model compression

to achieve performance close to or at par with larger networks. These

networks can thus be run faster and with less processing power, which can

be especially useful, for example, on embedded and mobile devices where

the computational power and storage are limited.

SqueezeNet, introduced by Iandola et al. (2016), is described as

having accuracy similar to AlexNet with 50 times fewer parameters and

model size less than 0.5 MB, using depth-wise separable convolutions

to reduce the number of parameters. MobileNet is another example

that was designed specifically for mobile and embedded vision

applications (Howard et al., 2017), which has recently been extended

with MobileNetV2. Besides designing efficient smaller networks,

alternatives include pruning weights from existing deep networks,

pruning filters, and quantizing weights within the network (Mittal,

Bhardwaj, Khapra, & Ravindran, 2018). As one example, by pruning

certain connections in the VGG16 architecture, the size can be reduced

by a factor of 49 without modifying the predictions from the model

(Han, Mao, & Dally, 2016).

In practice, we recommend data scientists try many network

structures based on the current research that are often made available

through model zoos and different deep learning frameworks as was

described Chapter 2. Data scientists must try the different options and

consider the trade-offs between aspects such as ease of training and

speed of scoring the models as required for the specific data set and

problem at hand.

Chapter 3 Trends in Deep Learning

56

�Capsule Networks
CNNs are a fantastic architecture and have been one of the key reasons for

the resurgence of neural networks. As mentioned earlier, CNNs work on

the premise of translation invariance. This translation invariance is limited,

however, and they have significant drawbacks that stem from the fact that

they do not deal with other translations such as size, illumination, and

rotation of the input well as shown in Figure 3-1. This is usually overcome

by providing many examples, augmenting the data with translated and

generally modified examples, and as discussed earlier, pooling layers.

Figure 3-1.  CNNs do not build an internal representation of objects
and thus struggle to understand objects when viewed from a different
angle, and they can be fooled when parts of the object are out of order.
In this case, a model thinks the same chair is a different object when
viewed from above and thinks the face is a person even though parts
of the face are moved around. Capsule networks are designed to tackle
this problem in a more natural way using the idea of inverse graphics.

In general, CNNs do not intrinsically care about the spatial and

orientational relationship between the items in the image; they only

care whether these features exist. Higher level features are simply a

combination of lower level features. Furthermore, CNNs use methods

Chapter 3 Trends in Deep Learning

57

that reduce the spatial dimensions of the data and in effect increase the

receptive field, the field of view of the higher level nodes. This allows the

nodes to detect higher level features in larger regions of the input image.

One of the methods of doing this is max pooling, which we explained in

Chapter 2. By using max pooling, though, the CNNs lose spatially acuity.

For this reason, max pooling is viewed as a bit of an anathema by Hinton

and therefore he sought to devise a new architecture, capsule networks

(Sabour, Frosst, & Hinton, 2017).

Capsule networks are inspired by the idea of inverse graphics. In

traditional graphics we describe an object and its pose parameters and

through the process of rendering, the object is displayed on a screen. In

inverse graphics we want to observe a scene and from it infer the objects

and their poses.

A capsule in a capsule network tries to predict the presence and

properties of a particular object at a given location in the scene. Capsules

output vectors rather than scalars and the length of the vector encodes the

estimated probability of the object being present at that particular location

and the orientation encodes the pose parameters of the object.

Capsule networks also use a novel way of passing information between

layers called dynamic routing. This means that the routing is not fixed

beforehand, but determined dynamically during its execution. The

method to achieve this proposed by Sabour, Frosst, and Hinton (2017) is

called routing by agreement. The architecture of capsule networks is very

similar to that of CNNs: Layers of capsules succeed each other with lower

level features detected by the lower capsule and the higher level capsules

composing these features to create higher level features. In routing by

agreement, the lower level capsule outputs n-dimensional vectors whose

length encodes the probability and its orientation in the n-dimensional

space for the pose of the object detected. The subsequent capsule layer

takes the input of all these capsules and then through an iterative process

determines the weights of the inputs. In essence each layer’s estimation

of the pose parameters is matched against the pose parameters of the

Chapter 3 Trends in Deep Learning

58

subsequent layer. The closer the match, the higher the weights between

the subsequent capsules. The scalar product of the vectors is used as the

measure of similarity. This means that the weights between capsules are

not static but change depending on the capsule vectors present.

Capsule networks have demonstrated state-of-the-art results and

require fewer training examples than CNNs due to their pose invariance.

Training them is still slow, though, due to the iterative nature of dynamic

routing, and they still remain to prove themselves across all the computer

vision domains currently dominated by CNNs.

�Object Detection
Another trend in deep learning is the use of meta-architectures, building out

on top of previous solutions to solve other types of problems. In analyzing

images, for example, the ideas and pieces of CNNs are used as a backbone

beyond image classification problems to solve problems such as object

detection and image segmentation. One foundational model in object

detection, for example, was the R-CNN model, which simply proposed

cropping each image externally to the model using a region proposal

method such as selective search, extracting features from each cropped

image based on a CNN model, and then classifying each cropped image

with support vector machine models (SVMs; Girshick, Donahue, Darrell, &

Malik, 2013). In object detection, the trend has been to use the latest network

architecture as feature extractors, but also emerging, improved meta-

architectures as well as improved approaches for performance. For example,

faster R-CNN and R-FCN are alternative meta-architectures that also build

on standard CNNs but also predict bounding boxes using “anchors” during

training, which are boxes overlaid on the image at different locations, scales,

and aspect ratios (Ren, He, Girshick, & Sun, 2015; Dai, He, & Sun, 2016).

The YOLO approach (You only look once: unified real-time object

detection; see Figure 3-2) uses a simple CNN applied to the entire image

(Redmon, Divvala, Girshick, & Farhadi, 2015). YOLO was the first approach

Chapter 3 Trends in Deep Learning

59

to make real-time object detection practically possible through framing

object detection not as a classification problem with bounding boxes,

but as a regression problem to bounding boxes and associated class

probabilities. Other related approaches such as SSD, MultiBox, and YoloV2

have been released recently along the trend of providing models that run

faster while aiming to maintain good accuracy levels (Liu et al., 2015;

Redmon & Farhadi, 2016; Szegedy, Reed, Erhan, Anguelov, & Ioffe, 2014).

Figure 3-2.  Applying a pretrained object detection model to find
objects using YOLO

Chapter 3 Trends in Deep Learning

60

In practice, trade-offs might need to be made between setting up the

solution for accuracy of results versus speed of inference depending on

whether the application has requirements such as real-time performance.

Different meta-architectures, choices made during training such as

the CNN architecture used as the feature extractor, image resolution,

hardware, and software make broad generalizations about the ideal

approach hard to make (J. Huang et al., 2017).

�Object Segmentation
Many recent proposals explored how to reduce the need for the bounding

box for object detection and explored segmentation neural network

models such as LinkNet, as well as to use more specialized networks for

other vision tasks, such as CortexNet for identifying actions on images

rather than categorizing single frames (Culurciello, 2017). Mask R-CNN

and focal loss for dense object detection are other recent trends in object

detection that have been open sourced by Facebook AI Research within

a software system called Detectron and are thus available to run on the

Microsoft AI Platform (He, Gkioxari, Dollar, & Girshick, 2017; Lin, Goyal,

Girshick, He, & Dollar, 2017). This marks truly exciting progress in object

segmentation!

�More Sophisticated Networks
The types of networks discussed in this chapter are just some examples

within the broad space of deep learning. There are many ways to formulate

deep neural networks as well as combine with other methodologies within

a broader solution. As an example within the field of speech translation,

Microsoft Research recently found state-of-the-art results on a large

benchmark data set, the English–French translation campaign from 2014

at http://bit.ly/2EzMeRY using what was coined a deliberation network

(Tian, 2017). This network builds on top of a simple LSTM architecture,

Chapter 3 Trends in Deep Learning

61

combined with dual learning that is inspired by how humans deliberate.

The premise is simple: A first-pass decoder goes over the sentence similar

to creating a rough draft, whereas the second-pass decoder takes both the

original input as well as the rough draft as input to get to the final solution.

This is just one example, and there are numerous others of combining

deep learning technologies together or with other methodologies as part of

a larger solution as well.

Similar to CNNs and RNNs, there has been large growth in the variety

of proposed types and uses of GANs. There have also already been

many commercial applications of GANs. For example, Microsoft worked

with Getty Images, which provides stock photos, to explore image-to-

image translation, such as turning a sunny beach photo into an overcast

beach photo to provide more options to their customers (Liakhovich,

Barraza, & Lanzetta, 2017). Microsoft Research also developed a “drawing

bot” based on GANs that is able to create images based on only a text

description, images that are based only on the computer’s “imagination”

(Roach, 2018). The AttnGAN model proposed for this purpose was able

to outperform previous state-of-the-art models in early 2018, producing a

nearly threefold boost in image quality for text-to-image generation on an

industry standard test (Xu et al., 2017).

�Automated Machine Learning
Another area of ML that has been garnering interest the last few years

is that of automatic ML and smart hyperparameter tuning (Bergstra,

Yamins, & Cox, 2013; Domhan, Springenberg, & Hutter, 2015; Fusi &

Elibol, 2017; Golovin et al., 2017; Li, Jamieson, DeSalvo, Rostamizadeh, &

Talwalkar, 2016). Both these areas of research try to make use of historical

information, optimization, and metalearning to be able to automatically

or semiautomatically arrive at optimal ML pipelines, neural network

topologies, and so on.

Chapter 3 Trends in Deep Learning

62

Another such piece of work centered around using reinforcement

learning and LSTMs to create new neural network architectures (Zoph &

Le, 2016). Reinforcement learning (RL) is a subfield of AI that is designed

to have software agents automatically determine the optimal behavior to

maximize performance, through a reward feedback process. It is a type of

automated learning mechanism. The resulting CNN architecture called

NASNet achieved state-of-the-art results on the CIFAR10 data set at the

end of 2017 and is 1.05 times faster than the previous state-of-the-art

model. Others have recently focused on more efficient search mechanisms

such as leveraging current networks and reusing trained network weights

(Cai, Chen, Zhang, Yu, & Wang, 2017). In the future we will probably see

further endeavors in this area as computation becomes even quicker and

the scale up and out of cloud infrastructure is fully realized.

Related to architecture search, the field of neuroevolution has recently

received more visibility in the research and industrial community. This is a

subfield of AI that aims to understand and invoke an evolutionary process

similar to the one that produced the form of intelligence in human brains

within a computer. Whereas NASNet and related areas of research focus

on trying to automate the creation of networks, most applications of deep

learning today require a human to specify the architecture of the neural

network. Rather than having a fixed network architecture that we aim to

optimize, researchers in the field of neuroevolution study the process of

learning itself.

Neuroevolution researchers have found interesting results that we

believe will influence more strongly applications of AI in the future. One

example from neuroevolution is the concept of novelty search, the idea

that optimizing for novelty might provide better results than optimizing

for the direct outcome. Stanley (2017) illustrated the concept through the

problem of trying to find a model for a robot to learn how to walk. One

might guess that the best way to get an amazing walking robot would be

to artificially combine together the models of the best walkers from the

previous generation. However, the robots who are good at walking in the

Chapter 3 Trends in Deep Learning

63

first generations might just be lurching forward unreliably. In contrast,

robots that try oscillating their legs in a regular pattern fall down right away

but could lead to more robust walking in the future, so simply breeding

based on the best in the past might not be beneficial for the future. This

field has also benefited tremendously by the increased computation power

available today and we expect to see more advances and direct impact on

the deep learning field.

Recently algorithms and processes for deriving AI from the field of

neuroevolution have been applied to the deep learning architecture

search problem and compared against reinforcement learning type

approaches that resulted in NASNet. Real, Aggarwal, Huang, and Le

(2018) found that regularized evolution approaches performed better than

reinforcement learning at early search stages and generally found that

they produced similar or higher accuracy results without having to retune

parameters. The new architecture from this evolutionary search process

called AmoebaNets resulted in state-of-the-art results for several image

classification tasks at the beginning of 2018.

�Hardware
Deep neural networks involve a vast amount of computation, often

using very large data sets to calculate the composition of an extremely

parameter-heavy model. GPUs, which were originally designed for

computations around rendering graphics on the computer, have

accelerated the use of deep learning because they enable a high

degree of parallelism within the GPU card. GPUs can provide higher

throughput and efficiency for certain categories of applications

compared with CPUs, including the types of computations required

for deep learning training and inference. GPUs have a well-defined

instruction set and fixed data width (specific precision integer and

floating-point values).

Chapter 3 Trends in Deep Learning

64

GPUs have become increasingly more powerful over time, as

mentioned in Chapter 2. For example, the release of the NVIDIA Tesla

V100 in May 2017 touted 2.4 times faster training of ResNet-50 DNN than

the P100 released a year earlier (Durant, Giroux, Harris, & Stam, 2017).

In addition, there has been recent research on mixed precision training,

allowing for a reduction in the memory consumption and thus shortening

the training or inference time (Micikevicius, 2017).

�More Specialized Hardware
Hardware has continued to specialize with the specialization of field

programmable gate arrays (FPGAs) and application-specific integrated

circuits (ASICs) for neural network modeling, moving toward more

specialized hardware that is more efficient, as pictured in Figure 3-3.

FPGAs are integrated circuits that do not have a predefined instruction

set or fixed data width like GPUs. FPGA acceleration works by having

the FPGA handle the extremely computing-intensive tasks that have

been designed to be accelerated by the hardware, while the CPU handles

other operations. They provide potential for ultralow latency calculations

through optimizing numerical precision for inference, as well as potential

to evolve to new ML application areas. They can run low-precision

workloads for optimal efficiency using much less power and thus run

much cheaper than GPUs.

Increasing use of FPGA technology is an especially promising trend in

the AI space because of FPGA’s reconfigurability and its access to both the

hardware and software level. This is especially promising for its potential

for compromise between flexibility and specialization. ASICs are more

performant for the application for which they are designed, but they are

not useful for general-purpose computing, as they cannot be reconfigured

after manufacturing.

Chapter 3 Trends in Deep Learning

65

In other words, FPGAs are more flexible than ASICs as they can be

used and then repurposed for workloads beyond just deep learning and

AI applications, including graph analytics, database acceleration, and

data encryption, for example. Programming FPGAs requires support from

specialized compilers, and it is relatively much harder than compilers used

for traditionasl processors.

�Hardware on Azure
Microsoft has been investing in specialized hardware for use both in

their own products as well as for others to use through their Azure cloud

computing platform. To accelerate Bing’s search ranking algorithm, for

example, FPGAs were programmed for that sole purpose and resulted in

double the throughput at just 10 percent more power (Feldman, 2016).

In 2016, Altera FPGAs were installed across every Azure cloud server

datacenter at the time as Microsoft prepared to release capabilities as

third-party offering. The ability to use FPGAs for deep learning inference that

was announced in early 2018 is mentioned in more detail in Chapter 10.

�Quantum Computing
As hardware such as more advanced GPUs and FPGAs continues to advance

and specialize to enable deep learning, the future of how computing is

conducted might also change dramatically in the longer term thanks

Figure 3-3.  Alternatives for processing computations such as those in
deep learning models

Chapter 3 Trends in Deep Learning

66

to ongoing research in areas such as quantum computing. Quantum

computing is a fundamentally different way of computing compared to

today’s computers. Rather than the foundational building block of a bit in

today’s computers, quantum computing builds on quantum bits called

qubits that exist as a mixture of states at a given point in time and that can

be manipulated all at once. It’s not clear yet what types of problems are

most applicable to quantum computing, although there are some clear

applications such as cryptography. Unfortunately, building quantum

computers is extremely difficult and they are extremely hard to use as well as

scale. So far, they can only be used for a limited set of computing tasks. Qubits

are extremely sensitive to the surrounding environment and interference

results in calculation errors. Microsoft is working on developing more general-

purpose quantum computers to help solve today’s intractable problems

through research on “topological qubits” that has the potential to completely

revolutionize AI by opening up completely new computing potential.

The problems we’re looking at solving with a quantum com-
puter are the problems that, today, require age-of-the-universe
time scales. … Some of these problems literally require billions
and billions and billions of years to solve. And on a quantum
computer, what we’ve shown in some recent research, is that
you can solve some of these problems in a matter of say, weeks,
days, hours, seconds.

—Krysta Svore, Microsoft Research

Although this is an area of active research, Microsoft has released

quantum computing development tools and programming language

for quantum algorithm development. Other areas of research include

approximate computing, using less precision as well as allowing random

small mistakes that can cancel out over time, to save energy and increase

efficiency of computations. Many believe quantum computing has much

potential to accelerate the development and application of AI, but the full

power and potential is yet to be seen.

Chapter 3 Trends in Deep Learning

67

�Limitations of Deep Learning
Deep learning has led to many incredible advances in the application of AI.

Deep neural networks work by transforming an input vector to a target

output vector, a complicated transformation created simply through a

series of simple transformations. With massive data and computing power,

the relatively simple concept of neural network models can be used to

effectively map between many inputs and outputs such as recognizing

speech from audio snippets. We believe deep learning will continue to

play a large role in the advancement of AI applications, but that we need to

understand the limits and capabilities to apply the technology in the right

scenarios and in appropriate ways.

�Be Wary of Hype
In fact, we should be careful not to overestimate the abilities of deep

learning models. They do not learn abstract concepts or “understand” in

a way that is relatable to humans. From an early age, humans are able to

reason and maintain abstract models of the world, consider hypothetical

situations, and make decisions through critical thinking. These neural

networks importantly cannot reason or do long-term planning in this way

and by themselves do not represent any type of general intelligence. After

all, even if an algorithm can predict what an object is, that does not imply

the algorithm actually understands the properties of the object, how it

would interact with its environment, what it is used for, or where it came

from. So, although computers can learn from massive data to distinguish

between different types of birds better than humans, for example, humans

are still far superior at extrapolation, interpretation, and inference, such as

understanding a complex scene.

Similarly, in natural language processing, humans are able to understand

nuances in aspects such as word ordering and context, whereas neural

network models struggle to understand broader abstract concepts and

Chapter 3 Trends in Deep Learning

68

contextual information that can be useful to understanding language. For

example, when someone says, “The couch will not fit through the door, as it’s

too big,” it is obvious to a human that “it” refers to the couch as we understand

the concepts of couch and door and that the statement would not make sense

if “it” referred to the door. Although there have been many advancements

in using sequences of words and broader associations between words in

language models, they still do not learn in the same way as humans.

Note D eep learning is an incredibly powerful technique, but we
believe it will not lead to artificial general intelligence by itself. Deep
learning also has limitations—such as inability to understand higher
level concepts—of which developers of AI applications should be
cognizant.

�Limits on Ability to Generalize
As stated by Chollet (2017), “Models can only perform local generalization,

adapting to new situations that must stay very close from past data, while

human cognition is capable of extreme generalization, quickly adapting

to radically novel situations, or planning for long-term future situations.”

In fact, there might often be less to the accuracy of the models than we

actually attribute to them; for instance, Ribeiro, Singh, and Guestrin (2016)

found that the model was able to distinguish between wolves and dogs

because of the white snow patches in the background of wolf images, not

because it actually understood the difference between them. Jo and Bengio

(2017) also provided quantitative evidence that deep CNNs do not learn

higher level abstract concepts, but rather surface statistical regularities.

They showed that CNNs trained with one class of Fourier image statistics

but validated on different types of Fourier image statistics showed up to a

28 percent gap in accuracy, even though perceptually to a human they are

not far off the original unfiltered data set.

Chapter 3 Trends in Deep Learning

69

This limitation of deep learning models to understand abstract or fully

realized representations of concepts is well-illustrated in a recent trend in

deep learning around both the creation as well as aim to defend against

adversarial examples, synthetic examples that are created by modifying an

input image in a particular fashion such that it makes the model believe

the image belongs to another class with high confidence, as illustrated in

Figure 3-4. It is very straightforward to create adversarial examples that are

undetectable to the human eye—the equivalent of optical illusions that fool

humans, only for a computer. There has been significant recent research on

defending from adversarial examples, trying to make a model or algorithm

robust such that these types of perturbations do not fool the model. As

of early 2018, there are still no robust defenses to adversarial attacks, and

research has only shown how robust adversarial attacks can be, even in

the physical world. For instance, some adversarial examples can even be

printed out on standard paper, photographed with a smartphone, and

continue to fool the model (Kurakin, Goodfellow, & Bengio, 2016).

Figure 3-4.  Example adversarial examples. With slight changes to
the pixel values (often unnoticeable to the human eye), the model can
be tricked to incorrectly classify the quail as other objects, such as a
desktop computer or a bath towel.

Chapter 3 Trends in Deep Learning

70

�Data Hungry Models, Especially Labels
Deep learning models also are limited by the vast amount of data that

is required to train the network. This is especially made difficult by the

requirement for high-quality, curated labels from which the model

can learn. Although techniques such as transfer learning and word

embeddings as mentioned earlier are able to somewhat alleviate this

problem in some contexts, deep learning is not able to learn from explicit

definitions or complete many types of tasks that are not simple input

to output pairings. Although incredibly powerful, it is clear that deep

learning alone is not a solution for artificial general intelligence. As

another example, deep learning even struggles to represent a basic sorting

algorithm.

Many of these limitations of deep learning are actually limitations of

ML algorithms in general, such as the inability to inherently distinguish

correlation from causation. After all, deep learning is simply a statistical

technique that excels at optimizing a mapping from an input to an output.

However, unlike some simpler methodologies, explaining the solutions of

deep neural networks can be extremely difficult. Engineering the network

as needed can also be quite hard, such as trying to debug when something

goes wrong or when one wants to tune a specific aspect of the modeling

results. Although deep learning has many limits and is just one tool that

can be used among many, we believe that deep learning will serve as a

stepping stone to many future advances in AI, as we discuss later.

�Reproducible Research and Underlying Theory
With the rise in popularity of deep learning, the number of research

papers has increased dramatically every year. Recently, researchers

have begun raising more concerns about the reproducibility of these

papers, for example, when code is not released or specific details

that are important to reproduce the result are not included. This is

Chapter 3 Trends in Deep Learning

71

exacerbated by the lack of theoretical understanding about how to best

develop these type of networks as well as optimize them, in addition to

how many of the papers in the field require vast computing resources to

reproduce. In practice, overfitting is common and very different results

can be obtained depending on the type of evaluation method and split

of the data.

Rahimi recently brought this issue of lack of theoretical underpinning

to light in his December 2017 NIPS talk “Machine Learning Has Become

Alchemy.” His point was that we lack clear theoretical explanations

of why deep learning works and how to understand when it does not,

often called the black box problem. An example exception is the idea

of information bottleneck, which posits a network gets rid of the noisy

extraneous details like squeezing the information through a bottleneck,

and only the features that are relevant to general concepts are retained

(Tishby & Zaslavsky, 2015). Others have also cautioned that theory in

general often lags behind empirical results and that being too cautious

has the risk of leading to another “AI Winter,”1 when instead continued

research into how models can be used to solve real problems can propel

us forward.

Nonetheless, it is clear that deep learning works for many

applications in practice and is a useful tool for practitioners, and we

need to understand both its usefulness and its weaknesses so that AI

can continue bringing more value to society in the future. We believe

the more open the community can be, in terms of publishing code

associated with research as well as data when possible, the more it will

help the field progress forward.

1�Lighthill released a report in 1973 that suggested AI was a failure and too superficial
to be used in practice, leading to a massive reduced interest in the field.

Chapter 3 Trends in Deep Learning

72

�Looking Ahead: What Can We Expect
from Deep Learning?
Although acknowledging deep neural networks are a statistical

methodology with many limits, we are optimistic that deep neural

networks will be used as a foundational building block within an

increasing number of more sophisticated methodologies that will emerge

over time. The use of dynamic networks, for example, which uses deep

neural networks but allows the networks to change dynamically as a

function of the data fed into the model over time, has risen recently.2 The

combination of deep neural networks embedded within reinforcement

learning systems has also solved increasingly complex problems. LeCun

(2018) suggested that “differentiable programming” should be the

rebranding of deep learning to mark the transformation toward a new

type of software that is differentiable and optimizable. Karpathy (2017)

suggested that “[n]eural networks are not just another classifier, they

represent the beginning of a fundamental shift in how we write software …

they are Software 2.0.”.

We expect research will continue to propel the practicality of deep

learning forward, such as potential breakthroughs in optimizing neural

network architectures as discussed earlier. Some areas of research are

also still largely unsolved, such as the ability to learn from unlabeled

data, also known as unsupervised learning, where there is much room

for innovation. Additionally, we expect more work to focus on program

synthesis and graph networks, as well as more applications of adversarial

networks.

2�Frameworks such as MXNet/Gluon, PyTorch, and Chainer support these types of
networks, and we expect this trend to continue.

Chapter 3 Trends in Deep Learning

73

�Ethics and Regulations
Finally, it is clear that there are ethical concerns, around aspects such

as bias, security, privacy, and appropriate use of deep learning and AI

technologies. These ethical considerations will start to increasingly affect

the development of AI systems as laws and regulations are enacted to

constrain the impact of these systems. As mentioned earlier, for example,

deep learning systems today are vulnerable to adversarial examples,

even in the physical world, which poses a security risk. Then besides the

security implications, there are ethical considerations around bias as well.

Bias in AI and ML algorithms is typically described and studied

in terms of statistical bias, a mathematical construct to describe the

difference between an expected value and the true value of the parameter

being estimated. Depending on the type of model, bias can be introduced

in different ways. But even when a system is not mathematically biased, it

can be biased in the popular culture’s interpretation of the word.

The popular culture definition of bias is normally associated with some

form of prejudice or preferential treatment toward a particular group. This is

usually felt to be unfair. It should be noted that fairness is culturally defined

and varies throughout history. Therefore, unfairness is really in the application

of bias. The tricky part about this is that people normally assume that

computers will be unbiased, and that the outcomes made from mathematical

models will be fairer than those made by humans. By their very nature,

though, deep learning models will display some bias in this sense of the

word, because the driving force in them is the real-world data on which these

models are built. Unfortunately, these true historical data are rooted with bias.

For some applications of deep learning where there are high-stakes

outcomes such as hiring or loan applications, it is clear that this can have

very detrimental effects. Take, for example, the use of word embeddings

that represent words in a lower dimensional space. It is clear that word

embeddings are biased, an example being word embeddings trained on

Google News articles. These word embeddings have biased embedded

Chapter 3 Trends in Deep Learning

74

relationships between words that can be extracted very easily such as

“man is to computer programmer as women is to homemaker” (Bolukbasi,

Chang, Zou, Saligrama, & Kalai, 2016). This can have detrimental effects on

applications of deep learning with word embeddings when applied without

consideration of these type of issues. For example, recruiters are increasingly

using algorithms to automatically match resumes to job openings. If word

embeddings are applied blindly within this process, however, and historical

data favors that “successful” people in the role were mostly men, the

outcomes of this process can be argued to be detrimental. O’Neil (2016),

in her book Weapons of Math Destruction, outlined many ways in which

algorithms can be used to a detrimental effect in the era of big data, and it is

important to be cognizant of the potential for harm.

Unfortunately, bias can be difficult to detect and remove. In 2015 as

another example, a photo application improperly labeled a dark-skinned

person as a “gorilla,” which prompted a quick and immediate apology. Had

the company been aware of this, they surely would not have deployed this

technology. AI and ML predictive modeling is inherently more difficult to

test than traditional software applications, however. After all, in a classical

software system, an input will generate a known output, but this is not

true for AI-based systems. AI-based systems are evaluated based on their

statistical results and these results can often change from one run of the

data to the next. Unless adequate testing methodologies for AI-based

systems are developed, deploying AI-based systems could encounter

major roadblocks to deployment.

Not only are there ethical and cultural issues, but there are a host of

legal implications as well. Fortunately, bias in ML applications has become

increasingly discussed in both the research and industry communities.

However, it is important to recognize that technological advances alone

will not solve the problem; there is no one-size-fits-all solution to this.

Testing of AI models and development of fair systems will undoubtedly

require an interdisciplinary approach to achieve the goal of building safe,

widely distributed AI.

Chapter 3 Trends in Deep Learning

75

�Summary
This chapter discussed some of the trends in the deep learning space,

such as the search for optimal network architectures both for accuracy as

well as speed. We also went through two recent exciting developments in

neural networks for computer vision, the first tackling the limitations of

CNNs through capsule networks and the other using neural networks to try

and define optimal architectures with minimal human intervention with

automated ML techniques.

We discussed several other trends in deep learning, including more

specialized hardware as well as the use of pretrained models to seed

solutions with fewer data than required to build a deep learning solution

from scratch. We finally discussed some limitations of deep learning

of which developers should be cognizant, such as the inability of these

models to understand abstract concepts, as well as some of the legal and

ethical concerns, including adversarial examples and bias in models from

the underlying data on which they are built.

Next Chapter 4 describes how you can use the tools, infrastructure,

and services on the Microsoft AI Platform to manage the development life

cycle of your deep learning projects and models, to train at scale, and to

operationalize it quickly as web APIs.

Chapter 3 Trends in Deep Learning

PART II

Azure AI Platform and
Experimentation Tools

79© Mathew Salvaris, Danielle Dean, Wee Hyong Tok 2018
M. Salvaris et al., Deep Learning with Azure,
https://doi.org/10.1007/978-1-4842-3679-6_4

CHAPTER 4

Microsoft AI Platform
This chapter introduces the Microsoft AI Platform, which is a set of

services, infrastructure, and tools for building intelligent applications

powered by AI. The Microsoft AI Platform runs on the Microsoft Azure

cloud computing environment, which provides computing as a utility

where you pay for what you use rather than what you own. For more

details on the broader Azure Platform, please see the e-book Developer’s

Guide to Microsoft Azure (Crump & Luijbregts, 2017). The Microsoft AI

Platform enables data scientists and developers to create AI solutions in an

efficient and cost-effective manner.

Although Microsoft has other offerings for developing AI solutions

such as Machine Learning Server, which can be deployed on-premises

in addition to the cloud as well as hybrid offerings, this chapter focuses

primarily on the cloud computing platform that for reasons described later

is most applicable to developing deep learning solutions. In practice, the

models developed with the Microsoft AI Platform can then be deployed

in many locations such as on the cloud for real-time highly scalable

applications, on the edge through Azure IOT, or within a database such as

a stored procedure hosted within SQL Server, for example. The Microsoft

AI Platform is a flexible, open, enterprise-grade set of services, tools, and

infrastructure that allow developers and data scientists to maximize their

productivity in developing AI solutions.

80

Developing a deep learning solution requires lots of experimentation,

lots of computing power—often using advanced hardware such as GPUs and

FPGAs as discussed in Chapter 3, and often lots of training data. There is a

need to be able to run training at scale. Cloud computing, with the ability

to scale up and down easily with various levels of management—from raw

infrastructure to managed services—makes doing data science including

training and scoring deep learning models a more practical reality.

In fact, developing a deep learning solution requires carefully setting

up many aspects, such as data storage, development environment,

scheduling for training and scoring, cluster management, and managing

costs, among other aspects. Deep learning solutions are notorious for

their difficult configurations, such as ensuring drivers and software

compatibility. It is important to store data in a location that can scale with

increasing volume and enable collecting more data to improve solutions

over time. These data must also be stored in a location that is secure and

compliant with local regulations. Development environments must fit

the needs of the developer or data scientist creating the code and allow

workflows such as moving from a laptop to the cloud. Deep learning

training workflows must be scheduled and monitored. The Azure cloud

computing environment enables scaling up and down for cost control,

has various levels of product offerings to address these aspects, from

raw infrastructure with VMs already configured for deep learning to fully

managed services with pretrained models ready to consume.

Of course, not all these services are necessary for a single given

solution, but rather taken together provide a platform on which any type

of intelligent application can be built leveraging the best of open-source

technology as well as decades of research within Microsoft on both AI

algorithms as well as tooling for development. By building on top of the

Azure platform, developers and data scientists can leverage infrastructure

that scales virtually infinitely, with enterprise-grade security, availability,

compliance, and manageability. In the sections that follow, the main

Chapter 4 Microsoft AI Platform

81

services, infrastructure, and tools available on the Microsoft AI Platform

are outlined as visualized in Figure 4-1. To use the platform, an Azure

subscription is required. For a free trial, please visit http://bit.ly/

TrialAzureFree.

Figure 4-1.  Microsoft AI Platform

After outlining the Microsoft AI Platform, steps for setting up a deep

learning VM (DLVM) are described, which is required for running the

code samples provided in later chapters as well as Part IV.

�Services
The Microsoft AI Platform is composed of a series of services from fully

managed software services to services for building custom AI applications.

Depending on the scenario and flexibility required, different solutions

might be applicable. The services are broken into three main areas:

	 1.	 Prebuilt AI. These leverage prebuilt models within

an application through algorithms that are already

built to see, hear, speak, and understand with

Cognitive Services.

Chapter 4 Microsoft AI Platform

82

	 2.	 Conversational AI. These build natural interaction

into an application through the Bot Framework,

which has connectors to common channels such as

Facebook Messenger, Slack, Skype, and Bing.

	 3.	 Custom AI Services. These adapt to a scenario with

the flexibility of Azure Machine Learning services,

Batch AI service or both.

�Prebuilt AI: Cognitive Services
Cognitive Services are a set of services available to developers and data

scientists to build AI solutions, with capabilities around vision, speech,

language, knowledge, and search (see Table 4-1). The Cognitive Services

are of two main types:

	 1.	 Pretrained models available as REST APIs, ready

to consume in end user applications without any

customization required.

	 2.	 Bring-your-own-data services, such as Custom

Vision Service, which allows a developer to create

a custom image classification model without any

background in computer vision or deep learning by

simply uploading images of different classes and

clicking a button to train the model.

Chapter 4 Microsoft AI Platform

83

As just one example, the ability to search is a feature in almost

every application but is often difficult to implement as it requires

natural language processing and language-specific linguistics among

other aspects. Azure Search provides the underlying search engine—

developers need to create an index to help search and fill it with data,

and Azure Search takes care of everything underneath, with rich features

such as intelligent filtering, search suggestions, word decompounding,

and geo-search.

Table 4-1.  Example Cognitive Services Available on the Microsoft AI

Platform

Vision Language Speech Search Knowledge

Computer

vision

Text analytics Speaker

recognition

Web search Academic

knowledge

Face Spell check Speech Image search Entity linking

service

Emotion Web language

model

Speech

Servicea

Video search Knowledge

exploration

Content

Moderator

Linguistic

analysis

News search Recommendations

Video

Indexer

Translator Autosuggest QnA maker

Vision

Servicea

Language

Understandinga

Searcha Decision Servicea

aCustom Cognitive Service with bring-your-own-data capabilities.

Chapter 4 Microsoft AI Platform

84

These services are popular, as they are simple to add into applications.

Just a few lines of code are required to integrate a model such as an emotion

detection model into a customer service experience application. Given the

breadth of Cognitive Services and Custom Cognitive Services available for

use today, these services are described in more depth in the Chapter 5.

�Conversational AI: Bot Framework
The Bot Framework includes tools and services to enable developers to

build bots that converse with users. For example, a developer can easily

develop a bot that interacts with users on a web site to guide them through

purchasing a product or service rather than having to navigate through

the web page. Through this framework, one can develop once and then

expose the bot through many channels that are included within the Bot

Framework, such as Skype, Facebook, and the Web. Bots can be built with

the Bot Builder Software Development Kit (SDK) using C# or Node.js or

with the Azure Bot Service.

Bots can be built to converse naturally, especially using advanced

capabilities with integration of Cognitive Services such as the Language

Understanding Intelligence Service (LUIS) and integrations with other

cognitive services. As a managed service in Azure, it is scalable, and costs

are only occurred for the resources that are used.

�Custom AI: Azure Machine Learning Services
Azure Machine Learning services were released in public preview in late

2017. These services are useful for building custom AI solutions and helping

to accelerate the end-to-end development of intelligent applications.

•	 Develop, deploy, and manage models at scale.

•	 Develop with the tools and frameworks popular in the

open source community.

Chapter 4 Microsoft AI Platform

85

Azure Machine Learning services provide a framework to manage a

data science project. With these services, one can bring the computing

environment most applicable for training their AI models, for example:

	 1.	 Data Science Virtual Machine.

	 2.	 Spark on Databricks or HDInsight.

	 3.	 Azure Batch AI.

These computing environments are described later in this chapter.

The experimentation service helps to manage project dependencies,

scale out training jobs, and enable sharing of data science projects. Model

management service uses docker container-based deployment to help

data scientists and developers deploy solutions on a single node (on the

cloud or on-premises) as well as scale out cluster deployments such as

Azure Container Services, as well as edge deployment via Azure IOT Edge.

As of this writing, Azure Machine Learning services works with

Python and is available in several Azure regions. In addition, there are

AI extensions for Visual Studio and Visual Studio Code discussed in the

“Tools” section later in this chapter that allow interacting with the Azure

Machine Learning platform (http://bit.ly/aivisstdio). As the service

is updating frequently, we focused on the core computing environments

in this book and suggest reading the current documentation on Azure

Machine Learning services available at http://bit.ly/AMLservices.

�Custom AI: Batch AI
Batch AI is a managed service that enables data scientists and developers

to easily train deep learning and other AI models at scale with clusters

of GPUs. With Batch AI, one can create a clusters of nodes including

GPUs when required, and then turn the cluster off when the job is

complete and thus stop the bill. It allows one to construct a framework-

specific configuration using either containers or VMs. This is ideal for

Chapter 4 Microsoft AI Platform

86

experimentation, such as doing parameter sweeps or experiments,

testing different network architectures, or doing hyperparameter tuning

in general. It also enables multi-GPU training for frameworks that allow

training across nodes when training data are very large. An example

with associated code for training deep learning models with Batch AI

is included in Chapter 9. Batch AI can also be used for embarrassingly

parallel batch scoring scenarios.

Batch AI is built on top of Azure Batch, which is a cloud-scale

resource management and task execution tool. With Batch AI, you only

pay for the computing that you use, with both standard and low-priority

VMs available. There is no added charge for job scheduling or cluster

management in general. Low-priority VMs provide a cost-efficient solution

for jobs that are lower priority, such as learning and experimentation.

Related to Batch AI, Batch Shipyard is an open source tool that is a

precursor to the managed Batch AI service that also runs on top of the

Azure Batch infrastructure. Batch Shipyard supports both Docker and

Singularity containers and scenarios important to developing deep

learning solutions such as hyperparameter tuning. Batch Shipyard can also

be utilized for batch scoring of deep learning models. More details about

Batch AI and Batch Shipyard can be found in Part IV of the book.

�Infrastructure
In this section, we outline infrastructure available for AI computing,

such as the Data Science Virtual Machine (DSVM), Spark clusters,

and infrastructure for managing deployment of containers as well as

infrastructure for storing data on which AI can be built such as SQL DB,

SQL Datawarehouse, Cosmos DB, and Data Lake.

Chapter 4 Microsoft AI Platform

87

�Data Science Virtual Machine
The DSVM is a preconfigured environment in the cloud for data science

and AI modeling, development, and deployment. It comes in a Windows

Server version as well as Linux, and a specialized version for deep learning

known as DLVM, which runs on a GPU. As can be seen in Figure 4-2,

popular languages for data science development such as Python, R, and

Julia are ready to use immediately, and data connected from many data

stores such as SQL Data Warehouse, Azure Data Lake, Azure Storage, and

Azure Cosmos DB are available. Many ML and AI tools come preinstalled,

such as many of the popular deep learning frameworks. Data scientists

and developers can then customize the VM as needed for their use. There

is also a variant specialized for geospatial analysis, the Geo AI DSVM:

http://aka.ms/dsvm/geoai/docs.

DSVMs are extremely popular with data scientists for the following

reasons:

•	 They provide an analytics desktop in the cloud with

easy setup, and the ability to transfer projects more

easily between colleagues.

•	 They have on-demand elastic capacity, ability to turn

off and on (e.g., stopping the VM at night if no jobs are

running).

•	 There are examples and templates built in to get started

with data science and deep learning.

•	 There is an ability to connect into other services such as

using DSVM as the computing target within a project

managed through Azure Machine Learning services or

as compute for Batch AI service.

•	 They are easy to use for data science training and

education due to ease of setup and cost savings versus

purchasing hardware and managing the software oneself.

Chapter 4 Microsoft AI Platform

88

Especially relevant for deep learning, setting up a GPU-based

system can be extremely difficult with all of the necessary drivers and

configurations. The DLVM makes the setup significantly easier, and can

be provisioned with up to four GPU cards on a single VM. There are no

software costs to the VM, and the pricing starts at $0.90/hour for NC6 series.

DSVM can be used both for experimentation and for simple

deployment scenarios, such as running simple web services using Flask

combined with capabilities such as Azure Automation, Azure Functions,

and Azure Data Factory to trigger jobs running using a DSVM.

�Spark
There are several options for running Spark on Azure, including Azure

Databricks, Azure HDInsight, and leveraging the Azure Distributed Data

Engineering Toolkit (AZTK) as core examples. Databricks is a managed

Figure 4-2.  Features of the Data Science Virtual Machine as
described at http://bit.ly/DataScienceVM

Chapter 4 Microsoft AI Platform

89

platform for Spark with a rich experience for both data scientists and

developers, such as a team collaboration experience and version control

capabilities. The service handles much of the tuning of the cluster for

developers, so is thus ideal for users who might not know or want to

configure Spark, but it is not as flexible in terms of how the cluster can be

configured. HDInsight is a fully managed cloud service for open source

analytics such as HBase, Hive, Storm, and others in addition to Spark.

The AZTK is an open source Python Command-Line Interface (CLI)

application for provisioning on-demand Spark clusters in Azure. The Spark

clusters run in Docker containers with bring-your-own Docker image

flexibility and are provisioned within 5 minutes on average, with low-priority

VMs available for an 80 percent discount. This toolkit is useful for running

a distributed Spark workload on demand such as batch workloads and

can be scheduled to spin up and down such as through the use of Azure

Functions. It has a rich Python SDK for programmatic control of clusters and

jobs. AZTK is the most flexible option in terms of supporting all VM types

including GPUs, which is especially helpful for deep learning scenarios.

For all of these Spark infrastructure options, Microsoft Machine

Learning for Apache Spark (MMLSpark) provides a number of deep

learning and data science tools for Apache Spark including integration

with the deep learning framework CVTK. Spark has also seen recent

improvements in support for deep learning applications through

collaborations aimed toward improving support for aspects such as image

data support as discussed at http://bit.ly/SparkImage.

�Container Hosting
Azure Kubernetes Service (AKS) is a fully managed Kubernetes container

orchestration service. Users might also choose other orchestrators through

the original version, known as ACS. With the fully managed version of

AKS, the only cost is for the VMs that are used for the tasks at hand; in

other words, the management infrastructure is completely free. AKS is

Chapter 4 Microsoft AI Platform

90

a generic computing platform and extremely flexible. For AI workloads,

this type of service is often used to host scalable AI models for real-time

scoring, although AKS can also be used for scalable AI training as well.

Azure Machine Learning services include a model management service

that eases the deployment of AI models as a REST API to Azure Container

Services as illustrated in Figure 4-3.

Figure 4-3.  Example deep learning solution architecture where data
are stored in SQL Server, code is developed with a Deep Learning
Virtual Machine managed by Azure Machine Learning services, and
it is deployed as a Rest API to Azure Container Services as described at
http://bit.ly/DLArch.

Azure Container Services gives customers the benefit of open source

Kubernetes along with built-in management to ease the complexity and

operational overhead. AKS comes with automated upgrade, scaling ability,

and self-healing accessible through a control plane hosted on Azure.

For those who want even more flexibility, ACS Engine is an open source

Chapter 4 Microsoft AI Platform

91

project that allows developers to build and use custom Docker-enabled

container clusters.

Developers can also host containers using Azure Container Instances,

where a container can be hosted without a container orchestrator, which

is especially useful for testing or hosting a simple application that does

not require scaling. Azure App Service is a collection of hosting and

orchestration services comprised of Web App, Web App for Containers,

and Mobile App. Web App, for example, enables developers to host web

applications or APIs whereas Web App for Containers enables one to

deploy and run containerized web apps with images from Docker Hub or a

private Azure Container Registry.

�Data Storage
Azure SQL Database is a relational cloud database as a service, with built-

in intelligence, specially built for applications with individual updates,

inserts, and deletes (OLTP). Azure SQL Data Warehouse is a warehouse not

strictly for OLTP workloads in that it is desired to be more straightforward

to use for larger databases, with additional feature ability to pause to save

on costs. SQL Database supports more active connections and concurrent

queries than SQL Data Warehouse, whereas SQL Data Warehouse supports

Polybase, which is a technology that accesses data outside of the database

via the T-SQL language. Often these services are used in conjunction with

a larger data architecture.

Azure Cosmos DB is a globally distributed, multimodel database

service that enables extremely low latency and massively scalable

applications. It has native support for NoSQL and can support key-value,

graph, column, and document data all in one service. Several different

APIs including SQL, Apache Cassandra, and MongoDB can be used to

access data, and multiple consistency choices are offered for low-latency

and high-availability options such as strong, bounded staleness, and

eventual. This offering is extremely useful for disparate types of data.

Chapter 4 Microsoft AI Platform

92

Azure Data Lake Store is a no-limits data lake that stores unstructured,

semistructured, and structured data, which are optimized for big data

analytics workloads. It is massively scalable and built to the open Hadoop

Distributed File System (HDFS) standard, thus integrating into many tools

easily and allowing a straightforward migration of existing Hadoop and

Spark data to the cloud. Data Lake Store can store trillions of files and a

single file can be larger than one petabyte in size. Azure Blob Storage is

a separate storage option that is a more general-purpose object store,

including for big data analytics workloads, and comparison between them

can be found at http://bit.ly/LakeVBlob.

�Tools
Several tools and toolkits for developing and deploying AI solutions were

mentioned within the previous sections as they related to services and

infrastructure for AI, such as AZTK for deploying a Spark infrastructure and

Batch Shipyard for executing batch and High Performance Computing (HPC)

container workloads. In this section, we include a nonexhaustive summary of

several other tools that are available on the Microsoft AI Platform.

�Azure Machine Learning Studio
Azure Machine Learning Studio is a serverless environment for training

and deploying ML models. Studio provides a graphical user interface

(GUI) with the ability to drag and drop easily configured modules for data

preparation, training, scoring, and evaluation. Many prebuilt algorithms

are included for common scenarios such as regression and classification,

and extensibility is enabled through R and Python scripting modules

where custom code can be inserted and connected to other modules.

Although it is extremely useful for quickly developing custom ML solutions

on smaller data set sizes, we do not recommend Azure Machine Learning

Chapter 4 Microsoft AI Platform

93

Studio for developing deep learning solutions, as the size of input data is

limited, as well as the hardware it is run on. Today, there is no ability to

bring your own computing environment or manage scale-out computing

across nodes with Azure Machine Learning Studio. Because of these

factors, we recommend Azure Machine Learning services for developing

deep learning solutions instead.

�Integrated Development Environments
With Microsoft Azure, any integrated development environment (IDE) or

editor can be used to create AI applications. In several of the popular IDEs,

there are plug-ins or extensions available that make it even simpler, such

as publishing directly to Azure. For example, Visual Studio Code Tools

for AI is an extension for Visual Studio Code that is a cross-platform open

source IDE. Visual Studio Tools for AI is an extension for Visual Studio

for developing AI applications with an ability to set remote computing

contexts. At the time of this writing, we recommend using Visual Studio

Tools for AI and include an example using this later in this chapter.

These IDEs have nice features to accelerate development, but, of

course, other popular IDEs such as PyCharm and RStudio can be used

to develop the code that will run on the Microsoft AI Platform and

more extensions will become available over time. In addition, Jupyter

notebooks can be leveraged and is already set up for development on the

DSVM. Azure Notebooks are another option for running code with hosted

Jupyter notebooks; Azure Notebooks is completely free, but these do not

run on GPUs so are not as practical for deep learning solutions.

�Deep Learning Frameworks
The Microsoft AI Platform is an open platform that builds on the best

of open source technology. Deep learning frameworks such as the

Microsoft Cognitive Toolkit (CNTK), Tensorflow, Caffe, and PyTorch,

Chapter 4 Microsoft AI Platform

94

which are all open source projects, are supported throughout many of

the tools, services, and infrastructure already mentioned. The DLVM

comes preconfigured with many of the popular frameworks, and these

frameworks can be used to develop AI solutions and be deployed on

Azure, on Azure IOT Edge, or Windows Machine Learning, for example.

These frameworks were discussed in more detail in Chapter 2.

�Broader Azure Platform
In practice, there are many other components of Azure that are often used

to build AI solutions, to complement the AI-specific services with other

requirements such as dealing with ingestion and processing of streaming

data flows, authentication, and dashboarding. For example, Azure IOT

Hub allows developers to securely connect IOT assets to the cloud, Azure

Stream Analytics enables SQL-like processing of real-time data, and Power

BI builds on top of many different data sources to enable rich, interactive

visualizations surfaced in dashboards.

A couple of other commonly used services are Azure Functions and

Azure Logic Apps, illustrated in an architecture in Figure 4-4. Azure

Functions is a serverless service that enables developers to simply write

the code they would like to execute without worrying about the underlying

infrastructure on which to run the code, paying only when the code is

run. The function that is written—in languages such as C#, Node.js, and

Java—can be run on a schedule or triggered by an event such as an HTTP

request or event in another Azure service. For example, a function can

be triggered every time a new image is uploaded into Azure Blob Storage,

which resizes the image and calls out to an AI model hosted through one of

the example. Azure Logic Apps are also serverless and paid only when run,

and can automate a business process. As a simple example, Azure Logic

Apps can be activated when an e-mail arrives in Office 365, which then

triggers a process to check on data in SQL Server and send a text message

Chapter 4 Microsoft AI Platform

95

to an end user after verification. In addition to the services from Microsoft,

there is also a marketplace of services and tools built on top of the Azure

ecosystem.

Figure 4-4.  Example architecture with the integrated components on
the Azure Platform to manage data flows into end applications from
http://bit.ly/AzureSQLArch.

�Getting Started with the Deep Learning
Virtual Machine
In the code examples that follow in the third part of this book, a GPU-

enabled machine will be needed. If you are planning on using your own

GPU-enabled machine to follow along with the code examples, you

can skip this section; if not, read on. As we mentioned earlier, Azure

offers a VM already preconfigured with many deep learning and ML

libraries called DSVM/DLVM. We can create a DLVM using the portal or

the Azure CLI. For instruction on provisioning a VM, see http://bit.

ly/CreateDLVM. You can install the Azure CLI locally by following the

instructions at http://bit.ly/AzureCLI. If you don’t want to install

anything, you can simply go to https://shell.azure.com/ and use the

CLI from there. Instructions on how to provision a DLVM/DSVM using the

CLI can be found at http://bit.ly/DLVM-CLI.

Chapter 4 Microsoft AI Platform

96

To save you time and effort, Listing 4-1 is a snippet of a set of

commands that will create a Linux DSVM for you on an NC6 VM. It will

also increase the drive size to 150 GB, open the appropriate port for the

Jupyter notebook server, and create a Domain Name Service (DNS) name

based on the name you gave the VM. The Azure CLI and by extension the

Azure cloud shell are very powerful and accessible tools that can save you

a lot of time.

Listing 4-1.  Create VM

BASH

location=eastus

resource_group=myvmrg

name=myvm

username=username

password=password

az group create --location $location --name $resource_group

az vm create \

 --resource-group $resource_group \

 --name $name \

 --location $location \

 --authentication-type password \

 --admin-username $username \

 --admin-password $password \

 --public-ip-address-dns-name $name \

 �--image microsoft-ads:linux-data-science-vm-

ubuntu:linuxdsvmubuntu:latest \

 --size Standard_NC6 \

 --os-disk-size-gb 150

az vm open-port -g $resource_group -n $name --port 9999

--priority 1010

Chapter 4 Microsoft AI Platform

97

Please make sure that you change the username and password to

something appropriate in Listing 4-1. Also, the code in Listing 4-1 will

create the VM in the EastUS region; if you would rather have it in a

different region, feel free to change it. Once the VM is up and running you

should be able to Secure shell (ssh) into it using the DNS name given to

your VM as well as the username and password you specified.

�Running the Notebook Server
We are assuming that you have a Linux DLVM/DSVM set up and you

are able to ssh into it. Once you have ssh’d into the machine, start the

Jupyter notebook server. You can download the notebooks to the VM from

http://bit.ly/Ch06Notebooks. Then navigate to the folder to which you

downloaded the notebooks and run the code shown in Listing 4-2 in the

terminal.

Listing 4-2.  Start Notebook Server

BASH

source activate py35

jupyter notebook –ip=* --port=9999 –no-browser

Navigate to your browser and enter the IP or DNS of your VM such as

mydlvm.southcentralus.cloudapp.azure.com:9999. Don’t forget the

port number at the end.1 You will be asked to enter an authorization token,

which can be seen in the terminal. If you want to configure your Jupyter

notebook to use a username and password or set it up so that you don’t

have to enter the port number or the other arguments, follow the guide at

http://bit.ly/jupyternbook.

1�The appropriate port must be open on the VM. For instructions on how to do this,
please refer to the section on DSVM earlier in chapter.

Chapter 4 Microsoft AI Platform

98

�Summary
This chapter outlined the Microsoft AI Platform set of services, tools, and

infrastructure for building AI solutions. Building AI solutions requires

lots of experimentation and specialized hardware for deep learning, and

leveraging cloud computing combined with service and tools accelerates

the development process of intelligence applications.

Additionally, AI is being infused in other ways across Microsoft’s

products as well, such as on-premises solutions for AI such as SQL Server

2017 and Microsoft Machine Learning Server. SQL Server 2017 runs on

Windows Server, Linux, and Docker and enables advanced in-database

ML with scalable Python and R-based analytics. With SQL Server, models

can be trained within the database without having to move data and

predictions can be made naturally through stored procedures and native

ML functions within the database engine. This capability is included

within Azure SQL DB as well.

In the next chapter, a more detailed overview is available on the

prebuilt AI that is available to infuse directly into applications.

Chapter 4 Microsoft AI Platform

99© Mathew Salvaris, Danielle Dean, Wee Hyong Tok 2018
M. Salvaris et al., Deep Learning with Azure,
https://doi.org/10.1007/978-1-4842-3679-6_5

CHAPTER 5

Cognitive Services
and Custom Vision
Chapter 4 introduced the tools, infrastructure, and services that are

available to build the next generation of intelligent applications. These

together form a platform that empowers data scientists and developers to

build, train, and deploy ML and deep learning models on the intelligent

cloud and intelligent edge.

As one option within the Microsoft AI Platform, organizations getting

started on AI have the flexibility to use prebuilt AI capabilities using

Cognitive Services. This enables organizations to jump start their AI efforts

quickly and use Cognitive Services as the basis for developing intelligent,

innovative applications. In this chapter, we describe how to use Cognitive

Services. We also illustrate how to customize deep neural network models

for computer vision tasks using the Custom Vision service as one example

of a customizable cognitive service.

�Prebuilt AI: Why and How?
For years, researchers in the deep learning communities have been making

tremendous progress on algorithms and leveraging state-of-art hardware

to train deep learning models using publicly available large data sets (e.g.,

ImageNet, CIFAR-10, CIFAR-100, Places2, COCO, MegaFace, Switchboard,

and many more). These public data sets are often used in competitions,

100

and as a method for benchmarking for deep learning algorithms. In

addition, many commercial and research organizations leverage private

data sets to further improve the quality of their models.

To train a high-performing deep learning model often requires a

significant amount of computing resources. Chapter 2 described the

amount of computing resources required to train a classifier on ImageNet

(ranging from 256 to 1,024 Nvidia P100 GPUs). Even though training time

has been decreasing significantly over time (from days to minutes), not

every organization has at their disposal a large amount of GPU resources,

nor the means to keep these GPU resources updated with both the latest

hardware and software over time.

Researchers spend a significant amount of time fine-tuning their

models. For example, the accuracy of classifying objects in the ImageNet

data set has improved significantly from 71.8 percent to 97.3 percent

(Russakovsky et al., 2015). Another example is the significant improvement

made by researchers working on speech recognition using the Switchboard

data set. Using a combination of neural-network-driven acoustic and

language models, CNNs, and bidirectional long- and short-term memory

models, Microsoft researchers reduce the error rate for speech recognition to

5.1 percent (Xiong et al., 2016). The deep-learning-based speech recognition

models surpass the performance of professional human transcribers.

Pretrained deep learning models enable organizations to leverage

the significant innovations made by researchers over the years and use

the models immediately to solve common AI problems. For example, we

can leverage speech-to-text APIs that are backed by high-quality speech

models, or computer vision APIs that are trained on large data sets of

faces, scenes, celebrities, and more. These enable organizations to quickly

develop intelligent applications without spending a significant amount of

time training the models.

Chapter 5 Cognitive Services and Custom Vision

101

In Chapter 2, we introduce how transfer learning can be applied for

computer vision tasks, where you can leverage pretrained models as

base models and adapt them to new domains by providing new labeled

images. To make it easier for organizations to use custom deep learning

models, Custom Vision (one of the Cognitive Services) enables you to

upload your images and train a custom image classifier quickly with the

press of a few buttons. Similarly, you can customize acoustic models using

Custom Speech (another cognitive service) through uploading domain-

specific data (.wav files, text files, or both) to improve accuracy in various

environments.

More Info  Find out more about creating custom acoustic and
language model using Custom Speech Service at http://bit.ly/
CustomSpeech/.

In this chapter, we focus on computer vision services. We walk through

different types of prebuilt computer vision services that you can use out of

the box. We then describe how to use the Custom Vision Service to train

custom image classifiers.

�Cognitive Services
Cognitive Services enables developers to get started quickly by leveraging

prebuilt AI models. To develop an AI application that uses one or more

of the Cognitive Services, developers leverage the APIs provided by each

of the Cognitive Services. This enables developers to develop intelligent

applications using various programming languages (e.g., C#, Java,

JavaScript, PHP, Python, Ruby, etc.).

Figure 5-1 shows how an application interacts with Cognitive Services.

The application issues a request to a Cognitive Services URL. For example,

a Request URL for using Cognitive Services to tag an image (identify what

Chapter 5 Cognitive Services and Custom Vision

102

are the tags for objects found in an image) is https://[location].api.

cognitive.microsoft.com/vision/v1.0/tag, where location refers to one

of the support geographical regions where the APIs are created (e.g., West

US, West US 2, East US, East US 2, West Europe, Southeast Asia, etc.). For

a list of supported regions for Cognitive Services, refer to http://bit.ly/

CogServices.

Figure 5-1.  Application using Cognitive Services

Figure 5-2 shows the REST API documentation for Computer Vision

APIs. When issuing a request to Cognitive Services, you will need to

provide the content type and subscription key (referred to as Ocp-Apim-

Subscription-Key) in the Request header. After the request has been

processed, the results are returned as a JSON object. In Figure 5-3, you

can see the tags (e.g., grass, outdoor, sky, etc.) that are returned after the

application submits an image for tagging.

Chapter 5 Cognitive Services and Custom Vision

103

Figure 5-2.  REST API documentation for Computer Vision API.
Source: http://bit.ly/ComVisionAPIv1.

Chapter 5 Cognitive Services and Custom Vision

104

�What Types of Cognitive Services Are
Available?
Cognitive Services provides a powerful set of prebuilt AI services, as

follows.

•	 Vision: Provides state-of-the-art image processing

algorithms that provide image classification,

captioning, optical character recognition (OCR), and

content moderation.

Figure 5-3.  JSON response for tag image request

Chapter 5 Cognitive Services and Custom Vision

105

•	 Knowledge: Provides APIs to enable you to quickly

extract question–answer pairs from user-provided

frequently answered questions (FAQs), documents,

and content. Other Knowledge APIs include custom

decision service, knowledge exploration, and named

entity recognition and disambiguation.

•	 Language: Language Understanding (LUIS) enables

developers to integrate powerful natural language

understanding capabilities into various applications.

Other Language services include Bing Spell Check, Text

Analytics, Translations, and more.

•	 Speech: Provides APIs for real-time speech translation,

converting speech to text, speaker recognition, and

customizing speech models.

•	 Search: Provides APIs that provide developers with

instant access to various Bing capabilities. These

include the ability to perform autosuggestion, news

search, web search, image search, video search, and

custom search.

In this chapter, we describe how to use the Computer Vision APIs

that are available as part of Cognitive Services. We refer the interested

reader to continue exploring other Cognitive Services by visiting

http://bit.ly/MSFTCogServices. All Cognitive Services follow a

similar request–response pattern, and you will be able to apply and

adapt what you have learned from using the Computer Vision APIs to

the other Cognitive Services.

Chapter 5 Cognitive Services and Custom Vision

106

�Computer Vision APIs
Computer Vision APIs provide you with information about the objects

that are found in an image. These APIs are based on years of research in

applying deep learning algorithms to understand the content of an image.

In this book, we describe some of these techniques for performing image

classification and more. Using the Computer Vision APIs, these powerful

image processing techniques are now available as prebuilt AI that you can

use as the basis for creating innovative applications.

After the image is analyzed, the Computer Vision APIs return the tags

that are most relevant to the image, and a caption describing the image.

Figure 5-4 shows how to use the Computer Vision APIs to analyze an image

and the returned results. The caption “a person standing in front of a

screen” is also returned with a confidence score of 0.74.

Figure 5-4.  Using the Computer Vision APIs

Chapter 5 Cognitive Services and Custom Vision

107

In addition, the Computer Vision APIs identified the faces in the image

and returned information about the predicted gender and age for each

of the faces. Figure 5-5 shows that there are two faces found in the image.

One of the faces is a male, age 34, and the other face is a female, age 27.

The bounding boxes for each of the faces are returned. The predicted age

is dependent on many factors within the image.

Figure 5-5.  Using Computer Vision APIs to analyze the image

Other information about the image is returned as well. For example,

the image is analyzed for whether it contains adult or inappropriate

content. This is extremely useful for developers who are building web sites

that enable user-contributed content. This enables developers to moderate

the content that has been uploaded by analyzing the uploaded images for

objectionable content.

Chapter 5 Cognitive Services and Custom Vision

108

More Info T o learn more about the Computer Vision APIs, visit
http://bit.ly/MSFTCompVision.

Using the Computer Vision APIs, developers can build innovative

applications. For example, the How-Old.net site (shown in Figure 5-6) was

built using Computer Vision APIs. You see the results returned in Figure 5-7.

Figure 5-6.  How-Old.net

Chapter 5 Cognitive Services and Custom Vision

109

Another example of an innovative application built using Computer

Vision APIs is the Intelligent Kiosk. The Intelligent Kiosk consists of a set

of intelligent experiences that showcase how to use Cognitive Services. It

enables any ordinary web camera to be connected to a PC and turned into

an intelligent camera.

One of the intelligent experiences, available as part of the kiosk, is the

Realtime Crowd Insights samples (shown in Figure 5-8). Realtime Crowd

Insights uses the Computer Vision APIs as the foundation for capturing

real-time information about the people interacting with the kiosk. These

include understanding the number of unique people that are standing

Figure 5-7.  Results from How-Old.Net

Chapter 5 Cognitive Services and Custom Vision

110

in front of the kiosk, counting of unique faces, and looking at the overall

emotions. This sample provides the basis for developing interactive

and intelligent experiences for kiosks that are deployed in retail malls

and more.

Figure 5-8.  Intelligent Kiosk Realtime Crowd Insights

More Info T he code for Intelligent Kiosk is open source and is
available at http://bit.ly/IntelligentKiosk.

�How to Use Optical Character Recognition–

The Computer Vision APIs enable you to perform OCR for printed and

handwritten text. To do this, you can upload an image or provide the

URL where the image is stored. The APIs will detect the text in the image

and return in a JSON payload the characters that are recognized. Various

Chapter 5 Cognitive Services and Custom Vision

111

languages are supported, including UNK (Autodetecting the language),

English, Danish, Dutch, French, German, and many more. In Figure 5-9,

we uploaded an image (shown on the left). You will see that the OCR APIs

analyzed the image and returned the text found in the image (shown on

the right).

Figure 5-9.  Using the OCR APIs

More Info T o learn more on using the OCR capabilities for Cognitive
Services, visit http://bit.ly/MSFTocr.

�How to Recognize Celebrities and Landmarks

The Computer Vision APIs enable you to recognize celebrities and

landmarks. Cognitive Services refer to these as domain-specific models.

To find out about the different domains (e.g., celebrities, landmarks)

supported, you can use the /models GET request. Figure 5-10 shows how

this is used to recognize “Donald E. Knuth” from the image provided on

the right. Cognitive Services recognizes up to 200,000 celebrities.

Chapter 5 Cognitive Services and Custom Vision

112

In addition, the Computer Vision APIs can also recognize landmarks.

Figure 5-11 shows how the API recognized Raffles Hotel, a tourist

attraction in Singapore. Cognitive Services recognizes up to 9,000 natural

and man-made landmarks.

Figure 5-10.  Using domain-specific models for celebrities

Figure 5-11.  Using domain-specific models for landmarks

More Info T o learn more on using Cognitive Services to recognize
celebrities and landmarks, visit http://bit.ly/CelebLand.

Chapter 5 Cognitive Services and Custom Vision

113

�How Do I Get Started with Cognitive Services?
To get started with using Cognitive Services, log in to the Azure Portal

(portal.azure.com). After you have logged in to the Azure Portal, you can

choose to create a New Azure Resource. Select AI + Cognitive Services. In

Figure 5-12 you will see all the Cognitive Services listed in the window.

Figure 5-12.  Creating a new Cognitive Services instance

Chapter 5 Cognitive Services and Custom Vision

114

For illustration, let us select the Computer Vision API. Figure 5-13

shows the screenshot for creating a new Computer Vision API. After you

click Create, you will be asked to name the API (shown in Figure 5-14) and

select the pricing tier for the API. For Computer Vision APIs, two tiers are

available: FO Free and S1 Standard. The FO Free tier supports up to 20 calls

per minute and 5,000 calls per month. The S1 Standard tier supports 600

calls per minute. Both tiers enable you to use the Computer Vision APIs to

analyze the content of an image, identify the most relevant tags, perform

auto-captioning, perform OCR, and generate the thumbnail.

Figure 5-13.  Create a new Cognitive Services Computer Vision API

Chapter 5 Cognitive Services and Custom Vision

115

Figure 5-14.  Configuring the Computer Vision APIs

Chapter 5 Cognitive Services and Custom Vision

116

After the Computer Vision API has been created, you can manage it

using the Azure Portal. Figure 5-15 shows how you can manage the newly

created Computer Vision API. To use the API in your application, you

will need to specify the API key. You can click Keys in the management

window, which will show you the keys that are available. Figure 5-16

shows the two keys that are available. You can make use of the Primary

and Secondary key during key rotation. You can use either of the keys in

your application. This is specified as part of the Request header. If you

are developing a .NET application to use Cognitive Services, the key is

specified as part of the API call. Listing 5-1 shows the sample code for

accessing the Computer Vision APIs. For example, you should replace the

"{subscription key}" placeholder in the code with the subscription key

that you obtained from the Azure Portal.

Figure 5-15.  Managing Cognitive Services

Chapter 5 Cognitive Services and Custom Vision

117

Listing 5-1.  Sample Code to use Cognitive Services (Computer

Vision APIs)

C#

using System;

using System.Net.Http.Headers;

using System.Text;

using System.Net.Http;

using System.Web;

namespace CSHttpClientSample {

 static classProgram {

 static voidMain() {

 MakeRequest();

 Console.WriteLine("Hit ENTER to exit...");

 Console.ReadLine();

 }

 static async voidMakeRequest() {

 var client = new HttpClient();

 var queryString =

 HttpUtility.ParseQueryString(string.Empty);

Figure 5-16.  Obtain the keys for Cognitive Services

Chapter 5 Cognitive Services and Custom Vision

118

 // Request headers

 client.DefaultRequestHeaders.Add(

 "Ocp-Apim-Subscription-Key",

 "{subscription key}");

 // Request parameters

 queryString["visualFeatures"] = "Categories";

 queryString["details"] = "{string}";

 queryString["language"] = "en";

 var uri =

"https://westcentralus.api.cognitive.microsoft.com/vision/v1.0/

analyze?" + queryString;

 HttpResponseMessage response;

 // Request body

 byte[] byteData =

 Encoding.UTF8.GetBytes("{body}");

 using (

 var content =

 new ByteArrayContent(byteData))

 {

 content.Headers.ContentType =

 new MediaTypeHeaderValue("<content>");

 response =

 await client.PostAsync(uri, content);

 }

 } // method MakeRequest

 } // Program

} // namespace

Chapter 5 Cognitive Services and Custom Vision

119

Figure 5-17.  Custom Vision (customvision.ai)

�Custom Vision
In Chapter 2, we described how data scientists can make use of transfer

learning to adapt CNNs to new domains. For example, a Resnet-50 CNN

trained on ImageNet data can be adapted for image classification in other

domains (e.g., health care, retail, manufacturing, etc.).

Custom Vision is part of the family of Cognitive Services. Custom

Vision enables you to quickly customize state-of-the-art computer vision

models for your scenario, with a small set of labeled images. Underneath

the hood, Custom Vision uses transfer learning and data augmentation

techniques to train a custom model for your scenario. Figure 5-17 shows

the main page for the Custom Vision service.

Chapter 5 Cognitive Services and Custom Vision

120

More Info D id you know that you can use Custom Vision
programmatically? Using C# or Python, you can programmatically
create a Custom Vision project, add tags, upload images, and train
the project. After the custom vision models are trained, you can
retrieve the prediction URL and test the custom image classifier. To
find out more, visit http://bit.ly/CustomVisionProg.

�Hello World! for Custom Vision
In this section, we will learn how to get started with Custom Vision. On

the customvision.ai page, click Sign In. During the first sign in to Custom

Vision, you will need to accept the terms of use. You will be prompted to

indicate whether you want to use an Azure account, which will enable you

to work with more Custom Vision projects. If you do not sign in to Azure,

you will have access to fewer quotas. Figure 5-18 shows the initial page

after you sign in. If you do not have an Azure subscription, you can click I’ll

Do It Later.

Chapter 5 Cognitive Services and Custom Vision

121

After you sign in, you can create your first Custom Vision project by

clicking New Project. As shown in Figure 5-19, we create our first Hello

World Custom Vision project. Several domains are provided that will

enable you to customize the base model that is most relevant to your

scenario. In this example, we selected General (Compact). Compact

domains enable you to export the trained models, which we cover in a

later section.

Figure 5-18.  Custom Vision first sign in

Chapter 5 Cognitive Services and Custom Vision

122

Figure 5-20 shows an example of the intelligent zoo app that we want

to develop. After you click Create Project, we are ready to get started

(shown in Figure 5-21). In this scenario, we want to develop an application

that will enable children who are visiting the zoo to be able to take a

picture of an animal and find out more information about each animal.

Figure 5-19.  Creating your first Custom Vision project

Chapter 5 Cognitive Services and Custom Vision

123

Figure 5-20.  Scenario: Intelligent Zoo app

Figure 5-21.  Hello World Custom Vision project

Chapter 5 Cognitive Services and Custom Vision

124

Figure 5-22.  Uploading pictures of giraffes to Custom Vision

We will need to build a custom image classifier for animals. To do this,

we will leverage Custom Vision to train a custom classifier to distinguish

between different types of animals, giraffes and elephants. To train the

classifier, we upload training images of a giraffe (shown in Figure 5-22) and

elephants to Custom Vision. You can find images of giraffes and elephants

using an image search in a search engine (e.g., Bing). After all the images

are uploaded (shown in Figure 5-23), we are ready to train the classifier.

Click Train.

Chapter 5 Cognitive Services and Custom Vision

125

Figure 5-23.  Training images for giraffes and elephants

After training is completed, you will see the evaluation results shown

in Figure 5-24. The overall precision and recall metrics are returned. In

addition, the performance for each tag (i.e., label or class) is also shown

below. To use the Custom Vision mode, click Prediction URL. This

corresponds to a REST endpoint that can be used in any application.

Chapter 5 Cognitive Services and Custom Vision

126

In addition, we can test the model by clicking Quick Test. We can

either provide a URL to an image or upload an image to test the custom

Computer Vision model. Figure 5-25 shows the result of uploading a test

image and the results returned by the classifier.

Figure 5-24.  Evaluation results from Training Iteration 1

Figure 5-25.  Quick Test using a test image of a giraffe

Chapter 5 Cognitive Services and Custom Vision

127

Congratulations! We have just completed the training of a custom

deep learning model using training images, corresponding to giraffes and

elephants. To fully realize the scenario shown in Figure 5-20, we need to

continue improving the custom image classifier by uploading images of

other animals found in the zoo to Custom Vision. Using a limited set of

training images per animal, we can quickly build a custom image classifier

for animals.

�Exporting Custom Vision Models
After we have trained the model, we can develop an application that uses

the prediction URL provided. We might also want the model to run on

devices (e.g., iPhone, iPads, Android tablets). The choice of whether you

use a prediction URL or running devices on models depends on your use

case. In situations where you want to be able to perform inferences when

Internet connectivity is not available, or where you require low latency,

having the models running on the device will be a good design choice.

To do this, and to develop applications that can consume the model

offline, Custom Vision enables you to export the model. Click Export. This

button is available only if we are using Compact models. You can export

the models as CoreML, TensorFlow, or ONNX models. In addition, you can

also export the Dockerfile to enable you to build a container that is able to

serve the model.

Figure 5-26 shows the platforms that are available when exporting the

models. Once we choose the relevant platform to export, the relevant files

can be downloaded (e.g., .mlmodel for CoreML, .zip for TensorFlow, and

.onnx for ONNX models). These models can then be easily integrated into

iOS, Android, or Windows applications.

Chapter 5 Cognitive Services and Custom Vision

128

�Summary
This chapter discussed the different types of Cognitive Services that are

available as part of the Microsoft AI Platform. These prebuilt AI capabilities

enable developers in your organization to get started immediately with

realizing the value of AI to develop innovative applications. In addition, we

also illustrated how to adapt pretrained deep learning models for computer

vision to new data using Custom Vision. This enables you to quickly train

an image classification model by bringing your own data. To enable you to

do AI on the intelligent edge (IoT edge device, iOS and Android devices),

Custom Vision enables you to explore CoreML and TensorFlow models. This

chapter only touched the surface of the different Cognitive Services available

on the Microsoft AI Platform. We encourage you to explore others in more

depth as well, such the Language Understanding service, Azure Search, and

Custom Speech service, depending on your use case and needs.

In the next set of chapters, rather than focus on using prebuilt AI

capabilities as discussed here, we instead focus on an overview of how to

build custom deep learning models, starting with an overview of common

models such as CNNs in the next chapter.

Figure 5-26.  Exporting Custom Vision models to CoreML or TensorFlow

Chapter 5 Cognitive Services and Custom Vision

PART III

AI Networks in
Practice

131© Mathew Salvaris, Danielle Dean, Wee Hyong Tok 2018
M. Salvaris et al., Deep Learning with Azure,
https://doi.org/10.1007/978-1-4842-3679-6_6

CHAPTER 6

Convolutional Neural
Networks
CNNs are a prime example of neuroscience influencing deep learning

(LeCun, Bottou, Bengio, & Haffner, 1998). These neural networks are based

on the seminal work done by Hubel and Wiesel (1962). They discovered

that individual neuronal cells in the visual cortex responded only to the

presence of visual features such as edges of certain orientations. From their

experiments they deduced that the visual cortex contains a hierarchical

arrangement of neuronal cells. These neurons are sensitive to specific

subregions in the visual field, with these subregions being tiled to cover

the entire visual field. They in fact act as localized filters over the input

space, making them well suited to exploiting the strong spatial correlation

found in natural images. CNNs have been immensely successful in many

computer vision tasks not just because of the inspiration drawn from

neuroscience, but also due to the clever engineering principles employed.

Although they have traditionally been used for applications in the field of

computer vision such as face recognition and image classification, CNNs

have also been used in other areas such as speech recognition and natural

language processing for certain tasks.

This chapter briefly describes what convolution is and how it relates

to neural networks. It then explains the various elements that make up

the CNN architecture and what effects they have, and why CNNs do so

well. Finally, it covers the usual steps to training CNNs before diving into a

132

number of practical examples, using the CIFAR10 data set to train a CNN

using Jupyter notebooks.

One of the first successful applications of CNNs was in the 1990s,

reading zip codes using the LeNet architecture from Yann LeCun and

colleagues (LeCun, Boser, et al., 1989). However, CNNs were widely

popularized in 2012 with the AlexNet (Krizhevsky, Sutskever, & Hinton,

2012) architecture, which won the ImageNet Large Scale Visual

Recognition Competition (ILSVRC) as mentioned in Chapter 1 and led

to a breakthrough in the computer vision field. Since then, there have

been many useful developments and recommended architectures from

researchers such as VGGNet (Simonyan & Zisserman, 2014) and ResNet

(He, Zhang, Ren, & Sun, 2016). We do not recommend a specific neural

network architecture because this is still a fast-moving field with new

breakthroughs happening frequently. Instead, we recommend that

practitioners pick out an architecture already available that has been

developed and tested by researchers, and if necessary tweak it.

�The Convolution in Convolution Neural
Networks
To keep things simple when talking about convolution we will be

talking about discrete convolution. Mathematically, convolution is the

simple summation of the pointwise multiplication of two functions. The

summations can take place in one or more dimensions, so for grayscale

images the summation would take place over two dimensions and over

three dimensions in color images.

Convolution is similar to cross-correlation and in many deep learning

libraries the implementation is actually cross-correlation even though it

is referred to as convolution. For all practical purposes in the CNNs this

is just an implementation detail and does not really affect the resulting

behavior of the model. To get an intuitive feeling of how convolution

behaves, there is a simple example illustrated in Figure 6-1.

Chapter 6 Convolutional Neural Networks

133

In this example the image is represented by a 5 × 5 matrix and each

pixel can only take on two values, 1 or 0. We have a convolution kernel

that detects diagonal lines. Convolution kernels are sometimes referred

to as filters or feature detectors. By convolving our kernel with the image

we get our feature and activation map. The top left value of our feature

map is created by multiplying all the values in the overlapping matrices

and then summing the result. In the bottom row of the image we can see

that applying the kernel to our image we get a value of three. The kernel

is applied to the nine pixels in the top left area of our image. If we were to

flatten out the values row wise we would have the vector [1,1,1,0,1,1,0,1,1].

The kernel would correspond to the vector [1,0,0,0,1,0,0,0,1]. If we multiply

the two vectors element wise as so [1*1, 1*0, 1*0, 0*0 …] we will end up

with the vector [1,0,0,0,1,0,0,0,1], which we sum to get the value 3. In

essence we are computing the dot product of the two vectors to end up

with a scalar value.

Figure 6-1.  Convolution in CNNs

Chapter 6 Convolutional Neural Networks

134

We then shift the kernel right by one—this is often referred to as the

stride—and do the same thing again. Notice that the feature map is smaller

than the original image. To mitigate this, CNNs often employ padding

of the input image so that the resulting feature map does not reduce in

size, as this constant reduction would limit the number of successive

convolutions that could be applied. This is just a simple example, as real

color images have three color channels—red, green, and blue—and the

pixel value of each channel is represented by an integer between 0 and

255. For a single image, our input would be a three-dimensional matrix

with the width, height, and number of channels. Depending on the deep

learning framework you use, some expect the channels to be first CHW or

channels to be last HWC.

�Convolution Layer
CNNs employ convolution in what are referred to as convolution layers,

which are simply a number of convolution kernels represented by the

weights of each convolution layer. The dimensions and stride of the

convolution are usually predefined, but the weights are learned as the

network is trained. A CNN will typically have many convolution layers and

each convolution layer will have its own set of learned kernels or filters.

Figure 6-2 is a selection of convolution filters taken from a pretrained

CNN. The top row is of six filters from the first convolution layer. The

bottom row is from the last convolution layer in the CNN. Going from the

top to the bottom, it looks like the convolution layers are looking at ever

more complex patterns. The first layer is encoding direction and color.

The second layer seems to be more interested in spot and grid textures.

The final layer looks like a complex combination of various textures. From

this we can see that as we go through the network the patterns become

more intricate, so the deeper the network the more complex patterns the

convolution layers will learn to extract.

Chapter 6 Convolutional Neural Networks

135

Another interesting thing to note is that if we look at the first and

last filter on the middle row it seems like they could be slightly rotated

variations of the same filter. This highlights one of the deficiencies of

CNNs: They are not rotation invariant. This is something Hinton has tried

to overcome with capsule networks, as discussed in Chapter 3.

�Pooling Layer
Convolution is not equivariant, meaning that on their own they do not deal

well with scaling and rotation of the input (Sabour, Frosst, & Hinton, 2017).

A common type of layer in modern CNNs to help deal with this is a pooling

layer, with the most popular pooling layer being the max pooling layer.

Max pooling replaces the output of spatially adjacent outputs with the max

of those values. Generally pooling layers replace the outputs with some

form of summary statistic based on those outputs.

Figure 6-2.  Visualization of convolution layers. For more detailed
visualizations take a look at Zeiler and Fergus (2013).

Chapter 6 Convolutional Neural Networks

136

Generally, the pooling layer’s purpose is to make neural networks

locally invariant to small translations of the input, and its essence to care

more about whether a feature is detected rather than where exactly it is in

the input. This does, in turn, reduce the spatial acuity of the model and is

considered a limitation of CNNs; however, pooling layers have proven to

be extremely useful.

�Activation Functions
Activation functions are very important in CNNs and artificial neural networks

in general. Without them CNNs would simply be a series of linear operations

and would not be able to do the amazing things they do today. Activation

functions are simply nonlinear transformations of the output of a neuron in

a layer. They are referred to as activation functions because they draw their

inspiration from the threshold and fire activation of biological neurons.

There are a number of different activation functions with different properties

and specialization, but we go over only the most common types here.

�Sigmoid

Sigmoid or logistic is a nonlinear function, which squashes the input

between the values of 0 and 1 (Figure 6-3).

f x
e x() =

+ -

1

1

Chapter 6 Convolutional Neural Networks

137

In recent years it has fallen out of favor due to a number of drawbacks:

•	 It suffers from the vanishing gradient problem. Near

the extreme values of 1 and 0 the gradient is flat,

meaning as values approach those extremes the

neurons saturate, and the weights do not update during

backpropagation. Furthermore, neurons connected

to this neuron get very tiny weight updates, in essence

starving them of the much-needed information.

•	 The output is not zero centered.

�Tanh

Tanh or hyperbolic tangent functions are very similar to sigmoid functions;

in fact, they are a simply scaled version of sigmoid functions so that they

are centered around 0. Tanh squashes the output between the values of -1

and 1 (Figure 6-4). In practice Tanh is often preferred to sigmoid, but it still

suffers from the vanishing gradient problem.

f x
x

x() = -
+

-

-

1

1

2

2

e

e

Figure 6-3.  Sigmoid function

Chapter 6 Convolutional Neural Networks

138

�Rectified Linear Unit

The rectified linear unit (ReLU; see Figure 6-5) is probably the most used

activation function nowadays (LeCun, Bengio, & Hinton, 2015).

f x x() = ()max 0,

Figure 6-4.  Tanh

Figure 6-5.  Rectified linear unit (ReLU)

Chapter 6 Convolutional Neural Networks

139

With the ReLU activation function, when the input is greater than zero,

then output is the same as the input; when it is less than zero, the output

is zero. Its popularity is mainly due to a couple of facts. First, it does not

saturate or suffer from the vanishing gradient problem in the positive

region. Second, it is a computationally efficient function and it also leads

to sparse activations that also confer computational benefits. It does still

suffer from a couple of drawbacks though:

•	 If the output of the function is less than zero during

the forward pass, no gradient is propagated backward

during the backward pass. This means that weights

do not get updated. If neurons in the CNN exhibit this

behavior consistently, the neurons are said to be dead,

which means they no longer contribute to the network

and are in essence useless. If this happens to a significant

portion of your CNN, it will stall and fail to learn.

•	 For classification tasks, it cannot be used in the output

layer because its output isn’t constrained between well-

defined boundaries.

�CNN Architecture
CNNs are typically constructed by stacking multiple layers on top of each

other (Figure 6-6). A common configuration is the following: First, there

is a convolution layer where multiple kernels convolve the input and

produce a number of feature maps. These then pass through a nonlinear

activation function such as ReLU, which is then followed by a pooling

layer. These three stages are often combined in various ways to create the

first few layers of a CNN. The output of the final layer is flattened and then

fed through one or more fully connected layers. The activation function

of the final layer is usually a softmax or sigmoid that squashes the output

between 0 and 1.

Chapter 6 Convolutional Neural Networks

140

�Training Classification CNN
So far we have defined what a CNN looks like and how the information is

propagated forward, but we have not described how it learns. The process

of training a CNN is as follows:

	 1.	 We have a predefined architecture with a number

of convolution and polling layers, plus our final

fully connected layers. The weights of the CNN are

initialized randomly based on some distribution.

	 2.	 We present the training images as a minibatch to

our CNN, a four-dimensional matrix (batch size,

width, height, and channels).

Figure 6-6.  CNN architecture

Chapter 6 Convolutional Neural Networks

141

	 3.	 We complete a forward pass through the

networks with the images being passed through

the convolution, pooling layers, and activation

functions, and finally we get the output probabilities

for each class for each image in the minibatch.

	 4.	 We compare the probabilities to the true labels and

calculate the error.

	 5.	 We use backpropagation to calculate the gradients

of the error with respect to the weights of the CNN

and we use gradient descent to update the weights.

	 6.	 This process is repeated either for a set of epochs1 or

until other conditions are met.

This is a simplified view of what happens, but it captures the core of

what it takes to train a CNN, an objective function, a method to calculate

the gradients, and an optimization method.

The objective or loss function determines how we will calculate the

difference between what we expected the network to do and what it did.

In essence it will calculate the error for our model. Common loss functions

are mean squared error (MSE) and cross-entropy. Now once we have the

error, we need to update the weights of the network in the right direction

so that our predictions become a little better next time. This is done by a

method called backpropagation.

The optimization method most commonly used by CNNs is minibatch

gradient descent, often referred to as stochastic gradient descent (SGD),

even though SGD is slightly different from minibatch gradient descent.

Minibatch gradient descent seeks to optimize the objective function by

iteratively updating the weights of the CNN based on the gradients in

each minibatch. Due to the nonlinearities in CNNs, the solution space is

1�Epoch refers to the CNN having seen the whole training set.

Chapter 6 Convolutional Neural Networks

142

often nonconvex and therefore there are no guarantees of convergence.

For practitioners this can be quite frustrating, but CNNs work surprisingly

well even without this guarantee. The main parameter in all variants of

gradient descent is the learning rate, which determines the magnitude of

the updates applied to the weight of the network. A variant of SGD also

includes a momentum term that tries to accelerate learning by preserving

the direction of travel through the parameter space. It does this by adding a

fraction of the weight update of the previous time step to the current update.

Other optimization algorithms include Adam, RMSProp, and so on.

�Why CNNs
As mentioned earlier, CNNs were inspired by neuroscience but they also

make use of sound engineering principles that also confer advantages.

These are sparse connectivity and parameter sharing. Current research

indicates neurons also share these features. A typical human neuron has

7,000 connections (cf. 1011 neurons in the brain). Similarly, each neuronal

cell type shares specific functional parameters. A great example of the latter

are retinal ganglion cells, which all implement effectively the same type

of convolutional kernel (opposing center-surround). The weights of these

kernels were “learned” through evolution of gene expression patterns.

In traditional neural networks such as multilayer perceptrons (MLPs),

every layer is fully connected to every single node of the next layer. As you

increase the number of layers and the number of nodes, the number of

parameters explodes. In CNNs the connections are usually much smaller

than the input because the kernel is convolved over the input, which is

represented by the previous layer. Therefore in an image that is made of

thousands of pixels, the convolution kernel can be just a few tens of pixels.

This reduction in parameters improves the efficiency of the model both in

terms of memory and also in terms of computation due to the reduction in

the amount of computation required.

Chapter 6 Convolutional Neural Networks

143

The second benefit is parameter sharing. In standard neural networks,

the input weights for each node in the next layer are only used for that

node, whereas in CNNs the same kernel is used many times. Therefore,

instead of learning different parameters for each node, we learn a set of

kernels for all the nodes.

�Training CNN on CIFAR10
In this next section, we go step by step in training a CNN on the CIFAR10

data set (Krizhevsky 2009; Krizhevsky, Nair, & Hinton, n.d.). We use

TensorFlow as the deep learning library to build our CNN with. The CIFAR102

data set is an often used data set that in total contains 60,000 32 × 32

color images across 10 classes (see Figure 6-7). These are split into 50,000

training and 10,000 test. The code for this section can also be found in the

notebook Chapter_06_01.ipynb (http://bit.ly/Nbook_ch06_01).

More Info W e recommend provisioning an Azure DLVM to run the
code examples in this chapter. Please see the Chapter 4 for more
information.

2�CIFAR stands for the Canadian Institute for Advanced Research. They are partly
responsible for funding Hinton and LeCun during the neural network winter,
leading to the eventual resurgence of neural networks as deep learning.

Chapter 6 Convolutional Neural Networks

144

The first thing we will do is define our CNN (see Listing 6-1). It isn’t

very deep and only has two convolutional layers. The first convolution

layer has 50 filters and the second 25, each with a dimension of 3 × 3. The

first convolution layer uses ReLU activation and the second convolution

layer carries out ReLU activation before using max pooling. After that we

need to reshape our Tensor into a 2D matrix with the first dimension being

the size of our batch. After that we pass it into a fully connected layer of 512

nodes with ReLU activation. Finally, we introduce our final dense layer,

which has 10 outputs, one for each of our classes.

Listing 6-1.  CNN with Two Convolution Layers

PYTHON

def create_model(model_input,

 n_classes=N_CLASSES,

 data_format='channels_last'):

Figure 6-7.  CIFAR10 data set

Chapter 6 Convolutional Neural Networks

145

 conv1 = tf.layers.conv2d(model_input,

 filters=50,

 kernel_size=(3, 3),

 padding='same',

 data_format=data_format,

 activation=tf.nn.relu)

 conv2 = tf.layers.conv2d(conv1,

 filters=50,

 kernel_size=(3, 3),

 padding='same',

 data_format=data_format,

 activation=tf.nn.relu)

 pool1 = tf.layers.max_pooling2d(conv2,

 pool_size=(2, 2),

 strides=(2, 2),

 padding='valid',

 data_format=data_format)

 flatten = tf.reshape(pool1, shape=[-1, 50*16*16])

 fc1 = tf.layers.dense(flatten, 512, activation=tf.nn.relu)

 logits = tf.layers.dense(fc1, n_classes, name='output')

 return logits

An important element in training neural networks is defining the

loss function and optimization to use (see Listing 6-2). Here we are

using cross-entropy as our loss function and SGD with momentum as

our optimization function. SGD is the standard optimization method for

deep learning. The two parameters we have to define are the learning

rate and momentum.

Chapter 6 Convolutional Neural Networks

146

Listing 6-2.  Initialize Model with Optimization and Loss Method

PYTHON

def init_model_training(m, labels, learning_rate=LR,

momentum=MOMENTUM):

 cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(

 �logits=m,

labels=labels)

 loss = tf.reduce_mean(cross_entropy)

 �optimizer = tf.train.MomentumOptimizer(learning_rate=

learning_rate,

 momentum=momentum)

 return optimizer.minimize(loss)

Now we have the functions to create and train our CNN, so we need

the methods to prepare the data and feed it to our CNN in batches, shown

in Listing 6-3.

Listing 6-3.  Prepare the CIFAR 10 Data

PYTHON

def prepare_cifar(x_train, y_train, x_test, y_test):

 # Scale pixel intensity

 x_train = x_train / 255.0

 x_test = x_test / 255.0

 # Reshape

 x_train = x_train.reshape(-1, 3, 32, 32)

 x_test = x_test.reshape(-1, 3, 32, 32)

 x_train = np.swapaxes(x_train, 1, 3)

 x_test = np.swapaxes(x_test, 1, 3)

Chapter 6 Convolutional Neural Networks

147

 return (x_train.astype(np.float32),

 y_train.astype(np.int32),

 x_test.astype(np.float32),

 y_test.astype(np.int32))

The prepare_cifar function accepts the training images and test

images as arrays and the labels as vectors. Before we can use the images

with our CNN we need to do some preprocessing. First we scale the pixel

values between 0 and 1, then we reshape it so that the matrix is in the

channels last configuration. This means that the image data will be shaped

(examples, height, width, channels). Channels refers to the RGB channels

in the image.

Next we define the minibatch function that will return a matrix of

shape (BATCHSIZE, 32, 32, 3) if we have defined our data to be channel last

(see Listing 6-4). We also need to shuffle the data, as we do not want to

feed the CNN the training samples in any meaningful order as this might

bias the optimization algorithm.

Listing 6-4.  Minibatch Generator

PYTHON

def minibatch_from(X, y, batchsize=BATCHSIZE, shuffle=False):

 if len(X) != len(y):

 raise Exception("The length of X {} and y {} don't \

 match".format(len(X), len(y)))

 if shuffle:

 X, y = shuffle_data(X, y)

 for i in range(0, len(X), batchsize):

 yield X[i:i + batchsize], y[i:i + batchsize]

Chapter 6 Convolutional Neural Networks

148

Next, we load the data, as shown in Listing 6-5.

Listing 6-5.  Load Data

PYTHON

x_train, y_train, x_test, y_test = prepare_cifar(*load_cifar())

Then we create placeholders for our data and labels, as shown in

Listing 6-6, and create the model.

Listing 6-6.  Placeholders for the Data and Labels

PYTHON

X = tf.placeholder(tf.float32, shape=[None, 32, 32, 3])

y = tf.placeholder(tf.int32, shape=[None])

Initialise model

model = create_model(X, training)

We then initialize the model and start the TensorFlow session.

Listing 6-7.  Initialize Model and Start the Session

PYTHON

train_model = init_model_training(model, y)

init = tf.global_variables_initializer()

sess = tf.Session()

sess.run(init)

Next we train the model for the desired number of epochs. During this

process we execute the forward pass, calculate the loss, and then propagate

the error backward and update the weights. This can take a considerable

amount of time depending on the computational resources you have at your

disposal. Azure notebooks run the deep learning training on CPU and have

Chapter 6 Convolutional Neural Networks

149

limited computational resources. One of the preferred environments to train

these neural networks on is the DSVM or DLVM, which come in multiple

configurations, including with GPUs. See Listing 6-8.

Listing 6-8.  Loop over the Training Data for N Epochs and Train Model

PYTHON

for j in range(EPOCHS):

 �for data, label in minibatch_from(x_train, y_train,

shuffle=True):

 sess.run(train_model, feed_dict={X: data,

 y: label})

 # Log

 acc_train = sess.run(accuracy, feed_dict={X: data,

 y: label})

 �print("Epoch {} training accuracy: {:0.4f}".format(j,acc_train))

Now that we have the trained model, we want to evaluate it on our test

data, as shown in Listing 6-9.

Listing 6-9.  Evaluate Model on Test Data

PYTHON

y_guess = list()

for data, label in minibatch_from(x_test, y_test):

 pred=tf.argmax(model,1)

 output=sess.run(pred,feed_dict={X:data})

 y_guess.append(output)

This piece of code feeds minibatches to the CNN and appends them to

a list.

Finally, we evaluate the performance of the model against the true

labels, as shown in Listing 6-10.

Chapter 6 Convolutional Neural Networks

150

Listing 6-10.  Print out the Accuracy of Our Model

PYTHON

print("Accuracy: ", sum(np.concatenate(y_guess) ==

 y_test)/float(len(y_test)))

Depending on how long you trained the network, you will get

differing error rates. After three epochs the network achieved an accuracy

of 64 percent on the test set.

This was just a simple exercise to illustrate how you can create and

train your own neural network. Feel free to play around with the layers and

see how it affects performance.

Creating your own architecture is fun but optimizing these structures

can be laborious and frustrating. For an ML practitioner, a more fruitful

strategy is to use state-of-the-art architectures that researchers have

published and cut out the laborious process of trying to generate your

own network.

�Training a Deep CNN on GPU
In this section we are going to build on what we learned in the previous

section and construct a deeper CNN. For this you almost definitely

need a GPU-enabled machine whether this is your own or in the cloud.

We are going to be using the CIFAR10 data set, but this time we will be

basing our CNN architecture on the VGG architecture (Simonyan &

Zisserman, 2014). We slowly build up the network using the standard

building blocks used in CNNs and see how adding these to our network

affects performance. All the steps can been found in the notebook

Chapter_06_03.ipynb (http://bit.ly/Nbook_ch06_03).

If you feel that this is a bit of a leap, there is another notebook that we

do not cover here that goes into how the outputs of each layer are affected

by the properties set for that layer (see http://bit.ly/Nbook_ch06_02).

Chapter 6 Convolutional Neural Networks

151

�Model 1
As mentioned earlier, we will be using the CIFAR10 data set, so our inputs

will be 32 × 32 color images and the task is to classify them into one of ten

classes. We will be basing our model on the VGG architecture (Simonyan &

Zisserman, 2014). With this in mind, our first network is shown in Listing 6-11.

Listing 6-11.  CNN with Two Convolution Layers

PYTHON

conv1_1 = tf.layers.conv2d(X,

 filters=64,

 kernel_size=(3,3),

 padding='same',

 data_format=data_format,

 activation=tf.nn.relu)

conv1_2 = tf.layers.conv2d(conv1_1,

 filters=64,

 kernel_size=(3,3),

 padding='same',

 data_format=data_format,

 activation=tf.nn.relu)

pool1_1 = tf.layers.max_pooling2d(conv1_2,

 pool_size=(2,2),

 strides=(2,2),

 padding='valid',

 data_format=data_format)

relu2 = tf.nn.relu(pool1_1)

flatten = tf.reshape(relu2, shape=[-1, 64*16*16])

fc1 = tf.layers.dense(flatten, 4096, activation=tf.nn.relu)

fc2 = tf.layers.dense(fc1, 4096, activation=tf.nn.relu)

model = tf.layers.dense(fc2, N_CLASSES, name='output')

Chapter 6 Convolutional Neural Networks

152

We have two convolution layers followed by a max pooling layer, which

makes up the featurizing portion of our CNN. The classification part of our

CNN is made up of two fully connected dense layers and our final output is

the same size as the number of classes we expect.

Our model gets an accuracy of 72.1 percent on the test set after training

for 20 epochs. We can also see that it achieves 100 percent on the training

set a few epochs before we stop training. It would usually be prudent to stop

the model earlier, and there are usually callbacks that can be used in any

of the frameworks to do this. We are simply not using these here to try and

keep things simple. By running the notebook you should get similar results.

�Model 2
With the second model we add a second convolution block. In keeping

with the VGG architecture, we add two convolution layers each with

128 filters as well as a max pooling layer (see Listing 6-12). This time we

will train it for 10 epochs.

Listing 6-12.  CNN with Four Convolution Layers

PYTHON

Block 1

conv1_1 = tf.layers.conv2d(X,

 filters=64,

 kernel_size=(3,3),

 padding='same',

 data_format=data_format,

 activation=tf.nn.relu)

conv1_2 = tf.layers.conv2d(conv1_1,

 filters=64,

 kernel_size=(3,3),

 padding='same',

Chapter 6 Convolutional Neural Networks

153

 data_format=data_format,

 activation=tf.nn.relu)

pool1_1 = tf.layers.max_pooling2d(conv1_2,

 pool_size=(2,2),

 strides=(2,2),

 padding='valid',

 data_format=data_format)

Block 2

conv2_1 = tf.layers.conv2d(pool1_1,

 filters=128,

 kernel_size=(3,3),

 padding='same',

 data_format=data_format,

 activation=tf.nn.relu)

conv2_2 = tf.layers.conv2d(conv2_1,

 filters=128,

 kernel_size=(3,3),

 padding='same',

 data_format=data_format,

 activation=tf.nn.relu)

pool2_1 = tf.layers.max_pooling2d(conv2_2,

 pool_size=(2,2),

 strides=(2,2),

 padding='valid',

 data_format=data_format)

relu2 = tf.nn.relu(pool2_1)

flatten = tf.reshape(relu2, shape=[-1, 128*8*8])

fc1 = tf.layers.dense(flatten, 4096, activation=tf.nn.relu)

fc2 = tf.layers.dense(fc1, 4096, activation=tf.nn.relu)

model = tf.layers.dense(fc2, N_CLASSES, name='output')

Chapter 6 Convolutional Neural Networks

154

After training it for 10 epochs you should find the performance of your

model has improved slightly.

�Model 3
Let’s add another convolution block. This time, though, we increase the

number of filters to 256, again in keeping with the VGG architecture.

See Listing 6-13.

Listing 6-13.  CNN with Seven Convolution Layers

PYTHON

Block 1

conv1_1 = tf.layers.conv2d(X,

 filters=64,

 kernel_size=(3,3),

 padding='same',

 data_format=data_format,

 activation=tf.nn.relu)

conv1_2 = tf.layers.conv2d(conv1_1,

 filters=64,

 kernel_size=(3,3),

 padding='same',

 data_format=data_format,

 activation=tf.nn.relu)

pool1_1 = tf.layers.max_pooling2d(conv1_2,

 pool_size=(2,2),

 strides=(2,2),

 padding='valid',

 data_format=data_format)

Chapter 6 Convolutional Neural Networks

155

Block 2

conv2_1 = tf.layers.conv2d(pool1_1,

 filters=128,

 kernel_size=(3,3),

 padding='same',

 data_format=data_format,

 activation=tf.nn.relu)

conv2_2 = tf.layers.conv2d(conv2_1,

 filters=128,

 kernel_size=(3,3),

 padding='same',

 data_format=data_format,

 activation=tf.nn.relu)

pool2_1 = tf.layers.max_pooling2d(conv2_2,

 pool_size=(2,2),

 strides=(2,2),

 padding='valid',

 data_format=data_format)

Block 3

conv3_1 = tf.layers.conv2d(pool2_1,

 filters=256,

 kernel_size=(3,3),

 padding='same',

 data_format=data_format,

 activation=tf.nn.relu)

conv3_2 = tf.layers.conv2d(conv3_1,

 filters=256,

 kernel_size=(3,3),

 padding='same',

 data_format=data_format,

 activation=tf.nn.relu)

Chapter 6 Convolutional Neural Networks

156

conv3_3 = tf.layers.conv2d(conv3_2,

 filters=256,

 kernel_size=(3,3),

 padding='same',

 data_format=data_format,

 activation=tf.nn.relu)

pool3_1 = tf.layers.max_pooling2d(conv3_3,

 pool_size=(2,2),

 strides=(2,2),

 padding='valid',

 data_format=data_format)

relu2 = tf.nn.relu(pool3_1)

flatten = tf.reshape(relu2, shape=[-1, 256*4*4])

fc1 = tf.layers.dense(flatten, 4096, activation=tf.nn.relu)

fc2 = tf.layers.dense(fc1, 4096, activation=tf.nn.relu)

model = tf.layers.dense(fc2, N_CLASSES, name='output')

Once you have trained the model for 10 epochs you should find that

the performance has increased again, albeit by a smaller margin. You

should notice that with each additional layer we get better results, but the

returns diminish with each successive block.

�Model 4
Due to the large number of free parameters CNNs can benefit from

regularization. One way to regularize is to use dropout (see Listing 6-14),

which we talked about in Chapter 2. The dropout layer will randomly

during the forward pass zero a certain proportion of its outputs. This

means it will not participate in the forward calculations but also not

receive any weight updates (Srivastava, Hinton, Krizhevsky, Sutskever, &

Salakhutdinov, 2014). Dropout can reduce the dependence of the CNN or

any deep learning on one or a small number of neurons. This in turn can

make the model robust to absence of information.

Chapter 6 Convolutional Neural Networks

157

Listing 6-14.  CNN with Seven Convolution Layers and Dropout

PYTHON

Block 1

conv1_1 = tf.layers.conv2d(X,

 filters=64,

 kernel_size=(3,3),

 padding='same',

 data_format=data_format,

 activation=tf.nn.relu)

conv1_2 = tf.layers.conv2d(conv1_1,

 filters=64,

 kernel_size=(3,3),

 padding='same',

 data_format=data_format,

 activation=tf.nn.relu)

pool1_1 = tf.layers.max_pooling2d(conv1_2,

 pool_size=(2,2),

 strides=(2,2),

 padding='valid',

 data_format=data_format)

Block 2

conv2_1 = tf.layers.conv2d(pool1_1,

 filters=128,

 kernel_size=(3,3),

 padding='same',

 data_format=data_format,

 activation=tf.nn.relu)

conv2_2 = tf.layers.conv2d(conv2_1,

 filters=128,

 kernel_size=(3,3),

 padding='same',

Chapter 6 Convolutional Neural Networks

158

 data_format=data_format,

 activation=tf.nn.relu)

pool2_1 = tf.layers.max_pooling2d(conv2_2,

 pool_size=(2,2),

 strides=(2,2),

 padding='valid',

 data_format=data_format)

Block 3

conv3_1 = tf.layers.conv2d(pool2_1,

 filters=256,

 kernel_size=(3,3),

 padding='same',

 data_format=data_format,

 activation=tf.nn.relu)

conv3_2 = tf.layers.conv2d(conv3_1,

 filters=256,

 kernel_size=(3,3),

 padding='same',

 data_format=data_format,

 activation=tf.nn.relu)

conv3_3 = tf.layers.conv2d(conv3_2,

 filters=256,

 kernel_size=(3,3),

 padding='same',

 data_format=data_format,

 activation=tf.nn.relu)

pool3_1 = tf.layers.max_pooling2d(conv3_3,

 pool_size=(2,2),

 strides=(2,2),

 padding='valid',

 data_format=data_format)

Chapter 6 Convolutional Neural Networks

159

relu2 = tf.nn.relu(pool3_1)

flatten = tf.reshape(relu2, shape=[-1, 256*4*4])

fc1 = tf.layers.dense(flatten, 4096, activation=tf.nn.relu)

drop1 = tf.layers.dropout(fc1, 0.5, training=training)

fc2 = tf.layers.dense(drop1, 4096, activation=tf.nn.relu)

drop2 = tf.layers.dropout(fc2, 0.5, training=training)

model = tf.layers.dense(drop2, N_CLASSES, name='output')

When we ran this model we saw our accuracy increase further to 80

percent. Dropout is a very effective regularization technique and almost all

CNN architectures make use of it, including VGG.

The VGG architecture actually has even more layers than our final model,

but it was designed to tackle the ImageNet data set, which contains a lot

more data than the CIFAR10 data set. Adding further layers with the limited

data available would quickly prove untenable. We would have to spend a lot

of effort to try and ensure that our model does not overfit the data.3

�Transfer Learning
Training a CNN from scratch often requires a large amount of data.

One strategy to overcome this limitation is to use transfer learning, as

mentioned in Chapter 2. This means that we use a predefined network that

has been trained on a much larger but similar data set. We then use that

network for our problem; in other words, transferring the learning that the

network has from other data onto our problem. The simplest approach

is to simply remove the topmost layers and use the output from these

penultimate layers as features in our own ML model. This can be another

neural network such as MLP or a classical ML model such as Support

Vector Machines or Random Forest.

3�We also implemented the same notebooks using Keras, which can be found at
http://bit.ly/Ch06Keras.

Chapter 6 Convolutional Neural Networks

160

Another approach is to replace the topmost fully connected layers and

then freeze certain layers and retrain it. Freezing layers means that the

weights of these layers are not updated during training. Which layers to

freeze depends on a number of factors, including the similarity between

the data sets used and so on. Retraining more layers can often improve the

accuracy of the model, but also increases the possibility of overfitting.

Almost all network topologies published have pretrained weights for

the ImageNet data set, one of the largest image classification data sets and

more or less the standard for image classification problems. This data set

consists of millions of images spanning multiple classes (ImageNet, n.d.).

Using pretrained CNNs trained on ImageNet is an easy way to get very

good results for image classification tasks.

�Summary
This chapter briefly described what constitutes a CNN. We have explained

why convolution is useful in computer vision tasks, as well as what the

shortcomings of CNNs are. We went through a simple example of creating

a CNN in TensorFlow and then expanded on it through a series of steps

and observed the effect it had on the performance of the model. This

chapter has only scratched the surface of the vast information on CNNs,

with many great books covering the theory behind them. The next chapter

goes over a different deep learning architecture, RNNs, which are well

suited to the tasks of sequence modeling such as language translation.

Chapter 6 Convolutional Neural Networks

161© Mathew Salvaris, Danielle Dean, Wee Hyong Tok 2018
M. Salvaris et al., Deep Learning with Azure,
https://doi.org/10.1007/978-1-4842-3679-6_7

CHAPTER 7

Recurrent Neural
Networks
The previous chapter showed how a deep learning model—specifically

CNNs—could be applied to images. The process could be decoupled into

a feature extractor that figures out the optimal hidden-state representation

of the input (in this case a vector of feature maps) and a classifier

(typically a fully connected layer). This chapter focuses on the hidden-

state representation of other forms of data and explores RNNs. RNNs are

especially useful for analyzing sequences, which is particularly helpful for

natural language processing and time series analysis.

Even images can be thought of as a subset of sequence data; if we

shuffle the rows and columns (or channels) then the image becomes

unrecognizable. This is not the case for spreadsheet data, for example.

However, CNNs have a very weak notion of order and typically the kernel

size for a convolution is in the single digits. As these convolutions are

stacked on top of each other, the receptive field increases, but the signal

also gets dampened. This means that CNNs typically only care about

temporary spatial relationships, such as a nose or eye. In Figure 7-1, we

can imagine that we have shuffled a sequence, preserving order only

within local groups, but most CNNs will still classify it the same, even

though it makes no sense overall.

162

For some other forms of data, the relationship between members of the

sequence becomes even more important. Music, text, time series data, and

more all depend heavily on a clear representation of history. For example

the sentence, “I did not watch this movie yesterday but I did really like it,”

differs from “I did watch this movie yesterday but I did not really like it,” or

even “This is a lie—I really did not like the movie I watched yesterday.” Not

surprisingly, word order is key. For a CNN to capture a relationship across

so many words, the kernel size has to be much larger than the number of

hidden units required for an RNN to capture the same relationship (and at

some point, it will no longer be possible).

To see why we need a new deep learning structure for these kinds of

sequences, let’s first examine what happens if we try to hack together a

basic neural network to predict the last digit of a sequence. If we imagine

that we have a sequence of numbers (from 0–9) such as [0, 1, 2, 3, 4] and

[9, 8, 7, 6, 5], we can represent each number as a 10-dimensional vector

Figure 7-1.  CNNs have a weak concept of order, as can be seen by
applying ResNet-121 trained on ImageNet to a shuffled image

Chapter 7 Recurrent Neural Networks

163

that is one-hot encoded. For example, the number 2 could be encoded as

[0, 0, 1, 0, 0, 0, 0, 0, 0, 0] and 6 as [0, 0, 0, 0, 0, 0, 1, 0, 0, 0]. To train a network

to predict the last digit of the sequence we can attempt two different

approaches.

First, we can concatenate the four one-hot encoded vectors and thus

create a hidden state that exists in 40-dimensional space. The neural

network then adjusts a weights matrix (size 40 × 10) and a bias matrix

(size 10 × 1) to map this to the label (the last number), which exists in a

10-dimensional space. Second, we can sum the input vectors together

and create a hidden state that exists in 10-dimensional space and train the

network to map this to the label instead.

The issue with the second approach is that by summing the one-hot

encoded vector for 2 and 3, for example, we get [0, 0, 1, 1, 0, 0, 0, 0, 0, 0]

and with this hidden state it is not possible to know whether the input

sequence was [2, 3] or [3, 2] and thus whether the next number should be 4

or 1. The first approach does not have this issue because we can clearly see

that [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0] corresponds to [2, 3].

However, another issue arises when we see that we have learned a weights

matrix that is of size (40 × 10). Our neural network can only work with an

input of four numbers.

Hence, by summing inputs we can work with variable-length

sequences, but we cannot preserve order. In contrast, by concatenating

inputs we can preserve order, but we have to work with a sequence of a

fixed size. RNNs solve this by representing history as a fixed-dimension

vector that handles inputs that are variable-length sequences (and as

we will see in the sequences-to-sequence section, also variable-length

outputs).

The operation of an RNN can be represented as the second neural

network in the preceding example: summing input vectors, but with the

modification that after every summation we multiply the hidden state

by some number. This number remains the same for all time steps and

thus RNNs make use of weight sharing, in a similar manner to CNNs.

Chapter 7 Recurrent Neural Networks

164

If we imagine this number to be 0.5 then we can represent [2] as [0, 0,

1*0.5, 0, 0, 0, 0, 0, 0, 0] and [2, 3] as [0, 0, 1*0.5*0.5, 1*0.5, 0, 0, 0, 0, 0, 0],

which is now a fixed-size hidden state and different from [3, 2], which is

represented as [0, 0, 1*0.5, 1*0.5*0.5, 0, 0, 0, 0, 0, 0]. In practice, we also

apply a nonlinearity (add a bias term, and use a different weights matrix

for input X and hidden); however, as seen earlier, those are not necessary

to understand the fundamental concept behind RNNs.

We can see that the hidden state in any given time period is a

function of all previous hidden states. This means if we have a very long

sequence (perhaps 100 entries) then we will end up with an entry that gets

multiplied by the weights matrix 100 times. If we imagine this matrix to be

scalar (like earlier), if it is less than 1 then the entry will tend to 0, and if

it is above 1 then it will explode toward infinity. We cover this later as the

vanishing/exploding gradient problem.

�RNN Architectures
One of the most exciting features of RNNs is their ability to work in

different design patterns. In contrast with CNNs, which are constrained

to operate with fixed input and output structures like images, RNNs offer

more flexibility due their ability to manage variable sequences of inputs

and outputs.

Figure 7-2 shows different design patterns for RNNs. Figure 7-2(a)

shows the typical structure of a vanilla neural network (no RNN) with

a fixed-size input and output sequence; one example of this is image

classification. Figure 7-2(b) shows the one-to-many pattern, which is the

typical structure used in image captioning, where the input is an image, and

the output is a sequence of words describing the image. Figure 7-2(c) shows

the many-to-one pattern. One application of this pattern is sentiment

analysis, where the input is a text and the output is a boolean (positive or

negative). Figure 7-2(d) shows the synchronous many-to-many pattern.

Chapter 7 Recurrent Neural Networks

165

An example of this could be video captioning, where we want to set a tag

to each video frame. Finally, Figure 7-2(e) shows the asynchronous many-

to-many representation, which is the typical case of machine translation,

where the input could be text in English and the output text in Spanish.

Figure 7-2.  Bottom layer is the inputs, in the middle are the hidden
states, and the top layer is the outputs. (a) Vanilla network (no RNN)
with single input, hidden state, and single output. (b) One-to-many
pattern. (c) Many-to-one pattern. (d) Synchronous many-to-many
pattern. (e) Asynchronous many-to-many pattern, also referred as
encoder–decoder.

Apart from the previous design patterns, RNNs vary depending on

how the interconnection between the different layers is performed. The

standard case is where the RNN has recurrent connections between

hidden units, as depicted in Figure 7-3. In this case, the RNN is Turing-

complete (Siegelmann, 1995), and therefore can simulate any arbitrary

program. In essence, an RNN repeatedly applies a nonlinear function,

with trainable parameters to a hidden state, which make them suitable for

sequence modeling tasks.

Chapter 7 Recurrent Neural Networks

166

However, their recurrent structure constrains each step computation

to depend on completing the previous step, making the network difficult

to parallelize and scale. Similar to CNNs, training an RNN involves

computing the gradient of the loss function with respect to the weights.

This operation involves computing a forward propagation, moving from

left to right through in Figure 7-3(b), followed by a backward propagation,

moving from right to left, to update the weights. This training process is

expensive because the forward propagation is inherently sequential, and

thus cannot be parallelized. The backpropagation algorithm applied in

RNNs is called backpropagation through time (BPTT), and is discussed in

detail later in this chapter.

A solution to the slow training limitation can be found in the output

recurrent structure shown in Figure 7-4. The RNNs from this family

connect each output with the future hidden state, eliminating the hidden-

to-hidden connections. In this scenario, any loss function comparing the

prediction and target at a specific time step can be decoupled; therefore,

the gradient for each step is computed independently and parallelized.

Figure 7-3.  (a) RNN with recurrent connection between hidden
states. (b) Unrolled RNN, showing the connection between hidden
states.

Chapter 7 Recurrent Neural Networks

167

Unfortunately, RNNs with output recurrent connections are

less powerful than their counterparts containing hidden-to-hidden

connections (Goodfellow et al., 2016). For example, they cannot simulate

a universal Turing machine. Due to the lack of hidden-to-hidden

connections, the only signal that is transferred to the next step is the

output, which unless it is very high dimensional and rich, could miss

important information from the past.

The structures seen until now share the idea that all sequences are

forward sequences, meaning that the network captures information of the

present state based on past states. However, there are some cases where

the relationships in the opposite direction are also valuable. Such is the

case of speech recognition or text understanding. In some languages, the

linguistic relationships between the different words can be dependent on

the future or the past. In English, for example, the verb is usually located in

the middle of the sentence, whereas in German, the verb tends to be at the

end of the sentence. To address this phenomenon, bidirectional recurrent

neural networks were proposed (Schuster & Paliwal, 1997).

Figure 7-4.  (a) RNN with output recurrent connection. (b) Unrolled
structure of an RNN with output recurrence.

Chapter 7 Recurrent Neural Networks

168

Bidirectional recurrent neural networks (BiRNNs) have a layer of

hidden connections that moves forward through time and a layer that

moves backward (see Figure 7-5). This structure allows the output to learn

representations of its near future and past states, at the price of making the

training process computationally more expensive.

Figure 7-5.  Bidirectional RNN. BiRNNs contain a layer of forward
connections to encode future dependencies, h, and a layer of
backward connections to encode past dependencies, g. In the
presented structure, each hidden unit is connected to another hidden
unit and to the output.

Chapter 7 Recurrent Neural Networks

169

�Training RNNs
RNN training shares some similarities with the CNN training method that

we saw in the previous chapter, but in the RNN case, the algorithm used is

called BPTT (Werbos, 1990). The underlying idea behind BPTT is simply

to apply the same generalized backpropagation algorithm to the unrolled

computational graph. The steps of training an RNN are as follows:

	 1.	 We have an RNN architecture like the ones shown in

Figure 7-3, Figure 7-4, and Figure 7-5. The weights

are initialized based on some distribution.

	 2.	 We input the sequences as minibatches to the RNN

as (batch size, sequence size). The sequence size can

have a variable length depending on the framework

you are using.

	 3.	 We compute the forward propagation by unrolling

the graph and obtaining the predicted output at

each time step.

	 4.	 We compare the predicted output with the true

labels and accumulate the error (or loss) across each

time step.

	 5.	 We apply backpropagation by computing the

gradient of the loss with respect to the weights and

use gradient descent to update the weights.

	 6.	 This process is repeated for a number of epochs or

until some exit criteria are met.

For long sequences, there is a high cost of updating the weights.

For instance, the gradient of an RNN with sequences of length 1,000 is

equivalent to a forward and a backward pass in a neural network with

1,000 layers (Sutskever, 2013).

Chapter 7 Recurrent Neural Networks

170

Therefore, a practical approach for training RNNs is to compute

BPTT in a sliding window of the unrolled graph, which is referred as

truncated BPTT (Williams & Peng, 1990). The idea is simple: Each

complete sequence is sliced into a number of smaller subsequences

and BPTT is applied to each of these parts. This approach works well in

practice, especially in word modeling problems (Mikolov, Karafiát, Burget,

Černocký, & Khudanpur, 2010), but the algorithm is blind to dependencies

between different windows.

�Gated RNNs
Due to the iterative nature of the propagation error in RNNs, in some cases,

the loss gradients can vanish as they get backpropagated in time. This

is referred to as vanishing gradients (Bengio, Simard, & Frasconi, 1994).

A vanishing gradient means in practice that the loss gradient is a small

quantity, therefore the process of updating the weights can take too long.

More rarely, the gradient can explode, producing gradients exponentially

large, referred to as exploding gradients. This also makes RNNs difficult to

train on sequences with long temporal dependencies.

A solution to the vanishing and exploding gradient problem is

the LSTM RNN (Gers, Schmidhuber, & Cummins, 2000; Hochreiter &

Schmidhuber, 1997), which is a network type specially designed to learn

long-term relationships. For it, they substitute the hidden units of standard

RNNs with a new block called the LSTM cell. The intuition behind these

cells is that they allow control of the amount of information that is going

to be passed to the next state and use a forgetting mechanism to stop the

information that is not useful anymore.

The LSTM block (see Figure 7-6) is composed of a state unit and three

gating units: forget gate, input gate, and output gate. At a high level, the

state unit handles the information transfer between the input and the

output, and contains a self-loop. The gating units, which simply set their

Chapter 7 Recurrent Neural Networks

171

weights to a value between 0 and 1 via a sigmoid function, control the

amount of information that is going to come from the input, go to the

output, and be forgotten from the state unit.

Figure 7-6.  Schema of an LSTM. It has three units: input x, state s,
and output y, which are controlled by three gates: input gate gi, forget
gate gf, and output gate go. The state unit contains a self-loop.

Empirical work has shown that the key components of the LSTM are

the forget gate and the output activation functions, and that there is no

significant difference in terms of accuracy when comparing an LSTM with

its other variants (Greff, Srivastava, Koutník, Steunebrink, & Schmidhuber,

2017).

A variant of the LSTM is the gated recurrent unit (GRU; Cho et al.,

2014), which simplifies the structure of the LSTM using a slightly different

combination of gating units. Specifically, they lack the output gate, which

exposes the full hidden content to the output. In contrast, the LSTM

unit uses the output gate to control the amount of memory that is seen.

Chapter 7 Recurrent Neural Networks

172

This lack of the output gate in GRUs makes them computationally less

expensive, but it could lead to a suboptimal memory representation, which

might be the reason an LSTM tends to remember longer sequences. For

a more detailed comparison between LSTMs and GRUs, please refer to

Chung, Gulcehre, Cho, & Bengio, 2014).

�Sequence-to-Sequence Models
and Attention Mechanism
Sequence-to-sequence models (Cho et al., 2014; Sutskever, Vinyals, &

Le, 2014) are a relatively recent architecture that have created many

exciting possibilities for machine translation, speech recognition, and text

summarization. The basic principle is to map an input sequence to an

output sequence, which can be of a different length, a variant of Figure 7-2(e)

This is accomplished by combining an input RNN (or an encoder) that maps

a variable-length sequence to a fixed-length vector with an output RNN (or

a decoder) that maps a fixed-length vector to a variable-length sequence. As

an example, see the blog post with associated tutorial for generating music

using an LSTM sequence-to-sequence model with Azure Machine Learning

from Erika Menezes available at http://bit.ly/MusicGenAzure.

Sequence-to-sequence models in the realm of machine translation

(called neural machine translation [NMT]) have largely replaced phrase-

based machine translation because they do not require lots of manual

tuning for each subcomponent (and for each language). NMT (shown in

Figure 7-7) models might have different RNN structures for the encoder

and the decoder component; the structure of the RNNs can vary in several

ways: cell type such as GRU or LSTM, number of layers, and directionality

(unidirectional or bidirectional).

Chapter 7 Recurrent Neural Networks

173

It has been empirically observed (Cho et al., 2014) that NMT models

struggle to translate long sentences. This is because the network must

compress all the information from the input sentence into a single fixed-

length vector, irrespective of the length of the sentence.

Consider this sentence: “I went to the park yesterday to play

badminton and my dog jumped into the pond.” We can see there are (at

least) two components: “I went to the park yesterday to play badminton”

and “my dog jumped into the pond.” We might not care about the first

component when attempting to translate the second component (and

vice versa). However, an NMT model has no choice but to use the hidden

vector that would contain both components to produce an input. Ideally,

we would have a model that assigns importance to the input words for

Figure 7-7.  Example of a simple NMT architecture during training
for English–French

Chapter 7 Recurrent Neural Networks

174

each output word. In that case the relative importance of the words in the

first component would be very low when parts of the second component

are being translated. Not everything is required in a sentence to translate

some words.

The attention mechanism (Bahdanau, Cho, & Bengio, 2014; Yang

et al., 2016) attempts to do just that: It tries to create a weighted average

that aligns the important components from the input sentence for each

word in the output sentence. The main difference from a standard NMT

model is that instead of encoding the whole input sentence into a single

fixed-length vector, the input sequence is encoded into a sequence of

fixed-length vectors, a “random access memory,” and different vectors are

weighted differently for each word in the translation. This means that the

model is now free to create longer sequences of hidden vectors for longer

sentences and learn which of those to focus on during the decoder stage.

Putting these components together, the mechanism might look like

Figure 7-8. The network first encodes each unit of the input sentence

(usually a word) into a distributed feature vector. The hidden state

becomes the collection of these feature vectors. Then during the decoder

stage, the model predicts each word iteratively using all previously

generated predictions along with the sequence of feature vectors, where

it has learned how much attention to place on each feature vector (input

word) for each of target words it predicts.

Chapter 7 Recurrent Neural Networks

175

This approach of jointly aligning words (which words from input

are needed to predict output) and translating has empirically achieved

state-of-the-art results over hand-crafted methods and basic sequence-

to-sequence models and is the core component behind most of the online

translation services (Klein, Kim, Deng, Senellart, & Rush, 2017).

Figure 7-8.  Example of attention being applied. Note that “student”
has the highest weighting (represented by line thickness) during
prediction of “étudiant.”

Chapter 7 Recurrent Neural Networks

176

�RNN Examples
In this section, we are going to study two examples of RNNs implemented

in TensorFlow. The code is available at http://bit.ly/AzureRNNCode.

The first example runs sentiment analysis in TensorFlow as well as

several other frameworks. The second example builds off the example in

Chapter 6 to illustrate the differences between CNNs and RNNs on image

classification. The third example uses RNNs for time series analysis.

More Info W e recommend provisioning an Azure DLVM to run
the code examples in this chapter. Please see Chapter 4 for more
information.

�Example 1: Sentiment Analysis
We first highly recommend the examples available at http://bit.ly/

DLComparisons, which at the time of this writing include six different

Python deep learning framework implementations for an RNN (GRU)

to predict sentiment on the IMDB movie review data set, as well as an

implementation in R (Keras with TensorFlow back end) as well as Julia

(Knet). These examples include training times for an NC series DLVM

(NVIDIA Tesla K80 GPU) as well as an NC_v2 series DLVM (NDIVIA Tesla

P100 GPU) so one can follow along and also compare timings to make sure

the setup is correct.

�Example 2: Image Classification
In Chapter 6, we saw how a CNN is typically used to classify an image.

Here, we examine how to do the same but with an RNN. Although this is

not a traditional application of RNNs, it illustrates that it is often possible

Chapter 7 Recurrent Neural Networks

177

to decouple the neural network architecture to the problem type and to

illustrate some differences between CNNs and RNNs.

The data for a CNN is loaded as [number of examples, height, width,

channels]. For an RNN we simply reshape this to [number of examples,

height, width*channels] (see Listing 7-1).1 This means that for the CIFAR

data we will have 32 time steps (rows of pixels) where each row contains

32*3 (number of columns * number of channels) variables. For example,

the first time step will contain [row1_column1_red_pixel, row1_column1_

green_pixel, row1_column1_blue_pixel, row1_column2_red_pixel, … ,

row1_column32_bue_pixel].

Listing 7-1.  Loading Data

PYTHON

Original data for CNN

x_train, x_test, y_train, y_test = cifar_for_library(channel_

first=False)

RNN: Sequences of 32 time-steps, each containing 32*3 units

N_STEPS = 32 # Each step is a row

N_INPUTS = 32*3 # Each step contains 32 columns * 3 channels

x_train = x_train.reshape(x_train.shape[0], N_STEPS, N_INPUTS)

x_test = x_test.reshape(x_test.shape[0], N_STEPS, N_INPUTS)

We can then create a network architecture consisting of 64 basic RNN

cells and apply that to each time step of our input tensor, as shown in

Listing 7-2. We will collect the output from the last time step and apply a

fully connected layer with 10 neurons.

1�This might be different between CPU and GPU.

Chapter 7 Recurrent Neural Networks

178

Listing 7-2.  Create Network Architecture

PYTHON

def create_symbol(X, n_steps=32, nhid=64, n_classes=10):

 # �Convert x to a list[steps] where element has shape=2

[batch_size, inputs]

 # This is the format that rnn.static_rnn expects

 x=tf.unstack(X,n_steps,axis=1)

 cell=tf.nn.rnn_cell.BasicRNNCell(nhid)

 �outputs,states=tf.contrib.rnn.static_rnn(cell,x,dtype=tf.

float32)

 �logits=tf.layers.dense(outputs[-1],n_

classes,activation=None)

 return logits

To train a model, we need to create a training operator that is an

optimizer (in this example, Adam) that works on a loss (and the loss is a

function of the prediction and ground-truth labels), as shown in Listing 7-3.

Listing 7-3.  Define How Model Will Be Trained

PYTHON

def init_model(m, y, lr=LR, b1=BETA_1, b2=BETA_2, eps=EPS):

 �xentropy=tf.nn.sparse_softmax_cross_entropy_with_

logits(logits=m,labels=y)

 training_op= (tf.train.AdamOptimizer(lr,b1,b2,eps)

 .minimize(tf.reduce_mean(xentropy)))

 return training_op

To start training we need to create our placeholders and initialize the

variables in the graph, as displayed in Listing 7-4.

Chapter 7 Recurrent Neural Networks

179

Listing 7-4.  Placeholders and Initialization

PYTHON

Placeholders

X = tf.placeholder(tf.float32, shape=[None, N_STEPS, N_INPUTS])

y=tf.placeholder(tf.int32,shape=[None]) # Sparse

Initialize model

sym = create_symbol(X)

model = init_model(sym, y)

sess = tf.Session()

sess.run(tf.global_variables_initializer())

We can then train our model as shown in Listing 7-5.

Listing 7-5.  Training Model

PYTHON

for j in range(EPOCHS):

 �for data,label in yield_mb(x_train,y_train,BATCHSIZE,

shuffle=True):

 sess.run(model,feed_dict={X:data,y:label})

The generator to supply our data is created as shown in Listing 7-6.

Listing 7-6.  Generator to Supply Data to Model

PYTHON

def shuffle_data(X, y):

 s=np.arange(len(X))

 np.random.shuffle(s)

 X=X[s]

 y=y[s]

 return X,y

Chapter 7 Recurrent Neural Networks

180

def yield_mb(X, y, batchsize=64, shuffle=False):

 if shuffle:

 X,y=shuffle_data(X,y)

 # Only complete batches are submitted

 for i in range(len(X) //batchsize):

 �yield X[i*batchsize:(i+1) *batchsize],

y[i*batchsize:(i+1) *batchsize]

To get a prediction on our test data we apply an argmax() operation on

the model’s predictions to pick the most likely class (see Listing 7-7). If we

wanted class probabilities, we would first apply a softmax transformation;

however, this is only needed for training and comes bundled with the loss

function for computational efficiency.

Listing 7-7.  Get Prediction

PYTHON

for data, label in yield_mb(x_test, y_test, BATCHSIZE):

 pred=tf.argmax(sym,1)

 output=sess.run(pred,feed_dict={X:data})

Note that creating generators, creating placeholders, initializing

variables, and training with feed_dict is a rather low-level API and useful

only to help show how everything works. In practice, all of these can be

abstracted away by using TensorFlow’s Estimator API.

�Example 3: Time Series
In the next example we are going to predict Microsoft stock using an LSTM.

We will start by getting the data into a data frame, as shown in Listing 7-8.

The data are the stock value of Microsoft from 2012 to 2017, obtained from

http://bit.ly/MSFThist. The .csv file contains a first column with the

date, four columns with the price of the share (open, high, low, and close)

Chapter 7 Recurrent Neural Networks

181

and some other information that we are not going to use. From the four

price values, we are going to take the mean for simplicity. We are going

to predict just one step into the future because the longer we predict,

the less accurate the prediction will be. You can also play with different

hyperparameters.

Listing 7-8.  Define Hyperparameters and Read in Historical Data

PYTHON

EPOCHS = 5

TEST_SIZE = 0.3

TIME_AHEAD = 1 #prediction step

BATCH_SIZE = 1

UNITS = 25

df = pd.read_csv('https://ikpublictutorial.blob.core.windows.

net/book/MSFT_2012_2017.csv')

df = df.drop(['Adj Close', 'Volume'], axis=1)

mean_price = df.mean(axis = 1)

The next step is to normalize the data and generate the train and test

sets, as shown in Listing 7-9.

Listing 7-9.  Normalize Data and Create Training and Test Sets

PYTHON

scaler = MinMaxScaler(feature_range=(0, 1))

mean_price = scaler.fit_transform(np.reshape(mean_price.values,

(len(mean_price),1)))

train, test = train_test_split(mean_price, test_size=TEST_SIZE,

shuffle=False)

print(train.shape) #(1056, 1)

print(test.shape) #(453, 1)

Chapter 7 Recurrent Neural Networks

182

Then we need to perform a reshaping, so the data can be added to the

model, as shown in Listing 7-10. We also define the time ahead that we are

going to predict; normally, the smaller this value is, the more accurate the

prediction will be.

Listing 7-10.  Reshape Data for Model

PYTHON

def to_1dimension(df, step_size):

 X,y= [], []

 for i in range(len(df)-step_size-1):

 data=df[i:(i+step_size),0]

 X.append(data)

 y.append(df[i+step_size,0])

 X,y=np.array(X),np.array(y)

 X=np.reshape(X, (X.shape[0],1,X.shape[1]))

 return X,y

X_train, y_train = to_1dimension(train, TIME_AHEAD)

X_test, y_test = to_1dimension(test, TIME_AHEAD)

The next step is to define and train the model, as displayed in

Listing 7-11. In this case we use a basic LSTM cell, but you can try to

use a GRU or a BiLSTM.

Listing 7-11.  Define and Train Model

PYTHON

def create_symbol(X, units=10, activation='linear',

time_ahead=1):

 cell=tf.contrib.rnn.LSTMCell(units)

 outputs,states=tf.nn.dynamic_rnn(cell,X,dtype=tf.float32)

Chapter 7 Recurrent Neural Networks

183

 �sym=tf.layers.dense(outputs[-1],1,activation=None,name='out

put')

 return sym

X = tf.placeholder(tf.float32, shape=[None, 1, TIME_AHEAD])

y = tf.placeholder(tf.float32, shape=[None])

sym = create_symbol(X, units=UNITS, time_ahead=TIME_AHEAD)

loss = tf.reduce_mean(tf.squared_difference(sym, y)) #mse

optimizer = tf.train.AdamOptimizer()

model = optimizer.minimize(loss)

init = tf.global_variables_initializer()

sess = tf.Session()

sess.run(init)

for i in range(EPOCHS):

 ii=0

 while(ii+BATCH_SIZE) <=len(X_train):

 X_batch=X_train[ii:ii+BATCH_SIZE,:,:]

 y_batch=y_train[ii:ii+BATCH_SIZE]

 sess.run(model,feed_dict={X:X_batch,y:y_batch})

 ii+=BATCH_SIZE

 loss_train=sess.run(loss,feed_dict={X:X_batch,y:y_batch})

 �print('Epoch {}/{}'.format(i+1,EPOCHS),' Current loss: {}'.

format(loss_train))

Finally, we are going to calculate the root mean squared error (RMSE)

of the test set prediction, as shown in Listing 7-12.

Chapter 7 Recurrent Neural Networks

184

Listing 7-12.  Calculate Test Set RMSE

PYTHON

y_guess = np.zeros(y_test.shape[0], dtype=np.float32)

ii = 0

while(ii + BATCH_SIZE) <= len(X_test):

 X_batch=X_test[ii:ii+BATCH_SIZE,:,:]

 output=sess.run(sym,feed_dict={X:X_batch})

 y_guess[ii:ii+BATCH_SIZE] =output

 ii+=BATCH_SIZE

y_test_inv = scaler.inverse_transform([y_test])

pred_test = scaler.inverse_transform([y_guess])

score = math.sqrt(mean_squared_error(y_test_inv, pred_test))

print('Test RMSE: %.2f' % (score)) #3.52

Looking at Figure 7-9, it seems that the LSTM is predicting the stocks

well. Now you can play with different time horizons or LSTM parameters.

This was a simple example of using LSTMs for time series analysis to

illustrate the concept of using LSTMs in forecasting.

Chapter 7 Recurrent Neural Networks

185

For another example of using LSTMs for time series analysis,

we recommend the tutorial for predictive maintenance using Azure

Machine Learning services available at http://bit.ly/DLforPM. We

also recommend the blog post by Andrej Karpathy on the Unreasonable

Effectiveness of Recurrent Neural Networks available at http://bit.ly/

RNNEffective.

Figure 7-9.  Stock forecasting using an LSTM

Chapter 7 Recurrent Neural Networks

186

�Summary
This chapter introduced RNNs and different variants that are useful for

building applications on top of sequence data. These models are especially

useful for natural language processing and time series analysis, although

the application of RNNs can be quite broad. The chapter finished with two

practical “how-to” examples, and a reference to a recommended resource

for trying different deep learning frameworks for an RNN (GRU) example for

sentiment analysis on the Azure DLVM. In the chapter that follows, we next

dive into a completely different type of deep learning network that is a more

recent development and shows promise for many applications as well.

RNNs have become increasingly popular in the last few years, but

recently we have seen a trend back to CNN architectures for sequence

data, perhaps partly owing to CNN being easier to train (both from a bare-

metal and parameter-tuning perspective).

Stacking attention-encoded vectors in a hierarchical tree can also

preserve order within a sequence and capture long-term dependencies.

These types of networks are called hierarchical neural attention and are

similar to WaveNet, which has been used to synthesize speech.

Temporal convolutional networks that (1) have no information

leakage from future to past (i.e., casual), and (2) can take variable-length

sequences just like RNNs, have become increasingly popular for pure-

sequence tasks that have been previously commonly regarded as RNN

territory.

Chapter 7 Recurrent Neural Networks

187© Mathew Salvaris, Danielle Dean, Wee Hyong Tok 2018
M. Salvaris et al., Deep Learning with Azure,
https://doi.org/10.1007/978-1-4842-3679-6_8

CHAPTER 8

Generative
Adversarial Networks
For many AI projects, deep learning techniques are increasingly being

used as the building blocks for innovative solutions ranging from image

classification to object detection, image segmentation, image similarity,

and text analytics (e.g., sentiment analysis, key phrase extraction). GANs,

first introduced by Goodfellow et al. (2014), are emerging as a powerful new

approach toward teaching computers how to do complex tasks through a

generative process. As noted by Yann LeCun (at http://bit.ly/LeCunGANs),

GANs are truly the “coolest idea in machine learning in the last 20 years.”

In recent years, GANs have shown tremendous potential and have

been applied in various scenarios, ranging from image synthesis to

enhancing the quality of images (superresolution), image-to-image

translations, text-to-image generation, and more. In addition, GANs

are the building blocks for advancements in the use of AI for art, music,

and creativity (e.g., music generation, music accompaniment, poetry

generation, etc.).

This chapter describes the secrets behind GANs. We first walk through

how GANs are used in various AI applications and scenarios. We then

step through code samples for one of the novel GANs, called CycleGAN,

to understand how GANs work. For this, we use an Azure DLVM as the

computing environment. For details on setting up the DLVM to run the

code sample, please see Chapter 4.

188

�What Are Generative Adversarial Networks?
GANs are emerging as powerful techniques for both unsupervised and

semisupervised learning. A basic GAN consists of the following:

•	 A generative model (i.e., generator) generates an

object. The generator does not know anything about

the real objects and learns by interacting with the

discriminator. For example, a generator can generate

an image.

•	 A discriminative model (i.e., discriminator) determines

whether an object is real (usually represented by a

value close to 1) or fake (represented by a value

close to 0).

•	 An adversarial loss (or error signal) is provided by the

discriminator to the generator such that it enables

the generator to generate objects that are as close as

possible to the real objects.

Figure 8-1 shows the interaction between the generator and the

discriminator. The discriminator is a classifier that determines whether

the image given to it is a real or fake image. The generator uses the noise

vector and feedback from the discriminator to try its best to generate

images that are as close to real images as possible. This continues until the

GAN algorithm converges. In many GANs, the generator and discriminator

usually consist of common network architectures modeled after DenseNet,

U-Net, and ResNet. Some example network architectures were discussed

in Chapter 3.

Chapter 8 Generative Adversarial Networks

189

Figure 8-2 (inspired by work by Goodfellow et al., 2014) describes

the theoretical basis for how a GAN works. The generator (G) and

discriminator (D) are represented by the solid line and the dashed lines,

respectively. The data generating distribution is denoted by the dotted

lines. The two horizontal lines in Figure 8-2 denote the domain from which

z is sampled uniformly (lower line), and the domain of x (upper line). The

arrows from the lower to the upper line denote the mapping x = G(z). From

Figure 8-2, you will notice that over time, as the GAN converges, the solid

line and the dotted lines are close to each other (or almost similar). At that

point the discriminator D can no longer distinguish between the real and

the fake objects generated.

Figure 8-1.  Basic GAN to show the interaction between the generator
and discriminator

Chapter 8 Generative Adversarial Networks

190

In the early version of GANs, the generator and the discriminator

are implemented as fully connected neural networks (Goodfellow et al.,

2014). These GANs are used for generating images from various data sets

commonly used in deep learning: CIFAR10, MNIST (handwritten digits),

and the Toronto Face Dataset, for example. As the architecture of GANs has

evolved, CNNs are increasingly being used. An example of a GAN that uses

deep CNNs is DCGANs (Radford, Metz, & Chintala, 2016). A comprehensive

overview of different types of GANs can be found in Creswell et al. (2017).

Since 2014, very innovative approaches to using GANs have emerged.

GANs have shown promise in the use of AI for creativity, such as art

and music generation and computer-aided design (CAD). One of these

approaches is to automate the generation of images using text descriptions.

InfoGAN (Chen et al., 2016) is an unsupervised approach that can distill

the semantic and hidden representations from several well-known data

sets (e.g., Digits [MNIST], CelebA Faces, and House Numbers [SVHN]). The

secret behind InfoGAN is maximizing the mutual information between

latent variables and the observations. The stacked Generative Adversarial

Networks (StackGAN; Zhang et al., 2016) was proposed to generate

photorealistic images using text descriptions. For example, given the text

Figure 8-2.  How GANs work: The generator is generating objects
that are so real that the discriminator can no longer tell the difference
between real and fake. Source: Goodfellow et al. (2014).

Chapter 8 Generative Adversarial Networks

191

“This bird has a yellow belly and tarsus, grey back, wings, and brown throat,

nape with a black face,” StackGAN will generate the picture of a bird using

two stages. In Stage 1, a low-resolution image is computed, which consists

of basic shapes and colors. In Stage 2, the results from Stage 1 and the text

descriptions are used to create photorealistic high-resolution images.

Figure 8-3 shows the two stages of the StackGAN.

Figure 8-3.  StackGAN: Generation of image from text. Source: Zhang
et al. (2016).

Like StackGAN, Attentional Generative Adversarial Network

(AttnGAN) uses a multistage approach. In addition, AttnGan introduced

a novel attention-driven approach that focuses (or pays attention) to the

different words in the text description and uses this to synthesize fine-

grained details for each of the subregions of an image. Figure 8-4 shows

how AttnGAN works, and the different parts of the image that it is focusing

on for the different words. The first row shows the image generated by

different generators, each producing images of different dimension (from

64 × 64, to 128 × 128, to 256 × 256). The second and third row show the top

five most attended words (i.e., words with the highest values as defined by

each attention model).

Chapter 8 Generative Adversarial Networks

192

Before we dive into the implementation of some of these GANs, it is

important to note that many of today’s GAN implementations are designed

for generating data (e.g., images) from a real-valued continuous data

distribution. When trying to apply GANs to generate discrete sequences of

data (e.g., text, poetry, music), many existing GAN implementations will

not be able to handle it well. In addition, GANs are designed to determine

the loss (or adversarial loss) only when the entire sequence of data (e.g.,

the image) has been generated.

Figure 8-4.  How an AttnGAN uses different parts of the text
description to generate details for each region of the image

Chapter 8 Generative Adversarial Networks

193

Another interesting type of GAN is SeqGAN (Yu, Zhang, Wang, &

Yu, n.d.). SeqGAN is a novel approach toward integrating reinforcement

learning concepts into GANs to overcome the various challenges faced

by existing GANs when used to generate discrete sequences of data. In

a SeqGAN, the generator is designed to be an agent of reinforcement

learning, where its current state is the generated discrete tokens so far, and

the action is the next token to be generated. The discriminator evaluates

the generated tokens and provides feedback to help the generator to learn.

SeqGAN is shown to be effective in poetry generation, music generation,

and application to language and speech tasks.

Today, GANs work well for several types of problems, but they are

notoriously difficult to train, as they are not guaranteed to converge on

a solution that is optimal, or even stable. Another common issue with

GANs is known as mode collapse, where the generator creates samples

that have extremely low variety. They require very careful selection of the

hyperparameters and parameter initialization among other factors to work

well. At the 2016 NIPS workshop on adversarial training, for example,

how to explain and fix the issues in training GANs was a main topic (video

recordings can be watched at http://bit.ly/NIPS2016). Fortunately,

though, many tricks have been used to stabilize the training of GANs.

One such trick is to include additional information either in the input

space (e.g., adding continuous noise to the input of the discriminator) or

adding the information to the output space (e.g., different classes of true

examples). Other tricks look at introducing a regularization scheme during

training.

Note L earn about the evolution of GANs at http://bit.ly/
GANsEvolve.

Chapter 8 Generative Adversarial Networks

194

This chapter walks through one of the GANs, known as Cycle-

Consistent Adversarial Networks (CycleGANs). We learn how CycleGANs

can be used for image-to-image translation. By walking through the

code, we will jump start our understanding of GANs and the innovative

applications of GANs in your AI projects. You can leverage the Microsoft

AI Platform to train and deploy these GANs to the cloud, mobile, and edge

devices.

�Cycle-Consistent Adversarial Networks
CycleGANs are a novel approach for translating an image from a source

domain X to a target domain Y. One of the strengths of CycleGANs is that

the training of the GAN does not require the training data to have matching

image pairs. As noted in Zhu, Park, Isola, and Efros (2017), CycleGANs

have been successfully applied in the following use cases:

•	 Translating Monet paintings to photos.

•	 Style transfer for photos using styles from various

famous artists (Monet, Van Gogh, Cezanne, and

Ukiyo-e).

•	 Object transfiguration, where it is used for changing the

type of objects found in photos. Figure 8-5 shows how

CycleGANs are used in object transfiguration (horse to

zebra, zebra to horse, apple to orange, orange to apple,

etc.).

•	 Translating a photo from one season (e.g., summer) to

another (e.g., winter).

•	 Photo enhancement by narrowing the depth of field,

and more.

Chapter 8 Generative Adversarial Networks

195

The goal of CycleGANs is to learn how to map images from one domain

X to another domain Y. Figure 8-6 shows the use of two mapping functions

G and F, and two discriminators DX and DY. The discriminator DX is used

to verify the images from X and the translated images F(y). Similarly, the

discriminator DY is used to verify the images from Y and the translated

images G(x). The secret behind the effectiveness of using CycleGANs for

image translation is the use of a cycle consistency loss. Intuitively, the cycle

consistency loss is used to determine whether images from the domain X

can be recovered from the translated image.

Figure 8-5.  Object transfiguration (horse to zebra, apple to orange).
Source: Zhu, Park, Isola, and Efros (2017).

Figure 8-6.  CycleGANs model with two mapping functions G and F,
and two adversarial discriminators DX and DY

Chapter 8 Generative Adversarial Networks

196

Note  CycleGANs were first introduced in Zhu et al. (2017). The
original implementation of CycleGANs (in PyTorch) is available at
http://bit.ly/CycleGAN.

�The CycleGAN Code
Let us first walk through the overall CycleGAN code that will be used for

training the CycleGANs and then testing it by translating images from a

source domain A to a target domain B. For example, the trained CycleGAN

will perform object transfiguration and translate a photo consisting of

a horse to a zebra (and vice versa). The results are then visualized as an

HTML file.

Let us first import the Python libraries that we will use in this code.

From Listing 8-1, you will see that we are using TensorFlow, and importing

the definition of the CycleGAN from a model.py file. We will dive into the

details of the model.py fie in the later parts of this section.

Note W e recommend provisioning an Azure DLVM to run the code
examples in this chapter. Please see Chapter 4 for more information.

Listing 8-1.  Importing the Required Python Libraries

PYTHON

import os

import tensorflow as tf

from model import cyclegan

Next, we define the argument that will be used for training and testing

the CycleGAN. From Listing 8-2, you will see that we specified a learning

rate of 0.0002 for 200 epochs (denoted by lr and epoch_step). In addition,

Chapter 8 Generative Adversarial Networks

197

we also specified the locations of the directories that we will be using to

load the training data, output the test images, and storing the checkpoint

files. To enable the value of phase (i.e., train or test) to be modified, we also

specified it as a property called phase, and defined the relevant getter or

setter for it.

Listing 8-2.  Specifying the Training and Testing Arguments

PYTHON

Define the argument class

class args:

 dataset_dir='horse2zebra'

 epoch=1

 lr=0.0002

 epoch_step=200

 batch_size=1

 train_size=1e8

 load_size=286

 fine_size=256

 ngf=64

 ndf=64

 input_nc=3

 output_nc=3

 beta1=0.5

 which_direction='AtoB'

 save_freq=1000

 print_freq=100

 continue_train=False,

 checkpoint_dir='./checkpoint'

 sample_dir='./sample'

 test_dir='./test'

 L1_lambda=10.0

Chapter 8 Generative Adversarial Networks

198

 use_resnet=True

 use_lsgan=True

 max_size=50

 _phase='train'

 @property

 def phase(self):

 return type(self)._phase

 @phase.setter

 def phase(self,val):

 type(self)._phase=val

Next, we create the relevant directories on the local file system that

will be used to load the training data, store the output images, and the

checkpoint files (shown in Listing 8-3).

Listing 8-3.  Create the Directories for Output, Sample, and

Checkpoint

PYTHON

os.makedirs(args.checkpoint_dir, exist_ok=True)

os.makedirs(args.sample_dir, exist_ok=True)

os.makedirs(args.test_dir, exist_ok=True)

We are now ready to train the CycleGAN (shown in Listing 8-4). As

a machine might have multiple devices (CPU or GPU) that can be used

for training, we specify allow_soft_placement to be True. The setting

allow_soft_placement specifies that if an operation does not have a GPU

implementation, it will be run on the CPU.

Next, we specify gpu_options.allow_growth to be True. TensorFlow

defaults to mapping all the GPU memory that is available to the

process. This helps in reducing GPU memory fragmentation. By setting

gpu_options.allow_growth to True, the process will start with only the

Chapter 8 Generative Adversarial Networks

199

required memory needed, and grow the memory allocated as needed

during training.

We are now ready to start training the CycleGAN. After creating the

TensorFlow session, we invoke the train method of the CycleGAN object,

and pass it the arguments that we defined earlier, as shown in Listing 8-4.

Listing 8-4.  Training the CycleGAN

PYTHON

tfconfig = tf.ConfigProto(allow_soft_placement=True)

tfconfig.gpu_options.allow_growth = True

with tf.Session(config=tfconfig) as sess:

 model=cyclegan(sess,args)

 model.train(args)

Note  Using a single Tesla K80 GPU, the training of the CycleGAN
with 200 epochs will take a while. If you want to test the code, you
should reduce the number of epochs.

Later in this chapter, we describe the architecture of the

CycleGAN. Before that, let us first look at the training code. Once

the training of CycleGAN completes, you are ready to test the

CycleGAN. Listing 8-5 shows how we invoke the test method of the

CycleGAN object. From the arguments shown in Listing 8-2, we are

performing a translation of images from Domain A to Domain B. The

resulting images are stored in the test folder. In addition, an HTML file,

AtoB_index.html, is written to the test folder to enable you to see the

image before and after the CycleGAN has performed the translation.

Chapter 8 Generative Adversarial Networks

200

Listing 8-5.  Testing the CycleGAN

PYTHON

tfconfig = tf.ConfigProto(allow_soft_placement=True)

tfconfig.gpu_options.allow_growth = True

tf.reset_default_graph()

args.phase='test'

with tf.Session(config=tfconfig) as sess:

 model=cyclegan(sess,args)

 model.test(args)

�Network Architecture for the Generator
and Discriminator
To build any type of GAN, it is important to first define the discriminator

and generator. Let us explore the network architecture for the generator

and discriminator. The role of the generator in any GAN is to generate

images that will fool the discriminator. The network architecture for the

CycleGAN generator is adapted from the Fast-Neural Style transfer work

(Justin, Alexandre, & Li, 2016).

The generator code is shown in Listing 8-6. The generator consists

of nine residual blocks that will be used for training with 256 × 256

images (from g_r1 to g_r9). Each residual block has two 3 × 3 layers with

convolution, instance normalization, and ReLU applied.

Note  Zhu et al. (2017) noted the use of instance normalization in
the residual block improves image quality.

Chapter 8 Generative Adversarial Networks

201

Listing 8-6.  CycleGAN generator

PYTHON

def generator_resnet(image, options, reuse=False,

 name="generator"):

 with tf.variable_scope(name):

 # image is 256 x 256 x input_c_dim

 if reuse:

 tf.get_variable_scope().reuse_variables()

 else:

 assert tf.get_variable_scope().reuse is False

 def residual_block(x,dim,ks=3,s=1,name='res'):

 p=int((ks-1)/2)

 y=tf.pad(x, [[0,0], [p,p], [p,p], [0,0]],

 "REFLECT")

 y=instance_norm(conv2d(y,dim,ks,s,

 padding='VALID',name=name+'_c1'),name+'_bn1')

 y=tf.pad(tf.nn.relu(y), [[0,0], [p,p], [p,p],

 [0,0]],"REFLECT")

 y=instance_norm(conv2d(y,dim,ks,s,

 padding='VALID',name=name+'_c2'),name+'_bn2')

 return y+x

 # Justin Johnson's model from

 # https://github.com/jcjohnson/fast-neural-style/

 c0=tf.pad(image, [[0,0], [3,3], [3,3], [0,0]],

 "REFLECT")

Chapter 8 Generative Adversarial Networks

202

 c1=tf.nn.relu(instance_norm(conv2d(c0,options.gf_dim,

 7,1,padding='VALID',name='g_e1_c'),'g_e1_bn'))

 c2=tf.nn.relu(instance_norm(conv2d(c1,options.gf_dim*2,

 3,2,name='g_e2_c'),'g_e2_bn'))

 c3=tf.nn.relu(instance_norm(conv2d(c2,options.gf_dim*4,

 3,2,name='g_e3_c'),'g_e3_bn'))

 # define G network with 9 resnet blocks

 r1=residule_block(c3,options.gf_dim*4,name='g_r1')

 r2=residule_block(r1,options.gf_dim*4,name='g_r2')

 r3=residule_block(r2,options.gf_dim*4,name='g_r3')

 r4=residule_block(r3,options.gf_dim*4,name='g_r4')

 r5=residule_block(r4,options.gf_dim*4,name='g_r5')

 r6=residule_block(r5,options.gf_dim*4,name='g_r6')

 r7=residule_block(r6,options.gf_dim*4,name='g_r7')

 r8=residule_block(r7,options.gf_dim*4,name='g_r8')

 r9=residule_block(r8,options.gf_dim*4,name='g_r9')

 d1=deconv2d(r9,options.gf_dim*2,3,2,name='g_d1_dc')

 d1=tf.nn.relu(instance_norm(d1,'g_d1_bn'))

 d2=deconv2d(d1,options.gf_dim,3,2,name='g_d2_dc')

 d2=tf.nn.relu(instance_norm(d2,'g_d2_bn'))

 d2=tf.pad(d2, [[0,0], [3,3], [3,3], [0,0]],

 "REFLECT")

 pred=tf.nn.tanh(conv2d(d2,options.output_c_dim,7,1,

 padding='VALID',name='g_pred_c'))

 return pred

The discriminator for the CycleGAN (shown in Listing 8-7) takes an

input image and predicts whether it is an original image or an image that is

generated by the generator.

Chapter 8 Generative Adversarial Networks

203

Listing 8-7.  CycleGAN Discriminator

PYTHON

def discriminator(image, options, reuse=False,

name="discriminator"):

 with tf.variable_scope(name):

 # image is 256 x 256 x input_c_dim

 if reuse:

 tf.get_variable_scope().reuse_variables()

 else:

 assert tf.get_variable_scope().reuse is False

 h0=lrelu(conv2d(image,options.df_dim,

 name='d_h0_conv'))

 # h0 is (128 x 128 x self.df_dim)

 h1=lrelu(instance_norm(conv2d(h0,options.df_dim*2,

 name='d_h1_conv'),'d_bn1'))

 # h1 is (64 x 64 x self.df_dim*2)

 h2=lrelu(instance_norm(conv2d(h1,options.df_dim*4,

 name='d_h2_conv'),'d_bn2'))

 # h2 is (32x 32 x self.df_dim*4)

 h3=lrelu(instance_norm(conv2d(h2,options.df_dim*8,s=1,

 name='d_h3_conv'),'d_bn3'))

 # h3 is (32 x 32 x self.df_dim*8)

 h4=conv2d(h3,1,s=1,name='d_h3_pred')

 # h4 is (32 x 32 x 1)

 return h4

Chapter 8 Generative Adversarial Networks

204

The discriminator consists of a first layer that applies a LeakyRelu and

convolution to the image. For the subsequent three layers, convolution,

instance normalization, and ReLU are applied. A final convolution

is applied in the final layer (denoted by h4), which produces a one-

dimensional output.

More Info T he code for this chapter is based on the work
by Xiaowei Hu, and available on Github at http://bit.ly/
GANsCode1. A Jupyter notebook is created to enable you to get
started with running the CycleGAN code quickly. The notebook is
available on Github at http://bit.ly/GANsCode2. We tested the
code on an Azure DLVM, with a single Tesla K80 GPU.

�Defining the CycleGAN Class
Next, let us look into the CycleGAN class. In the Train method found in the

model.py file, we use the Adam optimizer with a batch size of 1. Listing 8-8

shows how we specify the optimizer that will be used by the discriminator

and generator.

Listing 8-8.  CycleGAN (model.py): Defining the Optimizer Used for

the Generator and Discriminator

PYTHON

self.d_optim = tf.train.AdamOptimizer(self.lr, beta1=args.

beta1) \

 .minimize(self.d_loss,var_list=self.d_vars)

self.g_optim = tf.train.AdamOptimizer(self.lr, beta1=args.

beta1) \

 .minimize(self.g_loss,var_list=self.g_vars)

Chapter 8 Generative Adversarial Networks

205

A CycleGAN consists of two generators (XtoY and YtoX) and two

discriminators (DX and DY), as shown earlier in Figure 8-6. You will see

this defined in the _build_model method in model.py. From the code in

Listing 8-9, you will see how we set the value of the reuse argument to be

False during the initial definition of generatorA2B and generatorB2A,

and uses the variables real_A and fake_B, respectively. This determines

whether variables are reused. In the subsequent definition of

generatorB2A and generatorA2B, the value of reuse is set to True, and

uses the variables real_B and fake_A. The two discriminators are defined

in model.py, as shown in Listing 8-10. The interested reader should deep

dive into the code provided to understand the details of the generator.

Listing 8-9.  Defining the two generators, generatorA2B and

generatorB2A

PYTHON

self.real_data = tf.placeholder(tf.float32,

 [None,self.image_size,self.image_size,

 self.input_c_dim+self.output_c_dim],

 name='real_A_and_B_images')

self.real_A = self.real_data[:, :, :, :self.input_c_dim]

self.real_B = self.real_data[:, :, :, self.input_c_dim:self.

input_c_dim + self.output_c_dim]

self.fake_B = self.generator(self.real_A, self.options,

 False,name="generatorA2B")

self.fake_A_ = self.generator(self.fake_B, self.options,

 False,name="generatorB2A")

Chapter 8 Generative Adversarial Networks

206

self.fake_A = self.generator(self.real_B, self.options,

 True,name="generatorB2A")

self.fake_B_ = self.generator(self.fake_A, self.options,

 True,name="generatorA2B")

Listing 8-10.  Defining the Two Discriminators: discriminatorB

and discriminatorA

PYTHON

self.DB_fake = self.discriminator(self.fake_B, self.options,

 reuse=False,name="discriminatorB")

self.DA_fake = self.discriminator(self.fake_A, self.options,

 reuse=False,name="discriminatorA")

�Adversarial and Cyclic Loss
During the training of the GAN, the generator G generates images G(x) that

are like the images found in Domain Y. At the same time, the discriminator

DY needs to differentiate between generated images G(x) and the real

samples from y. Hence, G is always trying to minimize its adversarial loss,

whereas the discriminator D is trying to maximize its loss.

As noted in Zhu et al. (2017), if the capacity of the network is large,

the mappings G and F can potentially map input images from the source

domain X to any random permutation of images in Domain Y. Hence, it is

important to reduce the space of possible mapping functions. One of the

secrets of a CycleGAN is the use of a cycle consistency loss. The intuition

behind the use of a cycle consistency loss is that the learned mapping

function should be able to bring a translated image back to its original

image.

Chapter 8 Generative Adversarial Networks

207

�Results
After we ran the CycleGAN training for 150 epochs, we ran the testing

code shown in Listing 8-5. This applies the CycleGAN model to the images

found in the dataset directory and output the translated image to the test

directory. An HTML file is also generated. This allows you to visualize the

original and the translated image side by side. In the Jupyter notebook

provided, the code (shown in Listing 8-11) enables the HTML file to be

viewed in a notebook cell.

Listing 8-11.  Python Code to Visualize HTML File in the Cell

PYTHON

from IPython.display import HTML

HTML(filename='test/AtoB_index.html')

In Figure 8-7, we show a subset of the images generated.

Figure 8-7.  Output from CycleGAN test (after 150 epochs)

Chapter 8 Generative Adversarial Networks

208

�Summary
GANs have tremendous potential to be used in AI for creativity, music,

and the arts. Since it was first proposed in 2014, GANs innovations are

happening at a breathtaking pace. This chapter described how GANs can

be applied to various use cases. We showed the use of the generator and

the discriminator in the GAN architecture, and how they are used.

Next, we discussed how CycleGAN works, and showed how it can be

used for translation of objects from one domain to another. In the code

example given in this chapter, we focus on how to train and test a novel

type of GAN, called CycleGAN.

All the code in this chapter is run on a Linux DLVM, available on Azure.

More details on choices for training AI models (e.g., GANs), such as the

computing environments and how to do training at scale, are discussed in

the next chapter.

Chapter 8 Generative Adversarial Networks

PART IV

AI Architectures and
Best Practices

211© Mathew Salvaris, Danielle Dean, Wee Hyong Tok 2018
M. Salvaris et al., Deep Learning with Azure,
https://doi.org/10.1007/978-1-4842-3679-6_9

CHAPTER 9

Training AI Models
Training AI models is usually more demanding than training standard

ML models because they are processing intensive and often the data sets

involved are larger. That is why if you are serious about deep learning you

have to have access to GPUs. In Azure there are a number of ways you

can make use of GPUs, on single VMs or in orchestrated clusters of them.

In this chapter, we summarize several of the most common methods

available as well as the pros and cons of each. Then we expand on the code

we wrote in Chapter 6, which used a VGG-like CNN to tackle the CIFAR10

data set using the DLVM as the computing environment. In this chapter,

we extend to other training options such as Batch AI and Batch Shipyard,

which can both be useful for scaling up or scaling out training. We finish

by highlighting briefly some of the other methods of training AI models

on Azure that are not as common but might be useful depending on the

problem at hand.

�Training Options
Azure has a vast number of options for training AI models. We will limit

ourselves here to the select few that we feel fulfill the requirements of most

workload types. The four ways that we discuss to train AI models are DLVM,

Batch AI, Batch Shipyard, and DL Workspace. There is no best way to train

an AI model; each method has its benefits and drawbacks and some will be

more suited to certain solutions than others. The training of a deep learning

212

model can take place on a single GPU machine or distributed across a

number of GPU machines. The most common scenario is to use a single

GPU machine per model, as training the model in a distributed fashion

needs additional considerations that can be quite tricky to get right but

might be necessitated by factors such as the model being too big to fit onto a

single GPU machine or wanting to reduce training time.

In this chapter, we do not mention the data processing that is often

needed before training an AI model. For example, the raw data will often

have to be processed to be readable by a deep learning model, the labels

on which the ML algorithm should learn might be stored in a database, or

the raw data might come from many sources. There are many tools and

options available within the Microsoft AI Platform for this type of work,

such as Azure SQL Data Warehouse and CosmosDB for storing different

types of data, and Azure Data Factory for data movement, which are

outside the scope of this chapter. We assume for purposes here that the

data are available in a format that is ready to be trained by an AI model.

�Distributed Training
Distributed training is used when the whole data set cannot be stored on a

single machine or the model cannot fit on a single GPU, but most often it is

used to achieve faster training. The two main types of distributed training

are data parallelism or model parallelism.

With data parallelism, the same model will be replicated across many

GPUs and will receive different batches of training data. The gradients are

then aggregated and then the updates distributed back to the models. In

this scenario the communication overhead can be quite substantial so

an active area of exploration is how to make this process more efficient

by exploring asynchronous updates (Calauzènes & Roux, 2017; Dean

et al., 2012; Recht, Re, Wright, & Niu, 2011) or reducing the overhead by

compressing or quantizing the weight updates (Lin, Han, Mao, Wang, &

Dally, 2017; Recht et al., 2011).

Chapter 9 Training AI Models

213

With model parallelism the model is split over multiple GPUs. An

example of this might be different layers placed on different GPUs

and the forward and backward passes over the model involve network

communication across the nodes. This is a far less common scenario and

is only necessary if the model cannot fit on a single GPU.

In these scenarios it is assumed that there is only one GPU per VM, often

referred to as multinode multi-GPU, but in fact Azure has configurations

where there can be up to four GPUs on a single VM. All of the scenarios just

explained can be executed on a single-node multi-GPU scenario except the

scenario where the data are too large to fit on a single VM. Communication

overhead is usually less of a concern in this scenario because it takes place

on a single node and can perform even better if the deep learning framework

uses Nvidia’s NCCL multi-GPU library (http://bit.ly/nvidianccl).

�Deep Learning Virtual Machine
The DLVM is a single VM that comes in a number of different

configurations, some of which have GPUs, and is a specially configured

variant of the DSVM. The VM types that have GPUs at the moment are NC,

NV, ND, NCv2, and NCv3, with the cheapest being the NC series. These

have the corresponding GPUs installed with NVIDIA Tesla K80, M60, P40,

P100, and finally V100. They are loosely ordered from the least powerful to

the most powerful, with a single K80 providing around 4.4 teraflops and a

single V100 offering around 14 teraflops.1

Note E ven the least powerful GPU (K80) provides significant
reductions in training time compared to training AI models on CPUs.

1�Order and numbers are based on single precision FLOPS; cards with two chips
are treated as individual GPUs.

Chapter 9 Training AI Models

214

Each VM series can come in three configurations: one GPU, two

GPUs, or four GPUs. See the current documentation on all VMs available

on Azure at http://bit.ly/AzureVMs and the DSVM at http://bit.ly/

AzureDSVM.

By using the DLVM, we can jump straight into tackling our data

science problems because all the libraries come preinstalled in a premade

Anaconda environment, as illustrated in Figure 9-1. The DLVM is a great

option for experimentation but if you want to do large-scale model/data

parallel training or simply explore various hyperparameters in parallel,

one of the latter options will be better.

Figure 9-1.  The Data Science Virtual Machine is a preconfigured
environment in the cloud for data science and AI modeling,
development, and deployment. The Deep Learning Virtual Machine is
a special configuration for deep learning workloads

Chapter 9 Training AI Models

215

�Batch Shipyard
Batch Shipyard is a general-purpose tool for running container-based

batch processing and High Performance Computing (HPC) workloads.

By building on top of Azure Batch, Batch Shipyard is able to benefit from

its features, such as handling the complexities surrounding large-scale

parallel and HPC applications in the cloud, managing aspects such as

the VM deployment and management, job scheduling, and autoscaling

requirements. There is no extra cost to use Azure Batch when running jobs

on Azure; it is a free, value-added service where costs are only incurred for

the computing resources consumed and related datacenter movement and

storage costs.

Batch Shipyard uses Docker containers, which makes it easy to manage

the complex dependencies that come with AI workloads. Batch Shipyard

is available as a CLI that can be run locally or in the cloud using the Azure

Cloud Shell. The orchestration is managed through easy-to-understand

configuration files, which makes it easy to reuse scripts. It already contains

a large number of examples for some of the most popular deep learning

frameworks (see http://bit.ly/shipyard24c3).

The following are some of the pros of using Batch Shipyard:

•	 It is tied to Azure Batch infrastructure so it is well

supported.

•	 It is easy to use from the CLI and also available in the

cloud shell.

•	 It supports many different types of VMs, including

GPUs.

•	 It supports low-priority nodes, which makes it very

efficient.

•	 It has factory methods to support easy hyperparameter

tuning.

Chapter 9 Training AI Models

216

Among the disadvantages of using Batch Shipyard are the following:

•	 It is tied to Batch infrastructure, so there is no support

for its own clusters.

•	 There is no REST API or web front end, only the CLI.

�Batch AI
Batch AI is very similar to Batch Shipyard, as it runs on Azure Batch and

allows you to run various AI workloads. The core differences between

Batch Shipyard and Batch AI are the following:

	 1.	 It is a managed service. This means that with Batch

Shipyard the CLI is calling out to Azure Batch

and setting everything up. With Batch AI there is

a service in the cloud that we call to use the CLI,

REST API, or SDK, and it orchestrates everything.

In practice, this means is there is a far richer way to

interact with Batch AI and it is easier to orchestrate

as part of a pipeline.

	 2.	 Batch AI can execute on a DSVM or DLVM, giving

it the ability to run things without containers. This

makes it very easy to get started if you do not want to

deal with the complexities of containers.

	 3.	 Batch AI provides specialized support for running

distributed training on a number of deep learning

frameworks such as PyTorch, TensorFlow, and

so on. In practice, this means that some of the

complexities such as setting up Message Passing

Interface (MPI) are automatically configured by

Batch AI.

Chapter 9 Training AI Models

217

These are some of the pros of Batch AI:

•	 It is a managed service.

•	 It has multiple ways to interact with the CLI, SDK, and

REST APIs.

•	 It is tied to Azure Batch infrastructure so it is well supported.

•	 It supports many different types of VM including GPUs.

•	 It supports low-priority nodes that are very cost-efficient.

•	 It can support DSVM and DLVM as computing targets.

The following are some of the disadvantages of using Batch AI:

•	 It does not have feature parity with Batch Shipyard.

Batch Shipyard offers some nice methods for

hyperparameter search that have not yet made their

way to Batch AI.

•	 It is still in previews and not available in all regions.

�Deep Learning Workspace
Deep Learning Workspace (DLWorkspace) is an open source project from

Microsoft that allows AI scientists to spin up clusters, either locally or in

the cloud, in a turn-key fashion. DLWorkspace uses Kubernetes to manage

the jobs across the various nodes. Kubernetes is a popular open source

container orchestrator and we will talk more about it in Chapter 10.

DLWorkspace provides a web user interface (UI) and a REST API from

which one can submit, monitor, and manage jobs. This is quite different

from Batch AI and Batch Shipyard, as it does not rely on the Batch

infrastructure to manage things, nor is it tied to the Azure infrastructure.

This does mean it requires more management by the end user than the

other two options, but it offers the greatest amount of flexibility. It is also

less mature than the other two options.

Chapter 9 Training AI Models

218

The following are some of the advantages of DLWorkspace:

•	 It is not tied to a particular infrastructure, so it can run

on local clusters and in the cloud.

•	 It uses Kubernetes, a well-known container

orchestrator.

Some of the disadvantages of DLWorkspace are as follows:

•	 It requires more setup than Batch Shipyard or Batch AI.

•	 It is harder to integrate into a pipeline.

•	 It is still under heavy development.

�Examples to Follow Along
In many of the previous chapters we have demonstrated how to train a

deep learning model on a GPU-enabled DLVM, so we do not go over that

here. In the sections that immediately follow, we will be making use of

the code we wrote in Chapter 6, which used a VGG-like CNN to tackle the

CIFAR10 data set, to expand to use Batch Shipyard and Batch AI. If you

do not remember what we did there, it would be prudent to go back and

refresh your memory.

�Training DNN on Batch Shipyard
In this section we go over general steps of how to train a CNN on Batch

Shipyard. The steps that we follow to execute our AI script are detailed in

the notebook Chapter_09_01.ipynb2 and shown in Figure 9-2.

2�All the steps are detailed in the notebook Chapter_09_01.ipynb which can be
found in the Chapter_09 folder http://bit.ly/CH09Notebooks.

Chapter 9 Training AI Models

219

	 1.	 As you can see from the steps in Figure 9-2, there are

a number of prerequisites required for training your

model on Batch Shipyard. The script that will train

your model.

	 2.	 The Docker container that contains all the

dependencies for the script such as the deep

learning framework, and so on.

	 3.	 An Azure storage account and Azure Batch account.

	 4.	 Batch Shipyard configuration files. These can be

either YAML or JSON files that will hold all the

necessary information to define what we want Batch

Shipyard to do for us.

Figure 9-2.  The steps involved in running things on Batch Shipyard.
(1) Create the necessary Azure resources, configuration files, and
scripts. (2) Call pool create, which will start the process of creating our
cluster. At the same time this will pull the script we created into the
fileshare. It will also pull the Docker image and make it available to
the nodes in the pool. (3) Tell Batch Shipyard to execute the job and
detail the output. Once it is all done we will delete the job, cluster,
and Azure resources.

Chapter 9 Training AI Models

220

Our model script will be very similar to what we wrote in the

Chapter_06_03.ipynb notebook, except it will be a Python file rather than

a Jupyter notebook and we will add the ability to pass arguments to it. The

reason for doing this is to simplify the execution and so that we can see

how the model performs with different hyperparameter configurations.

This is usually referred to as hyperparameter search and it is an important

step in creating AI models. The script will download the CIFAR10 data,

create and train our model, and finally evaluate it on the test data set.

With the script prepared, we need to either create our own Docker

image or reference a prebuilt one. Many of the most popular deep learning

frameworks either provide you with a Docker image or at the very least a

Dockerfile you can use to create your image. For people who have not

used Docker before, this can be quite daunting. Thankfully there are a

number of guides online and the Docker documentation is very good

(see http://bit.ly/dockerstarted). Here we simply use the Docker

image we created for this book.

We will assume that you have created the Azure storage and Batch

account. The steps for doing this are outlined in the “Create Azure

Resources” section of the accompanying notebook. For Batch Shipyard

there are four configuration files:

•	 credentials.yaml: Here we put the credentials for all

the resources we use. In our case it is simply the storage

account and Batch account.

•	 config.yaml: Specifies the configuration for Batch

Shipyard. Here we will simply specify which storage

account to use as well as the location of the image we

want to use.

•	 pool.yaml: This configuration file defines the properties

of our pool, in essence the number of VMs we want to

allocate and the types of VMs we wish to allocate.

Chapter 9 Training AI Models

221

•	 jobs.yaml: In this configuration file we specify the

jobs we wish to execute. We can specify one or more

jobs and each job can have one or more tasks. How

you split things up will be dependent on the tasks you

want to run and how much they share in common. In

this file we generally specify what Docker image to use,

where to ingress the data from, and what commands

to execute. For more details see http://bit.ly/

shipyardjobs.

From here on in we will be assuming you are running things from

a Linux terminal or a Jupyter notebook running on Linux. Now that we

have defined our configuration files and our script, we need to create our

cluster, which we do in Listing 9-1.

Listing 9-1.  Command to Create a Batch Cluster

BASH

shipyard pool add --configdir config

This command tells Batch Shipyard to create the pool as specified in

our pool.yaml file located in the config directory. This will start the VMs

and ingress any files we specified in the configuration files, which in our

case is just our model script. Provisioning the pool can take from 5 to 15

minutes depending on the number of VMs specified. The number of VMs

you can create is dependent on the quota on your Batch account. If you

require more VMs for your Batch account, you can simply request a quota

increase through the Azure portal (http://bit.ly/azbatchquota).

After the pool has been created, we simply add the jobs. Here in

Listing 9-2 we submit the job but also interactively tail the output of

the task.

Chapter 9 Training AI Models

222

Listing 9-2.  Submit Job to Batch Shipyard and Tail Output

BASH

shipyard jobs add --configdir config --tail stdout.txt

If everything goes well you should start seeing the output being

streamed to your notebook or terminal. The script will first download the

CIFAR data, train the model, and evaluate it. You can also view the state

of your cluster and job by visiting the Azure portal, where you should see

something similar to Figure 9-3.

Figure 9-3.  Batch dashboard in Azure portal

By running Listing 9-3, we stream the output of stderr.txt. This can

be useful to review errors and debug our scripts.

Listing 9-3.  Stream Output to Help Review Errors and Debug Scripts

BASH

shipyard data files stream -v --filespec my_job_id,my_task_

id,stderr.txt

Chapter 9 Training AI Models

223

Once you are done with your job, it is best to delete it so it does not

count against your active job quota, as we do in Listing 9-4.

Listing 9-4.  Delete Batch Shipyard Jobs

BASH

shipyard jobs del --configdir config -y –wait

Finally, delete your pool with the code shown in Listing 9-5 so you do

not incur charges for the VM while not in use.

Listing 9-5.  Delete Batch Shipyard Pool

BASH

shipyard pool del --configdir config -y

This seems like a lot of overhead for executing a single task, but when

you need to execute a large number of tasks the initial overhead is tiny

compared to the time saved.

�Hyperparameter Tuning

Training an AI model or even any type of ML model requires tuning

of various hyperparameters that constrain the behavior of our model.

Doing so sequentially is laborious and time consuming. By running

these experiments in parallel we can save a lot of time and find optimal

configurations quicker. One of the key benefits of the cloud and the types

of service such as Batch Shipyard and Batch AI is the ability to scale out

our computing as needed. This means that we can explore large numbers

of configurations and only pay for the computing we need, greatly

accelerating the data science process.

Chapter 9 Training AI Models

224

As mentioned earlier, Batch Shipyard offers a convenient way for

generating hyperparameter tasks called Task Factories. With Task Factories

we can generate task parameters in a number of ways such as from

random distributions, uniform, gamma, beta, exponential, Gaussian, and

so on.

We would define our task factory in the jobs.yaml file. Let us imagine

we wanted to parameterize our VGG architecture and explore the effects

of learning rate on our model. We can achieve this with the task factory

specification in Listing 9-6.

Listing 9-6.  Task Factory Specification to Generate Hyperparameter

Tasks

YAML

task_factory:

 random:

 distribution:

 uniform:

 a:0.001

 b:0.1

 generate:10

command: /bin/bash -c "python -m model.py –lr {}"

This block of YAML will instruct Batch Shipyard to sample 10 values

randomly from a uniform distribution of 0.001 to 0.1 and run the model.py

script.

Task factories are not limited to generating values from distributions;

they can also generate tasks based on custom generators for more complex

hyperparameter regimes. For more details on task factories, please check

out http://bit.ly/shipyardtfactory.

Chapter 9 Training AI Models

225

�Distributed Training

In the multinode, multi-GPU training scenario, Batch Shipyard handles

the setting up of the cluster and distribution of the jobs but does not

handle the communication between the nodes. This has to be handled

by the deep learning frameworks themselves. Different frameworks use

different protocols to pass information between them such as MPI (CNTK,

Horovod) or gRPC (TensorFlow). It is important that the appropriate ports

are opened and the appropriate processes are started, and this can differ

between deep learning frameworks. In Batch Shipyard, such tasks are

called multi-instance tasks and need to be specified as such in the jobs

configuration file. An example configuration file can be seen in Listing 9-7.

Listing 9-7.  Multi-Instance Tasks to Specify Multinode, Multi-GPU

Tasks

YAML

job_specifications:

- id: tensorflow

 auto_complete:true

 tasks:

 -docker_image:alfpark/tensorflow:1.2.1-gpu

 multi_instance:

 num_instances:pool_current_dedicated

command: /bin/bash -c "/shipyard/launcher.sh /shipyard/mnist_

replica.py"

For a detailed walkthrough on how to perform data parallel training in

Batch Shipyard, take a look at http://bit.ly/shipyarddist.

Chapter 9 Training AI Models

226

�Training CNNs on Batch AI

Batch AI is in many ways very similar to Batch Shipyard (see Figure 9-4).

It offers a Python SDK as well as a CLI. In our example, we outline how

to use the CLI because it is slightly easier than the SDK. All of the steps

mentioned here are in the accompanying notebook, which you can use to

run the example for yourself (Chapter_09_02.ipynb).

Figure 9-4.  Batch AI training steps: (1) Create the necessary Zzure
resources, job configuration files, and scripts, and upload scripts to
fileshare. (2) Call cluster create, which will start the process of creating
our cluster. It will also pull the Docker image and make it available to
the nodes in the pool and mount the fileshare. (3) Run the command
specified in the job configuration. Call job stream-file to tail the
output from the job. Once training is done delete the job, cluster, and
Azure resources.

Batch AI uses the Azure CLI, which we installed earlier. To register for

Batch AI run the code shown in Listing 9-8.

Chapter 9 Training AI Models

227

Listing 9-8.  Register for Batch AI Service

BASH

az provider register -n Microsoft.BatchAI

az provider register -n Microsoft.Batch

At the time of writing, Batch AI was only available in the East US

region, so that is where we will be creating all our resources. We are

going to assume that you have already created a storage account and a

fileshare, and have uploaded the script to the fileshare. These steps are in

the accompanying notebook (Chapter_09_02.ipynb) under the sections

“Create Azure Resources” and “Define Our Model.” To create our cluster,

we run the code in Listing 9-9.

Listing 9-9.  Create Batch AI Cluster

BASH

az batchai cluster create -l eastus -w workspace --name

my_cluster --vm- size STANDARD_NC6 --image UbuntuLTS --min 1

--max 1 --storage- account- name my_storage_account --storage-

account-key my_ storage_account_key --afs-name my_fileshare

--afs-mount-path azurefileshare --user-name my_username

--password my_password

All the values prefixed by my should be defined by you and wherever

they are intended to should match the Azure resources you already created.

In the preceding command, we used the az batchai cluster create

command to create a Batch AI cluster called my_cluster consisting of a

single GPU VM node. In this example, the VM runs the default Ubuntu LTS

image. If you wish to use the DSVM as the execution target, simply specify

image UbuntuDSVM instead. The VM specified is an NC6, which has one

NVIDIA K80 GPU. We also tell it to mount the fileshare at a folder named

azurefileshare. The full path of this folder on the GPU compute node is

Chapter 9 Training AI Models

228

$AZ_BATCHAI_MOUNT_ROOT/azurefileshare. AZ_BATCHAI_MOUNT_ROOT is

an environment variable that is set by Batch AI. Make sure that the storage

account and fileshare information match what you created; otherwise the

share will fail to mount and your nodes will become unusable.

Creating the pool will take a similar amount of time as Batch Shipyard,

around 5 to 15 minutes. To check the status of the cluster, simply run the

code shown in Listing 9-10.

Listing 9-10.  Check on the Status of the Batch AI Cluster

BASH

az batchai cluster list -w workspace -o table

To submit a job we have to create a configuration file in a similar way

we did for Batch Shipyard. For our purposes the configuration file looks

like the code in Listing 9-11.

Listing 9-11.  Example Configuration File for Batch AI

JSON

{

 "�$schema": "https://raw.githubusercontent.com/Azure/BatchAI/

master/schemas/2017-09-01-preview/job.json",

 "properties": {

 "containerSettings": {

 "imageSourceRegistry": {

 "image": "masalvar/keras_bait"

 }

 },

 "customToolkitSettings": {

 "�commandLine": "python $AZ_BATCHAI_INPUT_SCRIPT/cifar10_

cnn.py"

 },

Chapter 9 Training AI Models

229

 "inputDirectories": [

 {

 "id": "SCRIPT",

 "�path": "$AZ_BATCHAI_MOUNT_ROOT/azurefileshare/cnn_example"

 }

],

 "nodeCount": 1,

 "stdOutErrPathPrefix": "$AZ_BATCHAI_MOUNT_ROOT/azurefileshare"

 }

}

For more examples, take a look at http://bit.ly/baistart. In the

jobs configuration we define our inputDirectories, what container we

want to use and the commands to execute. In the jobs definition you will

notice that under inputDirectories we defined an input directory with

the id script. This location gets mapped by Batch AI to the environment

variable AZ_BATCHAI_INPUT_SCRIPT, which we refer to in the commandLine

variable. Once we have created the job JSON file we execute the job by

running the code in Listing 9-12.

Listing 9-12.  Execute the Batch AI Job

BASH

az batchai job create -w workspace -e experiment --name my_job

--cluster-name my_cluster --config job.json

We can monitor the job by running the code in Listing 9-13.

Listing 9-13.  Monitor the Batch AI Job

BASH

az batchai job list -w workspace -e experiment -o table

Chapter 9 Training AI Models

230

If you go to the Azure portal and click on the cluster you should see

something similar to the image in Figure 9-5. The portal also provides

other diagnostics such as the state of each job and the number of jobs in

the resource group (see Figure 9-6 and Figure 9-7). This is very convenient

for long running jobs when you simply want to check on the state of things

from any browser. The information you get from the portal with Batch AI is

richer than what you get with Batch Shipyard.

Figure 9-5.  Batch AI cluster dashboard in the Azure portal

Chapter 9 Training AI Models

231

To tail the output of stdout in the same way we did for Batch Shipyard,

we simply run the code in Listing 9-14.

Listing 9-14.  Stream Output to Help Review Errors and Debug

Scripts with Batch AI

BASH

az batchai job file stream -w workspace -e experiment --j

my_job --output-directory-id stdouterr --f stdout.txt

Once the job is completed, to delete the job we run the code in

Listing 9-15.

Figure 9-6.  Job dashboard for Batch AI

Figure 9-7.  Information displayed in the portal for our resource
group. Note that our cluster is called gpupool and the job keras-
training-job; these are the names used in the example in the
accompanying notebook.

Chapter 9 Training AI Models

232

Listing 9-15.  Delete Batch AI Job

BASH

az batchai job delete -w workspace -e experiment --name myjob

Now we delete the cluster with the code in Listing 9-16 so that we stop

incurring any charges for computing.

Listing 9-16.  Delete Batch AI Cluster

BASH

az batchai cluster delete -w workspace -e experiment --name

mycluster

Then finally if we don’t want to keep the storage account and the

other resources we created we can clear it all up by executing the code in

Listing 9-17.

Listing 9-17.  If No Longer Needed, Delete Storage Account and

Other Resources

BASH

az group delete --name myResourceGroup

�Hyperparameter Tuning and Distributed Training

Hyperparameter tuning in Batch AI is not yet as simple as it is in Batch

Shipyard. There is no notion of task factories, so it requires that we create

a number of jobs where we pass different parameters to our model. In

our jobs example, therefore, the JSON file would be very similar between

our jobs, the only difference being the command, and specifically the

arguments we pass to the script. The process of hyperparameter tuning

can be made easier by using the Batch AI Python SDK rather than the

CLI. Have a look at http://bit.ly/baitsdk for further details on the

Python SDK.

Chapter 9 Training AI Models

233

Distributed training is slightly easier in Batch AI than Batch Shipyard

for frameworks supported by Batch AI because Batch AI takes care

of configuring the necessary internode communication layer such as

MPI. At the time of writing, the frameworks supported are Chainer, CNTK,

TensorFlow, PyTorch, and Caffe2. For frameworks that are not supported,

it is up to the user to supply the appropriate configuration and will be the

same as Batch Shipyard. For examples on how to do this, see http://bit.

ly/bairecipes.

�Variation of Batch AI with Python SDK

In the earlier example, we illustrated using Batch AI with the Azure CLI,

which is the easiest way to get started. Batch AI can also be used through

a Python SDK. The demo example described in this section can be

reproduced following the instructions given at http://bit.ly/deepbait.

In this example, rather than showcasing an example of hyperparameter

tuning or distributed training for which there are already examples, nine

different deep learning frameworks are used to train a simple CNN on

the CIFAR10 data set. In practice, being able to quickly utilize different

frameworks can be very useful because state-of-the-art implementations

of certain models might only be available in one or a small number of

frameworks. Often, though, one would select a single framework and

use that framework to do hyperparameter tuning or distributed training

as described in this chapter. However, this example also serves the

pedagogical purpose of showcasing the flexibility of the Batch AI service as

well as different ways one might interact with the service.

In this example, the project was developed and tested on an Azure

Ubuntu DLVM. Anaconda Project is used in this case to create the

environment and install dependencies, download the data, and allow

the user to interact with the project in a straightforward manner to

reproduce the demo, such as asking through a command-line prompt

for the Azure subscription identifier and name of the resource group in

Chapter 9 Training AI Models

234

which the Batch AI cluster should be created. The project also comes

with makefiles to help with local testing and debugging to allow one to

more easily modify the project.

This example also differs from the earlier Batch AI example in the use

of Jupyter Notebooks, which are sent directly to the Batch AI cluster rather

than Python scripts, as illustrated in Figure 9-8. Using Jupyter Notebooks

directly, the code can be processed and output stored directly within the

notebooks. This is useful for data scientists already developing within

Jupyter Notebooks who would like to showcase results through them

(e.g., visualizations created during or after processing). In this case, nine

different Jupyter notebooks are created (one for each of the deep learning

frameworks), along with associated Docker containers within which the

notebooks are run using Batch AI.

Executed in
Parallel
using Batch
AI

Figure 9-8.  Rather than having to run Jupyter Notebooks in sequence
to test different options, they can be executed in parallel using Batch AI

Chapter 9 Training AI Models

235

Each of the notebooks was written to have parameters that can be

modified when they are run on the Batch AI cluster. In the example

project for illustrative purposes, the number of epochs that are run are

modified from the original file when they are run on Batch AI. Specifically,

the original notebooks that are sent to the cluster have the following

parameters in Listing 9-18 at the top of the notebook as examples.

Listing 9-18.  Example Parameters at Top of Script That Are

Modified When Run by Batch AI

PYTHON

Parameters

EPOCHS = 10

N_CLASSES=10

BATCHSIZE = 64

LR = 0.01

MOMENTUM = 0.9

GPU = True

In the job submission, the Batch AI cluster is told in this case to

modify the number of epochs to run (as just one example of a parameter

change), and the notebook is modified and run with a different number of

epochs. At the end of the run, the notebook contains a cell with all of the

parameters it was run with, as well as the output from each cell running

stored within the notebook itself. This makes it easy to look through

the results: All of the important information is stored right within the

notebook.

The steps followed to use nine different deep learning frameworks to

run a simple CNN are as follows, illustrated in Figure 9-9.

	 1.	 Create Jupyter notebooks to run on Batch AI and

transfer them to file storage.

	 2.	 Write the data to file storage.

Chapter 9 Training AI Models

236

	 3.	 Create the Docker containers for each deep learning

framework and transfer them to a container registry.

	 4.	 Create a Batch AI Pool.

	 5.	 Each job will pull in the appropriate container and

notebook, and load data from the fileshare.

	 6.	 Once the job is completed the executed notebook

will be written to the fileshare.

These steps are very similar to those described before in using

Batch AI with the CLI, only with Jupyter Notebooks. Besides the parallel

processing ability that allows for a reduction in the experimentation time

enabled through Batch AI, this scenario also illustrates the power of cloud

computing in that many machines can be spun up on demand, used for

the processing they are needed for, and then the cluster can be shut down.

This provides the data scientist more flexibility at a large reduction in cost,

with no special hardware to procure or systems to manage.

Chapter 9 Training AI Models

237

A number of helper functions are included to make interaction with

the Batch AI cluster easy, such as the setup_cluster() function shown in

Figure 9-10 and print_jobs_summary() as shown in Figure 9-11.

I
A
I

1

2

3

Batch AI Pool 4
5

6

Figure 9-9.  Steps required to run a simple CNN using nine different
deep learning frameworks for illustration purposes of the flexibility
of Batch AI, with code processed and output stored within Jupyter
Notebooks.

Chapter 9 Training AI Models

238

Figure 9-11.  The ExploringBatchAI.ipynb file is used to submit the
jobs to Batch AI

Figure 9-10.  After the Anaconda Project is set up on a DLVM, the
example is run through a Jupyter notebook that contains helper
functions to interact with the cluster

Chapter 9 Training AI Models

239

�Azure Machine Learning Services
This chapter focused mainly on the computing environments and setup

of running AI jobs, which can be done with DLVM, Batch Shipyard, Batch

AI, and DLWorkspace as four main examples. Azure Machine Learning

services, which were introduced in more depth in Chapter 4, are a set of

services that enable building, deploying, and managing AI models in an

end-to-end fashion. Azure Machine Learning manages the data science

life cycle, such as providing capabilities for model versioning and run

history (see http://bit.ly/amllogging), tracking models in production,

and helping AI developers develop faster. Azure Machine Learning

services also aim to ease the deployment process, for example running

Docker containers with AI models within a Kubernetes cluster with Azure

Kubernetes Services to enable scalable real-time predictions or to run on

an edge device using Azure IoT (see Figure 9-12).

Figure 9-12.  Azure Machine Learning is an open source compatible,
end-to-end data science platform. Source: http://bit.ly/AMLservices.

Chapter 9 Training AI Models

240

Some of the services mentioned in this chapter, such as the DLVM and

Batch AI, can be set up as the computing context within an Azure Machine

Learning project. As of this writing, Azure Machine Learning services

works with Python and is available in several Azure regions. In addition,

there are AI extensions for Visual Studio and Visual Studio Code that allow

interacting with the Azure Machine Learning platform (see http://bit.

ly/aivisstdio). As the service is updating frequently, we focused on the

core computing environments in this chapter and suggest reading the

current documentation on Azure Machine Learning services available at

http://bit.ly/AMLservices.

�Other Options for AI Training on Azure
There are numerous other options for AI training on Azure that we do not

describe in depth, but some of which we mention briefly here. The first

example builds on Apache Spark, which is a popular general-purpose engine

for big data processing. There are several offerings of Apache Spark on Azure

such as Azure Databricks and Azure HDInsight. One popular option for

training AI models with Spark is through the use of the MMLSpark library by

Microsoft, which provides a number of deep learning and data science tools,

available as open source on Github at http://bit.ly/mmlSpark. MMLSpark

integrates Spark ML pipelines with the deep learning framework CNTK as

well as OpenCV. This is especially useful if the data for an AI solution already

reside in SPARK. MMLSpark can be used to train deep learning models on

GPU nodes and can thus be used on a DLVM attached to the HDInsight

Spark cluster as described at http://bit.ly/MMLSparkGPU.

Another alternative to attaching a GPU VM to a Spark cluster is utilizing

transfer learning to apply a pretrained model using MMLSpark in a parallel

fashion on a Spark cluster and then train a classifier using one of the many

ML packages in Spark. This was used for snow leopard conservation to

predict images containing snow leopards and assist conservation efforts as

described in a blog post by Hamilton, Sengupta, and Astala (2017).

Chapter 9 Training AI Models

241

AI training can also be scaled out through the use of a cluster of

Docker containers such as through the use of Kubernetes. Although we

have seen the use of Kubernetes clusters mainly for the deployment and

hosting of AI models to date, it is also possible to use them for large-scale

training. Zhang and Buchwalter (2017) described how they used Azure

Container Services Engine (ACS-engine) that generates Azure Resource

Manager templates that are needed to deploy the cluster with everything

configured. In their case working alongside the startup Litbit, a Kubernetes

cluster was used to scale different types of VM pools (CPU, GPUs) up and

down based on the demand of the given workload. Tok (2017) gave an

overview of using CNTK with Kubernetes through ACS-engine along with

a detailed walkthrough of how to set up the cluster, for both training and

deploying deep learning models at scale.

�Summary
This chapter presented various options you can use to train your AI model.

If you simply want to experiment, then the DLVM is probably the best

choice because it is the quickest and easiest to set up. If you are looking

to run hyperparameter tuning, distributed training, or model training as

part of an automated pipeline, then Batch AI or Batch Shipyard will be the

best tools for the job. DLWorkspace is also a good choice for large-scale

experimentation, but today we would mostly recommend it only if the

other two options are not suitable. The cluster-based method of training

might seem daunting at first, but it quickly confers benefits. Batch AI is the

easiest to use and set up and Batch Shipyard is the most feature rich. We

have only scratched the surface of what is possible with these powerful

tools. For detailed documentation, check out http://bit.ly/azbai,

http://bit.ly/azshipyard, and http://bit.ly/azdlwork. In the next

chapter, we give an overview of different options for deploying trained

deep learning models so they can be used within AI applications.

Chapter 9 Training AI Models

243© Mathew Salvaris, Danielle Dean, Wee Hyong Tok 2018
M. Salvaris et al., Deep Learning with Azure,
https://doi.org/10.1007/978-1-4842-3679-6_10

CHAPTER 10

Operationalizing
AI Models
The previous chapter covered what constitutes an AI model, the different

types of models we can create, and how to train and build these models.

An AI model does not become useful until it is deployed somewhere and

consumed by the end user. This chapter describes the various options

available on Azure to deploy your models. We provide general guidelines

on what to use and when, but this is by no means an exhaustive guide to

the Azure platform. In the following sections we discuss the metrics over

which we compare the various deployment platforms. Then we discuss

the platforms we have found to be suitable for deploying ML models

and highlight their pros and cons. We also present simple use cases

and architectures for each of them so that you get an idea of how they

would fit into a larger solution. We also provide a step-by-step tutorial for

deployment of a CNN to Azure Kubernetes Services (AKS) with GPU nodes

as a hands-on guide for one recommended option for building a real-time

request–response AI system.

�Operationalization Platforms
A common dichotomy when looking at operationalization of a model is

whether the scoring requests will be batch or real time. An example of

a batch workload is when we have large number of records given to us

244

infrequently such as every 24 hours, that need to be scored. These records

could be images or other types of data. A real-time workload is when

the service must always be up and receives a small number of records to

score relatively frequently. An example might be a phone app that sends

a picture to determine what type of animal is in the picture. The examples

provided fit quite nicely into their respective classifications, but in reality

things are often a lot less discrete. For example, we might have a real-time

workload that requires massive amounts of computing or other constraints

on our solution that break key architecture assumptions. That is why it

is often better to think about these solutions belonging to a continuum

where each solution can be partially stretched beyond what it is ideally

suited for.

A key consideration when deploying models is dependency and

environment management. This is not a problem unique to AI models: It is

common for all types of deployed applications, but it becomes especially

acute for AI applications due to their often complicated dependencies

and hardware requirements. For this reason, services that use Docker

containers are often preferred because this makes it easy to keep the

same environment for development and test as well as ensure that all

dependencies are satisfied. If you are new to Docker, we recommend the

basic overview at http://bit.ly/DockerDS.

As we mentioned earlier, AI models also have hardware requirements;

these are often less demanding than the training environments but

depending on the scenario might still require a reasonable amount

of computing resources. That is why another consideration for the

deployment options is the hardware available on the platform and

specifically the availability of GPUs. Without the GPUs the throughput

could be quite limited, meaning that the service will either have to deal

with slow responses or have to scale out the compute.

Chapter 10 Operationalizing AI Models

245

�DLVM
The simplest way to operationalize something is to use the same platform

that we recommend for experimentation: a VM, and specifically a data

science or DLVM. You will already have the dependencies installed

and you know that your code will run on the platform. On top of that

by using a VM you have the greatest amount of flexibility as far as the

hardware configuration is concerned even access to GPUs. This kind of

operationalization is only recommended for proof of concepts and pilot

workloads because there is no management infrastructure and no way to

scale out or distribute the load. With VMs it is also possible to use Docker

containers, which would be the recommended way to deploy things as this

will make it easier to move to different VMs, but also move to other more

suitable platforms that use Docker containers.

�Azure Container Instances
Another simple platform to use for operationalization is Azure Container

Instances (ACI). ACI is the simplest and fastest way to run a container

on Azure; you do not have to know anything about orchestrators such

as Kubernetes or provision and manage VMs. It is well suited for hosting

simple apps and task automation. It just takes one command to deploy

your prebuilt container (see Listing 10-1). For further details on deploying

using ACI, go to http://bit.ly/ACIstart.

Listing 10-1.  Deploy Container on ACI

BASH

az container create --resource-group myResourceGroup --name

mycontainer --image microsoft/aci-helloworld --dns-name-label

aci-demo --ports 80

Chapter 10 Operationalizing AI Models

246

Although you can specify the CPU and memory requirements of your

application, at the time of writing GPUs were not available for ACI; thus,

for workloads requiring GPU, ACI is not an option. The suggested use

for ACI would be for short-lived applications that are either triggered or

stood up for short periods of time. A typical model deployment scenario

using ACI would be to deploy a simple Flask application as a short-lived

demo, such as a simple image classification model where there are not

any latency or bandwidth requirements. In Figure 10-1 we can see an

example scenario. In this scenario the user develops a model and Flask

application on a DSVM, and then packages it up into a container that

the user can also test on the DSVM before upload to an Azure Container

Registry. They then call for the model to be pulled out of our container

registry and finally have it deployed on an ACI. With the deployed model

they can simply call the endpoint with an image and the classification will

be returned back to them.

Figure 10-1.  ACI scenario. (1) Develop on DSVM; (2) Push container
to container registry; (3) Deploy to ACI; and (4) Send images to
deployed model to be scored.

Chapter 10 Operationalizing AI Models

247

�Azure Web Apps
Azure Web Apps is another quick and easy way of deploying models. They

can either be standard Web Apps that are Windows based or Linux Web

Apps. Both support a number of programming languages and Linux Web

Apps support Docker containers. The use case for Azure Web Apps is the

same as ACI. They can be a little harder to set up and configure, but they

are also cheaper for longer running deployments. The web apps also offer

nice features such as deploying from a git repository as well as a CLI to

install packages. For further information on web apps, see http://bit.ly/

AzureWebApps.

�Azure Kubernetes Services
AKS is a managed Kubernetes cluster configuration. It is like a standard

Kubernetes cluster except that the management of the master nodes

is handled by Azure. This translates to reduced overhead and cost

because you only have to pay for the compute of the agent nodes. It uses

Kubernetes, which is a popular open source Docker orchestrator, so it is

easy to navigate for those familiar with Kubernetes and because it is an

open source project there is lots of information from which to draw.

AKS recently enabled deployment to GPU VMs, opening the possibility

to run GPU AI models on it. In fact, AKS is our recommended way to

deploy real-time workloads. A typical scenario for AKS would be where

we need to set up a real-time service that needs to scale with demand and

also be fault tolerant. Because we can use any size (SKU) of VM including

GPUs this is the ideal solution for demanding applications. The setup and

management is considerably more involved than what was shown for the

ACI. An example of how to deploy things on an orchestrated container

cluster can be found at http://bit.ly/ACSTutorial. This uses the older

Azure Container Services service, so some of the commands will differ.

Chapter 10 Operationalizing AI Models

248

The scenario is very similar to the one explained for ACI deployment

except that we also have a load balancer so that when a request is made

the load can be distributed appropriately between the deployed pods (see

Figure 10-2). The creation of the container is omitted from the diagram

but would be identical to what is shown in Figure 10-1. Using AKS we can

also set up autoscaling rules so that the number of pods and nodes in our

cluster can change based on demand.

Figure 10-2.  AKS scenario: (1) Develop on DSVM, (2) Push container
to container registry, (3) Deploy to AKS, and (4) Send images to
service, which get balanced across the pods using load balancer.

To deploy an AI model on AKS you need the following:

	 1.	 Your model and an API to call it.

	 2.	 The Flask web application that will handle the requests.

	 3.	 A Docker container that contains the model, Flask

application, and necessary dependencies.

Once you have these you can create the cluster with the command

shown in Listing 10-2. The command will create a cluster called

myGPUCluster with one node that is an NC6 VM. An NC6 VM has a

single K80 GPU that will speed up the inference of our deep learning

Chapter 10 Operationalizing AI Models

249

model considerably compared to CPU. As an example, a single NC6 can

handle a throughput of 20 images per second using a ResNet-152 model

implemented in TensorFlow. In contrast, a single DS15 with 20 CPU cores

can handle a throughput of around 7 images per second. The GPU-based

configuration therefore provides nearly three times the throughput at

around half the price.

Listing 10-2.  Command to Create AKS Cluster

BASH

az aks create --resource-group myResourceGroup --name

myGPUCluster --node-count 1 --generate-ssh-keys -s Standard_NC6

Once we have the cluster up and running we need to create a manifest

file that specifies what we want to deploy and how. The manifest file we

are using for this example can be found at http://bit.ly/AIManifest. In

the manifest file we specify that we want to create a service based on our

container, that it requires a GPU, and that we want a load balancer on port

80. We deploy our pod with the command shown in Listing 10-3.

Listing 10-3.  Command to Deploy Service Based on Manifest

BASH

kubectl create -f ai_manifest.json

After around five minutes, our pod should be ready and we can get the

IP of our service with the command shown in Listing 10-4 with the output

shown in Listing 10-5.

Listing 10-4.  Command to Get Service IP

BASH

kubectl get service azure-dl

Chapter 10 Operationalizing AI Models

250

Listing 10-5.  Results of Command Shown in Listing 10-4

BASH-OUTPUT

AME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

azure-dl LoadBalancer 10.0.155.14 13.82.238.75 80:30532/TCP 11m

The IP of our service is under EXTERNAL-IP. We can then send our

requests to that service and get the response back. We have created a step-

by-step tutorial on how to deploy a CNN based on ResNet-152 written in

TensorFlow or Keras with a TensorFlow back end and you can find it at

http://bit.ly/AKSAITutorial.

�Azure Service Fabric
Azure Service Fabric (ASF) is a cluster management and orchestration

service similar to Kubernetes. ASF has been used internally by Microsoft

for many services, including Azure SQL Database, Azure Cosmos DB,

and many core Azure services. The draw of ASF is that it is simpler to use

than Kubernetes because one can deploy an application simply knowing

Docker and does not need to understand a completely new orchestration

service. Theoretically it should be possible to run ASF on GPUs, but there

are currently no concrete examples of doing so. The use case for service

fabric would be identical to the one for AKS with the only caveat that

GPU-dependent workloads have been proven on AKS but not ASF

(see Figure 10-3).

Chapter 10 Operationalizing AI Models

251

�Batch AI
In Chapter 9, we discussed Batch AI, and all the benefits we mentioned

previously in terms of flexibility of compute and scalability transfer to

operationalization as well. Batch AI is most suited to massively parallel batch

scenarios where the cluster can be quickly spun up, the job executed in

parallel, and then spun down. Because Batch AI itself does not cost anything,

you only need to pay for the compute you use, making it an extremely

efficient solution. A scenario for using Batch AI is shown in Figure 10-4.

We assume you have already trained the model and have wrapped it in an

appropriate API and Docker container and pushed it all to an ACR. The user

uploads one or more videos to be processed by our deep learning model. An

Azure function receives the notification that data have been uploaded to a

blob and spins up the Batch AI cluster. Meanwhile, another Azure function

reads the videos and queues them up in an Azure Service Bus. As the cluster

comes online it pulls in the appropriate container and spins it up. The

application in the container subscribes to the appropriate topic and sees

what jobs are available. Each VM now will independently pull a message

Figure 10-3.  Service Fabric scenario: (1) Develop on DSVM, (2) Push
container to container registry, (3) Deploy container to Service Fabric,
and (4) Send images to the service to be scored.

Chapter 10 Operationalizing AI Models

252

from the service bus and based on the message will pull the appropriate

video from blob storage, process it, and push it back. Once all the jobs are

done, the Azure function will destroy the cluster.

Figure 10-4.  Batch AI scenario: (1) Push videos to storage. (2) The
storage triggers Azure function to create a cluster. (3) Azure function
starts queuing up the videos found in storage to a service bus. (4)
Batch AI cluster spins up. (5) Cluster pulls appropriate image from
container registry. (6) The job running on each VM pulls a single
message from the service bus and based on the image pulls the
appropriate video from storage. (7) Once the video is processed, the
results are written back to storage.

Batch Shipyard is very similar to Batch AI and might offer features that

have not made it into Batch AI yet. Batch Shipyard can more or less be

brought in as a drop-in replacement for Batch AI in the preceding scenario.

�AZTK
Spark is the most popular framework for massively data parallel and High

Performance Computing (HPC) workloads. The Azure Distributed Data

Engineering Toolkit (AZTK) is a Python CLI application for provisioning

on-demand Spark clusters in Azure. It is a convenient and cheap way to get

Chapter 10 Operationalizing AI Models

253

up and running with a Spark cluster. AZTK is able to provision a cluster in 5

to 10 minutes and it is able to make use of dedicated and low-priority VMs,

making it very cost-efficient.

AZTK is suited to scenarios where lots of the components are

dependent on Spark and the requirement is for ephemeral clusters.

AZTK uses Docker containers, meaning it can be quite easy to manage

dependencies and ensure that your production environment matches

your deployment environment. AZTK can also use GPUs, making it great

for solutions that require the data parallelization that Spark offers in

combination of the computation power of GPUs. The AZTK version of the

scenario shown in Figure 10-4 can be seen in Figure 10-5. In the AZTK

scenario we have no need for the Azure Subscription service because we

can distribute things using Spark’s built-in parallelization. For AZTK we are

also using an ACI rather than calling it from the Azure Function because

AZTK is written in Python and Python support on Azure Functions was

experimental at the time of writing.

Figure 10-5.  AZTK scenario: (1) Push videos to storage. (2) The
storage triggers Azure Function. (3) Azure Function calls ACI that
have AZTK installed and spins up an AZTK cluster. (4) The PySpark
job starts and begins pulling data from storage and processing it.
(5) As the processing of each video is completed the results are written
back to storage.

Chapter 10 Operationalizing AI Models

254

�HDInsight and Databricks
HDInsight (HDI) is a Spark offering from Microsoft. It tends to be a little

more expensive than AZTK for on-demand processing and cannot use

GPUs. Azure Databricks is another Spark-based platform on Azure, a

generally available “first party” Microsoft service. It has a simple single-click

start and integrates with Azure services such as Azure Active Directory.

Databricks provides an interactive and collaborative notebook experience,

as well as monitoring and security tools in the optimized Spark platform.

On-demand Spark clusters can be created using Azure Functions as

in the AZTK and Batch AI scenarios, but because of its tighter integration

with Azure, on-demand clusters for either Databricks or HDI can be

created using Azure Data Factory (see http://bit.ly/ADFCreateHDI and

http://bit.ly/DBwithADF). HDI and Databricks unfortunately do not use

Docker containers so dependency management is a little trickier. Because

of the tighter integration, the pipeline using HDI and Databricks will be a

little simpler but less flexible due to the constraints of Azure Data Factory

(see Figure 10-6).

Figure 10-6.  Example Databricks or HDInsight scenario: (1) Push
videos to storage. (2) ADF reads the data from storage. (3) It calls
HDInsight or Databricks to process the data. (4-5) The data are then
streamed back and stored.

See example deep learning notebooks for Azure Databricks available at

http://bit.ly/DB_DL.

Chapter 10 Operationalizing AI Models

255

�SQL Server
To perform computig close to where the data are, SQL Server is a great

option for deployment when data are already stored in SQL. The ideal

scenario for such a deployment would be that SQL Server is already being

used or the scenario would benefit from having the model execute as close

to the data as possible. The data proximity requirement is usually the result

of two things, data gravity and data sensitivity. Data gravity refers to the fact

that large volumes of data cause a “gravitational pull” on the computation

due to the costs of moving the data around. Data sensitivity refers to privacy

and security concerns when having data cross different systems and the

possibility of data being left behind or the security weakened due to the

multiple data transfers. SQL Server is very flexible, as it can be installed on

Windows and Linux and can be deployed on VMs with GPU to accelerate

deep learning scenarios (see http://bit.ly/SQLServerDeepL). Both

Python and R integration are available for SQL Server so data scientists can

use whatever language they are most comfortable with. More examples on

deploying models on SQL Server can be found at http://bit.ly/SQLML.

�Operationalization Overview
We have presented a number of operationalization platforms and it can be

hard to choose among them. As we mentioned earlier it is good to think

about these services belonging on a continuum that ranges from strictly

batch to real time, with services like Batch AI and AZTK belonging to

the batch end of the spectrum and services like AKS and ASF belonging

to the real-time end of the spectrum. In Figure 10-7 you can see a visual

representation of this continuum: On the left are the more batch-like

platforms and on the right the more real-time platforms. Figure 10-7 does

not imply that the leftmost or rightmost options are the recommended

approaches for batch and real-time processing, respectively, only that

these platforms are most appropriate for that type of processing.

Chapter 10 Operationalizing AI Models

256

Figure 10-7.  Batch to real-time continuum

Figure 10-7 is just a general guideline, as it is possible to use these

options in many ways. For example, even though Spark on HDI or Azure

Databricks are typically associated with batch workloads, there are

options for creating real-time workloads, enabled, for example, through

MMLSpark Serving as described at http://bit.ly/MMLSparkStreaming.

You will have also gleaned from the sections on each of the services

that each have strengths and weaknesses. In Figure 10-8 you can see a

visual representation of the attributes of each of the services. The services

are listed on the left side of the heatmap and the metrics along the top.

Each service receives a rating indicated by the color of the box that is based

on the color bar on right side of the heatmap. We compare the service

across five metrics: speed, scalability, data proximity, debug environment,

and ease of deployment.

Chapter 10 Operationalizing AI Models

257

Speed refers to the hardware available to each of the services; for AI

models this mainly revolves around whether GPUs are available for it

or not. Scalability refers to whether the service can be easily scaled up

and out. Data proximity refers to how close the compute is to the data;

this is mainly a consideration when we don’t want to move the data due

to either volume or security reasons. Debug environment refers to how

easy it is to develop for the platform; the main consideration across this

axis is whether the service uses Docker containers or not. Finally, ease of

deployment refers to how easy it is to deploy the model and whether there

is a steep learning curve to get things working.

Although there are many nuances and reasons to deviate from this

recommendation, for real-time processing of deep learning models, we

recommend AKS using GPU nodes. As mentioned earlier, we have created a

step-by-step tutorial on how to deploy a CNN based on ResNet-152 written

in TensorFlow or Keras with a TensorFlow back end, and you can find it

at http://bit.ly/AKSAITutorial. For batch processing of deep learning

models, at the time of this writing we recommend using Batch AI. An

example using TensorFlow can be found at http://bit.ly/BatchAIEx.

Figure 10-8.  Heatmap of deployment services

Chapter 10 Operationalizing AI Models

258

We focused primarily here on operationalizing deep learning models

on Azure. Deep learning models can also be trained on the cloud and then

operationalized in different environments, such as IoT edge as discussed

in the next section, as well as natively on Windows devices through ONNX

as described at http://bit.ly/WindowsONNX.

�Azure Machine Learning Services
The preceding example to deploy an AI model to AKS can be a little

daunting, especially to those not familiar with Docker. To this end, AML

offers options that make operationalization of AI models easier: You

simply supply the model file, your dependencies in a YAML file, and finally

the model driver file, and it will create the appropriate Docker container

and deploy it to AKS (see http://bit.ly/amldeploy). It offers easy and

convenient ways to test your deployment locally as well as scale the service

as needed. See the blog post by Zhu, Iordanescu, and Karmanov (2018) as

an example of using Azure Machine Learning to deploy a deep learning

model for detecting diseases from chest x-ray images. Azure Machine

Learning also assists in the deployment of deep learning models to IoT

edge devices as described at http://bit.ly/DLtoIOT.

In previous chapters we mentioned the usefulness of transfer learning

and in this chapter we also highlighted the benefits of using GPUs for

inference. AML services now offers the ability to use a pretrained ResNet

50 model on FPGAs for inference. FPGAs offer a considerable speed

increase over CPUs and GPUs at a very low cost. Benchmarking showed

that a single FPGA could score around 500 images per second and cost less

than 0.2 cents to score 10,000 images. To use this service simply follow the

instructions given at http://bit.ly/msfpga. It has a number of Jupyter

Notebooks that go through how to train your model based on the features,

but also how to deploy and test the model.

Chapter 10 Operationalizing AI Models

259

�Summary
This chapter covered a number of operationalization options offered

on Azure. It went through the options of deploying models using simple

managed services such as ACI and Azure Web Apps to more complicated

setups with GPU support such as AKS and Batch AI. We also covered

both request–response scenarios as well as batch scenarios. We gave a

comparative overview of what we believe the strengths and weaknesses

of each of the services offered are. With this guidance you should be able

to choose the most appropriate option for your scenario and deploy your

model to make your model available within a production AI solution.

Chapter 10 Operationalizing AI Models

261© Mathew Salvaris, Danielle Dean, Wee Hyong Tok 2018
M. Salvaris et al., Deep Learning with Azure,
https://doi.org/10.1007/978-1-4842-3679-6

�APPENDIX

Notes
�Chapter 1
AI Index. (2017). AI Index 2017 annual report. Retrieved from http://cdn.

aiindex.org/2017-report.pdf

Bengio, Y. (2010). Very brief introduction to machine learning for AI.

Retrieved from http://www.iro.umontreal.ca/~pift6266/H10/notes/

mlintro.html

Bing. (2017, December 13). Bing launches new intelligent search

features, powered by AI. Retrieved from https://blogs.bing.com/

search/2017-12/search-2017-12-December-AI-Update

Brynjolfsson, E., & Mitchell, T. (2017). What can machine learning do?

Workforce implications. Science, 358(6370), 1530–1534.

Bunting, P. (2017). Using big data, the cloud, and AI to enable

intelligence at scale. Microsoft Ignite. Retrieved from https://myignite.

microsoft.com/videos/55333

Dahl, G. E., Yu, D., Deng, L., & Acero, A. (2011). Context-dependent

pre-trained deep neural networks for large-vocabulary speech recognition.

IEEE Transactions on Audio, Speech, and Language Processing, 20(1), 30–42.

Gershgorn, D. (2017, July 26). The data that transformed AI research—

and possibly the world. Quartz. Retrieved from https://qz.com/1034972/

the-data-that-changed-the-direction-of-ai-research-and-

possibly-the-world/

262

Goldberg, Y. (2016). A primer on neural network models for natural

language processing. Journal of Artifical Intelligence Research, 57, 345–420.

Retrieved from https://www.jair.org/media/4992/live-4992-9623-

jair.pdf

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning.

Cambridge, MA: MIT Press.

He, K., Zhang, X., Ren, S., & Sun, J. (2015, June). Deep residual learning

for image recognition. Paper presented at the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV. Retrieved from

arXiv:1512.03385

Jia, R., & Liang, P. (2017). Adversarial examples for evaluating reading

comprehension systems. EMNLP. Retrieved from https://arxiv.org/

abs/1707.07328

Linn, A. (2017, December 13). People want more intelligent technology

tools: AI is helping with that. Retrieved from https://news.microsoft.

com/features/people-want-more-intelligent-technology-tools-ai-

is-helping-with-that/?lipi=urn%3Ali%3Apage%3Ad_flagship3_pulse_

read%3B2NMDyj2gQIecJUBYgBAbWg%3D%3D

Linn, A. (2018, January 15). Microsoft creates AI that can read a

document and answer questions about it as well as a person. Retrieved from

https://blogs.microsoft.com/ai/microsoft-creates-ai-can-read-

document-answer-questions-well-person/

Marr, B. (2016, December 6). What is the difference between

artificial intelligence and machine learning? Forbes. Retrieved from

https://www.forbes.com/sites/bernardmarr/2016/12/06/what-is-

the-difference-between-artificial-intelligence-and-machine-

learning/#6c9613e82742

Merity, S. (2016, July). In deep learning, architecture engineering is the

new feature engineering. Retrieved from https://www.kdnuggets.com/

2016/07/deep-learning-architecture-engineering-feature-

engineering.html

Appendix Notes

263

Microsoft. (2015, July 26). Fueling the oil and gas industry with IoT.

Retrieved from https://customers.microsoft.com/en-us/story/

fueling-the-oil-and-gas-industry-with-iot-1

Microsoft Customer Stories. (2017, February 6). Starship Commander:

Virtual reality meets Cognitive Services in new science-fiction game.

Retrieved from https://customers.microsoft.com/en-us/story/human-

interact-cognitive-services

Microsoft Form 10-K. (2017, June). U.S. Securities and Exchange

Commission. Retrieved from https://www.sec.gov/Archives/edgar/

data/789019/000156459017014900/msft-10k_20170630.htm

Microsoft News. (2017, June). Democratizing AI: For every person

and every organization. Retrieved from https://news.microsoft.com/

features/democratizing-ai/

Microsoft Translator. (2017, December). Presentation Translator, a

Microsoft Garage project. Retrieved from https://translator.microsoft.

com/help/presentation-translator/

Nadella, S. (2016, June). The partnership of the future: Microsoft’s CEO

explores how humans and A.I. can work together to solve society’s greatest

challenges. Slate. Retrieved from http://www.slate.com/articles/

technology/future_tense/2016/06/microsoft_ceo_satya_nadella_

humans_and_a_i_can_work_together_to_solve_society.html

Nadella, S. (2017). Hit refresh: The quest to rediscover Microsoft’s soul

and imagine a better future for everyone. New York, NY: HarperCollins.

Nehme, R. (2016, November 2). Connected drones: 3 powerful lessons

we can all take away. Retrieved from https://blogs.technet.microsoft.

com/machinelearning/2016/11/02/connected-drones-3-powerful-

lessons-we-can-all-take-away/

Rajpurkar, P., Zhang, J., Lopyrev, K., & Liang, P. (2016). SQuAD:

100,000+ questions for machine comprehension of text. Retrieved from

https://arxiv.org/abs/1606.05250

Appendix Notes

264

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S.,

Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., & Berg, A.C. (2015).

Imagenet large scale visual recognition challenge. International Journal of

Computer Vision, 115(3), 211–252.

Silver, D., Huang, A., Maddison, C., Guez, A., Sifre, L., van den

Driessche, G., et al. (2016). Mastering the game of Go with deep neural

networks and tree search. Nature, 529, 484–489.

van Seijen, H. (2017, December 6). Hybrid reward architecture

and the fall of Ms. Pac-Man with Dr. Harm van Seijen. Retrieved from

https://www.microsoft.com/en-us/research/blog/hybrid-reward-

architecture-fall-ms-pac-man-dr-harm-van-seijen/

Xiong, W., Droppo, J., Huang, X., Seide, F., Seltzer, M., Stolcke, A.,

et al. (2016). Achieving human parity in conversational speech recognition

(Technical Report MSR-TR-2016-71). Retrieved from https://arxiv.org/

pdf/1610.05256.pdf

�Chapter 2
Esteva, A., Kuprel, B., Novoa, R., Ko, J., Swetter, S., Blau, H., & Thrun, S.

(2017). Dermatologist-level classification of skin cancer with deep neural

networks. Nature, 542, 115–118.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D.,

Ozair, S., et al. (2014). Generative adversarial nets. Retrieved from

arXiv:1406.2661v1

Kuchaiev, O., & Ginsburg, B. (2017, August). Training deep

autoencoders for collaborative filtering. Retrieved from https://arxiv.

org/abs/1708.01715

Metz, C., & Collins, K. (2018, January 2). How an A.I. “cat-and-mouse

game.” New York Times. Retrieved from https://www.nytimes.com/

interactive/2018/01/02/technology/ai-generated-photos.html

Appendix Notes

265

Rajpurkar, P., Hannun, A., Haghpanahi, M., Bourn, C., & Ng, A.

(2017). Cardiologist-level arrhythmia detection with convolutional neural

networks. Retrieved from arXiv:1707.01836v1

�Chapter 3
Abdi, M., & Nahavandi, S. (2017, March). Multi-residual metworks:

Improving the speed and accuracy of residual networks. Retrieved from

https://arxiv.org/abs/1609.05672v4

Bergstra, J., Yamins, D., & Cox, D.D. (2013, June). Making a science of

model search: Hyperpa-rameter optimization in hundreds of dimensions for

vision architectures. ICML, Atlanta.

Bolukbasi, T., Chang, K., Zou, J., Saligrama, V., & Kalai, A. (2016). Man

is to computer programmer as woman is to homemaker? Debiasing word

embeddings. Retrieved from arxiv.org/abs/1607.06520

Cai, H., Chen, T., Zhang, W., Yu, Y., & Wang, J. (2017). Efficient

architecture search by network transformation. Retrieved from

arXiv:1707.04873v2

Chollet, F. (2017, July 17). The limitations of deep learning. The Keras

Blog. Retrieved from https://blog.keras.io/the-limitations-of-

deep-learning.html

Culurciello, E. (2017, October 26). Segmenting, localizing and

counting object instances in an image. Towards Data Science. Retrieved

from https://towardsdatascience.com/segmenting-localizing-and-

counting-object-instances-in-an-image-878805fef7fc

Dai, J., He, K., & Sun, J. (2016). R-FCN: Object detection via region-

based fully convolutional networks. Retrieved from https://arxiv.org/

abs/1605.06409

Domhan, T., Springenberg, J.T., & Hutter, F. (2015, July). Speeding Up

Automatic Hyperparameter Optimization of Deep Neural Networks by

Extrapolation of Learning Curves. In IJCAI (Vol. 15, pp. 3460–3468).

Appendix Notes

266

Durant, L., Giroux, O., Harris, M., & Stam, N. (2017, May 10). Inside

Volta: The world’s most advanced data center GPU. NVIDIA Developer

Blog. Retrieved from https://devblogs.nvidia.com/inside-volta/

Feldman, M. (2016, September). Microsoft goes all in for FPGAs to

build out AI cloud. Top 500. Retrieved from https://www.top500.org/news/

microsoft-goes-all-in-for-fpgas-to-build-out-cloud-based-ai/

Fusi, N., Sheth, R., & Elibol, H.M. (2017, May 15). Probabilistic

matrix factorization for automated machine learning. arXiv preprint

arXiv:1705.05355.

Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2013). Rich feature

hierarchies for accurate object detection and semantic segmentation.

Retrieved from https://arxiv.org/abs/1311.2524

Golovin, D., Solnik, B., Moitra, S., Kochanski, G., Karro, J., & Sculley, D.

(2017, August). Google vizier: A service for black-box optimization. In

Proceedings of the 23rd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, ACM (pp. 1487–1495).

Han, S., Mao, H., & Dally, W. (2016). Deep compression: Compressing

deep neural networks with pruning, trained quantization and Huffman

coding. Retrieved from https://arxiv.org/abs/1510.00149v5

He, K., Gkioxari, G., Dollar, P., & Girshick, R. (2017). Mask R-CNN.

Retrieved from https://arxiv.org/abs/1703.06870

He, K., Zhang, X., Ren, S., & Sun, J. (2015, June). Deep residual learning

for image recognition. Paper presented at the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV. Retrieved from

arXiv:1512.03385

Howard, A., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T.,

et al. (2017). MobileNets: Efficient convolutional neural networks for mobile

vision applications. Retrieved from https://arxiv.org/abs/1704.04861

Huang, G., Liu, Z., van der Maaten, L., & Weinberger, K. Q. (2018,

January). Densely connected convolutional networks. Retrieved from

https://arxiv.org/abs/1608.06993v5

Appendix Notes

267

Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A., Fathi, A., et al.

(2017). Speed/accuracy trade-offs for modern convolutional object

detectors. CVPR. Retrieved from https://arxiv.org/abs/1611.10012v3

Iandola, F., Han, S., Moskewicz, M., Ashraf, K., Dally, W., & Keutzer, K.

(2016). SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and

<0.5 MB model size. Retrieved from https://arxiv.org/abs/1602.07360

Jo, J., & Bengio, Y. (2017). Measuring the tendency of CNNs to learn

surface statistical regularities. Retrieved from https://arxiv.org/

pdf/1711.11561.pdf

Karpathy, A. (2017, November 11). Software 2.0. Medium. Retrieved

from https://medium.com/@karpathy/software-2-0-a64152b37c35

Kurakin, A., Goodfellow, I., & Bengio, S. (2016). Adversarial examples

in the physical world. Retrieved from https://arxiv.org/abs/1607.02533

Larsson, G., Maire, M., & Shakhnarovi, G. (2017, May). FractalNet:

Ultra-deep neural networks without residuals. Retrieved from https://

arxiv.org/abs/1605.07648v4

LeCun, Y. (2018, January 5). Post. Retrieved from https://www.

facebook.com/yann.lecun/posts/10155003011462143

Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., & Talwalkar, A.

(2018). Hyperband: A novel bandit-based approach to hyperparameter

optimization. arXiv preprint arXiv:1603.06560, pp. 1–48.

Liakhovich, O., Barraza, R., & Lanzetta, M. (2017, June 12). Learning

image to image translation with CycleGANs. Microsoft Developer Blog.

Retrieved from https://www.microsoft.com/developerblog/2017/06/12/

learning-image-image-translation-cyclegans/

Lighthill, j. (1973). “Artificial Intelligence: A General Survey” in Artificial

Intelligence: a paper symposium. Science Research Council.

Lin, T., Goyal, P., Girshick, R., He, K., & Dollar, P. (2017). Focal

loss for dense object detection. Retrieved from https://arxiv.org/

abs/1708.02002

Appendix Notes

268

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C., & Berg, A.

(2015). SSD: Single shot multibox detector. Retrieved from https://arxiv.

org/abs/1512.02325

Micikevicius, P. (2017, October 11). Mixed-precision training of deep

neural networks. NVIDIA Developer Blog. Retrieved from https://

devblogs.nvidia.com/mixed-precision-training-deep-neural-

networks/#disqus_thread

Mittal, D., Bhardwaj, S., Khapra, M., & Ravindran, B. (2018). Recovering

from random pruning: On the plasticity of deep convolutional neural

networks. Retrieved from https://arxiv.org/pdf/1801.10447.pdf

O’Neil, C. (2016). Weapons of math destruction: How big data increases

inequality and threatens democracy. New York, NY: Crown.

Real, E., Aggarwal, A., Huang, Y., & Le, Q. (2018, February 6).

Regularized evolution for image classifier architecture search. Retrieved

from https://arxiv.org/abs/1802.01548

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2015). You only look

once: Unified, real-time object detection. Retrieved from https://arxiv.

org/abs/1506.02640

Redmon, J., & Farhadi, A. (2016). YOLO9000: Better, faster, stronger.

Retrieved from https://arxiv.org/abs/1612.08242

Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster R-CNN: Towards

real-time object detection with region proposal networks. Retrieved from

https://arxiv.org/abs/1506.01497

Ribeiro, M., Singh, S., & Guestrin, C. (2016). “Why should I trust you?”

Explaining the predictions of any classifier. Retrieved from https://arxiv.

org/pdf/1602.04938.pdf

Roach, J. (2018, January 18). Microsoft researchers build a bot that

draws what you tell it to. Microsoft Blogs. Retrieved from https://blogs.

microsoft.com/ai/drawing-ai/

Sabour, S., Frosst, N., & Hinton, G.E. (2017, December). Dynamic

routing between capsules. In Advances in Neural Information Processing

Systems (pp. 3856–3866), Long Beach California.

Appendix Notes

269

Stanley, K. (2017, July 13). Neuroevolution: A different kind of

deep learning. Retrieved from https://www.oreilly.com/ideas/

neuroevolution-a-different-kind-of-deep-learning

Szegedy, C., Ioffe, S., & Vanhoucke, V. (2016, August). Inception-v4,

Inception-ResNet and the impact of residual connections on learning.

Retrieved from https://arxiv.org/abs/1602.07261

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., et al.

(2014). Going deeper with convolutions. Retrieved from https://arxiv.

org/abs/1409.4842

Szegedy, C., Reed, S., Erhan, D., Anguelov, D., & Ioffe, S. (2014).

Scalable, high-quality object detection. Retrieved from https://arxiv.

org/abs/1412.1441

Tian, F. (2017, December 6). Deliberation network: Pushing the

frontiers of neural machine translation. Microsoft Research Blog. Retrieved

from https://www.microsoft.com/en-us/research/blog/deliberation-

networks/

Tishby, N., & Zaslavsky, N. (2015). Deep learning and the information

bottleneck principle. IEEE ITW 2015. Retrieved from https://arxiv.org/

abs/1503.02406

Zhang, X., Li, Z., Loy, C., & Lin, D. (2017, July). PolyNet: A pursuit of

structural diversity in very deep networks. Retrieved from https://arxiv.

org/abs/1611.05725v2

Zhu, X., Kaznady, M., & Hendry, G. (2018, January 30). Hearing AI:

Getting started with deep learning for audio on Azure. Microsoft Machine

Learning Blog. Retrieved from https://blogs.technet.microsoft.com/

machinelearning/2018/01/30/hearing-ai-getting-started-with-

deep-learning-for-audio-on-azure/

Zoph, B., & Le, Q.V. (2016). Neural architecture search with

reinforcement learning. arXiv preprint arXiv:1611.01578.

Xie, S., Girshick, R., Dollár, P., Zhuowen, T., & He, K. (2017, April).

Aggregated residual transformations for deep neural networks. Retrieved

from https://arxiv.org/abs/1611.05431

Appendix Notes

270

Xu, T., Zhang, P., Huang, Q., Zhang, H., Gan, Z., Huang, X., & He, X.

(2017). AttnGAN: Fine-grained text to image generation with attentional

generative adversarial networks. Retrieved from arxiv.org/abs/1711.10485

�Chapter 4
Crump, M., & Luijbregts, B. (2017). The developer’s guide to Microsoft Azure

(2nd ed.). Redmond, WA: Microsoft Press.

�Chapter 5
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang,

Z., Karpathy, A., Khosla, A., Bernstein, M., & Berg, A.C. (2015). Imagenet

large scale visual recognition challenge. International Journal of Computer

Vision, 115(3), 211–252.

Xiong, W., Droppo, J., Huang, X., Seide, F., Seltzer, M., Stolcke, A.,

et al. (2016). Achieving human parity in conversational speech recognition

(Technical Report MSR-TR-2016-71). Retrieved from https://arxiv.org/

pdf/1610.05256.pdf

�Chapter 6
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K. & Fei-Fei, L. (2009, June).

Imagenet: A large-scale hierarchical image database. In Computer Vision and

Pattern Recognition, 2009. CVPR 2009. IEEE Conference on (pp. 248–255).

He, K., Zhang, X., Ren, S., & Sun, J. (2015, June). Deep residual learning

for image recognition. Paper presented at the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV. Retrieved from

arXiv:1512.03385

Appendix Notes

271

Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular

interaction and functional architecture in the cat’s visual cortex. The

Journal of Physiology, 160(1), 106–154. doi:10.1113/jphysiol.1962.

sp006837

Krizhevsky, A. (2009). Learning multiple layers of features from tiny

images. Technical report, University of Toronto.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet

classification with deep convolutional neural networks. Communications

of the ACM, 60(6), 84–90.

Krizhevsky, A., Nair, V., & Hinton, G. (2014). Retrieved from

http://www.cs.toronto.edu/kriz/cifar.html

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature,

521(7553), 436–444. doi:10.1038/nature14539

LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E.,

Hubbard, W., & Jackel, L. D. (1989). Backpropa-gation applied to

handwritten zip code recognition. Neural Computation, 1(4):541–551.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based

learning applied to document recognition. Proceedings of the IEEE, 86(11),

2278–2324. doi:10.1109/5.726791

Sabour, S., Frosst, N., & Hinton, G.E. (2017, December). Dynamic

routing between capsules. In Advances in Neural Information Processing

Systems (pp. 3856–3866), Long Beach California.

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional

networks for large-scale image recognition. ArXiv Preprint. Retrieved from

ArXiv:1409.1556

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., &

Salakhutdinov, R. (2014). Dropout: A simple way to prevent neural

networks from overfitting. The Journal of Machine Learning Research,

15(1), 1929–1958.

Zeiler, M. D., & Fergus, R. (2013). Visualizing and understanding

convolutional networks. Retrieved from http://arxiv.org/abs/1311.2901

Appendix Notes

272

�Chapter 7
Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation

by jointly learning to align and translate. arXiv preprint. Retrieved from

arXiv:1409.0473

Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term

dependencies with gradient descent is difficult. IEEE Transactions on

Neural Networks 5(2), 157–166.

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F.,

Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using

RNN encoder-decoder for statistical machine translation. arXiv preprint.

Retrieved from arXiv:1406.1078

Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. (2014). Empirical

evaluation of gated recurrent neural networks on sequence modeling. arXiv

preprint. Retrieved from arXiv:1412.3555.

Gers, F. A., Schmidhuber, J., & Cummins, F. (2000). Learning to forget:

Continual prediction with LSTM. Journal of Neural Computation, 12(10),

2451–2471.

Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R., &

Schmidhuber, J. (2017). LSTM: A search space odyssey. IEEE Transactions

on Neural Networks and Learning Systems, 28(10), 2222–2232.

Goodfellow, I., A. Courville, and Y. Bengio. (2016). Deep learning

(Vol. 1). Cambridge, MA: MIT Press.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory.

Neural Computation, 9(8), 1735–1780.

Klein, G., Kim, Y., Deng, Y., Senellart, J., & Rush, A. M. (2017).

Opennmt: Open-source toolkit for neural machine translation. arXiv

preprint. Retrieved from arXiv:1701.02810

Appendix Notes

273

Mikolov, T., Karafiát, M., Burget, L., Černocký, J., & Khudanpur, S.

(2010). Recurrent neural network based language model. Paper presented

at the Eleventh Annual Conference of the International Speech

Communication Association. Retrieved from https://scholar.google.

co.uk/scholar?hl=en&as_sdt=0%2C5&q=Recurrent+neural+network+

based+language+model&btnG=

Schuster, M., & Paliwal, K. K. (1997). Bidirectional recurrent neural

networks. IEEE Transactions on Signal Processing, 45(11), 2673–2681.

Siegelmann, H. T. (1995). Computation beyond the Turing limit.

Science 268(5210), 545–548.

Sutskever, I. (2013). Training recurrent neural networks. Toronto,

Canada: University of Toronto.

Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence

learning with neural networks. In Advances in neural information

processing systems (pp. 3104–3112). Retrieved from https://scholar.

google.co.uk/scholar?hl=en&as_sdt=0%2C5&q=+Sequence+to+sequence

+learning+with+neural+networks&btnG=

Werbos, P. J. (1990). Backpropagation through time: What it does and

how to do it. Proceedings of the IEEE, 78(10), 1550–1560.

Williams, R. J., & Peng, J. (1990). An efficient gradient-based algorithm

for on-line training of recurrent network trajectories. Neural Computation,

2(4), 490–501.

Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., & Hovy, E. (2016).

Hierarchical attention networks for document classification. In Proceedings

of the 2016 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies (pp. 1480–1489).

Retrieved from https://scholar.google.co.uk/scholar?hl=en&as_

sdt=0%2C5&q=Hierarchical+attention+networks+for+document+

classification&btnG=

Appendix Notes

274

�Chapter 8
Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., &

Abbeel, P. (2016). InfoGAN: Interpretable representation learning by

information maximizing generative adversarial nets. Retrieve from

arXiv:1606.03657v1

Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B.,

& Bharath, A. (2017). Generative adversarial networks: An overview.

Retrieved from aarXiv:1710.07035v1

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D.,

Ozair, S., et al. (2014). Generative adversarial nets. Retrieved from

arXiv:1406.2661v1

Johnson, J., Alahi, A., & Fei-Fei, L. (2016, October). Perceptual losses

for real-time style transfer and super-resolution. In European Conference

on Computer Vision (pp. 694–711). Springer, Cham.

Radford, A., Metz, L., & Chintala, S. (2016). Unsupervised

representation learning with deep convolutional generative adversarial

networks. Retrieved from arXiv:1511.06434v2

Yu, L., Zhang, W., Wang, J., & Yu, Y. (2017, March). SeqGAN: Sequence

Generative Adversarial Nets with Policy Gradient. In AAAI (pp. 2852–2858).

Zhang, H., Xu, T., Li, H., Zhang, S., Huang, X., Wang, X., & Metaxas, D.

(2016). StackGAN: Text to photo-realistic image synthesis with stacked

generative adversarial networks. Retrieved from arXiv:1612.03242v1

Zhu, J.-Y., Park, T., Isola, P., & Efros, A. (2017). Unpaired image-to-image

translation using cycle-consistent adversarial networks. Retrieved from

arXiv:1703.10593v3

Appendix Notes

275

�Chapter 9
Calauzènes, C., & Roux, N. L. (2017). Distributed SAGA: Maintaining linear

convergence rate with limited communication. ArXiv preprint. Retrieved

from ArXiv:1705.10405

Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao, M.,

et al. (2012). Large scale distributed deep networks. In Advances in

neural information processing systems (pp. 1223–1231). Retrieved

from https://scholar.google.co.uk/scholar?hl=en&as_

sdt=0%2C5&q=Dean+2012&btnG=

Hamilton, M., R. Sengupta, and R. Astala. 2017. Saving snow

leopards with deep learning and computer vision on Spark. Retrieved

from https://blogs.technet.microsoft.com/machinelearning/

2017/06/27/saving-snow-leopards-with-deep-learning-and-

computer-vision-on-Spark/

Lin, Y., Han, S., Mao, H., Wang, Y., & Dally, W. J. (2017). Deep gradient

compression: Reducing the communication bandwidth for distributed

training. ArXiv preprint. Retrieved from ArXiv:1712.01887

Recht, B., Re, C., Wright, S., & Niu, F. (2011). Hogwild: A lock-free

approach to parallelizing stochastic gradient descent. In Advances

in neural information processing systems (pp. 693–701). Retrieved

from https://scholar.google.co.uk/scholar?hl=en&as_

sdt=0%2C5&q=Recht+2011&btnG=

Tok, W. H. (2017). How to train & serve deep learning models at

scale, using cognitive toolkit with Kubernetes on Azure. Retrieved

from https://blogs.technet.microsoft.com/machinelearning/

2017/09/06/how-to-use-cognitive-toolkit-cntk-with-kubernetes-

on-azure/

Zhang, R., & Buchwalter, W. 2017. Autoscaling deep learning

training with Kubernetes. Retrieved from https://www.microsoft.com/

developerblog/2017/11/21/autoscaling-deep-learning-training-

kubernetes/

Appendix Notes

276

�Chapter 10
Zhu, X., Iordanescu, G, & Karmanov, I. (2018). Using Microsoft AI to build

a lung-disease prediction model using chest X-ray images. Retrieved from

https://blogs.technet.microsoft.com/machinelearning/2018/03/07/

using-microsoft-ai-to-build-a-lung-disease-prediction-model-

using-chest-x-ray-images/

Appendix Notes

277

Index

A
Activation functions

ReLU, 138–139
sigmoid, 136–137
Tanh, 137

Apache Spark, 240
Arithmetic calculations, 3
Artificial intelligence (AI)

Bing, 7
challenges, 6
data and privacy, 5
description, 3
drawbacks, 4
human capability, 5
legal and ethical implications, 5
Microsoft, 6
ML (see Machine learning (ML))
personalized experiences, 4
type, 4

Artificial neural networks, 15
Attentional Generative Adversarial

Network (AttnGAN), 191–192
Attention mechanism, 174
Autoencoders, 36
Azure container instances

(ACI), 245
Azure Cosmos DB, 87, 91

Azure Databricks, 88, 240
Azure Data Factory, 212
Azure Data Lake, 87
Azure Data Lake Store, 92
Azure Distributed Data

Engineering Toolkit
(AZTK), 88, 252–253

Azure HDInsight, 88, 240
Azure Kubernetes Services

(AKS), 89, 243, 247–249
Azure Machine Learning

services, 239–240, 258
Azure Service Fabric

(ASF), 250–251
Azure SQL Data Warehouse and

CosmosDB, 212
Azure Storage, 87
Azure Web Apps, 247

B
Backpropagation method, 141
Backpropagation through time

(BPTT), 166, 169, 170
Batch AI

Batch Shipyard, 216
disadvantages, 217
pros, 217

© Mathew Salvaris, Danielle Dean, Wee Hyong Tok 2018
M. Salvaris et al., Deep Learning with Azure,
https://doi.org/10.1007/978-1-4842-3679-6

278

Python SDK
Docker containers, 234
ExploringBatchAI.ipynb

file, 238
helper functions, 237–238
Jupyter Notebooks, 234
parameters, 235

Batch Shipyard, 215–216
Bidirectional recurrent neural

networks (BiRNNs), 168

C
Caffe, 93
CIFAR10 data set

color images, 143–144
convolution layer, 144–145
evaluate model, 149
initialize model, 148
load data, 148
loss function and

optimization, 145
minibatch function, 147
placeholders, data and labels, 148
prepare_cifar function, 146–147
print, 149
TensorFlow session, 148
train model, 148–149

Cloud computing, 16
CNNs training, Batch AI

cluster dashboard, Azure
portal, 230

configuration file, 228–229
create cluster, 227
deep learning

frameworks, 235–237
delete the job, 232
distributed training, 233
execution, AI job, 229
hyperparameter tuning, 232
job dashboard, 231
monitoring, 229
register, 227
vs. RNNs, 161–162
status check, 228
stdout output, 231

Cognitive Services
application, 101–102
Azure Portal, 113–114
Computer Vision (see Computer

Vision APIs)
JSON object, 102, 104
knowledge, 105
LUIS, 105
REST API

documentation, 102–103
search, 105
speech, 105
vision, 104

Computer Vision APIs, 114
configuration, 116
create project, 122
domain-specific

models, 111–112
export model, 127–128

Batch AI (cont.)

Index

279

giraffes, 124–127
Hello World, 122–123
image processing

techniques, 106–107
intelligent zoo app, 122, 124
keys, 116–117
management, 116
OCR, 110–111
sample code, 117
scenario, 119–120
sign in, 120

Convolutional neural networks
(CNNs), 28, 29

activation functions
ReLU, 138–139
sigmoid, 136–137
Tanh, 137

architecture, 139
CIFAR10 (see CIFAR10 data set)
convolution layers

four, 152–154
two, 151–152
visualization, 134–135

deficiencies, 135
5 × 5 matrix, 132–134
MLPs, 142
neuronal cells, 131
parameter sharing, 143
pooling layer, 135–136
training process, 140–141
transfer learning, 159

Custom Speech, 101
Custom Vision, 101

Cycle-Consistent Adversarial
Networks (CycleGANs)

adversarial loss, 206
application, 194
code

phase property, 197
Python libraries, 196
test method, 199
train method, 199

cycle consistency loss, 206
definition, 194
generators and discriminators

network architecture, 202–204
optimizer, 204–206

mapping functions, 195
object transfiguration, 194–195

D
Data Science Virtual Machine

(DSVM), 86–87
Decision making, 3
Deep learning

applications, 21
approaches, 16, 18, 20
artificial neural network

models, 27
autoencoders, 36
business requirements, 39
cloud computing, 19
CNNs, 29
comprehensive overview, 20
data sets, 39–40, 99

Index

280

deploy, 42
DNN, 16
Facebook and Microsoft, 45
finding data sets, 38
GANs, 35
GitHub, 46
goals, 44
GPUs and FPGAs, 16, 43
hand-craft features, 15
image, 14–15
ImageNet data and

competition, 18
Keras and Gluon, 44
limitations, 20
Microsoft Batch AI service, 47
ML, 16
mobile devices, 37
models library, 50
natural language processing, 15
network structures, 28
object detection, 37
pretrained models, 45
projects, 27–28
research, 17
ResNet-50, 47
ResNet-152, 19
R interfaces, 46
RNNs, 33
Rosetta Stone, 45
semantics, 15
speech recognition, 19
speech-to-text APIs, 100
supervised, 15

Tensorflow, 47
traditional ML model, 20
training, 40
transfer learning and domain

adaptation, 47
types of networks, 27
validating and tuning, 40

Deep learning virtual machine
(DLVM), 81, 213–214

Deep learning workspace
(DL workspace), 217–218

Deep neural network (DNN)
model, 15

Distributed training,
212–213, 225, 233

Domain Name Service (DNS), 96
Domain-specific models, 111–112

E
Electrocardiogram (ECG), 27
Exploding gradients, 170

F
Freezing layers, 160

G
Generative adversarial networks

(GANs), 28, 35
adversarial loss, 188
AI applications, 187
algorithm, 188

Deep learning (cont.)

Index

281

AttnGAN, 191–192
CycleGANs (see Cycle-

Consistent Adversarial
Networks (CycleGANs))

deep learning, 190
definition, 188
discriminative model, 188
generative model, 188
image-to-image translations, 187
InfoGAN, 190
mode collapse, 193
SeqGAN, 193
StackGAN, 190
text-to-image generation, 187
working, 189

Graphical user interface (GUI), 92

H
HDInsight (HDI), 254
How-Old.net site, 108–109
Hyperbolic tangent functions, see

Tanh functions
Hyperparameter

tuning, 223–224, 232

I
ImageNet, 100, 160
Image processing, 106–107
Integrated development

environment (IDE), 93
Intelligent zoo app, 122, 124
Internet of Things (IOT), 42

J
Jupyter Notebooks, 234

K
Kubernetes cluster, 241

L
Language Understanding

Intelligence Service
(LUIS), 84, 105

Logistic function, see Sigmoid
function

Long short term memory
(LSTM), 34, 170–172

Loss functions, 141

M
Machine learning (ML)

AI-infused applications, 9
classical approaches, 9, 13
customers and demographic

data, 10
data representation, 11
feature engineering, 9
personalized experiences, 12
predictive maintenance

solutions, 12
preprocessing, 11
supervised approach, 10–13
tasks, 9

Max pooling layer, 30

Index

282

Microsoft AI Platform
Azure Machine Learning

services, 84
Batch AI, 85
bot framework, 84
cloud computing, 79, 80
cognitive services, 82
data storage, 91
deep learning solution, 80
development environments, 80
DLVM, 81
DSVM, 87
hosting, 89
infrastructure, 86
Machine Learning Server, 79
open-source technology, 80
services, 81
Spark, 88
SQL Server, 79
tools

Azure Machine Learning
Studio, 92

Broader Azure Platform, 94
deep learning

frameworks, 93
Deep Learning Virtual

Machine, 95
IDE, 93
Notebook Server, 97

Microsoft Cognitive Toolkit
(CNTK), 46, 93

Microsoft Machine Learning
for Apache Spark
(MMLSpark), 89, 240

Microsoft stock, LSTM
hyperparameters, 181
normalize data, 181
reshaping data, 182
RMSE, 183, 185
train and test sets, 181
training model, 182

Multi-instance tasks, 225
Multilayer perceptrons

(MLPs), 29, 142

N
Natural language

processing, 19, 22–23, 49
Network architecture, 16
Neural machine translation

(NMT), 172–173

O
Operationalization, AI models

ACI, 245–246
AKS, 247–249
ASF, 250–251
AZTK, 252–253
Azure Web Apps, 247
Batch AI, 251–252
batch to real-time

continuum, 256
DLVM, 245
HDInsight and Databricks, 254
heatmap of deployment

services, 257

Index

283

platforms, 243–244
SQL Server, 255

Optical Character Recognition
(OCR), 110–111

P, Q
Pooling layer, 135–136
Public data sets, 99
PyTorch, 93

R
Realtime Crowd Insights, 109–110
Rectified linear unit

(ReLU), 138–139
Recurrent neural networks

(RNNs), 28, 33
architectures

asynchronous many-to-
many pattern, 165

backward propagation, 166
BiRNNs, 168
design patterns, 164–165
many-to-one pattern, 164
nonlinear function, 165
one-to-many pattern, 164
output recurrent

structure, 166–167
vanilla neural

network, 164–165
BPTT, 169
vs. CNNs, 161–162
exploding gradients, 170

image classification
argmax() operation, 180
create network

architecture, 177
loading data, 177
placeholders and initialize

variables, 178
supply data to model, 179–180
training model, 179

Microsoft stock (see Microsoft
stock, LSTM)

one-hot encoded vectors, 163
sentiment analysis, 176
summing input vectors, 163–164
training method, 169–170
vanishing gradients, 170

Reinforcement learning, 20
Root mean squared error

(RMSE), 183, 185

S
Scale-invariant feature transform

(SIFT), 31
Sequence-to-sequence

models, 172–175
Sigmoid function, 136–137
Software Development Kit

(SDK), 84
Spark clusters, 86
Speech-to-speech translation, 4
SQL Data Warehouse, 87
Stacked Generative Adversarial

Networks (StackGAN), 190

Index

284

Stochastic gradient descent
(SGD), 141

Supervised deep learning models, 15
Supervised machine

learning, 9, 10, 12

T, U
Tanh functions, 137
Tensorflow, 93
Training AI models

Apache Spark, 240
Batch AI (see Batch AI)
Batch Shipyard, 215–216
distributed training, 212–213
DLVM, 213–214
DL workspace, 217–218
Kubernetes clusters, 241
MMLSpark, 240

Training DNN, Batch Shipyard
AI script execution, 218–219
Azure portal, 222
command to create batch

cluster, 221
configuration files, 220
create azure resources, 220
distributed training, 225
hyperparameter

tuning, 223–224
review errors and debug

scripts, 222
submit job, 222

Transfer learning, 47, 159–160

V, W, X, Y, Z
Vanishing gradients, 170
Virtual machines (VM), 40

Index

	Table of Contents
	About the Authors
	About the Guest Authors of Chapter 7
	About the Technical Reviewers
	Acknowledgments
	Foreword
	Introduction
	Part I: Getting Started with AI
	Chapter 2: Overview of Deep Learning
	Common Network Structures
	Convolutional Neural Networks
	Recurrent Neural Networks
	Generative Adversarial Networks
	Autoencoders

	Deep Learning Workflow
	Finding Relevant Data Set(s)
	Data Set Preprocessing
	Training the Model
	Validating and Tuning the Model
	Deploy the Model
	Deep Learning Frameworks & Compute
	Jump Start Deep Learning: Transfer Learning and Domain Adaptation
	Models Library

	Summary

	Chapter 3: Trends in Deep Learning
	Variations on Network Architectures
	Residual Networks and Variants
	DenseNet
	Small Models, Fewer Parameters
	Capsule Networks
	Object Detection
	Object Segmentation
	More Sophisticated Networks
	Automated Machine Learning

	Hardware
	More Specialized Hardware
	Hardware on Azure
	Quantum Computing

	Limitations of Deep Learning
	Be Wary of Hype
	Limits on Ability to Generalize
	Data Hungry Models, Especially Labels
	Reproducible Research and Underlying Theory

	Looking Ahead: What Can We Expect from Deep Learning?
	Ethics and Regulations

	Summary

	Chapter 1: Introduction to Artificial Intelligence
	Microsoft and AI
	Machine Learning
	Deep Learning
	Rise of Deep Learning
	Applications of Deep Learning

	Summary

	Part II: Azure AI Platform and Experimentation Tools
	Chapter 4: Microsoft AI Platform
	Services
	Prebuilt AI: Cognitive Services
	Conversational AI: Bot Framework
	Custom AI: Azure Machine Learning Services
	Custom AI: Batch AI

	Infrastructure
	Data Science Virtual Machine
	Spark
	Container Hosting
	Data Storage

	Tools
	Azure Machine Learning Studio
	Integrated Development Environments
	Deep Learning Frameworks

	Broader Azure Platform
	Getting Started with the Deep Learning Virtual Machine
	Running the Notebook Server

	Summary

	Chapter 5: Cognitive Services and Custom Vision
	Prebuilt AI: Why and How?
	Cognitive Services
	What Types of Cognitive Services Are Available?
	Computer Vision APIs
	How to Use Optical Character Recognition–
	How to Recognize Celebrities and Landmarks

	How Do I Get Started with Cognitive Services?
	Custom Vision
	Hello World! for Custom Vision
	Exporting Custom Vision Models

	Summary

	Part III: AI Networks in Practice
	Chapter 6: Convolutional Neural Networks
	The Convolution in Convolution Neural Networks
	Convolution Layer
	Pooling Layer
	Activation Functions
	Sigmoid
	Tanh
	Rectified Linear Unit

	CNN Architecture
	Training Classification CNN
	Why CNNs
	Training CNN on CIFAR10
	Training a Deep CNN on GPU
	Model 1
	Model 2
	Model 3
	Model 4

	Transfer Learning
	Summary

	Chapter 7: Recurrent Neural Networks
	RNN Architectures
	Training RNNs
	Gated RNNs
	Sequence-to-Sequence Models and Attention Mechanism
	RNN Examples
	Example 1: Sentiment Analysis
	Example 2: Image Classification
	Example 3: Time Series

	Summary

	Chapter 8: Generative Adversarial Networks
	What Are Generative Adversarial Networks?
	Cycle-Consistent Adversarial Networks
	The CycleGAN Code
	Network Architecture for the Generator and Discriminator
	Defining the CycleGAN Class
	Adversarial and Cyclic Loss

	Results
	Summary

	Part IV: AI Architectures and Best Practices
	Chapter 9: Training AI Models
	Training Options
	Distributed Training
	Deep Learning Virtual Machine
	Batch Shipyard
	Batch AI
	Deep Learning Workspace

	Examples to Follow Along
	Training DNN on Batch Shipyard
	Hyperparameter Tuning
	Distributed Training
	Training CNNs on Batch AI
	Hyperparameter Tuning and Distributed Training
	Variation of Batch AI with Python SDK

	Azure Machine Learning Services
	Other Options for AI Training on Azure

	Summary

	Chapter 10: Operationalizing AI Models
	Operationalization Platforms
	DLVM
	Azure Container Instances
	Azure Web Apps
	Azure Kubernetes Services
	Azure Service Fabric
	Batch AI
	AZTK
	HDInsight and Databricks
	SQL Server

	Operationalization Overview
	Azure Machine Learning Services
	Summary

	Appendix: Notes
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10

	Index

