

DATA	SCIENCE	WITH	R:
BY	ANDREW	OLEKSY

	

Copyright	©	2018	by	Andrew	Oleksy.	All	Rights	Reserved.

No	part	of	this	publication	may	be	reproduced,	distributed	or	transmitted	in	any	form	or	by	any
means,	including	photocopying,	recording	or	other	electronic	or	mechanical	methods	or	by	any

information	storage	or	retrieval	system	without	the	prior	written	permission	of	the	publisher,	except
in	the	case	of	very	brief	quotations	embodied	in	critical	reviews	and	certain	other	non-commercial

uses	permitted	by	copyright	law

	

TABLE	OF	CONTENTS
	

Table	of	Contents
Chapter	1:	Introduction	to	Data	Mining
Summary
Prerequisite	Knowledge

Introduction	to	Data	Mining
1.1						Data	Science
1.2	Knowledge	Discovery	in	Databases	(KDD)
1.2.1	Data	Collection
1.2.2	Preprocessing
1.2.3	Transformation
1.2.4	Data	Mining
1.2.5	Interpretation	and	Evaluation

1.3	Model	Types
1.4	Examples	and	Counterexamples
1.5	Classification	of	Data	Mining	methods
1.5.1	Classification
1.5.2	Regression
1.5.3	Clustering
1.5.4	Extraction	and	Association	Analysis
1.5.5	Visualization
1.5.6	Anomaly	Detection

1.6	Applications
1.6.1	Medicine
1.6.2	Finance
1.6.3	Telecommunications

1.7	Challenges
1.8	The	R	Programming	Language

1.9	Basic	Concepts,	Definitions	and	Notations
1.10	Tool	Installation

Chapter	2:	Introduction	to	R
Summary
Prerequisite	Knowledge

Introduction	to	R
2.1	Data	Types
2.1.1	Definition	and	Object	Classes
2.1.2	Vectors	and	Lists
2.1.3	Matrix
2.1.4.	Factors	and	Nominal	Data
2.1.5	Missing	Values
2.1.6	Data	Frames

2.2	Basic	Tasks
2.2.1	Reading	Data	from	File
2.2.2	Sequence	creation
2.2.3	Reference	to	Subsets
2.2.4	Vectorization

2.3	Control	Structures
2.3.1	Conditional	Statement:	if-else
2.3.1	Loops:	for,	repeat	and	while
2.3.3	Next	and	break	statements

2.4	Functions
2.5	Scoping	Rules
2.6	Iterated	Functions
2.6.1	lapply
2.6.2	sapply
2.6.3	Split
2.6.4	tapply

2.7	Help	from	the	console	and	Package	Installation
Chapter	3:	Types,	Quality	and	Data	Preprocessing

Summary
Prerequisite	Knowledge

Types,	Quality	and	Data	Preprocessing
3.1	Categories	and	Types	of	Variables
3.2	Preprocessing	processes
3.2.1	Data	cleansing
3.2.1.1	Missing	Values
3.2.1.2	Data	with	Noise
Example	–	Data	smoothing	using	binning	methods

3.2.1.3	Inconsistent	data
3.2.2	Data	Unification
3.2.3	Data	Transformation	and	Discretization
3.2.3.1	Data	Transformation
Example	–	Data	Regularization
3.2.3.2	Data	Discretization
Example	–	Entropy-based	discretization

3.2.4	Data	Reduction
3.2.4.1	Dimension	Reduction
3.2.4.2	Data	Compression

3.3	dplyr	and	tidyr	packages
3.3.1	dplyr
3.3.2	tidyr

Chapter	4:	Summary	Statistics	and	Visualization
Summary
Prerequisite	Knowledge
Summary	Statistics	and	Visualization

4.1	Measures	of	Position

4.1.1	Mean	Value
4.1.2	Median

4.2	Measures	of	dispersion
4.2.1	Minimum	value,	Maximum	value,	Range
4.2.2	Percentile	values
4.2.3	Interquartile	Range
4.2.4	Variance
4.2.5	Standard	Deviation
4.2.6	Coefficient	of	Variation

4.3	Visualization	of	Qualitative	Data
4.3.1	Frequency	Table
4.3.2	Bar	Charts
4.3.3	Pie	Chart
4.3.4	Contingency	Matrix
4.3.4	Stacked	Bar	Charts	and	Grouped	Bar	Charts

4.4	Visualization	of	Quantitative	Data
4.4.1	Frequency	Table
4.4.2.	Histograms
4.4.3	Frequency	Polygon
4.4.4	Boxplot

Chapter	5:	Classification	and	Prediction
Summary
Prerequisite	Knowledge

5.1	Classification
5.1.2	Decision	Trees
5.1.2.1	Description
5.1.2.2	Decision	Tree	creation	–	ID3	Algorithm
5.1.2.3	Decision	Tree	creation	–	Gini	Index

5.2	Prediction

5.2.1Difference	between	Classification	and	Prediction
5.2.2	Linear	Regression
5.2.2.1	Description,	Definitions	and	Notations
5.2.2.2	Cost	Function
5.2.2.3	Gradient	Descent	Algorithm
5.2.2.4	Gradient	Descent	in	Linear	Regression

5.2.2.5	Learning	Parameter
5.3	Overfitting	and	regularization
5.3.1	Overfitting
5.3.2	Model	Regularization
5.3.3	Linear	Regression	with	Normalization

Chapter	6:	Clustering
Summary
Prerequisite	Knowledge

CLUSTERING
6.1	Unsupervised	Learning
6.2	Concept	of	Cluster
6.3	k-means	algorithm
6.3.1	Algorithm	Description
6.3.2	Random	Centroids	Initialization
6.3.3	Choosing	the	number	of	Clusters
6.3.4	Applying	k-means	in	R

6.4	Hierarchical	Clustering	Algorithms
6.4.1	Distance	Measurements	Between	Clusters
6.4.2	Agglomerative	Algorithms
6.4.3	Divisive	Algorithms
6.4.4	Applying	Hierarchical	Clustering	in	R

6.5	DBSCAN	Algorithm
6.5.1	Basic	Concepts

6.5.2	Algorithm	Description
6.5.3	Algorithm	Complexity
6.5.4	Advantages
6.5.5	Disadvantages

Chapter	7:	Mining	of	Frequent	Itemsets	and	Association	Rules
Summary
Prerequisite	Knowledge
Mining	of	Frequent	Itemsets	and	Association	Rules

7.1	Introduction
7.2	Theoretical	Background
7.3	Apriori	Algorithm
7.4	Frequent	Itemsets	Types
7.5	Positive	and	Negative	Border	of	Frequent	Itemsets
7.6	Association	Rules	Mining
7.7	Alternative	Methods	for	Large	Itemsets	generation
7.7.1	Sampling	Algorithm
7.7.2	Partitioning	Algorithm

7.8	FP-Growth	Algorithm
7.9	Arules	package

Chapter	 8:	 Computational	 Methods	 for	 Big	 Data	 Analysis	 (Hadoop	 and
MapReduce)

Summary
Prerequisite	Knowledge

8.1	Introduction
8.2	Advantages	of	Hadoop’s	Distributed	File	System
8.3	Hadoop	Users
8.4	Hadoop	Architecture
8.4.1	Hadoop	Distributed	File	System	(HDFS)
8.4.2	HDFS	Architecture

8.4.3	HDFS	–	Low	Performance	Areas
8.4.3.1	Low	Data	Access	Time
8.4.3.2	Multiple	Small	Files
8.5.3.3	Multiple	Data	Recording	Nodes,	Arbitrary	File	Modifications

8.4.4	Basic	HDFS	Concepts
8.4.4.1	Blocks
8.4.4.2	Namenodes	and	Datanodes
8.4.4.3	HDFS	Federation
8.4.4.4	HDFS	High	Availability

8.4.5	Data	Flow	–	Data	Reading
8.4.6	Network	Topology	in	Hadoop
8.4.7	File	Writing
8.4.8	Copies	Placement
8.4.9	Consistency	Model

8.5	The	Hadoop	Cluster	Architecture
8.6	Hadoop	Java	API
8.7	Lists	Loops	&	Generic	Classes	and	Methods
8.7.1	Generic	Classes	and	Methods
8.7.2	The	Class	Object

One	Last	Thing...

	

CHAPTER	1:	INTRODUCTION	TO	DATA	MINING

SUMMARY

The	aim	of	this	chapter	is	to	introduce	Data	Mining	and	Knowledge	Discovery
in	Databases.	First,	some	basic	concepts	are	defined	along	with	the	reasons	why
this	 scientific	 field	was	 created	 and	 expanded	 rapidly.	Second,	we	will	 review
some	practical	examples	and	counterexamples	of	Data	Mining.	Additionally,	the
most	 important	 fields	 on	which	Data	Mining	 is	 based	 are	 presented.	 Last,	we
will	 find	out	what	R	programming	 language	 is	 and	 its	 general	 philosophy.	We
will	also	show	how	to	install	all	necessary	tools,	we	will	present	how	to	address
to	 the	 R	 language	 manual	 for	 help,	 and	 define	 its	 basic	 types	 and	 functions,
along	with	their	functionality.

PREREQUISITE	KNOWLEDGE

No	previous	knowledge	is	needed	for	this	chapter.

INTRODUCTION	TO	DATA	MINING

The	 evolution	 of	 technology	 helped	 internet	 expand	 lightning	 fast.	Over	 time,
internet	 access	 became	 accessible	 to	 more	 and	 more	 people.	 This	 led	 to	 the
development	of	million	websites	and	the	use	of	databases	for	storing	these	data.
The	 creation	of	 the	 first	 commercial	 and	 social	webpages	 created	 the	need	 for
storing	and	managing	large	amount	of	data.

Today,	the	amount	of	available	data	is	huge	and	is	growing	exponentially	every
day.	The	need	for	minimizing	the	costs	for	collecting	and	storing	these	data	was
one	of	the	biggest	reasons	for	the	growth	of	this	scientific	field.

The	huge	amount	of	data	stored	in	databases	and	data	warehouses	could	not	be
utilized	 as	 is.	 In	 order	 to	 get	 useful	 conclusions,	 some	 necessary	 actions	 are
required	 in	order	 to	structure	 the	data.	On	 this	chapter	we	will	view	which	are
the	fundamental	stages	in	order	to	extract	valuable	and	usable	information	from
data.

.1	DATA	SCIENCE
Data	Science	is	a	new	term,	which	came	to	replace	former	terms	like	Knowledge
Discovery	in	Database	or	Data	Mining.

Both	three	terms	can	be	used	to	describe	a	semiautomated	process	whose	main
purpose	 is	 to	analyze	a	huge	volume	of	data	about	a	specific	problem	with	 the
purpose	of	creating	patterns	in	scientific	fields	like	Statistics,	Machine	Learning
and	Pattern	Recognition.

Those	 patters,	 found	 in	 multiple	 forms	 like	 associations,	 anomalies,	 clusters,
classes	 etc.	 constitute	 structures	 or	 instances,	 which	 appear	 in	 data	 and	 are
statistically	significant.

One	 of	 the	most	 important	 aspects	 of	Data	 Science	 has	 to	 do	with	 finding	 or
recognizing	(recognizing	means	that	the	patters	where	not	expected	in	advance)
and	evaluating	these	patterns.	A	pattern	should	show	signs	of	organization	across
this	 structure.	These	patterns,	 also	known	as	models,	most	of	 the	 times	can	be
tracked	with	the	use	of	measurable	features	or	attributes	which	are	extracted	by
data.

Data	Science	 is	 a	new	science,	which	appeared	at	 the	 end	of	1980	and	 started

growing	gradually.	During	this	era,	Relational	Databases	were	at	their	zenith	and
served	data	storage	needs	for	companies	and	organizations	with	 the	purpose	of
better	organizing	and	managing	them,	so	that	mass	queries	needed	for	their	day
to	day	operations	could	be	accomplished	faster.

These	 Database	 Managing	 Systems	 (DBMS)	 followed	 the	 so	 called	 OLTP
(OnLine	 Transaction	 Processing)	 model,	 with	 the	 purpose	 of	 processing
transactions.	These	tools	allowed	the	user	to	find	answers	in	questions	he	already
knew	or	create	some	references.

The	 need	 for	 better	 utilization	 of	 data	 created	 by	 these	 systems	 –	 the	 systems
which	helped	 the	daily	needs	of	 a	 company-	 led	 to	 the	development	of	OLAP
(OnLine	Analytical	Processing)	type	tools.	With	these	OLAP	tools	it	was	easier
to	 answer	 more	 advanced	 queries,	 allowing	 bigger	 and	 Multidimensional
Databases	(MDB)	to	work	faster	and	provide	data	visualization.

OLAP	 tools	 could	 also	 be	 named	 as	 data	 exploration	 tools	 due	 to	 the
visualization	of	these	data.	These	tools	allowed	users	(sales	managers,	marketing
managers	etc.)	to	recognize	new	patters	but	this	discovery	should	be	made	by	the
user.

For	example,	a	user	could	perform	queries	about	the	total	revenue	generated	by
multiple	 stores	 of	 a	 particular	 company	within	 a	 country,	 in	 order	 to	 find	 the
stores	with	the	lowest	revenue.

Automation	of	pattern	recognition	was	created	through	methodologies	and	tools
created	by	the	field	of	Data	Science.	Through	these	solutions,	pattern	recognition
was	 aided	 by	 the	 final	 goal.	 For	 example,	 if	 a	 user	wanted	 a	 report	 about	 the
stores	with	the	less	revenue	generated	last	month,	he	could	ask	from	the	system
to	find	various	useful	insights	about	stores	revenue.

Data	 Science	 growth	 came	 gradually	 and	 was	 directly	 associated	 to	 the
capability	 of	 collecting	 and	 listing	 huge	 amount	 of	 data,	 of	 different	 types,
through	 the	 rapid	 expansion	 of	 fast	 web	 infrastructures	 on	 which	 commercial
applications	could	rely	on.

One	of	the	first	companies	who	embraced	this	advancement	was	Amazon,	which
started	 by	 selling	 books	 and	 other	 products	 and	 then	 created	 a	 user-friendly
related	 products	 recommendation	 system.	 This	 system	 was	 built	 and	 adjusted
accordingly	 based	 on	 user	 interactions,	 using	 a	 method	 called	 Collaborating

Filtering.	This	system	became	the	foundation	of	Recommender	Systems.

The	unconditional	data	generation	in	a	24-hour	basis	supports	a	huge	amount	of
human	 activities	 like	 shopping	 cart	 data,	 medical	 records,	 social	 media
announcements,	banking	and	stock	market	operations	and	so	on.	These	data	have
a	wide	variety	of	types	(images,	videos,	real	time	data,	DNA	sequences	etc.)	and
different	acquisition	times.	If	some	of	these	data	are	not	analyzed	immediately,	it
might	 be	 difficult	 later	 to	 be	 stored	 and	 processed,	 creating	 this	 way	 a	 new
scientific	field	known	as	Big	Data.	Data	Science’s	goal	 is	 to	address	 the	needs
created	 from	this	new	environment	and	provide	solutions	 for	 the	escalated	and
sufficient	process	of	out-of	core	data.

Methods	 and	 tools	 used	 for	 this	 purpose	 have	 already	 being	 developed	 like
Hadoop,	Map-Reduce,	Hive,	MongoDB,	GraphPD.

The	two	main	goals	of	practical	Data	Science	are	to	create	models,	which	can	be
used	 both	 in	 predicting	 and	 describing	 data.	 Prediction	 is	 about	 using	 some
variables	or	parts	of	 a	database	 from	which	we	could	estimate	an	unknown	or
future	value	of	another	attribute.	Description	focuses	on	finding	comprehensive
patters	which	 can	 describe	 data	 like	 finding	 clusters	 or	 groups	 of	 objects	with
similar	attributes.

1.2	KNOWLEDGE	DISCOVERY	IN	DATABASES	(KDD)
Knowledge	Discovery	 in	Databases	 consists	 of	 5	 steps.	 It’s	 about	 revealing	or
creating	useful	knowledge	through	data	analysis.	It	refers	to	the	whole	process,
from	data	collection	to	utilizing	the	outcome	in	a	more	practical	level.	The	basic
stages	of	Knowledge	Discovery	in	Databases	are:

1	Data	Collection
2	Preprocessing
3	Transformation
4	Data	Mining
5	Interpretation/Evaluation

The	“Knowledge	Discovery	in	Databases”	term	is	often	associated	with	the	term
“Data	Mining”	although	it	is	just	one	of	its	steps.	The	basic	goal	of	Data	Mining
(DM)	is	the	extraction	of	unknown	and	possibly	valuable	information	or	patterns
from	data.	 Someone	 could	 say	 that	 the	 term	 is	 used	 excessively	 since	 no	 data
extraction	 is	performed.	On	 the	contrary,	preprocessed	and	(possibly)	modified
data	are	used	for	extracting	useful	information,	which	is	then	used	for	solving	a
problem.	Below	you	will	find	a	brief	description	about	each	stage	of	KDD.

1.2.1	DATA	COLLECTION

The	 first	 step	 of	KDD	 is	 the	 collection	 and	 storage	 of	 data.	Data	 collection	 is
usually	performed	automatically	e.g.	by	using	sensors	or	not	automatically	e.g.
via	 a	 questionnaire.	 Malfunction	 in	 sensors	 or	 non-submitted	 answers	 on	 a

questionnaire	 could	 lead	 to	 incomplete	 data.	 These	 particular	 problems	which
might	occur	during	data	collection	are	faced	by	the	next	step.

1.2.2	PREPROCESSING
The	second	and	most	important	step	of	KDD	is	the	preprocessing,	with	a	goal	of
cleansing	 data:	 handling	 defective,	 false	 or	missing	 data.	 Preprocessing	might
require	 up	 to	 60%	of	 the	 total	 effort	 since	 there	 is	 no	 reason	 to	 discuss	 about
results	if	data	are	not	clean	and	in	the	right	form.	On	Chapter	3	we	will	examine
throughout	 the	processes	 from	which	preprocessing	consists	of	 and	when	each
process	should	be	used.

1.2.3	TRANSFORMATION

Data	 Transformation	 is	 the	 third	 step	 of	 KDD.	 Basically,	 this	 step	 is	 about
converting	 data	 under	 a	 common	 frame	 allowing	 us	 to	 edit	 them	 later.	 It	 is
mostly	 used	 for	 smoothing	 data	 and	 removing	 noise,	 for	 data	 aggregation,	 for
normalization	 or	 for	 creating	 new	 features	 based	 on	 the	 existing	 ones.	 Special
forms	of	transformation	are	discretization	and	compression.

1.2.4	DATA	MINING

On	 this	 step	 of	 KDD	 an	 algorithm	 is	 used	 for	 model	 generation.	 Clean	 and
transformed	data	are	now	ready	to	be	used	by	an	algorithm	in	order	to	create	a
model,	 usually	 for	 categorization	 or	 prediction.	 We	 want	 to	 use	 this	 model,
created	 by	 some	 already	 known	 data,	 to	 get	 an	 answer	 about	 the	 value	 of	 an
attribute-variable	target	goal	for	new,	unknown	data.

1.2.5	INTERPRETATION	AND	EVALUATION

The	last	step	of	KDD	is	used	to	interpret	and	evaluate	the	results	(not	the	model)
produced	by	the	whole	process.

1.3	MODEL	TYPES
The	models	produced	by	the	Data	Mining	step	fall	under	 two	types:	predictive
models	and	descriptive	models.

The	 goal	 of	 a	 predictive	 model	 is	 to	 predict	 values	 for	 a	 specific	 interesting
feature	which	could	probably	be	based	on	 the	behavior	of	other	attributes.	For
example,	prediction	could	be	based	on	data	across	different	days	of	each	week.

A	descriptive	model	 finds	patters	or	 relations	hidden	 inside	data	and	examines
their	attributes	in	order	to	provide	an	explanation	about	their	behavior.

1.4	EXAMPLES	AND	COUNTEREXAMPLES

It’s	hard	for	some	people	to	understand	and	distinguish	what	KDD	and	DM	are.
That’s	why	we	will	have	a	look	at	some	practical	examples	and	counterexamples
in	 order	 to	 make	 clear	 what	 DM	 is	 or	 isn’t.	 Some	 examples	 of	 DM	 are	 the
following:

After	 9/11,	 Bill	 Clinton	 announced	 that	 after	 examining	 lots	 of
databases,	 FBI	 agents	 discovered	 that	 5	 of	 the	 perpetrators	 were
registered	to	these	databases.	One	of	them	owned	30	credit	cards	with
a	 negative	 balance	 of	 $250.000	 and	 lived	 in	 US	 for	 less	 than	 two
years.
Telecommunication	 companies	 not	 only	 reward	 clients	 who	 spend
lots	of	money	but	also	clients	named	as	“guides”.	These	guides	often
convince	 friends,	 relatives,	 coworkers	 and	 others	 to	 follow	 them
when	they	change	provider.	So,	telecom	companies	need	to	find	these
clients	 and	make	 them	 stick	 to	 them,	 proving	 higher	 discounts	 and
more	services	to	them.
By	using	data	 from	older	 recorded	 temperatures	during	 the	 summer
season	of	the	previous	15	years,	we	try	to	predict	the	temperatures	for
the	summer	season	of	the	next	15	years.

Data	mining	 is	not	 just	 the	 simple	processing	of	queries	neither	 small	 scale
statistical	programs.	Some	counterparts	are	the	following:

Finding	a	phone	number	from	a	phonebook
Finding	information	about	Paris	on	the	internet
Finding	the	average	of	exams	grades
Searching	 for	 the	medical	 records	of	 a	 patience	with	 a	 particular
disease,	in	order	to	further	analyze	his	medical	record.

1.5	CLASSIFICATION	OF	DATA	MINING	METHODS

There	is	a	wide	range	of	data	mining	methods.	Depending	on	the	data	types	and
the	type	of	knowledge	extracted,	they	are	classified	in	different	categories.	Some
basic	 methods	 of	 Data	 Mining	 are	 presented	 below.	 At	 this	 point	 we	 should
mention	that	in	Data	Science	education	is	accomplished	by	using	data,	whereas
in	other	 forms	of	 education	 a	 teacher	 or	 a	 specialist	 transfers	 knowledge	 from
one	person	to	another.

	

1.5.1	CLASSIFICATION

This	 is	 a	predictive	method.	 Its	goal	 is	 to	create	a	model	–	classifier	based	on
current	 data.	 Basically,	 it’s	 the	 knowledge	 of	 a	 function	 which	 represents	 an
object	(usually	represented	as	a	values	vector	for	its	characteristic	features)	in	a
value	of	 a	 categorical	variable	 also	known	as	 class.	Learning,	 is	 a	behavior	of
intelligent	systems	which	is	studied	by	scientific	fields	like	Machine	Learning	or
Artificial	 Intelligence.	 Due	 to	 this,	 all	 these	 fields	 study	 the	 same	 problems,
without	this	meaning	that	there	are	no	other	scopes	studied	individually	by	each
scientific	field.

Classification	is	often	associated	with	prediction.	In	classification,	 the	outcome
we	want	to	predict	is	the	class	of	the	samples.	A	class	can	have	discrete	values
from	a	finite	set.	On	the	contrary,	during	prediction	with	methods	like	regression,
the	variable-goal	could	be	any	real	number.

1.5.2	REGRESSION

Regression	 is	a	similar	 to	classification	process,	whose	goal	 is	 learning	or	else
training	 a	 function	 which	 represents	 an	 object	 in	 a	 real	 variable.	 It	 is	 also	 a
predictive	method.	By	using	some	independent	variables	its	goal	is	to	predict	the
values	of	a	dependent	variable.

On	the	above	image	we	can	see	an	example	of	liner	regression.	The	variables	in
this	example	are	the	square	meters	of	a	house	and	the	selling	price	in	thousands
of	dollars.	Linear	regression	adapts	a	line	in	the	samples	of	the	dataset,	shown	in
red	X’s.	It	is	created	based	on	a	distance	function	or	price	function,	whose	price
we	want	to	minimize.	By	having	the	optimal	line	(the	line	which	minimizes	the
value	of	the	price	function)	we	can	then	estimate	pretty	accurately	questions	like:
“Which	is	the	selling	price	for	150	square	meters	houses?”.

1.5.3	CLUSTERING

Clustering	 is	a	descriptive	method.	Given	a	dataset,	 the	goal	of	clustering	 is	 to
create	clusters	(groups	with	the	same	or	similar	features).	In	clustering	the	goal
is	to	find	a	finite	number	of	clusters	in	order	to	describe	data.

On	the	below	example	we	can	see	the	result	from	clustering	medical	data.	Three
clusters	are	created	based	on	“dosage”	and	“influence	duration”.

1.5.4	EXTRACTION	AND	ASSOCIATION	ANALYSIS

Association	Rules	Mining	is	considered	one	of	the	most	important	data	mining
processes.	It	has	attracted	a	lot	of	attention	since	association	rules	provide	a	brief
way	to	express	the	potentially	useful	 information	in	an	easy	to	understand	way
for	the	final	users.	These	association	rules	discover	hidden	relationships	between
features	of	a	dataset.	These	associations	are	presented	in	an	AB	form,	where	A
and	B	 are	 sets	 referring	 to	 the	 features	 of	 the	whole	 data	we	 analyze.	An	AB
association	rule	predicts	the	appearance	of	features	of	set	B	given	that	features	of
set	A	are	present.

A	classic	example	of	association	rules	in	practice	has	to	do	with	the	analysis	of	a
shopping	cart	in	a	super	market,	where	data	have	to	do	with	clients	transactions.
In	this	scenario,	some	transactions	could	be	{bread,	milk},	{bread,	diapers,	beer,
eggs},	{milk,	diapers,	beer,	soda},	{bread,	milk,	diapers,	beer}	and	{bread,	milk,
diapers,	soda}.	Some	association	rules	on	these	transactions	could	be	{Diapers}
{Beer},	{beer,	bread}	{milk},	{milk,	bread}	{eggs,	soda}.	For	example,	the	last
rule	reveals	that	it’s	quite	possible	that	whoever	buys	milk	and	bread	might	also
buy	eggs	and	soda.

Extracting	 valuable	 conclusions	 through	 association	 rules,	 the	 marketing
department	 of	 the	 super	 market	 could	 place	 its	 products	 in	 shelves	 more
profitably,	 create	 better	 marketing	 campaigns	 and	 efficiently	 manage	 its
resources.

1.5.5	VISUALIZATION

Data	visualization	helps	in	better	understanding	not	only	the	data	themselves	but
also	 correlations	 that	 might	 occur	 between	 them.	 In	 a	 next	 chapter	 we	 will
describe	the	ways	of	visualization	in	R.	Visualization	though	can	only	apply	in	a
specific	number	of	dimensions.	This	means	that	for	datasets	with	lots	of	features
visualization	is	 impossible.	Alternatively,	we	could	settle	with	the	visualization
of	 a	 smaller	 part	 of	 our	 dataset.	 In	 any	 case,	 visualizations	 should	 be
accompanied	by	 the	 respective	 statistical	 inspections	 in	 order	 to	 be	 sure	 about
the	accuracy	of	the	displayed	correlations.		

1.5.6	ANOMALY	DETECTION

Anomaly	 detection	 focuses	 in	 finding	 deviations	 in	 data	 according	 to	 similar
data	 collected	 in	 the	past	 or	 by	 typical	 values	 of	 these	data.	The	below	 image
shows	an	example	where	in	red	we	can	see	a	normal	sample	located	near	other
samples	with	normal	values	and	also	an	anomaly,	whose	value	differs	a	lot	from
the	other	values.

Some	other	examples	of	anomaly	detection	are	the	following:

Fraud	detection	based	on	a	user	profile
Finding	dysfunctional	objects	in	industrial	production
Computer	monitoring	in	a	data	center

1.6	APPLICATIONS

Data	mining	 is	 used	 in	 a	 broad	 range	 of	 fields	 like	 e.g.	Medicine,	 Finance	 or
even	Telecommunications.	Below,	we	will	examine	some	applications	of	DM	in
some	of	these	fields.

1.6.1	MEDICINE

Over	 recent	 years,	 along	with	 the	 growth	 of	Medicine	 fields	 like	 genetics	 and
biomedical,	the	use	of	DM	was	highlighted.	In	genetics,	the	goal	is	to	understand
and	map	 the	 relationship	between	 the	alteration	of	human	DNA	sequences	and
the	 predisposition	 of	 a	 disease.	 DM	 is	 a	 tool	 which	 can	 help	 in	 diagnosis
improvement,	in	prevention	and	consequently,	cure	diseases.

One	 of	 the	 main	 goals	 associated	 with	 DNA	 analysis	 is	 the	 comparison	 of
multiple	 sequences	 and	 the	 search	 of	 similarities	 between	 DNA	 data.	 This
comparison	 is	 performed	 between	 gene	 sequences	 of	 healthy	 and	 harmful
tissues,	in	order	to	find	differences	between	them.

Visualization	 tools	 are	quite	 important	 in	biomedicine	 as	well.	These	 tools	 are
able	to	present	complex	gene	formations	in	graphs	or	tree	diagrams.

An	example	of	DM	use	in	Medicine	is	by	using	classification	to	detect	diabetic
retinopathy	 (DR).	 On	 this	 particular	 problem,	 data	 are	 high	 quality	 images	 of
patients	retina.	The	class	ranges	from	0	to	4.

Other	classic	examples	of	DM	are	epileptic	seizures	prediction	through	magnetic

MRI	data	analysis	and	the	classification	of	cancer	in	benign	or	malignant.

Last,	DM	methods	applied	 in	 social	media	 like	Twitter,	 is	known	 that	 allowed
the	detection	of	rapidly	spreading	viruses	and	diseases	like	flu	and	HIV,	raising
awareness	 about	 the	 incident	 much	 faster	 than	 the	 Public	 Health	 Agencies
allowing	a	more	valid	prevention	of	the	disease.

1.6.2	FINANCE

Another	field	where	data	mining	methods	are	used	is	Finance.	Financial	data	are
mostly	collected	by	banks	or	other	institutes.	They	usually	are	reliable	and	high-
quality	 data.	 The	 contribution	 of	 data	 mining	 in	 Finance	 can	 be	 found	 in	 the
collection	 and	 understanding	 of	 data,	 in	 clearing	 and	 improving	 data	 and	 in
model	 creation	 as	 well.	 Financial	 data	 analysis	 aims	 to	 facilitate	 decision
making,	by	taking	actions	according	to	the	analysis	made.

Initially	data	are	collected	by	various	financial	institutions	and	are	stored	in	data
warehouses.	 Multidimensional	 analysis	 methods	 are	 used	 for	 their	 analysis.
Additionally,	another	implementation	of	Data	Mining	in	finance	has	to	do	with
prediction.	 For	 example,	 predicting	 if	 a	 client	 would	 be	 able	 to	 repay	 a	 loan,
based	 on	 his	 previous	 transactions	 with	 the	 bank	 and	 his	 current	 financial
situation.	 By	 processing	 these	 data,	 a	 bank	 is	 able	 to	 create	 its	 origination
policies	and	minimize	the	risk	of	profit	loss.

Another	implementation	of	DM	in	finance	is	the	attempt	to	predict	stock	prices.
Stock	prices	are	usually	modeled	as	time	series	and	the	goal	is	to	predict	if	the
stock	price	will	move	up	or	down.	For	example,	 in	 the	above	 image,	based	on
the	 stock	 prices	 of	 the	 previous	months,	 we	 can	 predict	 its	 price	 for	 the	 next
fifteen	 days.	With	 green	 color	we	 can	 see	 the	 price	 of	 the	 prediction	while	 in
blue	we	can	see	the	actual	price	of	this	particular	stock.	The	prediction	accuracy
was	not	that	high	but	the	general	trend	(upward)	was	predicted	successfully.

Another	method	which	can	be	used	is	clustering.	Clients	are	grouped	in	clusters
based	on	similar	features.	An	effective	clustering	helps	banks	to	identify	a	group
of	 clients	 or	 associate	 a	 new	 client	with	 an	 existing	 group	 and	 offer	 solutions
which	satisfied	the	clients	of	this	particular	group	in	the	past.

Last,	 with	 DM	 techniques	 possible	 fraud	 or	 false	 data	 can	 be	 identified.	 By
analyzing	financial	transactions	and	extracting	some	patterns,	the	detection	of	an
unusual	incident	could	trigger	an	identity	check	of	the	real	client.

1.6.3	TELECOMMUNICATIONS

DM	is	useful	in	telecommunications	as	well.	Telecom	data	like	call	type,	caller
and	dialed	location,	time	and	call	duration	can	be	used	in	better	serving	not	just

each	client	individually	but	all	clients	of	the	network.	DM	methods	are	used	to
balance	system	load	and	data	traffic.

Data	can	be	used	to	create	a	client	profile.	Based	on	these	profiles	clients	can	be
grouped	in	clusters	and	depending	on	the	group	offer	special	 telecom	packages
accordingly.	Additionally,	 interesting	patters	can	be	identified	and	then	analyze
the	reasons	leading	to	these	patters.	For	example,	identify	the	factors	leading	to	a
higher	call	frequency	from	users	in	specific	time	intervals.

1.7	CHALLENGES

Knowledge	extraction	 is	a	very	promising	scientific	 field.	Like	 in	every	single
scientific	field,	we	need	to	face	lots	of	challenges.	These	challenges	are	mainly
technical	and	social-moral.

The	bigger	technical	challenge	is	the	increasing	amount	of	data	along	with	their
multidimensional	 and	 complex	 character.	 Solutions	 should	 be	 scalable	 and
flexible	meaning	that	DM	methods	and	algorithms	should	be	able	to	handle	not
only	huge	volumes	of	data	but	smaller	datasets	as	well.	Distributed	systems	are	a
solution	for	huge	volumes	of	data	like	Hadoop	and	Map	Reduce	which	we	will
study	in	Chapter	8.

Social-moral	 challenges	 have	 to	 do	with	 finding	 the	 right	 areas	 to	 apply	DM,
since	privacy	issues	may	rise	from	processing	data	during	DM.

1.8	THE	R	PROGRAMMING	LANGUAGE
This	book	is	a	manual	on	how	to	use	various	methods	and	algorithms	in	order	to
solve	 real	 problems,	 so	 both	 theoretical	 and	 practical	 problems	 are	 provided.
Many	 of	 these	 problems	 come	 with	 an	 indicative	 solution.	 The	 practical
problems	 require	 the	 knowledge	 of	 a	 proper	 programming	 language	 through
which	 the	 reader	 should	 be	 able	 to	 respond	 accordingly.	 The	 programming
language	we	will	use	is	R.

I	hope	you	find	the	solutions	provided	in	this	book	suitable	for	the	problems	you
encounter	 and	 apply	 them	 accordingly.	 Next,	 we	 will	 discuss	 shortly	 what	 is
covered	in	each	chapter	of	this	book.

Chapter	2	is	an	introduction	to	R.	This	is	the	chapter	you	don’t	want	to	skip	in
this	 book.	 We	 will	 show	 the	 different	 data	 types	 which	 R	 supports,	 control
structures,	 how	 we	 create	 and	 call	 functions,	 how	 to	 use	 basic	 and	 useful
functions	and	also	how	to	find	help	about	functions	of	any	package.	This	chapter
is	prerequisite	for	all	other	chapters.

On	Chapter	3	we	present	data	types,	along	with	the	necessary	actions	needed	to
preprocess	data	in	order	to	ensure	their	data	quality	and	thus,	the	quality	of	our
results.	Having	 familiarity	with	R	we	will	 then	present	how	 function	 from	 the
dplyr	 and	 tidyr	 packages	 are	 used,	 for	 preprocessing	 data	 faster	 and	 more
efficiently.

On	Chapter	 4	 we	 present	 summary	 statistics	 and	 ways	 of	 visualization.	 We
describe	terms	like	measures	of	position	(average,	midline),	variance	(variance,
standard	 deviation)	 and	 association	 and	 the	 functions	 which	 create	 these
measures	in	R.	Next,	we	will	present	some	ways	of	visualizing	qualitative	data
like	histograms,	bar	charts	and	pie	charts	with	R.

On	Chapter	5	we	study	the	concepts	of	classification	and	prediction.	In	respect
to	 classification	 we	 will	 present	 decision	 trees	 throughout.	 In	 respect	 to
prediction	we	will	examine	the	method	of	linear	regression.

On	Chapter	6	we	will	present	methods	of	data	clustering.	Once	we	define	what
supervised	learning	and	cluster	is,	we	will	examine	three	categories	of	clustering
methods:	 partitional	 clustering,	 hierarchical	 clustering,	 and	 density-based
clustering.	We	will	 next	 view	 some	 specific	 clustering	 algorithms,	 like	 the	 k-
means	 algorithm,	 the	 agglomerative	 hierarchical	 algorithm	 and	 the	 DBSCAN
algorithm.

On	 Chapter	 7	 we	 describe	 mining	 association	 rules	 from	 transactional
databases.	 After	 defining	 some	 basic	 terms,	 we	 will	 then	 present	 the	 Apriori
algorithm	 for	 finding	 frequent	 itemsets.	 We	 will	 then	 give	 an	 example	 of
association	rules	mining	from	frequent	itemsets.	Last,	we	will	examine	the	arules
package.	With	 the	 help	 of	 this	 package	 everything	 described	 in	 this	 chapter	 is
already	created	in	R.

On	 Chapter	 8	 we	 will	 examine	 computational	 methods	 for	 analyzing	 huge
volumes	 of	 data.	 More	 specifically,	 we	 will	 focus	 on	 the	 Hadoop	 and
MapReduce	tools,	and	how	they	can	work	along	to	solve	problems.

1.9	BASIC	CONCEPTS,	DEFINITIONS	AND	NOTATIONS

We	will	now	define	the	most	basic	concepts,	definitions	and	symbols	we	will	use
in	 the	 next	 chapters	 of	 this	 book.	 We	 initially	 have	 our	 data,	 also	 known	 as
datasets.	 These	 datasets	 are	 structured	 in	 rows	 and	 columns.	 Each	 column
corresponds	 to	 a	 specific	 feature	 or	 variable	 of	 the	dataset.	We	will	 use	 the	m
symbol	to	represent	the	number	of	features	in	a	set.	Same,	each	row	corresponds
to	a	dataset	sample.	We	will	use	the	n	symbol	to	represent	the	number	of	rows	in
a	set.	Each	sample	contains	m	values,	one	for	each	feature.

We	will	use	the	whole	dataset	to	create	a	model.	This	model	will	be	used	later	on
for	 the	 correspondence	 of	 new	 samples	 in	 a	 predefined	 group	of	 categories	 or
classes	 (classification)	 or	 for	 predicting	 the	 values	 of	 an	 important	 feature,
known	as	 target	variable	 (prediction).	Anyhow,	 the	model	 should	be	validated.
For	 the	datasets	we	currently	have,	 the	 class	or	values	 for	 the	 target	 value	 are
known.

In	order	to	make	an	accurate	validation	of	the	model	we	split	our	dataset	in	two
subsets:	the	training	set	and	the	test	set.	Usually	the	training	set	is	about	2/3	of
the	initial	dataset	whereas	the	test	set	is	the	remaining	1/3.	We	will	see	that	there
are	other	ways	of	splitting	datasets.

During	 the	 training	phase,	 the	model	 is	 created	based	on	an	algorithm	and	 the
training	set.	Model	validation	 is	necessary	before	using	 it	 and	 is	accomplished
by	using	the	test	set.	Basically,	we	use	the	model	on	data,	for	which	we	already
know	the	class	or	the	value	of	the	target	goal,	so	that	we	can	compare	it	with	the
one	given	by	the	model.

1.10	TOOL	INSTALLATION
The	basic	tool	we	will	use	is	the	R	programming	language.	You	can	find	the	R
console	along	with	the	basic	readymade	packages	for	free	in	the	official	website
(https://www.r-project.org).

After	 visiting	 the	 official	 webpage	 clink	 on	 “download	R”	 and	 then	 choose	 a
location	close	to	you.	Then	you	will	need	to	select	the	operation	system	you	use.

By	choosing	Windows	we	will	see	the	below	screen:

Here	we	will	click	on	“install	R	for	the	first	time”.

We	click	the	download	link.	We	then	just	run	the	installation	file	and	follow	the
instructions.	Below	we	can	see	the	R	console.

RStudio	 is	 a	 free	 development	 environment	 of	 R.	 The	 installation	 file	 can	 be
downloaded	from	this	link:	https://www.rstudio.com/products/rstudio/download.
Once	again	choose	the	right	version	according	to	your	operating	system.

RStudio	home	screen	is	shown	in	the	below	picture.	On	the	first	frame	we	can
see	the	code	of	the	open	files.	Every	tab	is	a	different	source	code.	On	the	second
frame	variables	 and	 functions	 are	 shown.	On	 the	 third	 frame,	 in	 the	Plots	 tab,
graphs	are	print	and	we	can	view	the	packages	we	have	downloaded	or	need	to
be	 updated	 through	 the	 Packages	 tab.	 Additionally,	 through	 the	 “Help”	 tab
(frame	 3)	 we	 can	 find	 information	 and	 help	 about	 a	 function	 or	 a	 package.
Finally,	on	frame	4	we	can	find	the	classic	R	console.

	

	

	

	

	

CHAPTER	2:	INTRODUCTION	TO	R

SUMMARY

Through	 this	 chapter	 a	 reader	 can	 become	 familiar	 with	 R	 and	 be	 able	 to
distinguish	 the	 different	 variable	 types	 of	R	 (lists,	 data	 frames,	 tables,	 factors,
vectors).	The	goal	of	 this	 chapter	 is	 to	make	 the	 reader	able	 to	create	his	own
functions	in	R,	understand	some	of	 the	basic	functions	for	 loading,	editing	and
investigating	test	data	and	become	able	to	use	online	sources	to	further	expand
his	knowledge	of	R.

PREREQUISITE	KNOWLEDGE

No	previous	knowledge	is	needed	for	this	chapter.

INTRODUCTION	TO	R
R	is	not	just	a	programming	language	but	a	development	environment	as	well.	It
is	 quite	 popular	 and	 its	 mostly	 used	 for	 statistical	 calculations,	 for	 creating
graphs	and	for	processing	and	analyzing	data	during	Data	Mining.

R	 development	 was	 based	 on	 the	 S	 programming	 language,	 created	 by	 John
Chambres.	R	was	created	by	Ross	Ihaka	and	Robert	Gentleman	on	the	Auckland
university	of	New	Zealand.	Over	recent	years	it	became	very	popular	and	is	now
developed	by	a	team	known	as	R	Development	Core	Team.

Some	 of	 the	 reasons	 which	 made	 R	 so	 popular	 is	 the	 ease	 of	 learning,	 its
compatibility	 with	 the	 most	 known	 operating	 systems	 (Linux,	 Mac	 OS	 and
Windows),	 the	plethora	of	packages	with	well	written	manuals	and	last	but	not
least,	it’s	absolutely	free.

2.1	DATA	TYPES

2.1.1	DEFINITION	AND	OBJECT	CLASSES

On	 the	 R	 console	 a	 user	 can	 type	 multiple	 expressions.	 Most	 programming
languages	have	variables	and	 types	of	variables.	However,	R	views	everything
like	 objects	which	 belong	 to	 a	 class.	More	 simply,	 objects	 are	 variables	while
class	 is	 their	 type.	 In	 R	 it	 is	 not	 necessary	 to	 declare	 the	 class	 in	 which	 the
objects	belong.	 It	 is	 automatically	defined	by	 the	value	 assigned	 to	 the	object.
Value	 assignment	 is	made	with	 the	operator	<-	 or	with	 the	operation	=.	R	has
five	basic	or	atomic	object	classes:

Character
Numeric
Integer
Complex
Logical	–	True/False

R	uses	also	basic	data	structures	as	object	classes.	The	most	basic	structure	is	the
vector.	 A	 vector	 can	 only	 contain	 objects	 of	 the	 same	 type.	 A	 vector	 can	 be
created	by	using	the	c	function	or	the	vector	function.

Numbers	are	usually	read	as	numerical	objects	(numeric).	If	we	want	to	define	a
number	as	integer,	we	should	use	the	L	suffix	right	after	the	number.	It	is	worth
mentioning	 that	 there	 are	 other	 special	 values	 like	 the	 Inf	 value	 representing
infinity	and	the	Nan	(Not	a	Number)	value	representing	a	non-assigned	value.

Each	object	has	specific	attributes	like:

names
dim
class
length
others	attributes	defined	by	the	user

2.1.2	VECTORS	AND	LISTS
As	already	described	in	2.1.1,	R	supports	basic	data	structures	as	object	classes.
The	most	basic	structure	is	the	vector.	The	easiest	way	of	creating	a	vector	is	by
using	the	c	function	(c	comes	from	the	word	concatenate).

Alternatively,	 the	vector	 function	 can	be	used.	 In	 general,	 indexing	 in	R	 starts
from	1	and	not	0.

Vectors	belong	to	 the	atomic	objects.	This	means	 that	 the	objects	of	 the	vector
should	belong	 to	 the	 same	class.	 If	 that’s	not	 the	case	 then	R	will	not	print	an
error	message.	 Instead	 it	will	modify	 the	class	so	 that	all	objects	belong	 to	 the
same	 class.	 For	 the	 basic	 classes,	 the	 order	 of	 priority	 is	 character,	 number,
logical.

If	we	want	to	prevent	the	automatic	modification	we	can	either	declare	how	this
will	be	made	using	the	functions	as.integer,	as.numeric,	as.logical	etc.	Following
the	previous	example:

Alternatively,	we	can	use	another	structure	named	list.	A	list,	just	like	a	vector,	is
a	set	of	objects	which	might	belong	to	another	class.	For	creating	a	list,	we	use
the	list	function.

2.1.3	MATRIX

Basically,	 a	Matrix	 is	 a	 collection	 of	multiple	 vectors.	 It	 is	 a	 special	 structure
which	has	 the	dimension	as	additional	attribute.	Simply	put,	a	matrix	 is	a	 two-
dimensional	vector	and	 its	atomic,	meaning	 that	both	rows	and	columns	of	 the
matrix	 should	 include	 elements	 of	 the	 same	 class.	 There	 are	 many	 ways	 of
creating	a	matrix.	One	of	them	is	to	create	a	vector	and	then	set	dimensions	with
the	dim	function.

Alternatively,	we	can	create	a	matrix	by	using	the	matrix	function,	having	to	set
thought	some	additional	conditions.

Another	way	of	creating	a	matrix	is	by	merging	existing	vectors	either	by	rows
using	the	function	rbind	or	by	columns	using	the	cbind	function.

2.1.4.	FACTORS	AND	NOMINAL	DATA

Factors	 provide	 an	 easy	 way	 to	 represent	 and	 manage	 nominal	 data.	 They
provide	levels,	which	basically	are	the	possible	values	they	can	get.	A	factor	is
created	with	 the	 factor	 function.	 The	 order	 of	 the	 levels	 plays	 a	 role	 in	 some
cases.	Also,	 in	 some	cases	 it	 is	useful	 to	use	 the	 levels	 argument	of	 the	 factor
function,	restricting	this	way	the	allowed	values.	On	this	scenario,	values	which
are	not	mentioned	in	 the	 levels	argument	are	reject	and	are	considered	missing
values.

2.1.5	MISSING	VALUES

There	is	a	special	data	type	for	representing	missing	values.	Missing	values	in	R
are	either	 represented	as	NA	(Not	Available)	or	NaN	(Not	a	Number)	 for	non-
predefined	calculations.	 In	order	 to	 test	missing	values,	 the	functions	 is.na	and
is.nan	can	be	used	accordingly.	The	NA	value	belongs	to	the	numeric	class	while
the	NaN	value	belongs	to	the	logical	class.

2.1.6	DATA	FRAMES

Data	Frames	are	used	to	store	data	in	a	table	format.	They	have	a	similar	to	the
matrix	 structure	 since	 they	 are	 two-dimensional	 as	 well.	 Though,	 unlike
matrices,	 they	can	have	different	 type	of	data	 in	each	column,	 just	 like	 lists.	A
logical	restriction	in	data	frames	is	that	each	column	can	only	contain	objects	of
the	same	class.	In	order	to	create	a	data	frame	we	use	the	data.frame	function.

Items	 in	 a	 data	 frame	 can	 be	 accessed	 in	 the	 same	 way	 indexing	 works	 in	 a
matrix.	Another	considerable	characteristic	is	that	in	each	column	a	name	can	be
assigned.	Then	the	names	of	each	column	can	be	used	for	reference.

2.2	BASIC	TASKS

2.2.1	READING	DATA	FROM	FILE

One	of	 the	most	 important	 tasks	 is	 reading	data	 from	a	 file.	The	most	popular
ways	of	reading	files	are	by	using	the	functions	read.table	and	read.csv.	Some	of
their	most	important	arguments	are:

file,	the	name	of	the	file
header,	 a	 logical	 argument	 indicating	 whether	 the	 file	 contains	 a
header	line
sep,	 alphanumeric,	 indicates	 the	 character	 used	 for	 separating	 the
columns	eg.	space,	comma,	etc	.
colClasses,	character	vector,	including	the	classes	of	each	column	of
the	dataset.
nrows,	the	number	of	rows	to	read	–	the	default	is	reading	the	whole
file.
comment.char,	 alphanumeric,	 a	 character	 value	 that	 specifies	 the
character	used	for	comments.
skip,	the	number	of	lines	skipped	before	starting	to	read	data.
stringsAsFactors,	logical	arguments,	convert	character	class	objects	to
factors.	The	default	value	is	TRUE.

2.2.2	SEQUENCE	CREATION

Sequence	 creation	 is	 a	 simple	 but	 very	 important	 task,	 since	 it	 sets	 the
foundations	for	more	important	tasks,	like	reference	in	a	subset	of	a	structure	or
vectorization.	 The	 simplest	 way	 of	 creating	 sequences	 is	 by	 using	 the	 the	 “:”
operator.

Another	way	of	creating	sequences	is	by	using	the	seq	function.	The	seq	function
accepts	the	following	arguments:

from,	the	beginning	of	the	sequence
to,	the	maximum	number,	thus	the	end	of	the	sequence
by,	increment	of	the	sequence	–	default	value	is	1
length,	if	used	instead	of	by,	its	splits	the	from-to	space	in	the
intervals	specified

Last,	another	useful	function	for	creating	sequences	with	a	specific	pattern	is	the
rep	function,	which	accepts	the	following	arguments:

x,	the	object	used	for	creating	the	sequence
times,	the	number	of	the	object	repetitions

2.2.3	REFERENCE	TO	SUBSETS

Vectors,	matrices	and	lists	provide	a	way	of	grouping	data.	Though,	quite	often,
a	 user	might	 need	 to	 use	 just	 a	 subset	 of	 these	 data.	 There	 are	 three	 different
operators	for	referencing	to	a	subset	of	a	structure.

The	simplest	operator	is	the	“[”	symbol.	It	accepts	a	single	number	or	a	sequence
for	referencing	one	or	more	elements	of	a	structure.	The	output	always	belongs
in	the	same	class	as	the	one	the	initial	object	belonged	to.

Another	operator	for	referencing	to	a	subset	is	“[[”.	This	operator	is	used	in	lists
and	data	frames.	It	can	be	used	to	access	just	one	element	of	 the	structure	and
the	returned	output	belongs	to	the	class	the	initial	object	belonged	to.

The	third	operator	is	the	dollar	sign	“$”	and	is	used	to	reference	to	elements	of	a
list	 or	 a	 data	 frame	with	 names.	For	 the	 class	 of	 the	 returned	output	 the	 same
principles	apply	as	with	the	operator	[[.

In	 matrices,	 when	 a	 reference	 to	 just	 one	 element	 occurs,	 the	 output	 is
considered	a	vector	with	a	length	of	1	instead	of	a	matrix	with	1x1	dimensions.
By	using	the	drop	argument,	we	can	change	this	behavior.

[[and	 $	 operators	 allow	 partial	 name	 match.	 This	 is	 possible	 with	 the	 exact
argument.

Last,	 one	 of	 the	 most	 important	 applications	 of	 referencing	 subsets,	 is	 the
extraction	of	indexes	with	NA	values.

2.2.4	VECTORIZATION

One	of	 the	 things	 that	make	R	 stand	out,	 is	 the	 ability	 to	perform	calculations
between	vectors	and	matrices.	The	conversion	of	calculations	in	vectors/matrices
calculations	 is	 called	 vectorization.	 Quite	 often,	 calculations	 between	 vectors
and/or	matrices	 can	 replace	 iterations.	 This	 way,	 the	 code	 can	 be	much	more
brief,	 clean	 and	 readable.	 The	 main	 reason	 we	 want	 to	 have	 as	 much
vectorization	as	possible	is	because	calculations	between	vectors	are	performed
much	faster	than	if	they	were	made	one	by	one	inside	an	iteration.	This	happens
because	in	calculations	between	vectors,	calculations	are	performed	at	the	same
time.

2.3	CONTROL	STRUCTURES
R	provides	basic	control	structures	like	conditional	statements	and	loops.	These
structures	are	very	simple	and	useful	as	well.

2.3.1	CONDITIONAL	STATEMENT:	IF-ELSE
This	is	the	most	basic	control	structure.	If	a	condition	is	evaluated	as	TRUE	then
some	particular	lines	of	code	are	executed.	If	this	condition	is	FALSE	then	there
are	3	possible	scenarios.	Either	continue	executing	the	rest	of	the	code	or	check
another	condition	or	execute	some	specific	lines	of	codes	in	case	the	condition	is
FALSE.

2.3.2	LOOPS:	FOR,	REPEAT	AND	WHILE

The	 goal	 of	 loops	 is	 to	 execute	 a	 piece	 of	 code	 for	 a	 predetermined	 or	 non-
predetermined	number	of	times.	In	R,	a	for	loop	is	usually	enough	to	cover	most
scenarios	needing	an	iteration.	The	 for	 loop	can	be	used	with	two	ways.	In	the
standard	way,	a	variable	gets	its	prices	from	a	predetermined	range	of	values	in
each	 iteration.	 With	 the	 alternative	 way,	 a	 variable	 gets	 its	 values	 from	 the
elements	of	an	objects	collection.

Another	way	of	iteration	is	by	using	the	while	loop.	A	while	loop	first	evaluates
a	condition.	While	this	condition	is	true	then	the	piece	of	code	inside	the	loop	is
executing	repeatedly,	unless	the	condition	turns	to	false.

Another	iterative	structure	is	the	repeat.	Basically,	it’s	an	endless	loop.	The	only
way	to	stop	this	loop	is	by	using	the	break	statement.

2.3.3	NEXT	AND	BREAK	STATEMENTS

Next	and	break	statements	are	used	with	iterations.	The	next	statement	is	used	to
skip	 an	 iteration	 inside	 a	 loop.	 Basically,	 with	 the	 next	 statement	 the	 loop
continues	with	the	next	iteration	skipping	everything	after	that	statement.

	

The	break	statement	is	used	to	exit	a	loop	immediately.	In	case	we	have	nested
loops,	break	stops	only	the	loop	in	which	its	contained.

2.4	FUNCTIONS
Functions	are	an	integral	part	of	R.	In	each	of	the	readymade	packages	available,
many	functions	are	 included,	each	one	used	 for	different	purposes.	Apart	 from
its	readymade	functions,	R	allows	the	user	to	create	his	own	functions.

Functions	are	defined,	using	the	word	function	and	are	saved	as	well	as	objects,
as	happens	most	of	the	times	in	R.	More	specifically,	functions	are	objects	which
belong	to	the	class	“function”.	Later	on,	we	will	see	than	functions	can	be	used
as	arguments	of	other	functions.

In	the	below	example,	we	can	see	a	simple	function	declaration,	which	accepts	a
number	and	prints	a	message	as	many	times	as	the	number.

During	a	function	declaration	we	can	give	some	default	values,	in	case	the	user
does	 not	 give	 a	 value	 for	 the	 corresponding	 argument	 of	 the	 function.	 In	 the
previous	 example,	 if	 the	 user	 called	 the	 function	 without	 argument,	 then	 the
message	would	be	typed	three	times	since	the	default	value	of	the	argument	is	3.

We	can	call	a	function,	giving	the	arguments	in	a	different	order	as	long	as	we
mention	their	name.

If	the	number	of	arguments	in	a	function	is	not	fixed,	we	use	the	“…”	argument
in	which	we	can	add	one	or	more	arguments.	The	“…”	argument	 is	used	as	 is
inside	 the	 function	 as	we	 can	 see	 in	 the	 below	 example.	After	 using	 the	 “…”
argument,	all	other	arguments	should	be	mentioned	while	we	insert	values	in	the
function.

2.5	SCOPING	RULES

Scoping	 rules	 is	 a	 basic	 characteristic	 of	 R	 which	 differentiates	 it	 from	 his
ancestor,	 the	 S	 programming	 language.	 These	 rules	 are	 used	 to	 predetermine
which	 value	 a	 free	 variable	 gets,	 which	 is	 defined	 and	 used	 for	 the	 first	 time
inside	 a	 function.	 R	 uses	 lexical	 scoping.	 According	 to	 the	 rules	 of	 lexical
scoping,	 the	 values	 of	 the	 free	 variables	 are	 searched	 for	 within	 the	 same
environment	in	which	the	function	within	they	are	defined	was	defined.

R	 uses	 the	 concept	 of	 environment.	 An	 environment	 is	 a	 collection	 of	 pairs
(symbol,	 value),	 eg	 x	 is	 a	 symbol	 and	 3.14	 might	 be	 its	 value.	 Every
environment	has	a	parent	environment	and	 it	 is	possible	 for	an	environment	 to
have	multiple	 “children”.	The	 only	 environment	without	 a	 parent	 is	 the	empty
environment.

For	 the	 association	 between	 values	 and	 free	 variables	 the	 following	 search
process	is	followed:

If	the	value	of	a	symbol	is	not	found	in	the	environment	in	which	the
function	 was	 defined,	 then	 the	 search	 is	 continued	 in	 the	 parent
environment.
The	search	continues	 in	 the	parent	hierarchy	until	we	reach	 the	 top-
level	 environment	 (global	 environment);	 basically,	 this	 is	 the
workspace	or	the	package	namespace.
After	 the	 top-level	environment,	 the	search	continues	until	we	reach
the	empty	environment.
If	 a	value	 for	a	 symbol	cannot	be	 found,	before	 reaching	 the	empty
environment	level,	then	an	error	is	thrown.

2.6	ITERATED	FUNCTIONS
The	creation	of	for	and	while	loops	is	useful	and	easy,	but	not	when	we	have	lots
of	 nested	 loops.	 R	 provides	 some	 readymade	 functions	 which	 execute	 these
loops	in	a	more	compact	way.

2.6.1	LAPPLY
lapply	 calculates	 the	 output	 of	 a	 function	 over	 each	 list	 item.	 The	 basic	 steps
executed	by	this	function	are:

1.	 each	list	item	is	visited
2.	 the	function	is	used	in	each	list	item
3.	 returns	a	list

With	 the	 str	 function	we	 can	 find	 the	 number	 and	 order	 of	 arguments	 of	 any
function.	 As	 we	 can	 see	 below	 the	 lapply	 function	 gets	 the	 following	 three
arguments	as	input:

X,	the	list	upon	the	items	of	which	the	FUN	function	will	be	applied
FUN,	the	function	to	be	applied	or	the	name	of	the	function
…,	includes	the	arguments	of	FUN

If	X	is	not	a	list	then	R	will	convert	it	to	a	list	by	using	the	function	as.list.

2.6.2	SAPPLY
sapply	works	like	lapply	but	it	tries	to	simplify	the	output	given.	Basically,	their
only	difference	is	the	returned	value.	More	specifically,	sapply	 tries	to	simplify
the	returned	output	like	this:

If	the	output	is	a	list	of	which	its	items	have	all	a	length	of	1,	then	a
vector	is	returned
If	 the	 output	 is	 a	 list	 of	which	 its	 items	 are	 all	 vectors	 of	 the	 same
length	(>1),	then	a	matrix	is	returned
If	everything	else	fails,	it	returns	a	list

Comparing	 the	outputs	of	 the	 example	below	with	 the	 example	of	 lapply	 seen
previously,	the	purpose	and	usefulness	of	sapply	is	clearer.

2.6.3	SPLIT
The	split	function	does	not	belong	to	the	iterated	functions.	This	function	uses	as
an	argument	a	vector	or	another	object	and	splits	it	in	groups	based	on	a	factor	or
a	 list	 of	 factors.	 The	 reason	 why	 we	 mention	 this	 function	 in	 the	 iterated
functions	 is	 because	 the	 combination	 of	 split	 along	with	 lapply	 or	 sapply	 is	 a
classic	R	example.

The	basic	idea	is	to	take	a	dataset,	split	it	in	subsets	according	to	a	variable	and
then	apply	a	function	to	these	subsets.

2.6.4	TAPPLY
The	tapply	function	is	used	in	order	to	apply	a	function	upon	a	vector	subset.	It
can	be	considered	as	a	combination	of	split	and	sapply,	but	only	for	vectors.

The	arguments	of	tapply	are	the	following:

X,	a	vector	upon	which	the	separation	and	application	of	the	function
will	occur
INDEX,	factor	or	list	of	factors
FUN,	the	applied	function
…,	includes	the	rest	of	the	arguments	passed	in	FUN
simplify,	logical	argument,	indicates	if	results	should	be	simplified	or
not

2.7	HELP	FROM	THE	CONSOLE	AND	PACKAGE	INSTALLATION
Besides	the	thousands	of	resources	than	can	be	found	over	the	web,	R	provides
help	through	its	console.	A	user	can	get	information	about	a	function	by	typing
the	“?”	symbol	in	front	of	a	name	e.g.	?c,	?vector,	?sapply	etc.	R	will	launch	the
corresponding	 page	 from	 the	 manual	 as	 long	 as	 an	 internet	 connection	 is
available.

As	we	have	already	mentioned,	R	has	a	huge	number	of	readymade	packages.	A
package	 installation	 is	 made	 with	 the	 function	 install.packages	 and	 can	 be
loaded	 in	 the	 environment	 with	 the	 library	 function.	 Below	 we	 will	 see	 an
example	 using	 the	 commands	 mentioned	 above	 for	 installing	 and	 loading	 the
rattle	package.

	

CHAPTER	3:	TYPES,	QUALITY	AND	DATA	PREPROCESSING
	

SUMMARY

Through	this	chapter	the	user	understands	that	data,	types	and	their	quality	are	an
integral	 part	 of	 the	 data	 mining	 process.	 It	 becomes	 clear	 that	 data	 quality
determines	 to	 a	 great	 extent	 the	 quality	 of	 the	 data	 mining	 results.	 The	 data
parameters	which	 affect	 their	 quality	 should	be	 clear	 in	 order	 to	 be	 able	 to	 be
evaluated	and	optimized	by	a	user.	Data	preprocessing	 is	 the	hardest	and	most
time-consuming	part	of	the	Knowledge	Discovery	in	Databases	process.

The	goal	of	this	chapter	is	to	familiarize	the	user	with	all	different	forms	of	data
preprocessing	 and	make	 him	 able	 to	 apply	 them.	 Also	 make	 the	 user	 able	 to
apply	these	techniques	through	a	tool,	like	the	R	programming	language.

PREREQUISITE	KNOWLEDGE

Before	reading	this	chapter,	Chapter	1:	Introduction	to	Data	Mining	and	Chapter
2:	Introduction	to	R	should	be	studied	first.

TYPES,	QUALITY	AND	DATA	PREPROCESSING
Data	preprocessing	is	one	of	the	most	important	steps	of	Knowledge	Discovery
in	Databases,	which	might	need	up	to	the	60%	of	the	total	effort.	This	happens
because	 if	 data	 are	 not	 clean	 and	 in	 the	 right	 form,	 then	 there	 is	 no	 point	 in
discussing	 about	 results	 quality.	 Later	 on,	we	will	 discuss	 the	 basic	 categories
and	 types	of	variables	which	 a	dataset	 can	have.	Additionally,	we	will	 discuss
from	which	processes	preprocessing	consists	of	and	when	 to	use	each	one	and
we	 will	 also	 view	 some	 examples.	 Last,	 we	 will	 present	 the	 dplyr	 and	 tidyr
packages	of	R	which	are	used	to	manage	and	clean	data	respectively.

3.1	CATEGORIES	AND	TYPES	OF	VARIABLES

The	two	basic	variable	categories	are	the	qualitative	and	the	quantitative.

Qualitative	variables	refer	to	variables,	 like	gender,	 level	of	education,	location
etc.	 They	 are	 divided	 in	 nominal	 and	 ordinal	 (or	 tactical).	 Nominal	 variables
represent	 categories,	 of	 which	 the	 order	 does	 not	 matter	 like	 e.g.	 color.
Conversely,	ordinal	or	tactical	variables	represent	categories,	of	which	the	order
does	matters,	e.g.	disease	severity.

Quantitative	variables	are	numerical	values,	expressed	in	a	unit	of	measure	e.g.
age.	 They	 are	 divided	 in	 discrete	 and	 continuous	 variables.	Depending	 on	 the
unit	of	measure,	data	can	be	characterized	as	categorical.	On	 the	 image	below,
we	can	view	briefly	all	categories	and	variable	types.

3.2	PREPROCESSING	PROCESSES
As	mentioned	previously,	data	preprocessing	is	probably	the	most	important	step
of	knowledge	discovery	in	databases.	That’s	why	data	should	be	preprocesses	in
order	to	ensure	their	quality.	Below	we	will	view	the	most	basic	processes	used
during	data	preprocessing.

3.2.1	DATA	CLEANSING
The	most	important	actions	of	data	cleaning	are:

filling	out	missing	values
finding	outliers	and	smoothing,	as	long	as	they	contain	noise
fixing	any	data	inconsistencies

3.2.1.1	MISSING	VALUES

Data	 are	 not	 always	 available.	More	 specifically,	 in	many	 rows	of	 the	dataset,
values	 may	 not	 be	 available.	 This	 is	 what	 we	 call	 missing	 values.	 It	 can	 be
caused	 by	 many	 different	 things	 like	 equipment	 malfunction,	 inconsistencies
with	other	recorded	data	which	led	to	their	deletion	or	simply	data	which	were
never	stored.	 In	any	case,	we	might	need	 to	assume	missing	data	and	fill	 them
out.

The	 first	 step	 in	 handling	 missing	 data	 is	 to	 identify	 the	 rows	 with	 missing
values.	 Then	 we	 should	 fill	 them	 out.	 Obviously,	 if	 the	 dataset	 is	 huge,	 this
process	cannot	be	done	manually.	The	easiest	solution	is	to	ignore	this	particular
row.	 Though	 If	 we	 have	 a	 huge	 number	 of	missing	 values,	 this	 is	 not	 a	 very
effective	solution.	Some	of	the	most	effective,	automated	solutions	for	filling	out
missing	values	are	the	following:

use	 of	 global	 constant	 for	 filling	 out	 missing	 values	 e.g.	 -1,
“unknown”,	new	class
use	of	the	average	of	the	feature	for	filling	out	missing	values
use	of	the	average	of	samples	of	the	same	class	for	filling	out	missing
values
use	 of	 the	 most	 probable	 value	 for	 filling	 out	 missing	 values,
produced	by	some	method	like	decision	trees,	regression	etc

3.2.1.2	DATA	WITH	NOISE

Although	data	could	be	available,	they	might	have	noise	or	outliers	in	them.

There	are	many	ways	to	handle	data	with	noise.	We	will	focus	on	the	methods	of
binning	 and	 clustering.	 Data	 classification	 is	 the	 first	 step	 of	 every	 binning
method,	so	that	later	on	they	can	be	split	into	bins.	Based	on	how	they	are	split
into	bins,	 they	are	distinguished	 in	equal	width	partitioning	(distance)	methods
and	equal	depth	partitioning	(frequency)	methods.

During	equal	width	partitioning,	the	range	is	divided	in	N	intervals	of	equal	size.
This	partitioning	though	is	prone	to	outliers	since	non-symmetrical	data	are	not
handled	 properly.	 During	 equal	 depth	 partitioning,	 the	 range	 is	 divided	 in	 N
intervals	which	contain	the	same	number	of	samples.	In	this	case	we	have	better
data	 scaling.	 Binning	 methods	 are	 used	 for	 discretization	 as	 well.	 The	 most
known	are:

Regularization	 based	 on	 the	 average	 value	 of	 each	 bin:	 values	 are
replaced	with	the	average	of	each	bin
Regularization	based	on	the	median	of	each	bin:	values	are	replaced
with	the	median	of	each	bin
Regularization	 by	 using	 the	 limits	 of	 each	 bin:	 values	 are	 replaced
with	the	value	of	the	limits,	depending	on	which	limit	is	closer

Example	–	Data	smoothing	using	binning	methods
Let’s	assume	we	are	given	some	temperatures	(Co)	in	ascending	order:	4,	9,	11,
16,	21,	23,	24,	24,	27,	30,	32,	35.	By	using	equal	depth	partitioning	we	have	the
following	bins:

Bin	1:	4,	9,	11,	16
Bin	2:	21,	23,	24,	24
Bin	3:	27,	30,	32,	35

Using	regularization	based	on	the	average	of	each	bin:

Bin	1:	10,	10,	10,	10
Bin	2:	23,	23,	23,	23
Bin	3:	31,	31,	31,	31

Using	regularization	based	on	the	limits	of	each	bin:

Bin	1:	4,	4,	16,	16
Bin	2:	21,	24,	24,	24

Bin	3:	27,	27,	35,	35

The	use	of	clustering	has	the	goal	of	grouping	data	in	clusters,	so	that	data	with
noise	can	be	separated	from	clean	data.	In	the	image	below,	we	can	see	that	three
clusters	are	created	and	the	outliers	don’t	belong	to	any	cluster.

3.2.1.3	INCONSISTENT	DATA
We	 get	 inconsistent	 data	 when	 one	 or	 more	 different	 sources	 of	 files	 have
different	editions	of	stored	data,	which	should	be	the	same.	In	other	words,	when
for	the	same	entity,	the	values	of	the	features	from	different	sources	differ,	then
we	can	say	that	an	inconsistency	occurs.	This	usually	happens	when	we	have	lots
of	data	and	we	need	 to	make	a	change.	Then	 it	 is	quite	possible	 to	edit	one	or
more	 files	but	not	 all	of	 them.	Another	possible	 reason	 is	 the	different	way	of
presenting	or	using	different	scales	e.g.	units	of	measures,	different	currency.	For
solving	the	inconsistent	data	problem,	we	can	either	make	manual	edits	by	using
external	 sources	 or	 semiautomatic	 edits	 by	 using	 commercial	 data	 scrubbing
tools	or	data	auditing	tools.

3.2.2	DATA	UNIFICATION

The	 goal	 of	 data	 unification	 is	 to	 combine	 data	 from	 multiple	 sources	 in	 a
coherent	edition.	When	data	are	stored	 in	databases,	schema	integration	should
be	 applied	 by	 using	 metadata	 contained	 from	 various	 sources.	 During	 the
unification	process	all	possible	conflicts	or	inconsistencies	between	data	values
should	be	tracked	and	analyzed.

Redundant	 data	 appear	 often	 when	 multiple	 databases	 are	 unified.	 Possible
problems	 which	 might	 appear	 during	 the	 unification	 process	 are	 the	 use	 of
different	 names	 across	 different	 databases	 or	 when	 an	 attribute	 is	 created	 by
other	 attributes	 in	different	 tables.	 In	order	 to	 track	 redundant	 data	 association

analysis	is	used.

Finally,	 it’s	 worth	 mentioning	 that	 by	 carefully	 unifying	 data	 we	 can	 remove
unnecessary	 information,	 prevent	 inconsistencies,	 improve	 the	 data	 mining
process	and	increase	the	quality	of	its	results.

3.2.3	DATA	TRANSFORMATION	AND	DISCRETIZATION

The	basic	goal	of	data	transformation	is	to	create	comparable	data	which	initially
were	 non-comparable.	With	 data	 transformation	we	 can	 achieve	 other	 positive
results	like	reducing	data	size.

Discretization	can	be	considered	a	special	type	of	data	transformation.	The	basic
idea	is	to	transform	a	continuous	range	in	discrete	values.	Later	on,	we	will	see
that	discretization	is	necessary	for	applying	some	data	mining	methods.

3.2.3.1	Data	Transformation
Data	transformation	is	mostly	used	for:

smoothing	data	and	removing	noise
data	aggregation
normalization,	scaling	the	features	of	a	dataset	into	a	specific	range
creating	new	features	from	existing	ones

The	most	frequent	implementations	of	data	transformation	are	normalization	and
creation	 of	 new	 features	 from	 existing	 ones.	 Normalization	 is	 very	 useful	 in
categorization	 problems	 and	 also	 when	 data	 has	 different	 scales	 and	 units	 of
measure.	 There	 are	 many	 different	 ways	 of	 data	 normalization.	 The	 most
important	ones	are	the	following:

min-max	 normalization:	 values	 are	 normalized	 so	 that	 their	 range
belongs	to	a	new	limited	range	e.g.	[-1,	1],	[0,	10]	etc.	The	new	value
is	calculated	by	using	the	following	formula:

z-score	 normalization:	 values	 are	 normalized	 by	 using	 the	 average
value	and	standard	deviation	so	that	data	have	an	average	value	of	0
and	 a	 standard	 deviation	 of	 1.	 This	 type	 of	 normalization	 is
accomplished	with	the	following	formula:

	

	
Where	m	is	the	average	value	of	the	feature	and	s	is	its	standard	deviation.

Regularization	with	decimal	scale:	values	are	normalized	with	order
of	magnitude	of	10.	Regularization	is	accomplished	with	the	formula:

	
where	j	is	the	smallest	integer	so	that:

Example	–	Data	Regularization
Assume	we	are	given	a	dataset	with	ages	and	heights	of	students.	We	want	to
normalize	both	two	features	on	the	range	[0.1].

3.2.3.2	Data	Discretization
Discretization	is	associated	with	3	type	of	features:

nominal	features,	where	values	have	no	intrinsic	order
ordinal	features,	where	values	are	in	a	clear	order
continuous	features,	where	all	values	are	real	numbers

A	discretization	 example	 is	 the	 sampling	 from	 a	 range	 or	 a	 continues	 feature.
Discretization’s	main	 reason	of	existence	 is	 that	 some	classification	algorithms
receive	 only	 categorical	 features.	 It	 can	 also	 contribute	 in	 the	 decrease	 of	 the
number,	therefore	the	data	size.	For	a	given	continuous	feature	we	can	separate
its	 range	 in	 intervals	 and	 assign	 labels	 in	 each	 interval	 as	 seen	 below.	 For
example,	 a	 value	which	 belongs	 in	 the	 range	 {k1,	 k2)	will	 be	 replaced	 by	 the

label	d2.

As	 we	 already	 mentioned,	 binning	 can	 be	 used	 for	 discretization.	 One	 more
discretization	 technique,	 is	 Entropy-based	 discretization.	 Assume	 we	 have	 a
sample	set	named	S.	If	S	is	split	 into	two	intervals	named	S1	and	S2,	using	 the
threshold	T	for	the	values	of	a	feature	named	A,	then	the	information	gain	from
this	split	would	be:

Where	the	entropy	function	named	E	for	a	given	set	 is	calculated	based	on	the
classification	of	the	sample	class	in	the	set.	If	we	have	m	classes,	the	entropy	for
the	interval	S1	is:

Where	pi	is	the	probability	of	the	class	i	in	S1.

The	process	is	applied	retrospectively	in	splits	until	a	termination	criterion	is	met
e.g.

Where	 d	 is	 a	 very	 small	 number.	 In	 other	 words,	 this	 process	 is	 applied
retrospectively	 until	 we	 have	 no	 more	 additional	 gain	 from	 further	 splits.
Experiments	have	shown	that	discretization	can	reduce	the	data	size,	improving
the	classification	accuracy.

Example	–	Entropy-based	discretization
On	the	below	table,	we	see	a	dataset	with	the	hours	studied	for	an	exam	and	if
students	managed	to	pass	this	exam	(Y=Yes,	N=No)

The	hours	Studied	is	the	continuous	variable.	We	want	to	discretize	our	data.	We
start	by	calculating	the	entropy	of	the	whole	data.	We	have	three	Y	(yes)	and	two
N	(no).	So:

Next,	we	need	 to	 find	which	 split	will	 give	us	 the	maximum	gain.	 In	order	 to
find	a	split,	we	calculate	the	average	of	two	neighbor	values.	For	example,	from
the	first	two	values	we	get	5+4=9	and	T=9/2=4.5.	So,	the	first	possible	split	is	at
T=4.5.	Based	on	this	split	we	get	the	following	values:

We	calculate	entropy	for	each	case	and	the	gain	of	this	particular	split.

So	now	we	have:

and	the	gain	from	the	split	is:

Taking	the	next	two	neighbor	values	we	now	have	5+8=13	and	T=13/2=6.5.	So,
the	 second	possible	 split	 is	 at	T=6.5.	Based	on	 this	 split	we	get	 the	 following
values:

We	calculate	entropy	for	each	case	and	the	gain	of	this	particular	split.

So	now	we	have:

and	the	gain	from	the	split	is:

Same,	 we	 take	 the	 next	 two	 neighbor	 values	 we	 now	 have	 8+12=20	 and
T=20/2=10.	So,	the	second	possible	split	is	at	T=10.	Based	on	this	split	we	get
the	following	values:

We	calculate	entropy	for	each	case	and	the	gain	of	this	particular	split.

So	now	we	have:

and	the	gain	from	the	split	is:

Last,	 we	 take	 the	 final	 two	 neighbor	 values	 we	 now	 have	 12+15=27	 and
T=27/2=13.5.	So,	the	second	possible	split	 is	at	T=13.5.	Based	on	this	split	we
get	the	following	values:

We	calculate	entropy	for	each	case	and	the	gain	of	this	particular	split.

So	now	we	have:

and	the	gain	from	the	split	is:

From	the	above	calculations	we	can	understand	that	the	third	split	at	T=10	is	the
best	with	 the	 highest	 gain	 (0.421).	After	 the	 split,	we	 can	 continue	 examining
new	 splits	 and,	 once	 again,	 choosing	 the	 best	 one.	 This	 process	 can	 continue
until	we	have	no	gain	from	further	splits	based	on	a	small	value	for	d.

3.2.4	DATA	REDUCTION

The	 problem	 that	 data	 reduction	 is	 trying	 to	 address	 is	 huge	 amount	 of	 data
needed	to	be	edited,	since	complex	data	analysis	might	need	a	lot	of	time	to	be
executed	in	a	whole	dataset.

The	data	reduction	process	has	a	goal	of	creating	a	reduced	representation	of	the
whole	dataset,	which	is	quite	smaller	 in	size	but	can	also	produce	the	same,	or
almost	the	same	results.

3.2.4.1	Dimension	Reduction

The	more	dimensions	we	have,	the	hardest	it	is	to	manage	our	data	and	our	data
are	sparser.	This	phenomenon	is	also	known	as	the	curse	of	dimensionality.	Data
reduction’s	goal	is	 to	better	manage,	understand	and	visualize	data	while	at	 the
same	 time	 it	 reduces	memory	 usage	 and	 the	 time	 needed	 for	 the	 execution	 of
data	 mining	 and	 machine	 learning	 algorithms.	 Two	 basic	 approaches	 for
dimension	reduction	are	feature	selection	and	feature	projection.

With	feature	selection	we	choose	the	minimum	number	of	features	from	which	it
is	possible	to	create	equivalent	or	very	similar	results	with	the	results	we	would
get	 if	 we	 used	 all	 features.	 Ideally,	 the	 number	 of	 features	 chosen	 is	 much
smaller	than	the	initial	number	of	features.

The	 most	 known	 feature	 projection	 for	 data	 reduction	 is	 the	 Principal
Component	Analysis,	PCA.	The	feature	transformation	creates	a	new	feature	set,
with	 less	 dimensions	 than	 the	 initial	 one,	 but	 without	 reducing	 its	 main
dimensions.	Often,	PCA	is	used	for	data	visualization	as	well.

Principal	 Component	 Analysis	 works	 like	 this:	 By	 having	 N	 vectors	 of	 k-
dimensions	 it	 finds	m	 ≤	 k	 orthogonal	 vectors	 (two	 vectors	 x	 and	 y	 are	 called
orthogonal	 when	 their	 inner	 product	 space	 is	 equal	 to	 0,	 that	 is	 when	 xTy=0)
which	can	be	used	for	representing	data	in	the	best	possible	way.	Thus,	the	initial
dataset	is	reduced,	or	projected,	in	a	new	one,	which	consists	of	N	data	vectors
upon	m	 basic	 components.	 Each	 data	 vector	 is	 a	 linear	 combination	 of	 the	m
principal	 components	 vectors.	 This	 technique	 is	mostly	 used	when	we	 have	 a
high	number	of	dimensions.

3.2.4.2	Data	Compression
One	other	option	for	data	reduction	is	compression.	Compression	can	be	applied
in	 various	 data	 types,	 e.g.	 alphanumeric.	 There	 are	 multiple	 theories	 and
algorithms	 and	 we	 usually	 don’t	 have	 an	 information	 loss.	 Though,	 some
management	 restrictions	 rise.	 Also,	 most	 of	 the	 times	 information	 loss	 issues
appear	during	videos,	audio	and	images	compression.

Below	we	can	see	two	compression	categories:	lossy	and	lossless.	The	goal	is	to
reduce	data	and	use	an	approach	which	will	give	results	as	close	as	possible	to
the	results	we	would	get,	if	we	used	the	initial	data.

One	 compression	 method	 is	 the	 Huffman	 Coding	 which	 is	 a	 lossless
compression	algorithm.	Huffman	coding	takes	characters	of	predefined	length	as
input	and	produces	a	block	of	binary	digits	of	varying	length	as	output.	Simply
put	 it	 is	encoding	from	fixed	 to	varying	 length.	The	Huffman	coding	design	 is
optimal	under	the	condition	that	input	is	initially	known.	It	is	created	by	merging
the	 two	 less	 possible	 characters	 and	 this	 process	 is	 repeated	 until	 only	 one
character	is	left.

In	 the	 above	 example,	 the	 order	 of	 the	 characters	 is	 not	 important,	 neither	 the
way	 labels	 0	 and	 1	 are	 placed	 in	 the	 final	 code	 tree.	 In	 order	 to	 make	 this
example	easier	 to	 read,	 the	upper	nodes	of	 the	 tree	have	a	 label	of	0	while	 the
lower	 nodes	 have	 a	 label	 of	 1.	 In	 case	 we	 have	 a	 tie	 between	 the	 two	 less
probable	 characters,	 any	 mechanism	 is	 acceptable	 for	 solving	 this	 tie.	 Last,
Huffman	 coding	 is	 not	 unique,	 i.e.	 we	 can	 create	 different	 encodings	 for	 a
snapshot,	depending	on	the	hypotheses	we	will	make.

Another	 lossless	 compression	 method,	 is	 the	 Lempel-Ziv	 coding.	 Unlike
Huffman	 coding,	 it	 is	 a	 coding	 from	 varying	 to	 fixed	 length.	 The	 algorithm
consists	of	the	following	steps:

1.	 Initialize	a	dictionary	containing	all	blocks	of	length	one	(D	=	{a,	b})
2.	 Find	the	longest	block	W,	which	appears	in	D	dictionary
3.	 Codify	block	W	by	using	its	index	in	D	dictionary
4.	 Add	 block	W	 followed	 by	 the	 first	 symbol	 of	 the	 next	 block	 in	D

dictionary
5.	 Go	to	step	2

The	above	image	shows	an	example	of	Lempel-Ziv	coding.	On	this	example,	the
dictionary	 initially	only	has	blocks	of	 length	equal	 to	one	 i.e.	D	=	{0:	a,	1:	b}
(step	1).	We	scan	the	strings.	The	biggest	block	of	the	strings	in	the	dictionary	is
a	since	e.g.	ab	is	not	contained	in	the	dictionary	yet	(step	2).	Therefore,	the	block
is	 coded	 with	 the	 corresponding	 index,	 i.e.	 0	 (step	 3).	 We	 then	 add	 to	 the
dictionary	 the	block	we	 just	 coded	 (a)	 followed	by	 the	next	block	 (b).	So,	our
dictionary	becomes	D	=	{0:	a,	1:	b,	2:	ab}	(step	4).	The	process	is	repeated	from
step	2	until	there	is	no	other	block	in	the	string.

Theoretically,	 the	 size	 of	 D	 dictionary	 can	 be	 infinitely	 increased.	 Practically
thought,	 there	 is	 a	 restriction	 in	 its	 size.	 More	 specifically,	 if	 the	 dictionary
reaches	a	predefined	size	then	no	other	imports	are	made.	The	example	we	saw
previously	 doesn’t	 result	 to	 a	 real	 data	 compression.	 Basically,	 more	 binary
digits	 are	 used	 for	 representing	 indexes	 comparing	 to	 the	 initial	 data.	 This
happens	because	the	length	of	the	input	is	very	small.	Practically,	this	algorithm
works	well	and	results	to	a	real	compression	given	the	condition	that	the	length
of	input	is	quite	big.

3.3	DPLYR	AND	TIDYR	PACKAGES

3.3.1	DPLYR
The	dplyr	 package	 is	used	 to	 easily	manage	data.	 It	was	developed	by	Hadley
Wickham	and	Roman	Francois	and	provides	readymade	functions	for	consistent
and	 comprehensive	 data	management	 in	 table	 formats.	 The	 installation	 of	 the
package	is	made	with	the	command	install.packages(“dplyr”)	and	can	be	loaded
with	the	command	library(dplyr).

The	first	step	in	order	to	use	the	dplyr	package	is	to	convert	data	and	make	them
compatible	 with	 the	 package.	 This	 is	 accomplished	 easily	 with	 the	 tbl_df
function	and	giving	the	object	as	argument.	The	basic	advantage	of	tbl_df	is	that
it	makes	the	representation	during	printing	more	compact	and	readable.

Execute	the	piece	of	code	given	below.	Print	the	content	of	the	initial	data	frame
airquality	 which	 is	 one	 of	 the	 readymade	 datasets	 provided	 by	 R.	 What
differences,	regarding	printing,	do	you	see	compared	to	the	new	tbl_df	object?

The	dplyr	package	provides	five	functions	which	cover	fundamental	data
management	tasks.	These	are:

select,	for	selecting-filtering	columns	of	the	dataset
filter,	for	selecting-filtering	rows	of	the	dataset
arrange,	for	sorting	rows	based	on	values	of	particular	columns
mutate,	for	creating	new	variables	from	existing	ones
summarize,	for	data	aggregation	–	very	useful	when	combined	with
grouped	data

In	many	cases,	mostly	when	the	dataset	is	pretty	large,	we	are	only	interested	in
a	 subset	 of	 the	 dataset’s	 features.	 The	 select	 function	 allows	 us	 to	 choose
particular	columns	of	the	dataset.	We	should	just	give	the	names	of	the	columns
and	select	will	return	the	columns	according	to	the	order	we	specified.

Additionally,	we	can	choose	multiple	columns	with	the	“:”	operator,	choose
which	column	we	want	to	skip	by	using	“-”	in	front	of	the	column	names	or	skip
multiple	columns	by	combining	the	previous	two	operators.

Notice	 that	 the	 two	previous	 select	 calls	where	 equivalent,	 i.e.	 they	 return	 the

same	number	of	rows	and	columns.

Respectively,	 for	 filtering	 rows	we	can	use	 the	 filter	 function.	What’s	different
here	is	 that	on	row	filtering,	as	a	second	argument,	we	should	give	a	condition
upon	columns.	The	function	will	return	the	rows	which	satisfy	this	condition.	We
can	 set	 multiple	 conditions	 which	 we	 want	 to	 be	 satisfied	 at	 the	 same	 time
(AND),	using	a	comma	to	separate	them.

In	case	we	want	our	 rows	 to	 satisfy	one	out	of	 two	conditions	we	can	use	 the
operator	“|”	(OR).

In	order	 to	 sort	 rows	based	on	 the	value	of	particular	 columns	we	can	use	 the
arrange	function.	The	function	sorts	rows	based	on	the	order	we	give	the	names
of	columns	as	arguments.	The	default	sorting	is	by	ascending	order.	If	we	want
to	sort	by	descending	order	then	we	should	define	it,	by	giving	the	name	of	the
corresponding	column	to	the	desc	function.

By	using	the	mutate	function,	we	can	create	new	variables-features	from	already
existing	 ones.	 This	 particular	 function	 is	 very	 useful,	 e.g.	 when	 we	 want	 to
convert	 unites	 of	 measure.	 With	 just	 one	 call	 of	 this	 function	 we	 can	 create
multiple	new	variables.	A	very	useful	 feature	of	 this	particular	 function	 is	 that
we	 can	 name	 our	 new	 variables	 as	we	want	 and	 use	 them	 directly	 inside	 this
function	in	order	 to	create	more	new	variables.	Below	we	can	see	how	we	can
convert	the	Temp	feature	from	Fahrenheit	to	Celsius.

Last,	the	summarize	function	is	used	for	aggregation.	It	is	quite	useful	when	we
work	with	grouped,	based	on	values,	data.

3.3.2	TIDYR
The	 tidyr	 package	 was	 developed	 by	 Hadley	 Wickham	 and	 is	 used	 for	 easy
management	during	data	cleansing,	i.e.	data	transformation	in	a	proper	form	so
that	 they	are	able	 to	be	used.	The	 installation	of	 the	package	 is	made	with	 the
command	 install.packages("tidyr")	 and	 can	 be	 loaded	 with	 the	 command
library(tidyr).	Clean	data	should	meet	some	certain	conditions,	which	will	make
analysis	easier.	The	three	fundamental	conditions	that	should	be	met	are:

1.	 Each	variable	should	form	a	column	in	the	dataset
2.	 Each	observation	should	form	a	row	in	the	dataset
3.	 Each	unit	of	measure	used	should	form	a	separate	table

The	first	problematic	scenario	is	when	the	names	of	the	columns	are	values	and
not	variable	names.	For	dealing	with	this	issue,	we	will	use	the	gather	function.
This	function	gets	column	names	as	arguments	and	aggregates	them	in	key-value
pairs.

The	 initial	 dataset	we	 see	below,	practically	has	 three	variables:	 grade,	 gender
and	 number	 of	 students.	Values	 for	 the	 gender	 feature	 appear	 as	 names	 of	 the
second	 and	 third	 columns	 of	 the	 dataset.	 The	 third	 variable	 is	 the	 number	 of
students	for	each	grade-gender	combination.

In	 order	 to	 clean	 data	 each	 variable	 should	 be	 in	 a	 different	 column.	 For	 this
purpose,	we	will	 use	 the	gather	 function.	We	want	 to	 unify	 data	 according	 to
gender	and	crowd,	leaving	the	grade	column	intact.	For	this	purpose,	we	will	use
the	“-”	operator	in	front	of	the	grade	variable.

The	 second	 problematic	 scenario	 we	 can	meet	 is	 when	multiple	 variables	 are
stored	 in	 a	 column.	 In	 this	 case	 we	 should	 combine	 the	 gather	 and	 separate
functions.	The	separate	function	converts	one	column	to	multiple	columns	based
on	a	pattern.

This	dataset	 is	 similar	 to	 the	one	we	saw	previously.	 In	 this	case	we	have	 two
different	student	classes,	i	and	ii,	with	the	number	of	students	for	each	gender	in
each	 of	 these	 classes.	 We	 can	 see	 that	 we	 have	 multiple	 variables	 in	 each
column.	On	this	scenario,	in	order	to	clean	these	data	two	actions	are	needed.

First,	by	using	the	gather	function	we	gather	our	data	in	relation	to	the	variable
which	declares	the	gender	and	the	class	and	in	relation	to	the	number	of	students.

Next,	 by	 using	 the	 separate	 function	 we	 split	 the	 sex_class	 column	 in	 two
different	columns.	In	this	particular	case	the	function	was	able	to	determine	the
separation	character.

A	 third	 problematic	 scenario	 is	 when	 variables	 are	 stored	 in	 both	 rows	 and
columns.	In	this	case	we	should	combine	the	gather	and	spread	 functions.	The
spread	function	is	the	opposite	of	gather.	It	converts	key-value	pairs	in	multiple
columns.	Assume	you	have	a	dataset	in	which	variables	are	stored	both	in	rows
and	columns	as	we	can	see	below.	In	this	example	the	first	variable	is	the	name
of	 the	 students.	 The	 names	 of	 the	 last	 four	 columns	 are	 values	 for	 the	 lesson
variable.	 The	 values	 of	 the	 quarter	 variable	 should	 be	 stored	 in	 different
variables	with	the	corresponding	grade	for	each	student.

First,	we	gather	our	data	according	to	lesson	and	grade.

Then,	by	using	the	spread	function	we	create	three	new	variables	corresponding
to	the	quarters	for	which	we	have	grades	in	all	lessons.

Last,	another	useful	function	of	the	package	is	extract_numeric,	which	is	used	to
extract	 numeric	 values	 from	 alphanumeric	 values.	We	 can	 see	 that	 the	 lesson
column	 can	 be	 simplified	 by	 keeping	 only	 the	 number	 of	 the	 lesson.	 This	 is
accomplished	by	using	mutate	and	extract_numeric.

	

CHAPTER	4:	SUMMARY	STATISTICS	AND	VISUALIZATION

SUMMARY

The	 goal	 of	 this	 chapter	 is	 to	make	 the	 reader	 able	 to	 understand	 the	 various
techniques	 used	 for	 data	 mining,	 making	 the	 data	 mining	 process	 more
successful.	More	specifically,	the	reader	will	get	to	know	Summary	Statistics	and
Visualization	 techniques.	 He	 will	 be	 able	 to	 apply	 measures	 of	 position,
dispersion	 and	 correlation	 and	 also	 visualization	 techniques	 like	 histograms,
boxplots	 and	 dispersion	 diagrams.	 The	 reader	will	 also	 learn	 how	 to	 calculate
different	measures	of	position,	dispersion	and	correlation	and	create	histograms,
boxplots	and	dispersion	diagrams	with	R	programming	language.

PREREQUISITE	KNOWLEDGE

Before	reading	this	chapter,	Chapter	1:	Introduction	to	Data	Mining,	Chapter	2:
Introduction	to	R	and	Chapter	3:	Types,	Quality	and	Data	Preprocessing	should
be	studied	first.

SUMMARY	STATISTICS	AND	VISUALIZATION

Summary	 Statistics	 is	 the	 scientific	 area	 dealing	 with	 the	 summarized	 and
effective	representation	of	statistical	data.	Depending	on	the	field	of	application,
statistical	 data	 can	 be	 presented	 briefly	 either	 through	 particular	 numeric
measures,	known	as	measures	of	position	and	dispersion	or	by	suitable	diagrams.
In	 the	more	analytical,	but	not	so	useful	 form	 to	extract	 results,	 statistical	data
can	be	represented	through	vectors	or	tables.

4.1	MEASURES	OF	POSITION
Measures	 of	 position	 (or	 measures	 of	 central	 tendency)	 briefly	 describe	 the
location	of	data	upon	the	real	number	line.	They	specify	a	central	point	around
which	data	have	the	tendency	to	gather.	The	most	important	measures	of	position
are	the	mean	value	and	the	median.

4.1.1	MEAN	VALUE

The	mean	value	is	the	most	common	measure	of	position.	If	n	is	the	number	of
observations	xi,	i=1,	the	mean	value	is	defined	as:

In	R,	the	mean	value	is	calculated	with	the	mean()	function.

Let’s	assume	the	values	below	about	the	number	of	hours	of	internet	usage	last
month,	from	a	sample	of	10	teenagers:	22,	0,	7,	12,	5,	33,	14,	8,	0,	9.	We	insert
these	 data	 in	 R,	 in	 a	 variable	 named	 internet_usage,	 and	 calculate	 the	 mean
value	like	this:

In	case	the	available	data	have	missing	values	then	for	calculating	the	measures
we	use	the	argument	na.rm	=	TRUE.	For	example:

Notice	 that	 the	mean	 value	 of	 the	 sample	 didn’t	 change	 even	when	we	 added
non-available	observations.

4.1.2	MEDIAN

The	Median	is	the	value	of	the	median	observation,	when	observations	are	sorted

in	an	ascending	or	descending	order.	If	the	number	of	observations	(n)	is	an	odd
number,	 then	 the	 median	 observation	 is	 the	 (n+1)/2,	 while	 if	 the	 number	 of
observations	 is	 an	 even	 number	 we	 have	 two	 median	 observations	 in	 the
positions	n/2	and	n/2	+1,	so	the	median	is	 the	mean	value	of	 these	two	values.
For	example,	for	the	sorted	observations	below	(odd	number)

2	8	16	17	21	33	33	35	37

the	 median	 is	 the	 5th	 observation,	 i.e.	 21	 while	 for	 the	 observations	 (even
number):

100	150	170	220	230	380

The	median	is	equal	to	(170+220)/2	=	195.

In	R,	the	calculation	of	the	median	is	made	with	the	median()	function.	If	we	use
this	function	on	the	previous	example	about	internet	usage	we	should	get:

As	a	middle	observation,	the	median	is	greater	than	or	equal	to	the	50%	of	the
sample	observations.	We	will	see	 this	characteristic	 later	on	 in	other	numerical
measures.

4.2	MEASURES	OF	DISPERSION
Measures	 of	 dispersion	 briefly	 describe	 data	 variability	 upon	 the	 real	 number
line.	In	other	words,	they	reveal	the	variability	of	observations.	Variability	is	not
always	clear	from	the	measures	of	position,	e.g.	mean	value.	If	data	are	gathered
around	the	mean	value,	e.g.	 if	variance	is	low	then	indeed,	the	mean	value	can
represent	 data	 quite	 effectively.	 In	 the	 opposite	 scenario	 though,	 measures	 of
position	 don’t	 provide	 an	 effective	 way	 to	 describe	 data.	 Also,	 it’s	 possible,
different	observation	samples	have	the	same	measure	of	position.	This	is	easily
understood	 with	 the	 following	 example.	 Assume	 we	 have	 two	 observation
samples	A	and	B	where	Α	=	{33,	37,	48,	49,	52,	54,	62,	63,	64,	68,	71}	and	Β	=
{1,	37,	38,	41,	45,	47,	48,	51,	56,	90,	147}.	The	mean	value	of	both	samples	is
54.636	but	the	values	of	the	two	samples	have	different	variability	(dispersion	in
the	 real	 number	 line).	 The	 most	 important	 measures	 of	 dispersion,	 described
later	 one,	 are	 range,	 variance,	 standard	 deviation,	 coefficient	 of	 variation	 and
percentile	values.

4.2.1	MINIMUM	VALUE,	MAXIMUM	VALUE,	RANGE

Let’s	assume	the	observation	set	A	=	{49,	33,	37,	63,	48,	54,	62,	52,	64,	71,	68}.
The	minimum	(min)	and	maximum	(max)	observation	can	be	calculated	with	the
functions	min()	and	max(),	accordingly.

The	 commands	 below	 specify	 where	 min	 and	 max	 values	 appear	 in	 A,
respectively.

Range	is	defined	as	the	difference	between	the	highest	and	the	lowest	values	in	a
set.	We	can	easily	calculate	the	range	with	the	corresponding	functions:

The	range()	function	returns	a	vector	with	the	min	and	max	observation	of	vector
x.

So,	 with	 range()	 we	 have	 an	 alternative	 way	 of	 calculation	 the	 range	 of	 an
observation	set.

4.2.2	PERCENTILE	VALUES
The	 p-percentile	 value	 of	 a	 sample	 with	 n	 observations,	 is	 defined	 as	 the
observation	for	which	p%	of	the	observations	are	smaller	than	it	and	(1-p)%	of
the	 observations	 are	 greater	 than	 it.	 In	 order	 to	 find	 the	 p-percentile	 value,
1≤p≤99,	 the	 observations	 should	 be	 sorted	 in	 ascending	 order	 and	 then	 the
observation	is	located	at	the	position:	(n+1)p/100.

Assume	we	have	the	following	n=20	observations	which	are	in	ascending	order
for	convenience:	3,	4,	5,	6,	7,	8,	10,	10,	11,	12,	14,	14,	14,	15,	16,	17,	21,	25,	27,
32.	For	example	 the	80-percentile	value	 is	 located	at	 (20+1)80/100	=	16.8,	 i.e.
between	the	16th	and	17th	observation	and	more	specifically	 is	 located	more	 to
the	 right	 of	 the	 16th	 observation	 by	 0.8	 of	 the	 difference	 between	 the	 two
observations.	 The	 16th	 observation	 is	 equal	 to	 17	 and	 the	 17th	 observation	 is
equal	 to	 21.	 So,	 the	 observation	 we	 are	 looking	 for	 would	 be	 equal	 to	 x16	 +
0.8(x17-x16)	 =	 17	 +	 0.8	 (21-17)	 =	 20.2.	 The	way	we	 used	 corresponds	 to	 the
calculation	 algorithm	 with	 type	 7,	 which	 is	 embedded	 in	 R,	 so	 by	 using	 the
quantile()	command	we	get:

We	should	mention	the	25-percentile	value	(the	observation	which	is	greater	than
or	equal	 to	 the	25%	of	 the	observations),	called	first	quartile,	 the	50-percentile
value	 (the	 observation	 which	 is	 greater	 than	 or	 equal	 to	 the	 50%	 of	 the
observations),	 called	 second	 quartile	 and	 is	 equal	 to	 the	 median	 and	 the	 75-
percentile	value	(the	observation	which	is	greater	than	or	equal	to	the	75%	of	the
observations),	called	third	quartile.

For	the	previous	example,	by	using	R	we	get:

For	more	information	regarding	the	quantile()	function,	type	help(“quantile”).

The	 summary()	 command	 summarizes	 some	 measures	 we	 have	 already
described.

4.2.3	INTERQUARTILE	RANGE

The	 interquartile	 range	 (IRQ)	 is	 the	 difference	 between	 the	 third	 and	 first
quartile.	In	R	there	is	no	readymade	function	calculating	IRQ	but	we	can	create
ours:

4.2.4	VARIANCE

The	variance	s2	of	a	sample	of	n	observations	is	given	by	the	type:

Variance	can	be	calculated	easier	as:

When	data	constitute	the	whole	population	and	not	a	subset	of	it,	then	variance	is
denoted	with	s2	and	is	given	by	the	formula:

	

where	N	is	the	size	and	m	is	the	mean	value	of	the	population.

Variance	calculation	in	R	is	performed	with	the	var()	function.	For	example,	the
following	values	correspond	to	the	number	of	lessons	needed	from	a	sample	of
20	students	to	graduate:	6,	2,	1,	9,	17,	4,	3,	2,	1,	5,	11,	4,	3,	1,	2,	2,	5,	4,	3,	6.

See	also	how	we	can	calculate	variance	without	using	the	function	but	through
its	mathematical	expression:

The	sum()	function	calculates	the	sum	of	the	square	difference	of	each	value	of
the	courses	vector	from	its	median	value	mean(courses),	which	 is	 then	divided
by	the	number	of	observations	length(courses)	minus	1.

4.2.5	STANDARD	DEVIATION

The	standard	deviation	s	of	an	observation	sample	is	defined	as	the	square	root
of	the	variance	of	these	observations.	In	R,	standard	deviation	is	calculated	with
the	sd()	function.

Another	 way	 of	 calculating	 standard	 deviation	 easily	 is	 by	 using	 the	 var()
function	 for	 calculating	 variance	 and	 the	 sqrt()	 function	 for	 calculating	 the
square	root.	For	example:

We	can	also	create	ourselves	a	function	for	calculating	standard	deviation:

and	apply	it	to	the	previous	example:

4.2.6	COEFFICIENT	OF	VARIATION

The	 Coefficient	 of	 Variation	 (cv)	 of	 an	 observations	 sample	 is	 defined	 as	 the
ratio	of	standard	deviation	to	the	mean	value.	It	expresses	standard	deviation	as	a
percentage	of	the	mean	value.	We	can	create	an	R	function	in	order	to	calculate
the	coefficient	of	variation	like	this:

By	applying	it	to	the	previous	example	with	the	students	lessons	we	now	get:

4.3	VISUALIZATION	OF	QUALITATIVE	DATA

On	 this	 chapter	 we	 will	 present	 the	 ways	 we	 can	 use	 to	 visualize	 our
observations.	Visualization	can	either	be	made	with	vectors	and	tables	but	also
though	 diagrams	 like	 histograms,	 bar	 charts,	 pie	 charts	 etc.	 In	 each	 case,	 it	 is
quite	 important	 to	 distinct	 our	 observations	 in	 quantitative	 or	 qualitative	 data.
We	 start	 with	 qualitative	 data,	 which	 are	 usually	 represented	 with	 tables,	 bar
charts	and	pie	charts.

As	 an	 example,	 let’s	 assume	we	 have	 the	 answers	 given	 by	 20	 persons	 to	 the
question:	 “What	 means	 of	 transportation	 do	 you	 use	 every	 day	 to	 go	 to	 your
job?”.	Respondents	had	to	choose	between	car,	bus,	metro	and	foot.	The	answers
given	where:

car,	 car,	 bus,	metro,	metro,	 car,	metro,	metro,	 foot,	 cat,	 foot,	 bus.	 bus,	metro,
metro,	car,	car,	car,	metro,	car

We	 initially	 insert	 data	 by	 using	 the	m	 vector.	Our	 data	 are	 categorical	 so	we
should	add	these	values	inside	double	quotes:

4.3.1	FREQUENCY	TABLE
We	can	represent	our	data	in	a	frequency	table	by	using	the	table()	command.

In	the	first	row,	the	above	table	shows	the	discrete	values	of	the	observations	and
in	the	second	row	we	can	see	in	which	frequency	each	value	appeared.

If	 we	 wanted	 to	 view	 the	 relative	 frequency	 then	 we	 could	 use	 the
prop.table(table())	command.

4.3.2	BAR	CHARTS

Frequency	bar	charts	can	be	displayed	with	the	command:		

Relative	frequency	bar	charts	can	be	displayed	with	the	command:

4.3.3	PIE	CHART

We	can	display	our	data	in	a	pie	chart	by	using	the	command:

We	can	even	use	different	colors	in	the	circular	sections	of	the	pie	chart:

4.3.4	CONTINGENCY	MATRIX

A	contingency	matrix	has	to	do	with	two	categorical	variables	and	displays	their
frequency	distribution.

Let’s	assume	 that	 in	 the	previous	example’s	data	we	have	added	 the	gender	of
each	person.	For	convenience,	let’s	assume	that	the	first	8	people	were	male	(M)
and	the	remaining	12	were	female	(F).	We	create	the	vector	g.

We	create	the	double	input	frequency	table	mg	like	this:

Then,	 using	 the	 table,	we	 calculate	marginal	 frequencies	 in	 terms	of	means	of
transportation	and	gender,	respectively:

We	can	work	with	the	relative	frequency	table	with	the	exact	same	way.

4.3.4	STACKED	BAR	CHARTS	AND	GROUPED	BAR	CHARTS

We	 can	 display	 qualitative	 data	 coming	 from	 the	 values	 of	 two	 variables	 by
using	a	stacked	bar	chart	or	a	grouped	bar	chart.

By	using	the	command	parameters,	the	result	is	much	better:

The	below	commands	create	grouped	bar	charts.

4.4	VISUALIZATION	OF	QUANTITATIVE	DATA

4.4.1	FREQUENCY	TABLE
Let’s	assume	that	the	below	values	are	grades	of	the	Data	Mining	course	from	30
students:

10,	10,	5,	9,	7,	6,	8,	6,	5,	8,	10,	7,	7,	8,	5,	6,	4,	7,	9,	7,	4,	8,	10,	10,	7,	4,	9,	5,	8,	9

We	can	display	data	thought	a	frequency	table	like	this:

In	 the	 above	 table,	 the	 first	 row	 shows	 the	discrete	 values	of	 our	 observations
and	 the	 second	 row	 the	 frequency	of	each	value.	We	can	also	create	a	 relative
frequency	table:

4.4.2.	HISTOGRAMS

Histograms	can	be	used	to	display	quantitative	data	through	the	hist()	command.
For	the	x	vector,	the	frequency	histogram	is	available	with	the	command:

Data	are	grouped	 in	classes,	which	are	displayed	with	adjacent	 rectangles.	The
base	 of	 each	 rectangle	 corresponds	 to	 the	 range	 of	 its	 class,	 while	 height
corresponds	 to	 the	 frequency	of	each	observation.	We	usually	create	classes	of
the	same	range.	If	we	want	we	can	define	the	number	of	classes	like	this:

The	 usefulness	 of	 histograms	 will	 be	 clearer	 in	 a	 larger	 observations	 sample.
Let’s	assume	we	have	a	set	containing	the	weight(grams)	of	60	infants:

1950,	2090,	2700,	3350,	4200,	3720,	4400,	2980,	3850,	4550,	3050,	2350,	1850,
2820,	3670,	2950,	3750,	1850,	2420,	3150,	3000,	3470,	3920,	3100,	2400,	2900,
2650,	3450,	3650,	4020,	4450,	3120,	3660,	3070,	3550,	2020,	3500,	2500,	3780,
3940,	3540,	2800,	2850,	4450,	1950,	3020,	2800,	3500,	1480,	4495,	2850,	3100,

2250,	3300,	4100,	3220,	3600,	2130,	4020,	4075

Initially,	we	insert	our	observations	through	the	w	vector:

By	using	the	command:

We	get	the	following	histogram:

R	automatically	calculates	the	number	and	range	of	classes.	If	we	want	to	create
a	histogram	where	our	observations	are	grouped,	e.g.	in	4	classes,	then	this	can
be	made	through	the	command:

We	can	also	define	the	beginning	and	ending	of	the	classes	through	a	repetitive
process:

Additionally,	 instead	 of	 frequency	 on	 the	 Y-axis,	 we	 can	 display	 relative
frequency,	i.e.	density	probability.

The	commands:

can	display,	apart	from	the	histogram,	the	values	of	the	observations.

4.4.3	FREQUENCY	POLYGON
We	 can	 easily	 design	 a	 frequency	 polygon,	 since	 it	 is	 essentially	 a	 histogram
with	a	broken	line	connecting	the	mids	of	classes.	We	can	find	the	value	of	the
mids	and	other	variables	with	the	commands:

Now	we	will	only	need	to	connect	the	left	end	(1000	value),	the	classes	mids	and
the	right	end,	from	left	to	right	with	a	broken	line	with	the	command:

4.4.4	BOXPLOT

The	boxplot	is	a	proper	way	to	display	the	most	important	characteristics	of	the
samples	observation	distribution.	The	boxplot	is	a	rectangle	based	on	the	values
of	 the	 first,	 second	 (median)	 and	 third	 quartile	while	whiskers	 range	 from	 the
smallest	up	to	the	highest	value	of	observations.	For	the	example	we	saw	earlier
(infants’	weight),	the	boxplot	can	be	created	through	the	command:

If	you	want	you	can	display	 the	boxplot	vertically.	The	five	values	used	 in	 the
boxplot	can	be	calculated	with	the	command:

Boxplots	are	a	great	way	to	compare	two	samples.	Let’s	assume	the	sample	w1:

1950,	2090,	2700,	3350,	4200,	3720,	4400,	2980,	3850,	4550

3050,	2350,	1850,	2820,	3670,	2950,	3750,	1850,	2420,	3150

3000,	3470,	3920,	3100,	2400,	2900,	2650,	3450,	3650,	4020

and	sample	w2:

4450,	3120,	3660,	3070,	3550,	2020,	3500,	2500,	3780,	3940

3540,	2800,	2850,	4450,	1950,	3020,	2800,	3500,	1480,	4495

2850,	3100,	2250,	3300,	4100,	3220,	3600,	2130,	4020,	4075

	

	

CHAPTER	5:	CLASSIFICATION	AND	PREDICTION
SUMMARY

The	 basic	 goal	 of	 this	 chapter	 is	 to	 introduce	 the	 reader	 to	 the	 concepts	 of
classification	and	prediction.	Classification	has	a	goal	 to	create	a	classification
model	 by	 using	 a	 training	 set	 and	 a	 learning	 algorithm,	 through	 which	 value
assignment	can	be	made	in	the	category	feature	in	non-classified	records.	There
are	many	 different	 classification	models	 like	 rules,	 lists,	 decision	 trees,	 neural
networks	etc.

On	this	chapter	we	will	work	with	decision	trees	model	induction	and	view	the
partitioning	 techniques	 used	 to	 develop	 these	 trees.	 Next,	 we	 will	 view	 the
concept	 of	 prediction	 and	 examine	 linear	 regression,	 one	 of	 the	 simplest
prediction	models	for	numeric	data.

PREREQUISITE	KNOWLEDGE

Before	reading	this	chapter,	Chapter	1:	Introduction	to	Data	Mining	and	Chapter
2:	 Introduction	 to	 R,	 Chapter	 3:	 Types,	 Quality	 and	 Data	 Preprocessing	 and
Chapter	4:	Classification	and	Prediction	should	be	studied	first.

5.1	CLASSIFICATION

Classification	is	one	of	the	most	important	tasks	in	Data	Mining.	It	is	based	on
examining	 an	object’s	 features,	which	based	on	 these	 features	 is	 assigned	 to	 a
predetermined	set	of	classes.

The	basic	idea	goes	like	this:	by	having	a	set	of	categories	(classes)	and	a	dataset
with	 samples,	 for	 which	 we	 know	 in	 which	 class	 they	 belong,	 the	 goal	 of
classification	 is	 to	 create	 a	 model,	 which	 will	 then	 be	 able	 to	 automatically
classify	these	categories	in	new,	unknown,	non-classified	samples.

5.1.2	DECISION	TREES
Decision	trees	are	one	of	the	most	popular	classification	models.	Decision	trees
are	 a	 simple	 form	of	 rules	 representation	 and	 are	widely	popular	because	 they
are	easily	understandable.

5.1.2.1	Description
Decision	trees	are	 the	simplest	classification	model.	A	decision	tree	consists	of
internal	 nodes	 and	 leaves.	 Internal	 nodes	 are	 called	 the	 nodes	 which	 have
children	while	leaves	are	called	the	lowest	level	nodes	which	have	no	children.
The	decision	tree	is	represented	as	follows:

Each	internal	node	gets	the	name	of	a	feauture
Each	branch	between	two	nodes	is	named	with	a	condition	or	a	value
for	the	characteristic	of	the	parent	node
Each	leaf	is	named	with	the	name	of	a	class

On	the	above	image	we	can	see	a	decision	tree,	based	on	data	from	the	Titanic
passengers.	 Under	 the	 leaves	 we	 can	 find	 the	 chance	 of	 survival	 and	 the
percentage	of	samples	leading	to	this	particular	leaf.	As	expected,	most	men	died
since	priority	in	the	life	boats	was	given	to	women	and	children.

On	the	above	example	the	gender,	age	and	number	of	family	members	variables
were	used	in	order	to	identify	the	class	value.	Since	we	have	a	finite	number	of
values	 (survived,	 died),	 we	 are	 talking	 about	 a	 decision	 tree	 which	 makes
classification.

5.1.2.2	Decision	Tree	creation	–	ID3	Algorithm
One	 of	 the	 most	 popular	 algorithms	 for	 creating	 decision	 trees	 is	 the	 ID3
algorithm.	 This	 particular	 algorithm	 uses	 the	 concepts	 of	 entropy	 and
information	 gain	 for	 choosing	 the	 nodes	 of	 the	 decision	 tree.	 As	 mentioned,
information	gain	is	calculated	by	the	formula:

where

where	with	Sj	we	denote	the	samples	with	value	j	for	the	feature	A,	with	|Sj|	their
number,	with	S	we	denote	all	samples	and	with	|S|	their	number,	while	with	E|Sj|
we	denote	the	entropy	for	the	samples	subset	of	the	whole	dataset	with	value	of	j
for	 the	 feature	 A.	 Entropy	 E	 for	 a	 given	 set	 is	 calculated	 based	 on	 the	 class
classification	of	the	set	samples.	If	we	have	k	classes,	entropy	for	the	dataset	S
is:

where	pi	is	the	probability	of	the	class	i	in	S.

In	order	to	create	a	decision	tree,	the	ID3	algorithm	follows	the	below	steps:

1.	 Calculates	the	information	gain	from	each	variable
2.	 Puts	the	variable	with	the	highest	information	gain	as	root	of	the	tree
3.	 Creates	as	many	branches	as	the	discrete	values	of	a	variable
4.	 Splits	 the	 dataset	 in	 as	 many	 subsets	 as	 the	 discrete	 values	 of	 the

variable	chosen
5.	 Chooses	 a	 value-subset,	 which	 is	 not	 yet	 chosen.	 If	 for	 the	 current

value-subset	corresponds	only	one	class	value,	go	to	step	6,	else	go	to
step	7

6.	 Put	the	class	value	as	leaf	and	continue	with	the	next	variable-subset
value	and	go	to	step	5

7.	 Calculate	 the	 information	 gain	 of	 the	 remaining	 variables	 for	 this
particular	subset

8.	 Choose	the	variable	with	the	highest	information	gain	and	add	a	new
node	on	the	branch	corresponding	to	the	current	value-subset

9.	 Repeat	from	step	3,	until	no	more	leaves	can	be	created

Let’s	 see	 an	 example	 on	 how	we	 can	 create	 a	 decision	 tree	with	 ID3,	 for	 the
above	 dataset.	 First,	 we	 will	 initially	 calculate	 entropy	 E(S).	 For	 the	 class
variable	we	have	three	times	the	value	In	and	five	times	the	value	Out.	SO:

Next,	we	will	calculate	the	information	gain	for	each	variable.	We	start	with	the
Weather	variable.	We	have	a	total	of	eight	samples	and	the	Weather	variable	gets
two	times	the	value	Sunshine,	three	times	the	value	Cloudy	and	three	times	the
value	 Rainy.	 Both	 two	 samples	 with	 value	Weather	 =	 Sunshine	 have	 a	 class
value	of	In.	For	the	three	samples	with	value	Weather	=	Cloudy	one	has	the	class
value	In	and	two	have	the	class	value	Out.	So	we	have:

where

So	finally:

Next,	we	will	 calculate	 the	 information	gain	 for	 the	Temperature	 variable.	We
have	 a	 total	 of	 8	 samples	 and	 the	Temperature	 variable	 gets	 4	 times	 the	value
High,	2	 times	 the	value	Normal	and	2	 times	 the	value	Low.	For	 the	4	samples
with	value	Temperature=Normal,	2	of	them	have	the	class	value	In	and	2	of	them
have	 the	 class	value	Out.	Both	 two	 samples	with	Temperature=Normal	have	 a
class	value	of	Out.	For	 the	 two	samples	with	value	Temperature=Low,	1	has	a
class	value	of	In	and	1	has	a	class	value	of	Out.	So,	we	have:

where:

So	finally:

We	then	continue	with	the	Humidity	variable.	We	have	a	total	of	8	samples	and
the	Humidity	variable	gets	4	times	the	value	High	and	4	times	the	value	Normal.
For	the	4	samples	with	Humidity	=	High,	2	have	a	class	value	of	In	and	2	have	a
class	 value	 of	Out.	 For	 the	 2	 samples	with	Humidity	=	Normal,	 1	 has	 a	 class
value	of	In	and	3	have	a	class	value	of	Out.	So,	we	have:

where:

So	finally:

Last,	we	 have	 the	Wind	 variable.	We	have	 a	 total	 of	 8	 samples	 and	 the	Wind
variable	 gets	 6	 times	 the	 value	Light	 and	 2	 times	 the	 value	 Strong.	 For	 the	 6
samples	with	value	Wind	=Light,	 1	has	 a	 class	value	of	 In	 and	5	have	a	 class
value	of	Out.	For	the	two	samples	with	value	Wind	=Strong,	1	has	a	class	value
of	In	and	1	has	a	class	value	of	Out.	So,	we	have:

where:

So	finally:

From	 the	above	we	can	see	 that	 the	View	variable	has	 the	highest	 information
gain.	So,	we	choose	it	as	the	root	of	our	tree.

We	then	need	to	examine	how	each	branch	will	continue.	For	the	Sunshine	and
Cloudy	values,	we	notice	that	all	samples	belong	to	the	same	class,	In	and	Out
respectively.	This	leads	us	to	leaves:

We	now	need	to	examine	the	samples	with	value	Weather=Rainy

Initially,	 we	 calculate	 the	 information	 gain	 of	 the	 other	 variables.	 For	 the
Temperature	 (Wind)	 variable	 we	 have	 2	 samples	 with	 Normal	 (Light)	 and	 1
sample	with	Low	(Strong).	For	the	Temperature=Normal	(Wind=Light)	we	have
2	 samples	 with	 class	 Out	 and	 0	 samples	 with	 class	 In,	 while	 for	 the
Temperature=Low	(Wind=Strong)	we	have	1	sample	with	class	In	and	0	samples
with	class	Out.	Therefore,	we	have:

where:

Therefore:

Last,	for	the	Humidity	variable	we	have	two	samples	with	Normal	value	and	1
sample	with	High	value.	For	the	sample	with	Humidity=High	we	have	1	time	the
class	 Out	 and	 0	 times	 the	 class	 In.	 For	 the	 two	 samples	 with	 value
Humidity=Normal	we	have	1	time	the	class	In	and	1	time	the	class	Out.

where:

So,	we	have:

We	 select	 the	 variable	 with	 the	 higher	 information	 gain,	 that	 is	 either	 the
Temperature	variable	or	the	Wind	variable	since	they	have	the	same	information
gain.	 On	 the	 image	 below,	 we	 can	 see	 the	 final	 decision	 tree	 by	 using	 the
algorithm	ID3.

5.1.2.3	Decision	Tree	creation	–	Gini	Index
Another	 way	 of	 creating	 decision	 trees	 is	 by	 using	 the	 Gini	 index	 for	 node
selection.	 The	 Gini	 Index	 measures	 the	 inequality	 among	 the	 values	 of	 a
frequency	distribution.	The	values	range	from	0	to	1,	with	0	representing	perfect
equality	 and	1	 representing	perfect	 inequality.	For	 a	 dataset	S	with	m	 samples
and	k	classes,	gini(S)	is	calculated	by	the	formula:

where	pj	is	the	probability	of	occurrence	of	class	j	in	the	dataset	S.	If	S	is	divided
in	S1	and	S2	then:

where	 n1	 and	 n2	 is	 the	 number	 of	 samples	 in	 S1	 and	 S2	 respectively.	 The
advantage	of	this	method	is	that	for	the	calculations	we	only	need	the	split	of	the
classes	 in	 each	 subset.	The	best	 feature	 is	 the	one	with	 the	 lowest	Gini	 value.

Let’s	see	how	we	can	use	Gini	index	to	create	a	decision	tree.

We	start	with	the	Weather	variable.	First,	we	make	the	split	based	on	the	values
of	the	variable	so	we	have:

Therefore,	for	the	Weather	variable	we	have:

Then	we	continue	with	the	Temperature	variable:

So,	for	the	Temperature	variable	we	have:

Then	we	continue	with	the	Humidity	variable:

So,	for	the	Temperature	variable	we	have:

Last,	we	have	the	Wind	variable:

So,	for	the	Wind	variable	we	have:

We	choose	the	feature	with	the	lowest	Gini	value,	i.e.	the	Weather	value.	Next,
we	will	need	to	examine	the	values	Sunshine,	Cloudy	and	Rainy	individually.

For	the	Sunshine	and	Cloudy	variable,	we	can	see	that	all	samples	belong	to	the
same	class,	In	and	Out	respectively.	Therefore,	this	leads	us	to	leaves:

	

For	 the	 Rainy	 value	 we	 need	 to	 further	 examine	 the	 split.	 We	 only	 need	 to
examine	the	samples	for	which	the	Weather	variable	have	the	Rainy	value.

Once	again,	we	start	with	the	Weather	variable:

So,	for	the	Weather	variable	we	have:

We	 notice	 that	 for	 the	 Temperature,	 Humidity	 and	Wind	 variables	 we	 have	 a
similar	 split,	 i.e.	 correspondence	 of	 different	 variable	 value	 and	 class	 value.
Therefore,	 the	calculation	 is	made	with	 the	 same	way	and	 the	 resulting	values
will	be	equal.	So,	we	will	 just	need	to	calculate	 the	Gini	 index	for	only	one	of
these	variables.	Let’s	choose	the	Temperature	variable.

So,	for	the	temperature	variable	we	have:

If	we	calculate	the	Gini	Index	for	the	variables	Humidity	and	Air	as	well	we	will
get:

We	have	a	draw	between	them	so	we	randomly	choose	the	Temperature	variable.
Finally,	below	we	can	see	the	decision	tree	created:

We	should	note	that	the	decision	trees	created	with	the	ID3	algorithm	and	with
Gini	Index	accidentally	came	out	the	same.

5.2	PREDICTION

5.2.1DIFFERENCE	BETWEEN	CLASSIFICATION	AND	PREDICTION
At	 first	glance,	classification	and	prediction	seem	similar.	The	basic	difference
between	classification	and	prediction	is	than	in	classification	there	is	a	finite	set
of	discrete	classes.	The	samples	are	used	in	order	to	create	a	model	which	is	then
able	to	classify	new	samples.	In	prediction,	the	value	derived	from	the	model	is
constant	 and	 doesn’t	 belong	 to	 any	 predefined	 finite	 set.	 As	 mentioned
previously	 in	 the	 Titanic	 example,	 we	 have	 a	 finite	 number	 of	 class	 values
(Survived,	Died),	 thus	we	have	a	decision	 tree	which	makes	a	classification.	 If
the	 values	 of	 the	 target	 variable	 where	 not	 finite,	 we	 would	 then	 have	 a
regression	tree	which	would	make	a	prediction.

5.2.2	LINEAR	REGRESSION

5.2.2.1	Description,	Definitions	and	Notations
Liner	 regression	 is	 the	 simplest	 type	of	 regression.	As	described	 in	Chapter	1,
the	goal	of	 regression	 is	 to	 train	a	 function,	which	displays	an	object	 in	a	 real
variable.

On	the	above	image	we	present	a	simple	example	of	linear	regression.	Variables
are	 the	 square	 meters	 of	 the	 house	 and	 its	 sale	 price	 in	 Dollars.	 Linear
Regression	 adapts	 a	 line	 in	 the	 samples	 of	 the	 datasets,	 marked	 in	 red	 Xs.

Adaptation	is	based	on	a	cost	function,	the	value	of	which	we	want	to	minimize.
By	having	 the	optimal	 line	 i.e.	 the	 line	which	minimizes	 the	value	of	 the	 cost
function,	we	can	estimate	pretty	accurately	questions	like:	“Which	is	the	selling
price	 for	 150	 square	meters	 houses?”.	 Therefore,	 given	 the	 values	 of	 the	 goal
variable	 (in	 our	 case	 the	 selling	 price)	 for	 each	 sample,	 we	 try	 to	 predict	 the
values	of	the	variable	target	for	new	samples.

We	will	now	mention	some	definitions.	We	will	use	m	to	denote	the	number	of
samples	of	the	training	set.	We	will	use	X	to	denote	the	input	variables,	and	use	y
for	the	goal	variable.	We	will	use	β	for	the	model	parameters.

5.2.2.2	Cost	Function
The	cost	function	F,	is	given	by	the	following	formula:

The	basic	idea	is	that	we	want	to	minimize	the	cost	function	as	to	βj,	so	we	want

so	that	the	value	of	the	hβ	hypothesis,	i.e.	prediction,	is	as	close	as	possible	to	the
value	 of	 the	 real	 goal	 variable	 named	 y.	 The	 above	 cost	 function	 is	 the	most
popular	and	known	as	squared	error	function.

5.2.2.3	Gradient	Descent	Algorithm
Our	goal	is	to	minimize	the	value	of	the	cost	function	F.	This	can	be	achieved	by
using	the	right	values	for	the	βj	parameters.	Manual	search	is	prohibitively	time
consuming.	 The	 goal	 of	 gradient	 descent	 is	 to	 choose	 the	 right	 βj	 so	 that	 the
value	of	the	cost	function	can	be	minimized.	In	short,	 the	algorithm	works	like
this:

Random	βj	values	are	chosen
Their	values	are	changed	repetitively	and	in	a	predefined	way,	so	that
the	function	in	each	step	is	minimized.

Before	we	dive	into	the	formulas,	let’s	have	a	look	on	how	the	algorithm	works.
We	will	use	a	simple	example	with	just	one	input	variable	and,	thus,	two	β0	and
β1	parameters.	Imagine	we	are	in	a	specific	point	on	the	below	graph,	e.g.	on	one

of	the	two	red	hills,	and	we	want	to	move	to	a	lower	point.

The	 first	 thing	we	 need	 to	 do	 is	 to	 think:	 if	we	 could	 take	 a	 small	 step,	what
would	its	direction	be	in	order	to	lead	us	to	a	lower	point?	A	similar	logic	is	used
for	the	gradient	descent	algorithm	as	per	the	cost	function	value.	As	we	will	see
later	on,	 this	 logic	 is	 implemented	 through	 the	partial	derivatives	of	β0	and	β1.
Remember	that	the	value	of	a	derivative	shows	the	slop	of	a	line	and	thus,	in	our
case,	the	direction	of	the	path	the	algorithm	should	follow	on	each	step	it	makes.

The	 gradient	 descent	 algorithm	 has	 one	 important	 feature.	 From	 a	 different
starting	point,	it	is	possible	that	we	get	a	different	final	point	as	we	can	see	in	the
below	image:

The	algorithm	is	as	follows:
repeat	until	we	have	convergence	{

			update	βj	simultaneously	(at	the	end)

}

The	α	(alpha)	parameter	is	called	learning	parameter	and	declares	how	big	will
each	step	be	in	each	iteration	during	the	algorithm	execution.

Usually,	parameter	α	has	a	standard	value	and	is	not	adjusted	during	the	function
execution.	The	partial	derivative	as	per	βj	determines	the	direction	in	which	the
algorithm	 will	 proceed	 on	 the	 current	 step.	 Finally,	 the	 update	 of	 the	 βj
parameters	 applies	 at	 the	end	of	 each	 iteration.	The	corresponding	pseudocode
for	demonstrating	how	the	β0	and	β1	parameters	are	updated	is	the	following:

So,	after	we	calculate	the	new	value	of	β0	(tmp0),	we	use	β0	to	calculate	the	new
value	of	β1	(tmp1).	The	new	values	will	be	used	in	the	next	iteration.

5.2.2.4	Gradient	Descent	in	Linear	Regression
We	previously	separately	examined	linear	regression	and	gradient	descent.	Now
let’s	 see	 how	 linear	 regression	 and	 gradient	 descent	 work	 along.	 Assume	 we
have	a	linear	regression	model	with	the	β0	and	β1	parameters	and	the	hypothesis
is	given	as:

which	defines	a	y	=	ax	+	b	line	with	slope	a	=	b1	and	constant	term	b	=	β0.	For
this	particular	linear	regression	model,	the	cost	function	is:

In	 fact,	 by	 using	 the	 gradient	 descent	 algorithm	 we	 will	 minimize	 the	 cost

function	F.	First,	we	will	need	to	calculate	the	partial	derivatives:

Based	on	the	above	calculation	the	algorithm	is	done	as	follows:
repeat	until	we	have	convergence	{

			update	βj	simultaneously	(at	the	end)

}

5.2.2.5	LEARNING	PARAMETER

The	 learning	 parameter	 is	 the	 α	 parameter,	 we	 saw	 on	 the	 gradient	 descent
algorithm.	 The	 most	 important	 question	 at	 this	 point	 is	 by	 what	 criteria	 we
choose	the	value	of	this	parameter.	First,	let’s	see	how	we	can	make	sure	that	our
algorithm	works	right.	We	will	need	to	display	the	cost	function	F	in	terms	of	the
number	of	 the	algorithm	iterations.	While	 the	number	of	 iterations	gets	bigger,
we	expect	the	cost	function	to	follow	a	descending	route.

On	the	contrary,	 if	we	have	a	graph	like	 the	one	below	then	the	algorithm	will
not	work	right.	This	could	be	caused	by	the	value	of	the	learning	parameter.	In
the	algorithm	graph,	the	learning	parameter	defines	how	large	the	step	will	be.	If
the	 value	 is	 very	 small	 then	 the	 algorithm	 will	 need	 a	 lot	 of	 time	 to	 find	 a
minimum	(see	image	below):

On	 the	contrary,	 if	 it	 is	 too	 large,	 it	 is	possible	 to	overcome	 the	minimum	and
even	start	moving	to	higher	values	of	the	cost	function	(see	image	below):

Unfortunately,	there	is	no	rule	for	choosing	the	learning	parameter.	The	only	way
is	through	testing,	by	carefully	paying	attention	to	the	graph	of	the	cost	function
as	 to	 the	 number	 of	 iterations	 and	 at	 the	 same	 time	 ensuring	 it	 stays	 in	 a
descending	route.

5.3	OVERFITTING	AND	REGULARIZATION

5.3.1	OVERFITTING

Previously	we	examined	linear	regression.	As	we	saw,	the	produced	model	tries
to	match	as	much	as	possible	with	 the	data.	There	are	 three	possible	 scenarios
for	our	model:

1.	 The	 model	 doesn’t	 correspond	 well	 to	 the	 data	 and	 we	 have
underfitting

2.	 The	 model	 corresponds	 well	 to	 the	 data	 and	 generalizes	 right,	 i.e.
correctly	classifies	the	new	samples

3.	 The	model	perfectly	approaches	the	data	but	cannot	generalize

The	third	scenario	is	known	as	Overfitting.	The	model	is	overtrained	to	produce
perfect	 results	 for	 the	 training	 set	 but	 it	 cannot	 generalize	 and	 create	 equally
good	results	for	new	data.	If	we	have	many	features	but	the	amount	of	records	of
the	dataset	is	small	then	we	would	likely	have	an	overfitting	issue.

There	are	two	solutions	for	dealing	with	this	issue.	The	first	solution	is	to	reduce
the	number	of	features,	either	by	manually	choosing	the	features	we	will	use	or
by	 using	 a	 selection	 algorithm.	 The	 second	 solution	 is	 to	 make	 a	 model
regularization.	 What	 this	 means	 is	 that	 we	 keep	 all	 features,	 but	 reduce	 the
corresponding	βj	parameter,	i.e.	the	importance	this	particular	feature	has	during
training	 and	 model	 creation.	 Regularization	 gives	 good	 results	 when	 each	 of
these	features	contributes	a	little.

5.3.2	MODEL	REGULARIZATION

The	basic	idea	of	model	regularization	is	 that	small	values	to	the	β1,	β2,	…,	βn
parameters	 lead	 to	 simpler	 hypotheses	 thus	 reducing	 the	 chances	 of	 having
overfitting.	In	the	scenario	of	linear	regression,	we	just	need	to	add	an	additional
condition	in	the	cost	function:

Essentially,	the	additional	condition	implies	the	reduction	of	the	βj	parameters	so
that	the	value	of	the	function	is	smaller	overall.	The	λ	regularization	parameter

regulates	 how	 well	 the	 model	 will	 approach	 data	 and	 what	 will	 the	 order	 of
magnitude	be	for	the	βj	parameters	so	that	we	can	avoid	overfitting.	If	λ	though
gets	very	high	values	(e.g.	λ=1010)	then	the	βj	parameters	will	become	so	small
and	will	tend	to	0,	thus	leading	to	underfitting.

5.3.3	LINEAR	REGRESSION	WITH	NORMALIZATION

We	 will	 now	 examine	 the	 implementation	 of	 basic	 functions	 of	 the	 linear
regression	models	with	regularization.

The	arguments	of	the	function	are:

X:	the	dataset,	i.e.	all	samples,	without	the	goal	variable
theta:	the	βj	parameters
alpha:	the	learning	parameter	α
lambda:	the	regularization	parameter
num_iters:	 the	 number	 of	 iterations	 that	 the	 gradient	 descent
algorithm	will	make

In	 the	 F_history	 vector	 we	 store	 the	 value	 of	 the	 cost	 function	 in	 each	 step.
Inside	 the	for	 loop	the	pseudocode	for	gradient	descent	 in	 linear	regression	we
saw	in	chapter	5.2.2.4	is	executed.	The	function	prints	the	final	value	of	the	cost
function	and	then	returns	the	βj	parameters	and	the	F_history	vector.

The	 computeCost	 function	 is	 basically	 the	 cost	 function	 F,	 and	 is	 created	 as
follows:

We	 should	 note	 that	 data	 (features	 and	 goal	 variable)	 should	 be	 numerical	 in
order	to	execute	the	above	code	without	any	issues.

	

CHAPTER	6:	CLUSTERING

SUMMARY

The	basic	goal	of	this	chapter	is	to	familiarize	the	reader	with	concepts	about	the
third	most	 important	data	mining	process,	 i.e.	clustering.	More	specifically,	we
will	 present	 some	basic	 definitions	 regarding	 clustering	 and	 examine	 thorough
three	 clustering	 methods:	 partitioning	 clustering,	 hierarchical	 clustering	 and
density-based	clustering.	Next,	we	will	refer	some	specific	clustering	algorithms
like	 the	 k-means	 algorithm,	 the	 agglomerative	 hierarchical	 algorithm	 and	 the
DBSCAN	 algorithm.	 We	 will	 also	 present	 different	 methods	 of	 applying
hierarchical	clustering	like	the	single	linkage	(or	shortest	distance)	method,	 the
complete	linkage	(or	longest	distance)	method,	the	average	linkage	method	and
the	Ward	method.

PREREQUISITE	KNOWLEDGE

Before	reading	this	chapter,	Chapter	1:	Introduction	to	Data	Mining	and	Chapter
2:	Introduction	to	R	should	be	studied	first.

CLUSTERING

6.1	UNSUPERVISED	LEARNING
In	Supervised	Learning	we	are	given	a	dataset	with	 the	corresponding	classes-
labels	of	each	record.	The	goal	is	to	create	a	model	which	can	classify	new	data
in	one	of	 the	preexisting	classes.	On	 the	contrary,	 in	unsupervised	 learning	we
are	given	a	dataset	without	the	corresponding	classes-labels	of	each	record	and
the	goal	 is	 to	use	an	algorithm	so	that	we	can	automatically	find	an	interesting
data	 structure.	 For	 example,	 clustering	 is	 one	 of	 the	 unsupervised	 learning
methods.	Given	some	data	without	classes,	the	clustering	algorithms	group	data
in	 clusters	 so	 that	 records	which	 belong	 in	 the	 same	 cluster	 have	 the	 same	 or
similar	features.

6.2	CONCEPT	OF	CLUSTER

On	clustering,	we	are	given	a	dataset,	without	the	corresponding	classes	or	labels
and	we	need	an	algorithm	which	will	automatically	group	these	data	in	clusters.
We	want	 the	clusters	 to	correctly	 separate	data.	Practically,	 this	means	 that	we
want	 a	 cluster	 to	 be	 composed	by	objects,	 so	 that	 each	object	 is	 closer	 to	 any
other	object	of	the	same	cluster	than	from	an	object	of	a	different	cluster.

6.3	K-MEANS	ALGORITHM

6.3.1	ALGORITHM	DESCRIPTION

The	 k-means	 algorithm	 starts	 with	 k	 random	 points,	 called	 cluster	 centroids,
which	declare	 the	centroid	of	 the	cluster.	k	suggests	 the	number	of	clusters	we
want	 to	 be	 created	 by	 the	 algorithm.	 The	 algorithm	 repeatedly	 executes	 two
steps.	The	first	step	is	about	assignment	in	a	cluster	whereas	the	second	step	is
about	redefining	and	relocating	the	centroids	of	each	cluster.

More	 specifically,	 regarding	 the	 first	 step,	 i.e.	 assignment	 in	 a	 cluster,	 the
algorithm	examines	each	sample	according	 to	 the	cluster	centroids.	By	using	a
measure	 of	 distance,	 it	 assigns	 the	 sample	 in	 test	 to	 a	 cluster,	 of	 which	 the
centroid	 is	 the	 closest	 to	 this	 particular	 sample.	On	 the	 second	 step,	 by	 taking
into	 consideration	 the	 average	 of	 the	 samples	 of	 each	 cluster,	 the	 centroids	 of
each	cluster	 are	 recalculated,	 so	 that	 the	 centroid	 is	more	 representative	 in	 the
newly	created	cluster.

The	 algorithm	 repeatedly	 executes	 these	 two	 steps	 until	 the	 centroids	 of	 the
clusters	start	shifting	lightly	in	a	distance	less	than	a	given	threshold	value.	As
an	alternative	criterion	for	the	algorithm	termination	the	number	of	iterations	of
the	algorithm	can	be	used.

6.3.2	RANDOM	CENTROIDS	INITIALIZATION
The	 first	 step	 of	 the	 k-means	 algorithm	 is	 the	 random	 initialization	 of	 the	 k
centroids	of	the	clusters.	While	this	step	might	not	seem	important,	quite	often	a
bad	executed	initialization	might	lead	to	bad	quality	clusters	later.	In	the	below
image	we	can	see	an	example	of	four	random	centroid	initializations	and	in	color
we	can	see	the	created	clusters.

As	we	can	see	the	top	left	is	the	best	clustering.	The	upper	right	clustering	has	a

lower	 quality.	 In	 the	 other	 two	 cases	 it’s	 obvious	 that	 initialization	 negatively
influences	the	clustering	process.

6.3.3	CHOOSING	THE	NUMBER	OF	CLUSTERS

One	of	the	disadvantages	of	the	k-means	algorithm	is	that	there	is	no	automatic
way	of	selecting	k,	i.e.	the	number	of	clusters.	The	number	of	clusters	is	given	as
an	 input	 by	 the	 user	 and	 the	 selection	 of	 the	 correct	 number	 is	 based	 on	 the
user’s	knowledge	and	experience.	We	should	remember	that	the	additional	class
feature	 of	 the	 samples	 is	 not	 given	 during	 clustering.	 Thus,	 the	 number	 of
clusters	 selection	 process	 might	 require	 data	 investigation,	 e.g.	 through
visualizations,	in	order	to	conclude	at	the	right	number	of	clusters.

Quite	often	the	same	data	are	ambiguously.	For	example,	on	the	below	image	we
can	see	that	data	are	not	easily	separable.	How	many	clusters	should	be	created?
Two	or	four?

Unfortunately,	there	is	no	general	rule	to	determine	the	right	number	of	clusters
in	every	situation.	A	simple	and	practical	trick	which	can	help	in	many	situations
is	the	elbow	rule.	On	the	below	image	we	can	see	 that	 the	elbow	rule	suggests
that	 k=3	 is	 a	 good	 choice.	 But	 there	 are	 many	 cases	 where	 the	 graph	 is	 not
smooth	 and	does	not	 feature	 an	 elbow	shape,	making	 the	 selection	once	 again
not	clear.

6.3.4	APPLYING	K-MEANS	IN	R

On	the	below	example	we	will	present	how	k-means	algorithm	is	applied	with	R
and	the	corresponding	functions.	The	iris	dataset	contains	50	measurements	for
each	of	the	three	different	types	of	flowers:	setosa,	versicolor	and	virginica	(total
of	150	samples).	Measurements	have	to	do	with	the	length	and	width	(in	cm)	of
petals	 and	 sepals	 of	 flowers	 of	 every	 kind.	 The	 goal	 of	 this	 experiment	 is	 to
examine	clustering	quality,	after	we	remove	the	Species	feature,	which	indicates
the	species	to	which	each	flower	belongs	to.

We	initially	load	the	data,	which	exist	in	the	readymade	packages.	We	save	data
under	 the	 variable	 name	 iris_new	 and	 delete	 the	 Species	 feature.	 This
information	should	be	kept	secret	by	the	algorithm	so	that	we	can	examine	later
on	how	good	was	the	clustering	we	performed.

Next,	 we	 apply	 the	 k-means	 algorithm	 with	 an	 argument	 of	 k=3.	 Finally,	 we
check	how	many	samples	are	in	the	right	cluster	according	to	all	other	samples.
Clustering	visualization	can	be	 seen	below.	 Ideally,	 all	 samples	 from	 the	 same
Species	should	be	placed	in	the	same	cluster.

6.4	HIERARCHICAL	CLUSTERING	ALGORITHMS

Hierarchical	clustering	algorithm,	as	 their	name	suggests,	create	a	hierarchy	of
nested	clusters.	What	this	means	is	that	clusters	contain	individual	elements	and
other	clusters	which	themselves	can	also	contain	other	smaller	clusters,	creating
this	way	hierarchy	levels.

Hierarchical	algorithms	fall	 into	two	categories:	the	agglomerative	and	divisive
algorithms.	 Algorithms	 can	 be	 entirely	 represented	 with	 dendrograms,	 which
show	the	structure	of	the	clusters	created	by	hierarchical	clustering.	Practically,
each	level	of	a	dendrogram	defines	a	step	of	the	algorithm.	The	basic	advantage
of	hierarchical	algorithms	is	that	we	don’t	need	to	assume	a	particular	number	of
clusters	since	any	number	can	be	achieved,	by	simply	slicing	the	dendrogram	in
the	desired	level.

6.4.1	DISTANCE	MEASUREMENTS	BETWEEN	CLUSTERS

Before	we	 dive	 into	 the	 analysis	 of	 agglomerative	 hierarchical	 algorithms,	we
should	define	some	methods	of	determining	 the	distance	between	 two	clusters.
The	most	important	are	the	following:

shortest	distance	or	single	link
longest	distance	or	complete	link
cluster	group	average
centroid	distance
Ward	method

According	 to	 the	 single	 link	 criterion,	 the	 similarity	 between	 two	 clusters	 is
based	on	the	two	most	similar	(nearer)	points	in	different	clusters,	i.e.	the	points
with	the	shortest	distance	between	them.	It	is	also	known	as	the	nearest	neighbor
clustering	method.	The	 advantages	 of	 this	method	 are	 that	 contiguous	 clusters
are	created,	while	it	can	manage	non-elliptical	shapes.	The	basic	disadvantage	is
sensitivity	in	noise	and	outliers:

According	to	 the	complete	 link	criterion,	 the	similarity	between	two	clusters	 is
based	on	the	two	most	dissimilar	points	in	different	clusters,	i.e.	the	points	with
the	 longest	 distance	 between	 them.	The	 basic	 advantage	 of	 this	method	 is	 the
small	sensitivity	in	noise	and	outliers.	The	disadvantages	here	is	that	it	tends	to
break	down	big	clusters	and	also	leads	to	circular	shapes:

The	 cluster	 group	 average	 in	 the	 average	of	 the	 distance	of	 each	possible	 pair
between	the	points	of	the	two	clusters.	It	is	somewhere	between	single	link	and
complete	 link.	 It	 has	 less	 sensitivity	 in	 noise	 and	 outliers	 but	 favors	 circular
shaped	clusters:

The	 centroid	 distance	 is	 the	 distance	 between	 the	 centers	 of	 the	 clusters.	 The
problem	with	this	distance	is	 that	 it	does	not	have	a	monotonic	 increase.	Thus,
two	clusters	who	merge	might	have	a	smaller	distance	from	clusters	which	have
merged	in	previous	steps:

Last,	 the	 basic	 idea	 behind	 the	Ward	method	 is	 that	 the	 distance	 between	 two
clusters	Ci	and	Cj	is	equal	to	how	much	the	sum	of	the	square	of	the	distance	of
the	 elements	 of	 each	 cluster	will	 increase	 from	 the	 corresponding	 centroid	 (of
each	cluster)	after	their	merge,	Cij:

where	ri	is	the	centroid	of	the	Ci	cluster,	rj	is	the	centroid	of	the	Cj	cluster	and	rij
is	 the	 centroid	 of	 the	 Cij	 cluster	 after	 their	 merge.	 This	 is	 the	 hierarchical

equivalent	of	k-means.

6.4.2	AGGLOMERATIVE	ALGORITHMS

Agglomerative	 algorithms	 start	 with	 each	 of	 the	 n	 samples	 belonging	 to	 a
separate	 cluster,	 i.e.	 they	 start	 with	 n	 clusters.	 In	 each	 step,	 the	 two	 closer
clusters	are	merged,	i.e.	the	number	of	clusters	is	reduced	by	one.	This	process	is
repeated	until	the	algorithm	ends	up	with	one	and	only	cluster,	which	includes	all
n	 samples.	 The	 whole	 process	 can	 be	 represented	 with	 a	 dissimilarity
dendrogram.	The	dendrogram	contains	n-1	levels	and	each	level	corresponds	to	a
different	algorithm	step.

6.4.3	DIVISIVE	ALGORITHMS

Divisive	algorithms	start	with	all	samples	belonging	to	a	single	cluster.	In	each
step,	a	group	is	divided	into	two.	This	is	repeated	until	we	end	up	in	n	groups.
Divisive	 algorithms	 are	more	 complex	 comparing	 to	 agglomerative	 algorithms
since	 the	 split	 of	 a	 group	 can	 be	 accomplished	 with	 2n-1	 ways.	 Choosing	 the
optimal	split	is	practically	impossible,	even	for	a	small	n.	In	practice,	the	split	is
made	 in	 a	 non-optimal	 way.	 The	 whole	 process	 can	 be	 represented	 with	 a
dendrogram	as	with	the	agglomerative	algorithms.

6.4.4	APPLYING	HIERARCHICAL	CLUSTERING	IN	R
With	 the	code	below,	we	 load	 the	 iris	dataset,	we	sample	40	of	 its	 records	and
apply	 hierarchical	 clustering	 with	 the	 methods	 of	 single	 and	 complete	 link
respectively.	We	should	mention	that	we	remove	the	Species	feature	in	order	to
test	 if	 the	 elements	 of	 the	 clusters	 belong	 in	 the	 right	 cluster.	 There	 are	 three
discrete	values	for	this	particular	feature,	so	at	the	end	we	cut	the	dendrogram	in
order	to	have	three	clusters.

In	 the	 above	 image	 we	 can	 see	 the	 dendrogram	 of	 hierarchical	 clustering	 by
using	 the	single	 link	method.	Additionally,	on	 the	below	image	we	can	see	 the
dendrogram	 of	 hierarchical	 clustering	 by	 using	 the	 complete	 link	method.	 By
comparing	 the	 two	 images	 we	 can	 understand	 its	 disadvantage	 comparing	 to
single	link.	Single	link	is	more	sensitive	to	noise	and	outliers	and	tends	to	create
contiguous	clusters.	This	is	the	reason	why	the	middle	and	last	clusters,	from	left
to	right,	is	not	how	we	would	expect	them	to	be,	i.e.	each	cluster	to	have	features
with	the	same	value	for	the	Species	feature.	On	the	contrary,	by	using	complete
link	we	get	higher	quality	clusters.	Though	this	case	is	not	ideal,	since	in	the	last
cluster,	from	left	to	right,	there	are	elements	with	different	values	(versicolor	and
virginica).	The	optimal	clustering	would	create	clusters	with	elements	having	the
same	value	for	the	Species	feature,	i.e.	only	setosa,	virginica	or	versicolor.

6.5	DBSCAN	ALGORITHM

6.5.1	BASIC	CONCEPTS

Assume	we	are	given	a	set	of	points	 in	space	which	we	want	 to	cluster.	When
clustering	 with	 the	 DBSCAN	 algorithm,	 these	 points	 are	 classified	 as	 core
points,	density-reachable	points	or	outliers	based	on	these	rules:

1.	 A	point	p	is	a	core	point	if	at	least	MinPts	points	are	in	an	ε	distance
from	 it	 and	 those	 points	 are	 directly	 reachable	 from	 p	 (see	 below
image	with	blue	color)

2.	 A	point	q	is	density-reachable	from	p	if	there	is	a	path	p1,	...,	pn	with
p1	=	p	and	pn	=	q,	where	each	pi+1	is	directly	reachable	from	pi,	i.e.	all
the	points	on	the	path	must	be	core	points,	with	the	possible	exception
of	q	(see	below	image,	points	X,Y	and	Z)

3.	 Points	 not	 reachable	 from	 any	 other	 point	 are	 outliers	 (see	 below
image,	points	N1	and	N2).

Now	 if	p	 is	 a	 core	point,	 then	 it	 forms	a	 cluster	 along	with	 all	 points	 (core	or
non-core)	that	are	reachable	from	it.	Each	cluster	contains	at	least	one	core	point.
Reachability	is	not	a	symmetrical	relationship	since,	by	definition,	no	point	may
be	 reachable	 from	 a	 non-core	 point,	 regardless	 of	 distance.	 This	means	 that	 a
non-core	point	may	be	reachable,	but	nothing	can	be	reached	from	it.	Therefore,
a	further	notion	of	connectedness	is	needed	to	formally	define	the	extent	of	the
clusters	created	by	DBSCAN.	Two	points	p	and	q	are	density-connected	if	there
is	a	point	s	such	that	both	p	and	q	are	reachable	from	s.	Density-connectedness	is
symmetric.	Thus,	a	cluster	satisfies	these	two	properties:

	

1.	 All	points	within	the	cluster	are	mutually	density-connected.
2.	 If	a	point	is	density-reachable	from	any	point	of	the	cluster,	it	is	part

of	the	cluster	as	well.

6.5.2	ALGORITHM	DESCRIPTION

DBSCAN	requires	 two	parameters:	ε	(eps)	and	the	minimum	number	of	points
required	 to	 form	a	dense	 region[a]	 (minPts).	 It	 starts	with	 an	 arbitrary	 starting
point	that	has	not	been	visited.	This	point's	ε-neighborhood	is	retrieved,	and	if	it
contains	 sufficiently	 many	 points	 (more	 than	 MinPts),	 a	 cluster	 is	 created.
Otherwise,	 the	 point	 is	 temporarily	 labeled	 as	 noise.	This	 point	might	 later	 be
found	 in	 a	 sufficiently	 sized	 ε-environment	 of	 a	 different	 point	 and	 hence	 be
made	part	of	a	cluster.

If	a	point	is	found	to	be	a	dense	part	of	a	cluster,	then	we	can	be	sure	that	its	ε-
neighborhood	 is	also	part	of	 that	cluster.	Thus,	all	points	 that	are	 found	within
the	 ε-neighborhood	 are	 added	 in	 the	 cluster,	 as	 well	 as	 the	 points	 in	 the	 ε-
neighborhood	of	each	of	 these	points.	This	process	continues	until	 the	density-
connected	cluster	is	completely	found.	Points	marked	by	the	algorithm	as	noise
and	 didn’t	 manage	 to	 become	 part	 of	 a	 cluster	 are	 considered	 outliers.	 The
algorithm	can	be	expressed	in	pseudocode	as	follows:

6.5.3	ALGORITHM	COMPLEXITY

DBSCAN	 visits	 each	 point	 of	 the	 database,	 possibly	 multiple	 times.	 The
complexity	 lies	 in	 the	number	of	 regionQuery	 invocations.	DBSCAN	executes
exactly	one	such	query	for	each	point.	By	using	special	indexing	structure	it	can
be	 executed	 in	 O(log	 n)	 for	 n	 points,	 thus	 overall	 O(n	 log	 n).	 If	 a	 special
indexing	structure	is	not	used	or	data	are	degenerated	(all	points	within	distance
less	 than	 ε),	 then	 we	 have	 the	 worst	 case	 and	 complexity	 O(n2).	 Memory
requirements	 is	 just	 O(n),	 if	 implementation	 without	 matrices	 is	 applied,
otherwise	its	O(n2).

6.5.4	ADVANTAGES

The	most	important	advantages	of	the	DBSCAN	algorithm	are	the	following:

1.	 DBSCAN	does	not	 require	one	 to	 specify	 the	number	of	 clusters	 in
the	data	a	priori,	as	opposed	to	k-means.

2.	 DBSCAN	 can	 find	 arbitrarily	 shaped	 clusters.	 It	 can	 even	 find	 a

cluster	 completely	 surrounded	 by	 (but	 not	 connected	 to)	 a	 different
cluster	(see	image	below).	Due	to	the	MinPts	parameter,	the	so-called
single-link	effect	(different	clusters	being	connected	by	a	thin	line	of
points)	is	reduced.

3.	 DBSCAN	has	a	notion	of	noise,	and	is	robust	to	outliers.
4.	 DBSCAN	 requires	 just	 two	 parameters	 and	 is	mostly	 insensitive	 to

the	ordering	of	the	points	in	the	database
5.	 If	data	are	examined	and	are	understood,	defining	MinPts	and	ε	is	not

very	hard.

6.5.5	DISADVANTAGES

Even	though	DBSCAN	has	 lots	of	advantages,	 it	also	has	some	disadvantages.
The	most	important	ones	are:

1.	 DBSCAN	 is	 not	 entirely	 deterministic:	 border	 points	 that	 are
reachable	 from	more	 than	 one	 cluster	 can	 be	 part	 of	 either	 cluster,
depending	on	the	order	the	data	are	processed.	For	most	datasets	and
domains,	 this	situation	fortunately	does	not	arise	often	and	has	 little
impact	on	the	clustering	result

2.	 The	quality	of	DBSCAN	depends	on	the	distance	measure	used.	The
most	common	distance	metric	used	is	Euclidean	distance.	Especially

for	high-dimensional	data,	this	metric	can	be	rendered	almost	useless
due	to	the	so-called	"Curse	of	dimensionality",	making	it	difficult	to
find	an	appropriate	value	for	ε.	This	effect,	however,	is	also	present	in
any	other	algorithm	based	on	Euclidean	distance.

3.	 DBSCAN	 cannot	 cluster	 datasets	 well	 with	 large	 differences	 in
densities,	 since	 the	 minPts-ε	 combination	 cannot	 then	 be	 chosen
appropriately	for	all	clusters.

4.	 If	the	data	and	scale	are	not	well	understood,	choosing	a	meaningful
distance	threshold	ε	can	be	difficult

CHAPTER	 7:	 MINING	 OF	 FREQUENT	 ITEMSETS	 AND

ASSOCIATION	RULES

SUMMARY

The	 goal	 of	 this	 chapter	 is	 to	 introduce	 the	 reader	 in	 concepts	 about	 frequent
itemsets	 and	association	 rules	mining,	 the	measures	of	 support	 and	confidence
and	also	describe	 in	depth	 the	basic	 frequent	 itemsets	mining	algorithm	named
Apriori.	 Last,	 we	 present	 the	 arules	 package	 of	 R,	 which	 features	 lots	 of
functions	about	itemsets	and	association	rules	mining.

PREREQUISITE	KNOWLEDGE

Before	reading	this	chapter,	Chapter	1:	Introduction	to	Data	Mining	and	Chapter
2:	Introduction	to	R	should	be	studied	first.

MINING	OF	FREQUENT	ITEMSETS	AND	ASSOCIATION	RULES

7.1	INTRODUCTION
As	mentioned	in	the	beginning	of	the	book,	one	of	the	most	popular	tasks	of	data
mining	 is	 the	mining	 of	 frequent	 itemsets	 and	 association	 rules.	We	 could	 say
that	this	task	was	the	driving	force	for	the	expansion	of	Data	Mining	and	it	got
quite	 popular	 after	 finding	 that	 young	Americans	who	 bought	 diapers	 had	 the
tendency	 to	 also	 buy	 beers	 as	 well.	 In	 fact,	 this	 task	 is	 the	 first	 thing	 which
comes	in	mind	when	we	hear	the	term	Data	Mining.

Indeed,	frequent	itemsets	and	association	rules	are	new	fields,	which	were	never
analyzed	 in	 the	 past	 within	 the	 field	 of	 related	 to	 Data	Mining	 sciences,	 like
Statistics	 and	Machine	 Learning.	 They	 also	were	 a	 very	 good	 example	 of	 the
innovative	 approach	 used	 for	 discovering	 patters,	 which	 didn’t	 have	 to	 do
anymore	with	question	wording	by	the	investigator	but	with	the	methodological
analysis	 of	 data	 with	 various	 techniques	 in	 order	 to	 discover	 something	 new.
Both	 frequent	 itemsets	 and	 association	 rules	 are,	 as	 frequently	 called,	 local
patterns	which	describe	different	parts	of	data	as	opposed	to	models,	which	are
general	patterns,	trying	to	describe	the	whole	set	of	data.

Itemsets	and	rules	mining,	at	some	point,	became	synonymous	to	shopping	cart
analysis	 due	 to	 the	 fact	 that	 the	 previous	 important	 and	 unexpected	 result
(diapers-beers)	led	to	the	conclusion	that	there	are	lots	of	other	untapped	secrets,
hidden	 inside	 data	 stored	 in	 data	 warehouses.	 These	 secrets	 could	 provide
solutions	in	multiple	problems,	like	product	promotion,	sales	and	supply.

Let’s	have	a	look	at	what	the	shopping	cart	exactly	is	and	how	it	correlates	with
our	subject.	It’s	easy	to	understand	that	shopping	cart	is	a	collection	of	products
which	a	visitor	buys	during	his	visit	 in	a	 retail	store.	This	visit	 is	stored	 in	 the
database	of	the	store	during	billing	from	cash	registers.	Thus,	the	visit	of	a	client
in	 a	 retail	 store	 leads	 to	 an	 import	 of	 the	 transaction	 in	 the	 database	 of	 the
company.	 This	 is	 the	 reason	 why	 databases	 of	 this	 type	 are	 known	 as
transactional	databases.

This	 way,	 a	 retail	 store	 gathers	 huge	 amounts	 of	 data	 by	 recording	 all
transactions	in	a	daily	basis.	Now	let’s	see	what	a	shopping	cart	analysis	is.	The
goal	of	this	analysis	is	to	find	products,	which	are	bought	together	by	the	clients.
This	 information	 can	 lead	 to,	 as	 mentioned	 previously,	 in	 many	 conclusions.
Within	the	terminology	of	association	rules	mining,	the	total	number	of	products

(or	items)	bought	together	is	known	as	itemset.	The	multitude	of	the	items	in	an
itemset	 defines	 its	 length	 and	 we	 usually	 use	 the	 term	 i-itemset,	 in	 order	 to
represent	an	itemset	with	a	length	of	i,	i.e.	consists	of	i	itemsets.

At	 this	 point	 we	 should	 mention	 that	 from	 analysis,	 not	 all	 itemsets	 can	 be
interesting,	 at	 least	 from	 a	 commercial	 perspective.	A	 very	 important	 criterion
which	defines	 the	value	of	 the	 itemset	has	 to	do	with	 the	frequency	an	 itemset
appears	in	transactional	databases.	This	criterion	is	known	as	itemset	support.

Usually,	sales	managers	set	specific	limits	on	the	frequency/support,	upon	which
we	 could	 say	 that	 an	 itemset	 is	 frequent.	 It’s	 obvious	 that	 support	 should	 be
difference	for	different	itemsets.

We	 will	 next	 see	 why	 this	 is	 considered	 an	 important	 problem.	 Initially,	 we
should	 understand	 that	 we	 should	 create	 an	 algorithm	 which	 will	 be	 able	 to
identify	for	us	all	interesting	or	else	frequent	itemsets.

But	such	an	algorithm	has	 to	deal	with	 two	very	 important	problems.	The	first
has	to	do	with	the	fact	that	quite	often,	transactional	databases	are	huge,	and	this
makes	them	difficult	to	load	in	its	whole	in	the	memory.	This	fact	increases	the
algorithm	 creation	 difficulty.	On	 the	 other	 size,	 the	 number	 of	 itemsets	which
can	be	produced,	 is	growing	exponentially	when	new	 inputs	are	made,	 even	 if
the	number	of	frequent	itemsets	we	are	interested	in	is	in	fact	much	smaller.

In	order	to	solve	these	two	problems,	we	need	to	design	algorithms	out	of	core,
which	have	linear	escalation	both	in	 the	number	of	 transactions	and	number	of
items.	 Next,	 we	 will	 examine	 the	 theoretical	 background,	 before	 we	 start
describing	the	algorithm,	which	constituted	the	basis	for	solving	this	problem.

7.2	THEORETICAL	BACKGROUND

Assume	we	 have	 a	 transactional	 database	 T={T1,	 T2,	…,	 Tn}	 from	which	we
want	to	find	frequent	itemsets	and	assume	we	have	I={i1,	i2,	…,	im}	 items.	For
each	of	the	Ti	transactions	of	the	database,	we	assume	that	the	number	of	items,
appearing	 in	 the	 transaction,	 are	 a	 subset	 of	 I,	 i.e.	 Τi	⊆	 I.	 In	 each	 transaction
corresponds	 a	 unique	 identifier	 with	 the	 name	 TID.	 An	 example	 of	 a
transactional	database	is	given	below:

Now	 assume	 the	X	 and	Y	 itemsets.	We	 say	 that	 a	 transaction	 Τi	 includes	 the
itemset	 X,	 only	 if	 Χ	⊆	 Τi.	 According	 to	 the	 itemsets	 definition,	 next	 we	 can
define	an	association	rule,	which	in	fact	is	a	rule	of	inference	of	the	form:	Χ⇒Υ,
where	Χ	⊆	 Ι	 and	Υ	⊆	 Ι,	while	 at	 the	 same	 time	 have	Χ	∩	Υ	=	Ø.	 For	 each
association	 rule	 we	 define	 a	 measure	 named	 confidence,	 which	 shows	 how
strong	the	two	parts	of	the	rules	are	associated.	The	confidence	of	a	rule	Χ⇒Υ	is
defined	 based	 on	 the	 support	 of	 the	 itemsets	Χ	και	Χ	U	Υ,	 resulting	 from	 the
formula	conf	=	supp(ΧUΥ)/supp(X),	where	supp()	is	the	measure	of	support.

For	example	if	we	use	the	data	of	 the	above	table	and	assume	the	rule	B	⇒	E,
then	 supp(B)	 =	 2/4,	 supp(BUE)	 =	 2/4,	 while	 conf(B⇒E)	 =	 1.	 The	 value	 of
confidence	for	the	rule	B	⇒	E,	which	is	equal	to	1,	which	is	the	highest	value	of
the	 measure	 of	 confidence	 of	 an	 association	 rule,	 suggests	 that	 whenever	 B
appears	in	a	transaction,	then	E	will	appear	as	well	with	a	probability	equal	to	1.
Note	that:

because	in	the	transactions	where	E	appears,	B	appears	in	only	half	of	them.

Many	times,	in	order	to	find	association	rules	with	high	values	for	the	measure
of	confidence	we	might	need	to	focus	on	rules	with	high	support.	The	rules	with

high	 support	 and	 high	 confidence	 are	 called	 strong	 rules.	 The	 goal	 of	 an
association	rules	mining	algorithm	is	to	find	strong	rules	in	a	large	transactional
database	with	 the	most	 effective	way.	 Specifically,	 the	 problem	 of	 association
rules	mining	constitutes	of	the	following	two	phases:

1.	 Find	 large	 (or	 frequent)	 itemsets,	 with	 minimum	 support	 equal	 to
suppmin	and

2.	 Find	association	rules	with	minimum	confidence	equal	to	confmin	by
using	the	large	itemsets	created	on	the	previous	step

The	overall	complexity	of	an	association	rules	mining	algorithm	is	dominated	by
the	first	step,	which	is	also	(computationally)	the	heavier	one.	After	finding	large
itemsets,	the	corresponding	association	rules	can	be	found	in	a	more	direct	way.

Next,	 we	 will	 present	 a	 pioneer	 algorithm	 which	 solved	 the	 problem	 of
effectively	 measuring	 large	 itemsets.	 The	 algorithm	 is	 known	 as	 Apriori
Algorithm	 and	 uses	 the	 following	 itemsets	 property:	 if	 Χ	⊆	 Υ	⇒	 supp(X)	 ≥
supp(Y),	 i.e	 if	 an	 itemset	X	 is	 subset	 of	 an	 itemset	Y,	 then	 the	 support	 of	 the
itemset	X	is	at	 least	equal	with	the	support	of	the	itemset	Y.	Last,	we	will	also
present	some	other	techniques	which	improved	the	Apriori	algorithm.

7.3	APRIORI	ALGORITHM

The	Apriori	algorithm	is	one	of	the	most	popular	Data	Mining	algorithms	and	is
widely	used	to	calculate	large	itemsets	in	transactional	databases.	Apriori	works
in	 levels	 (levelwise),	 which	 correspond	 to	 the	 number	 of	 items	 of	 an	 itemset
examined	 in	 each	 level,	 working	 with	 iterations	 from	 one	 level	 to	 another,
starting	from	the	first	level	and	then	continuing	until	the	level	for	which	for	the
first	time	no	large	itemsets	appear.	This	process	will	be	described	later	on	with
an	example.

On	 each	 algorithm	 iteration	 two	 phases	 take	 place.	 During	 the	 first	 phase
candidate	itemsets	are	created,	while	the	second	phase	counts	the	support	of	the
candidate	 itemsets	 and	 chooses	 large	 itemsets.	 On	 the	 first	 phase	 of	 the	 first
iteration,	 the	 total	 amount	 of	 i	 candidate	 itemsets	 includes	 all	 items	 in	 the
transactional	 database.	 During	 the	 counting	 phase,	 the	 algorithm	 counts	 the
support	 of	 all	 items	 by	 going	 through	 the	whole	 database.	Next,	 the	 items	 for
which	 the	 support	 was	 found	 higher	 or	 equal	 to	 the	 minimum	 threshold	 we
initially	 set,	 are	 stored	 for	 further	 processing.	 This	 way	 and	 after	 the	 first
iteration,	all	itemsets	of	length	1	have	been	found.

We	should	notice	 that	whenever	 the	Apriori	 algorithm	goes	 through	 the	whole
database	it	uses	two	itemset	sets	named	C	and	L	for	storing	Candidates	itemsets
and	Large	itemsets.	When	the	two	phases	of	the	first	iteration	finish,	the	Apriori
algorithm	moves	 to	 the	second	 iteration	as	 long	as	 the	 large	 itemsets	set	 is	not
empty.	 During	 the	 first	 phase	 of	 the	 second	 iteration,	 the	 algorithms	 should
create	the	candidate	itemsets	with	length	2,	i.e.	define	the	C2	set.	In	order	to	do
this,	Apriori	uses	a	routine,	in	which	by	combining	two	large	itemsets	of	length
1,	 it	creates	a	candidate	 itemset	of	 length	2.	This	obviously	applies	 in	 the	next
iterations	as	well,	so	each	2,	properly	chosen,	large	itemsets	of	length	i-1	result
in	one	candidate	itemset	of	length	i.

During	 the	creation	of	candidate	 itemsets,	 in	order	 to	cut	down	itemsets	which
we	know	beforehand	that	are	not	large,	the	principle	of	Apriori	is	applied.	This
principle	 is	 based	 on	 the	 anti-monotonic	 property	 of	 support,	 in	 which	 the
support	of	an	itemset	cannot	exceed	the	support	of	its	subsets.	More	specifically,
and	 according	 to	 the	 Apriori	 principle,	 a	 candidate	 itemset	 containing	 a	 non-
large	subset,	should	be	excluded	from	the	counting	of	the	second	phase	since	it
cannot	have	support	higher	than	the	one	of	its	non-frequent	subset	and	therefore,

will	not	be	inserted	in	the	large	itemsets	of	the	corresponding	level.	The	below
code	describes	how	Apriori	algorithm	works:

1.	 Assume	k=1
2.	 Creation	of	frequent	itemsets	of	length	1
3.	 Repeat	until	there	are	no	other	frequent	itemsets

i.	generate	candidate	frequent	itemsets	of	length	(k+1)	from	the	k	size
frequent	itemsets	
ii.	Cut	candidate	frequent	itemsets	which	include	k	size	subsets,	which	are
non-frequent	
iii.	Measure	the	support	of	each	candidate	when	going	through	the
transactional	database
iv.	Delete	non-frequent	candidates,	leaving	only	the	frequent	ones

We	will	now	give	an	example	by	using	the	below	transactional	database:

We	apply	Apriori	algorithm	in	the	above	transactional	database.	We	calculate	the
C1	set	of	candidate	 itemsets	of	 length	1,	C1={A,	B,	C,	D,	E}	and	calculate	 the
support	 of	 its	 frequent	 itemsets	 so	 C1={A:4,	 B:6,	 C:4,	 D:4,	 E:5}.	 Since	 the
threshold	of	support	is	equal	to	3,	this	means	that	the	set	of	frequent	itemsets	of
length	1	is	L1={A,	B,	C,	D,	E}.

Next,	we	 create	 the	C2={AB,	AC,	 AD,	 AE,	 BC,	 BD,	 BE,	 CD,	 CE,	 DE}	 and
calculate	supports,	so	C2={ΑΒ:4,	AC:2,	AD:3,	AE:4,	BC:4,	BD:4,	BE:5,	CD:2,
CE:3,	DE:3}	and	L2={AB,	AD,	AE,	BC,	BD,	BE,	CE,	DE}.	Next	we	create	C3=
{ΑΒD,	ABE,	ADE,	BCE,	BDE},	and	by	using	supports	it	becomes	C3={ABD:3,
ABE:4,	ADE:3,	BCE:3,	BDE:3}.	From	 the	 supports	 of	C3	we	 find	 L3={ABD,
ABE,	ADE,	BCE,	BDE}.	From	L3	we	calculate	C4={ABDE},	 from	which	we
find	C4={ABDE:3}	 and	L4={ABDE}.	Below	we	 can	 see	 all	 frequent	 itemsets
found	by	the	algorithm:

7.4	FREQUENT	ITEMSETS	TYPES
As	we	have	already	defined,	the	frequent	itemsets	we	are	itemsets	whose	support
is	greater	than	or	equal	to	the	given	threshold.	A	subset	of	frequent	itemsets	are
the	 closed	 frequent	 itemsets.	 The	 itemsets	 which	 are	 frequent	 and	 there	 is	 no
other	 superset	 with	 the	 same	 support	 are	 called	 closed	 frequent	 itemsets	 (see
image	 below).	 For	 example,	 if	 AB	 and	ABC	 are	 frequent	 and	 have	 the	 same
support,	then	AB	is	not	a	closed	frequent	itemset:

A	 subset	 of	 frequent	 closed	 itemsets	 are	 the	 maximal	 frequent	 itemsets.	 By
maximal,	we	mean	the	itemsets	which	are	frequent	and	none	of	their	supersets	is
frequent:

7.5	POSITIVE	AND	NEGATIVE	BORDER	OF	FREQUENT	ITEMSETS

The	positive	and	negative	border	set	an	imaginary	line	in	the	itemset	grid,	which
separates	 frequent	 from	 non-frequent	 itemsets.	 The	 positive	 border	 are	 the
maximal	 frequent	 itemsets	 and	 is	 denoted	 as	 BD+(L).	 In	 our	 example,	 the
positive	border	consists	of	ABDE	and	BCE.	The	negative	border	consists	of	all
non-frequent	itemsets	with	minimum	length,	for	which	their	subsets	are	frequent,
and	it	is	denoted	with	BD-(L).	In	the	below	image,	non-frequent	itemsets	can	be
seen	with	grey	color.	AC	and	CD	are	the	only	non-frequent	itemsets	where	all	of
their	 subsets	 being	 frequent.	 Therefore,	 in	 our	 example,	 the	 negative	 border
consists	of	AC	and	CD.

7.6	ASSOCIATION	RULES	MINING

When	 frequent	 itemsets	 have	 been	 found,	 association	 rules	 mining	 is	 a	 very
simple	process.	More	specifically,	for	each	of	the	frequent	itemsets	L	all	subsets
are	 calculated,	 i.e.	 X1,	 X2,	 ...,	 Xv.	 Next,	 the	 measure	 of	 confidence	 for	 each
combination	Χi	⇒	Xj,	where	i,	j	=	1,...,v	and	i≠	j	resulting	from	these	subsets	is
calculated.	If	the	measure	of	confidence:

is	greater	than	the	threshold	of	minimum	confidence,	then	the	Χi	⇒	Xj	rule	is	a
strong	rule.

For	example,	 for	 the	database	of	 the	previous	example,	we	 found	 that	AB	 is	a
frequent	itemset	with	support	4.	Two	subsets	results	from	this	itemset:	A	and	B.
Therefore,	there	are	two	possible	association	rules	combinations:	A	⇒	B	and	B
⇒	A.	For	the	A	⇒	B	association	rule	A	appears	in	4	transactions,	supp(A)	=	4,
while	B	appears	 in	all	4	 transactions,	supp(AUB)	=	4.	Thus,	 the	confidence	of
the	association	rule	is:

Additionally,	 for	 the	 association	 rule	 B	 ⇒	 A,	 B	 appears	 in	 6	 transactions,
supp(B)	=	6.	From	these	6	transactions	only	4	contain	A,	supp(AUB)	=	4.	So,	the
confidence	of	the	association	rule	is:

Obviously,	for	a	frequent	itemset	of	greater	length,	we	would	have	more	subset
combinations	and	 therefore,	more	association	rules.	For	example,	6	association
rules	 result	 from	 the	 frequent	 itemset	ABD	as	 can	be	 seen	 in	 the	below	 table,
along	with	the	calculation	of	the	measure	of	confidence	for	each	one.

7.7	ALTERNATIVE	METHODS	FOR	LARGE	ITEMSETS	GENERATION
The	 techniques	 used	 for	 solving	 large	 itemsets	mining	 problems	 should	 be	 as
effective	(in	 terms	of	size	and	speed)	as	possible,	since	 the	amount	of	 itemsets
resulting	from	a	medium	or	even	small	number	of	items,	could	be	huge.

The	biggest	problem	of	the	Apriori	algorithm	is	the	number	of	scans	made	in	the
transactional	 database.	 Two	 of	 the	 algorithms	 which	 improve	 the	 behavior	 of
Apriori,	as	per	the	number	of	scans	made,	are	the	Sampling	Algorithm	and	the
Partitioning	Algorithm.	Both	two	algorithms	reduce	the	number	of	scans	to	two.

7.7.1	SAMPLING	ALGORITHM

The	 sampling	 algorithm	 is	 used	 to	 deal	 with	 problems	 associated	 with	 large
databases.	What	it	does,	is	taking	samples	from	the	database	and	apply	Apriori
to	 this	 sample.	 The	 algorithm	 uses	 the	 concepts	 of	 potential	 frequent	 itemsets
PL,	 and	 negative	 border,	 BD-(PL).	 These	 potential	 frequent	 itemsets	 are	 the
frequent	 itemsets	which	 the	algorithm	tracks	for	 the	chosen	sample.	Therefore,
its	negative	border,	BD-(PL),	is	all	non-frequent	itemsets,	of	which	their	subsets
are	potential	frequent	itemsets.	The	algorithm	pseudocode	is	the	following:

Initially,	 a	 sample	 Ds	 is	 chosen	 from	 the	 database.	 Next,	 potential	 frequent
itemsets	in	Ds	and	the	final	candidate	frequent	itemsets	C	are	calculated,	so	the
first	database	D	scan	is	performed,	for	counting	support	of	the	candidates	in	the
C	set.	From	 this	count,	 there	 is	a	possibility	 that	a	new	set	named	ML	will	be
created,	containing	itemsets	of	BD-(PL),	which	were	found	to	be	frequent	in	the
initial	 database	 D.	 If	 the	 ML	 set	 is	 blank,	 the	 algorithm	 stops	 since	 all	 final

frequent	itemsets	were	found.	Otherwise,	we	have	an	extension	of	the	candidates
C	 set,	 adding	 repetitively	 their	 negative	 border	BD-(C),	 until	BD-(C)	 is	 blank.
Then	 the	 second	 scan	 of	 the	 initial	 database	D	 is	 performed,	 for	 counting	 the
support	of	 the	candidate	 itemsets	C.	The	 itemsets	with	support	higher	 than	our
support	threshold	are	our	final	frequent	itemsets.

The	algorithm	reduces	 the	number	of	database	scans	 in	 just	one,	or	worst-case
scenario	in	only	two.	Additionally,	it	has	a	better	escalation	compared	to	Apriori,
since	 it	 is	effective	both	 in	small	and	 large	databases.	 Its	main	disadvantage	 is
the	potential	creation	of	multiple	candidate	itemsets	in	the	second	database	scan,
due	to	the	repetitive	calculations	of	the	negative	border	of	the	itemsets	in	C.

7.7.2	PARTITIONING	ALGORITHM

The	partitioning	algorithm	starts	by	splitting	the	initial	database	D	in	partitions,
like	D1,	D2,	…,	Dp.	The	basic	 idea	behind	 this	 algorithm	 is	 that	 each	 frequent
itemset	 should	 be	 frequent	 in	 at	 least	 one	 of	 the	 partitions.	 Next,	 the	 Apriori
algorithm	is	applied	in	each	partition	Dj,	resulting	in	the	corresponding	frequent
itemsets,	L1,	L2,	…Lp.	The	candidate	frequent	itemsets	are	 .	Last,
a	final	count	of	the	support	of	the	candidate	frequent	itemsets	C	is	performed	in
the	database	D,	in	order	to	find	the	final	frequent	itemsets	L.

The	only	disadvantage	of	 the	partitioning	algorithm	is	 the	potential	creation	of
multiple	candidates	in	the	second	scan.

7.8	FP-GROWTH	ALGORITHM

The	FP-Growth	 algorithm	 is	 a	 different	way	 of	 finding	 frequent	 itemsets.	The
algorithm	 shows	 great	 performance	 since	 it	 does	 not	 create	 new	 candidate
itemsets.	The	algorithm	is	based	on	a	special	 tree	structure	known	as	 frequent-
pattern	tree	(FP-tree).

The	 algorithm	 works	 like	 this:	 It	 scans	 the	 whole	 database	 once,	 finds	 the
frequent	itemsets	(itemsets	of	length	1)	and	creates	a	list,	sorted	in	a	descending
order	of	 support.	Next,	based	on	 this	 list,	 it	 sorts	 the	 items	of	each	 transaction
and	deletes	 the	non-frequent	 items.	Last,	 it	performs	a	second	scan	and	creates
the	 tree	 structure,	 FP-tree,	 adding	 each	 classified	 (based	 on	 item	 frequency)
transaction	in	this	structure.

Let’s	have	a	look	at	an	example	of	finding	frequent	itemsets	with	the	FP-Growth
algorithm.	Assume	we	have	the	following	database	and	a	support	threshold	equal
to	3:

On	the	first	database	scan	the	support	of	each	item	is	counted	and	a	list	with	the
frequent	items	in	a	descending	order	of	support	is	created:

Next,	transactions	are	classified	according	to	the	list	(image	above)	and	the	non-
frequent	items	are	deleted	(image	below):

Last,	 a	 second	 scan	 is	 performed	 and	 the	 tree	 structure,	 FP-tree,	 is	 created,
adding	each	classified	(based	on	item	frequency)	transaction	in	this	structure,	as
can	be	 seen	below	 (image	1	&	2).	The	dotted	 arrows	between	 the	 same	 items
represent	 indexes,	which	 are	 useful	 during	 the	 counting	of	 the	 itemset	 support
phase.

Initially,	the	tree	structure	has	an	empty	node,	which	is	the	root	of	the	tree	and	is
denoted	as	“{}”	in	our	example	(image	1	&	2).	Then,	the	sorted	transactions	are
scanned,	one	at	a	time,	and	new	nodes	are	created	whenever	necessary	(last	table
above).	These	nods	contain	the	items	of	the	transactions	and	the	current	number
of	their	appearances	in	the	transactions	which	are	already	read.

If	the	same	prefix	is	found	between	two	transactions,	e.g.	FCAHL,	FCABH,	then
no	new	nodes	are	inserted	for	the	same	prefix,	but	the	pointers	of	the	nodes	who
have	the	same	prefix	 is	 increased	by	one.	In	case	a	 transaction	is	a	subset	of	a
previous	 transaction,	 then	no	new	nods	are	added,	 like	 it	happens	with	 the	 last
transaction	of	our	example.	(FCA	⊂	FCABH).
Once	the	tree	structure	is	created,	the	search	of	frequent	itemsets	is	performed	by
reading	the	tree	bottom-up,	i.e.	from	the	leaves	to	the	root.	In	order	to	find	the
frequent	itemsets,	the	prefix	subtrees	which	lead	to	each	single	itemset(item)	are
identified,	by	using	the	indexes	between	the	same	items	which	are	present	in	the
tree	 structure.	 For	 extracting	 all	 frequent	 itemsets	 each	 subtree	 is	 accessed
retrospectively.

For	 example,	 assume	 we	 have	 the	 prefix	 subtree	 for	 the	 B	 item	 (image	 3).
Access	 will	 be	 retrospectively,	 searching	 for	 the	 itemsets	 which	 ending	 in	 B,
then	FB,	CB,	AB,	then	FCB,	FAB,	CAB	and	so	on.	At	the	same	time	the	support
for	each	itemset	is	counted.	At	the	end	of	the	algorithm’s	execution	the	sets	for
each	prefix	subtree	are	merged,	resulting	in	a	set	of	all	 frequent	 itemsets	along
with	their	corresponding	supports.

	

	

	

7.9	Arules	package
The	arules	package	provides	R	users	 readymade	 functions	 for	mining	 frequent
itemsets	and	association	rules.	The	most	important	function	of	the	package	is	the
apriori	function,	which	gets	4	arguments:

Data,	the	data	from	which	we	want	to	extract	itemsets	or	association
rules
Parameter,	a	list	of	parameters,	like	support	and	confidence	threshold
(default	values	are	0.1	and	0.8	respectively)
Appearance,	a	 list	of	parameters,	defining	restrictions	upon	 items	or
rules
Control,	a	list	of	parameters,	related	to	restrictions	on	the	algorithm’s
performance

The	first	argument,	data,	could	be	a	structure	of	any	class	(list,	matrix	etc)	of	R,
as	 long	 as	 it	 can	 be	 converted	 in	 a	 transaction	 class.	 The	 transaction	 class	 is
defined	 in	 the	 arules	 package.	 In	 any	 case,	 the	 function	 controls	 the	 type	 and
converts	in	transaction	class	whenever	necessary.

The	 second	 argument,	 parameter,	 is	 a	 list	 of	 parameters.	 On	 this	 list	 we	 can
define	 the	 support	 threshold	 (supp)	 and	 the	 confidence	 threshold	 (conf)	 for
finding	 frequent	 itemsets	 and	 mining	 association	 rules.	 Additionally,	 we	 can
define	what	the	function	will	return	as	output	(target	parameter).	We	can	even	set
restrictions	for	the	minimum	and	maximum	length	of	the	itemsets	by	using	the
minlen	and	maxlen	respectively.

The	below	code	can	be	used	for	mining	frequent	itemsets	for	the	database	shown
below	(seen	in	Chapter	7.6).	We	used	a	support	threshold	equal	to	3/6=0.5.

By	using	the	inspect	function	we	can	see	in	detail	the	frequent	itemsets	and	their
support.	 This	 verifies	 that	 we	 correctly	 found	 19	 frequent	 itemsets	 in	 our
previous	example.

If	we	wanted	to	find	only	closed	frequent	itemsets	then	as	target,	we	should	give
the	value	“closed”.	The	code	below	verifies	that	in	the	first	image	of	chapter	7.4
the	closed	frequent	itemsets	marked	in	blue	are	right.

Accordingly,	 if	we	only	wanted	the	maximal	frequent	 itemsets,	 then	we	should
set	 target	 to	 “maximal”.	 The	 code	 below	 verifies	 that	 the	 second	 image	 of
chapter	7.4	the	maximal	frequent	itemsets	marked	in	green	are	right.

If	 we	 wanted	 to	 find	 the	 association	 rules	 then	 we	 should	 set	 “rules”	 as	 our
target.	Lhs	(left	hand	side)	denotes	the	left	side,	while	the	rhs	(right	hand	side)
the	right	side	of	the	association	rule.

The	 third	 argument,	 appearance,	 is	 also	 a	 list	 of	 parameters.	 Based	 on	 this
argument	we	can	define	which	items	are	allowed	in	the	rules,	therefore	filtering
the	rules	which	the	function	will	return.	This	list	can	contain	the	parameters	lhs,
rhs,	both,	items	or	none.	 In	 the	parameters,	a	character	vector	should	be	given,
which	defines	which	 items	can	appear.	More	specifically,	rhs,	 lhs	and	both	are
used	 to	 mine	 association	 rules,	 while	 items	 and	 none	 are	 used	 for	 finding
frequent	itemsets.

Another	parameter	which	should	be	assigned	combined	with	the	previous	ones	is
the	 default,	 which	 gets	 the	 values	 rhs,	 lhs,	 both	or	 none.	 This	 determines	 the

behavior	of	the	remaining	parts	of	the	rule,	for	which	no	restrictions	have	been
assigned.

For	example,	 for	 the	Adult	dataset	and	for	a	 threshold	equal	 to	3/4,	 the	apriori
function	returns	19	association	rules.

With	the	parameters	we	mentioned,	we	can	set	restrictions,	e.g.	for	the	right	part
of	the	rule,	allowing	only	the	“capital-gain=None”	item.	So	now	only	5	from	the
19	association	rules	are	returned.

	

CHAPTER	8:	COMPUTATIONAL	METHODS	FOR	BIG	DATA

ANALYSIS	(HADOOP	AND	MAPREDUCE)
SUMMARY

The	 Hadoop	 and	 MapReduce	 solutions	 are	 a	 powerful	 way	 to	 process	 and
analyze	extremely	large	datasets	even	in	the	level	or	multiple	Petabytes.	Mainly,
MapReduce	 is	 a	 process	 of	 combining	 data	 from	 multiple	 inputs	 (map)	 and
reduction	(reduce),	where	a	service	is	used	to	refine	the	required	results.	On	this
chapter,	 we	 will	 present	 multiple	 cases	 of	 Hadoop	 and	 MapReduce	 use	 for
scenarios	with	many	TB	or	even	PB.	Hadoop	and	MapReduce	use	a	distributed
file	system	named	HDFS.	The	Hadoop	&	MapReduce	system	is	useful	for	data
which	are	less	structured,	e.g.	web	pages	or	documents	or	images	which	are	not
fully	organized/structured.	The	goal	of	 this	chapter	 is	 to	 introduce	Hadoop	and
the	Hadoop	API	in	Java.

PREREQUISITE	KNOWLEDGE

For	 this	 chapter	 you	 should	 know	 Java	 and	 be	 familiar	 executing	 distributed
programs.

8.1	INTRODUCTION
Hadoop	is	not	another	database.	It	is	an	infrastructure	software	or,	as	one	might
say,	it’s	almost	an	operating	system.	It	is	a	framework	written	in	Java	in	order	to
run	 applications	 in	 big	 clusters	 of	 normal	 computers	 and	 incorporates	 features
similar	 to	 the	 ones	 on	Google	 File	 System	 and	MapReduce.	 It	was	 created	 to
manage	huge	amounts	of	data	which,	due	to	their	large	size,	are	not	available	to
be	stored	in	the	hard	drive	of	a	computer,	therefore	both	data	and	their	analysis
need	to	be	classified	in	big	computer	clusters.

The	use	of	Hadoop	includes	 the	following	stages:	 (a)	 install	Hadoop	in	a	 large
number	 of	 computers	 and	 use	 their	 disks	 for	 data	 storage	 and	 (b)	 use	 the
computers	CPU	 to	process	data.	The	architecture	of	 a	Hadoop	application	 is	 a
shared-nothing	architecture	with	typical/normal	computers.	Hadoop	was	created
by	Doug	Cutting,	the	creator	of	Apache	Lucene	(text	search	engine	library).

While	 trying	 to	create	an	open	source	 (Apache	Nutch)	search	engine,	he	 faced
problems	 in	managing	calculations	which	were	 executed	 in	 a	 small	number	of
computers.	 The	 launch	 of	 Google	 File	 System	 and	MapReduce	 helped	 in	 the
solution	 of	 this	 problem.	With	 the	 help	 of	Yahoo,	 he	 split	 a	 part	 of	 the	Nutch
application	 from	 the	 calculations	 distribution	 and	 named	 it	 Hadoop.	 Then	 he
used	 the	Amazon	 Elastic	 Compute	 Cloud	 (EC2)	 and	Amazon	 Simple	 Storage
Service	(S3)	services.	Today	Hadoop	is	a	collection	of	related	subprojects	related
to	 the	 structure	 of	 distributed	 systems.	 These	 projects	 are	 hosted	 by	 Apache
Software	Foundation,	which	provides	support	for	open	source	projects.	Hadoop
is	also	known	from	MapReduce	and	from	the	Distributed	File	System,	HDFS	of
Hadoop.

Hadoop	is	not	an	acronym.	Doug	Cutting	named	it	after	his	son's	toy	elephant.

Most	of	 the	 times,	relational	databases	have	proven	to	be	very	flexible	and	are
the	proper	tool	for	the	majority	of	a	business’s	needs.	Though,	new	data	always
appear	for	which	RDBMS	is	not	always	the	best	choice.

The	solution	of	Hadoop	and	ΜapReduce	is	a	very	good	alternative.	It	includes	a
very	 simple	 and	 at	 the	 same	 time	 very	 powerful	 method	 for	 processing	 and
analyzing	big	data,	even	at	the	level	of	multiple	Petrabytes.

In	 the	 past,	 it	 was	 quite	 hard	 and	 expensive	 to	 process	 these	 data	 through	 a

traditional	RDBMS.	In	order	to	manage	huge	amount	of	data,	which	cannot	be
stored	 even	 in	 dozens	 of	 computers,	 Hadoop	 uses	 a	 distributed	 file	 system
named	HDFS.

This	 particular	 approach	 is	 very	 useful	when	we	 need	 to	 execute	 processes	 of
huge	volume,	in	which	results	are	not	needed	in	real	time.	It	is	also	very	useful
when	we	have	to	manage	data	which	are	not	updated	and	at	the	same	time	need
to	be	read	multiple	times.	Additionally,	the	Hadoop/MapReduce	system	is	useful
for	 data	 which	 are	 less	 structured	 like	 web	 pages	 or	 multiple	 documents	 or
images.

8.2	ADVANTAGES	OF	HADOOP’S	DISTRIBUTED	FILE	SYSTEM
Hadoop’s	 distributed	 file	 system	 is	 a	 system	 designed	 to	 run	 in	 typical	 pcs.
HDFS	has	many	similarities,	 and	major	differences	as	well	with	other	existing
distributing	file	systems.	Next,	we	will	view	some	problems	solved	successfully
by	HDFS,	where	HDFS	has	an	advantage	over	other	distributed	file	systems,	and
discuss	which	these	advantages	are.

1.	 Hardware	malfunctions.	An	HDFS	snapshot	consists	of	hundreds	or
thousands	of	computers,	where	each	one	stores	a	fraction	of	data.	It	is
very	 possible	 that	 hardware	 malfunctions	 might	 rise,	 without	 this
meaning	 that	 the	 components	 of	 HDFS	 are	 not	 functional.	 HDFS
always	searches	for	errors	and	automatically	retrieves	data	from	them.
This	is	a	very	big	advantage	of	Hadoop’s	architecture.

2.	 Continuous	 data	 access	 flow.	 The	 applications	 running	 in	 HDFS
require	 frequent	 access	 to	 data.	HDFS	 is	mostly	 designed	 for	 batch
processing	 than	 for	 interactive	 use	 by	 the	 users.	 POSIX	 (Portable
Operating	System	Interface	for	Unix)	sets	lots	of	requirements	which
are	not	needed	in	applications	running	in	HDFS.

3.	 Big	 Data.	 Applications	 running	 in	 HDFS	 manage	 very	 large	 data
files.	 A	 typical	 HDFS	 file	 has	 a	 size	 in	 the	 range	 of	 Gigabytes	 to
Terabytes.	HDFS	is	able	to	(a)	provide	services	with	large	volume	of
information,	which	can	be	transferred	through	the	internet	in	a	given
time	(bandwidth)	and	(b)	have	hundreds	of	nodes	in	a	single	cluster.
HDFS	could	support	millions	of	files	in	a	single	snapshot.

4.	 Simple-consistent	 model.	 HDFS	 uses	 the	 write	 once	 read	 many
(WORM)	 access	model	 for	 the	 files.	Once	written,	 a	 file	 cannot	 be
modified.	 This	 simplifies	 things	 leading	 to	 high	 productivity
(throughput),	in	other	words	huge	amounts	of	work	is	produced	by	a
workstation	in	less	time.

5.	 Move	 applications	 close	 to	 data.	 When	 processing	 from	 the
application	 is	 needed,	 the	 process	 is	more	 effective,	when	 executed
near	the	data	it	needs,	mostly	when	we	are	dealing	with	large	datasets.
This	minimizes	network	 traffic	and	 increases	 the	productivity	of	 the
system.	It	is	often	better	to	move	the	process	close	to	data	than	move
data	where	 the	 application	 is	 running.	HDFS	 provides	APIs	 for	 the
applications	so	that	they	can	be	close	to	data.

6.	 Portability	 between	 different	 hardware	 and	 software.	 HDFS	 is
designed	in	order	to	be	portable	between	different	platforms

8.3	HADOOP	USERS

Hadoop	is	not	only	used	for	educational	of	research	purposes.	It	is	widely	used
to	deal	with	real	problems.	Some	of	the	most	know	cases	of	Hadoop	use	are	the
following:

Amazon/A9	 –	 New	 York	 Times	 used	 cluster	 100-servers	 with
Hadoop	 hosted	 by	 Amazon	 in	 order	 to	 convert	 4TB	 of	 old
photographs	in	11.000.00	PDF	files.	This	was	made	in	24	hours	with
a	total	cost	of	$240
Adobe	–	It	used	Hadoop	for	social	media	services	and	for	processing
data	from	2008
Facebook	 –	 Hadoop	 improved	 the	 locations	 where	 ads	 should	 be
displayed,	 it	 studied	 the	behavior	of	 its	 users	 through	data	 and	 thus
helped	 in	 the	 company’s	 decision	making	 and	 its	 overall	 success.	 It
includes	more	than	1000	computers	with	more	than	10000	cores	and
processes	more	than	15PB	of	data.
LinkedIn	 –	 It	 uses	 Hadoop	 to	 find	 new	 connections	 between	 its
users,	by	using	more	than	4000	computers
Ebay	–	 It	used	Hadoop	 to	 improve	 its	 search	engine	by	using	more
than	500	computers	and	more	than	4000	cores
Yahoo!	 –	 It	 uses	 Hadoop	 in	 order	 to	 process	 their	 ad	 network	 and
searches	as	well.

8.4	HADOOP	ARCHITECTURE

A	Hadoop	network	consists	of	one	to	tens	of	thousands	connected	computers.	It
is	 not	 necessary	 to	 be	 installed	 in	 computer	 of	 specific	 architecture,	 operating
system	or	 specifications,	 since	 it	 can	even	 run	 in	home	computers,	 if	 they	can
support	Java.

8.4.1	HADOOP	DISTRIBUTED	FILE	SYSTEM	(HDFS)
When	a	dataset	overcomes	the	capability	of	being	stored	in	just	one	computer,	it
is	 then	 partitioned	 in	 several	 computers.	 The	 file	 systems	 which	 manage	 the
storage	inside	a	computer	network	are	called	distributed	file	systems.	Given	that
they	are	based	in	a	data	network,	all	network	programming	complications	come
in,	making	distributed	 file	 systems	more	complex	 than	 file	 systems	 in	 just	one
hard	drive.	For	example,	one	of	the	biggest	challenges	of	distributed	file	systems
is	to	deal	with	errors	in	computational	nodes	without	having	a	data	loss.

Hadoop	comes	with	a	distributed	file	system	named	HDFS	(Hadoop	Distributed
File	System).	HDFS	is	the	flagship	of	file	systems	and	Hadoop	is	the	main	area
of	focus	of	this	chapter.

8.4.2	HDFS	ARCHITECTURE

HDFS	 is	 a	 file	 system	 designed	 for	 storing	 very	 large	 files,	 by	 supporting
streaming	 data	 access	 patterns,	 in	 clusters	 of	 typical	 computers.	 In	 order	 to
analyze	the	above	sentence	let’s	examine	it	further:

“…very	 large	 files…”.	 This	 means	 that	 data	 can	 have	 a	 size	 of	 hundreds	 of
Megabytes,	Gigabytes	 or	 even	Terabytes.	 Today	many	Hadoop	 clusters	 in	 use
store	data	of	multiple	Petrabytes.

“…streaming	 data	 access	 patterns…”.	 HDFS	 is	 built	 around	 the	 idea	 that	 the
most	efficient	data	processing	pattern	is	a	write-once,	read-many-times	pattern.
A	 dataset	 is	 typically	 generated	 or	 copied	 from	 a	 preexisting	 source,	 and	 then
various	 analysis	 are	 performed	 on	 that	 dataset	 over	 time.	 Each	 analysis	 will
involve	a	large	proportion,	if	not	all,	of	the	dataset,	so	the	time	to	read	the	whole
dataset	is	more	important	than	the	latency	in	reading	the	first	record.

“…typical	computers”.	Hadoop	does	not	require	expensive	gear.	It	is	designed	to
run	 in	 clusters	 consisting	 of	 typical	 computers,	 with	 typical	 hardware.	 This

makes	the	probability	of	failure	in	the	node	of	a	cluster	very	high,	especially	for
very	large	clusters.	HDFS	is	designed	to	continue	working	reliably	and	without
any	interruptions	for	the	user	when	dealing	with	such	issues.

8.4.3	HDFS	–	LOW	PERFORMANCE	AREAS

We	will	now	present	cases	were	HDFS	does	not	have	great	performance.

8.4.3.1	Low	Data	Access	Time
Applications	that	require	access	to	data	within	a	short	time,	of	a	few	dozens	of
milliseconds,	don’t	perform	well	when	using	HDFS.	As	mentioned	previously,
HDFS	is	optimized	to	achieve	a	high	throughput	rate,	which	typically	comes	in
conflict	with	achieving	 low	access	 times.	The	HBase	 tool	 is	 currently	 the	best
choice	for	applications	that	require	low	access	times.

8.4.3.2	Multiple	Small	Files
Since	the	namenode	of	a	Hadoop	system	stores	the	metadata	of	the	file	system	in
the	memory,	the	number	of	files	which	can	be	stored	with	HDFS	is	restricted	by
the	available	namenode	memory.	Approximately,	 information	 for	each	 file,	 list
and	data	block	requires	about	150	bytes.	So,	if	for	example	you	had	one	million
files,	each	of	which	occupied	a	block,	you	would	need	about	300MB	of	memory.
Although	 the	 storage	of	 a	 few	million	 files	 is	 feasible,	 the	 storage	of	multiple
millions	is	beyond	the	capabilities	of	current	hardware.

8.5.3.3	Multiple	Data	Recording	Nodes,	Arbitrary	File	Modifications
Files	in	HDFS	can	be	written	by	only	one	node.	New	records	are	always	added
in	the	end	of	the	file.	There	is	no	support	for	multiple	nodes	willing	to	write	data

or	for	modifications	in	arbitrary	positions	inside	a	file.

8.4.4	BASIC	HDFS	CONCEPTS

	

8.4.4.1	Blocks
Every	hard	drive	has	blocks	of	predetermined	size,	which	are	the	smallest	unit	of
data	which	can	be	read	or	written.	The	typical	file	systems	also	manages	data	in
blocks,	which	should	be	multiples	of	the	block	size	of	the	hard	drive.	Usually	the
blocks	of	a	 file	 system	have	a	 size	of	a	 few	kilobytes	 (typically	1KB,	2KB	or
4KB),	while	 the	blocks	of	 the	hard	drive	usually	have	a	 size	of	512	byte.	The
existence	of	blocks	is	hidden	from	the	user,	who	just	reads	or	writes	files	of	any
size.	Though	there	are	some	tools	like	df	and	fsck	which	work	in	the	block	level
of	a	file	system.

HDFS	also	uses	blocks,	 though	 these	blocks	have	a	 larger	 size	and	 the	default
size	is	128MB.	As	it	happens	in	a	file	system	for	only	computer	system,	files	in
HDFS	are	split	into	smaller	divisions	in	the	size	of	block,	which	are	then	stored
as	individual	units.	In	contrast	to	a	file	system,	for	just	one	computing	system,	a
file	 in	HDFS	which	 has	 a	 size	 smaller	 than	 a	 block	 does	 not	 capture	 a	whole
block	(although	HDFS	considers	that	it	captures	a	whole	HDFS	block).

The	block	size	in	HDFS	is	bigger	than	the	block	of	a	hard	drive	and	the	purpose
behind	this	is	to	minimize	the	cost	of	data	seek.	By	making	a	block	big	enough,
the	 time	 needed	 to	 transfer	 data	 from	 the	 disk	 is	 significantly	 higher	 than	 the
time	needed	 to	seek	 for	a	block.	Thus,	 the	 time	needed	 to	 transfer	a	 large	 file,
consisting	 of	 many	 blocks,	 can	 be	 accomplished	 with	 the	 hard	 drive’s	 data
transfer	speed.

For	 example,	 if	we	 assume	 that	 the	 seek	 time	 is	 10ms	 and	 the	 transfer	 rate	 is
100MB/s	then	in	order	to	have	a	seek	time	of	1%	of	the	transfer	time,	we	need	to
set	 the	 size	 of	 the	 block	 to	 100MB.	The	 default	 size	 of	 a	 block	 as	mentioned
earlier	is	128MB,	i.e.	very	close	to	the	one	we	calculated	in	our	example.	This
size	will	increase	with	time	as	transfer	speeds	increase	in	the	new	generations	of
hard	drives.

We	should	understand	though	that	there	is	a	limit	in	the	block	size.	Map	services
in	MapReduce,	under	regular	circumstances,	work	in	one	block	only.	Thus,	large
blocks	 could	 lead	 to	 less	 map	 services	 comparing	 to	 the	 number	 of	 available

nodes,	making	our	program	execute	slower.

Blocks	have	multiple	advantages	in	a	distributed	file	system.	The	first	advantage
is	the	most	obvious	one:	a	file	can	be	larger	than	any	hard	drive	available	in	the
network.	There	is	no	restriction,	requiring	the	blocks	of	a	file	to	be	stored	in	the
same	hard	drive.	Thus,	we	can	use	any	of	 the	available	disks	of	 the	cluster.	 In
reality	it	could	be	possible,	and	unusual	at	the	same	time,	to	store	one	and	only
large	file	in	a	HDFS	cluster,	of	which	its	blocks	capture	all	available	hard	drives
of	the	cluster.

According	 to	 the	 second	 advantage,	 by	 setting	 a	 block	 and	 not	 a	 file	 as	 our
management	unit,	 the	 storage	 subsystem	 is	 simplified.	Obviously,	 simplicity	 is
very	important	in	every	system,	but	it	is	very	important	as	well	in	a	distributed
system	 where	 there	 are	 many	 possible	 ways	 of	 nodes	 failures.	 The	 storage
subsystem	 manages	 blocks,	 making	 the	 management	 of	 the	 available	 storage
simpler	 (each	 block	 has	 a	 standard	 size,	 thus	 it	 is	 very	 easy	 to	 calculate	 how
many	of	 them	can	be	 stored	 in	 any	given	hard	drive),	 eliminating	 at	 the	 same
time	 the	 need	 for	 keeping	metadata	 (each	 block	 is	 a	 sequence	 of	 data,	 which
should	be	stored,	thus	the	metadata	of	a	file	are	not	needed	to	be	stored	with	the
block,	but	they	can	be	managed	individually	by	another	subsystem).

Additionally,	 blocks	 help	 in	 the	 stability	 of	 the	 system	 and	 protect	 data	 from
corrupted	blocks,	damaged	hard	drives	or	damaged	nodes	of	the	cluster	since	by
default	each	block	is	copied	in	a	small	number	of	different	nodes	(usually	three).
If	a	block	stops	being	available	by	a	node,	then	it	can	be	read	by	another	node	in
a	 completely	 transparent	 way	 for	 the	 user.	 A	 block	 which	 is	 currently	 not
available	can	be	copied	from	the	remaining	available	copies	in	another	node	of
the	cluster,	so	that	overall,	we	have	the	same	predetermined	number	of	copies	of
a	 block	 in	 the	 cluster.	 Additionally,	 an	 application	 could	 request	 a	 greater
number	of	copies	for	each	block	of	a	file	which	is	accessed	frequently,	so	that	it
can	reduce	the	load	of	each	node	of	the	cluster	for	reading	this	file.

8.4.4.2	Namenodes	and	Datanodes
A	cluster	with	HDFS	has	 two	 types	 of	 nodes,	working	 under	 the	master-slave
model:	 a	 namenode	 (master)	 and	 a	 series	 of	 datanodes	 (slaves).	 Namenode
manages	 the	 file’s	namespace.	 In	other	words,	 it	maintains	 the	 file	 system	 tree
and	metadata	 for	all	 files	and	 lists	 in	 the	 tree.	This	 information	 is	permanently
stored	in	the	local	disk	of	the	namenode	by	using	two	types	of	files:	namespace
image	and	edit	log.	Namenode	also	knows	on	which	datanodes	each	blocks	of	a

file	are	located.	This	information	though	is	not	stored	permanently,	because	it	is
restricted	by	datanodes	during	system	start.

A	 client	 has	 access	 to	 the	 file	 system	by	 communicating	with	 namenodes	 and
datanodes.	 The	 client	 uses	 an	 API,	 similar	 to	 the	 one	 in	 Portable	 Operating
System	 Interface	 for	 Unix	 (POSIX)	 for	 the	 common	 file	 systems,	 so	 that	 the
user’s	code	does	not	need	to	know	the	existence	of	the	namenode	and	datanodes
to	work	properly.

Datanodes	are	the	cornerstone	of	the	HDFS	file	system.	They	store	and	retrieve
blocks	 whenever	 needed	 (from	 clients	 or	 the	 namenode),	 while	 update
periodically	the	namenode	with	the	number	of	stored	blocks.

Also,	without	the	namenode	the	file	system	cannot	be	used.	If	for	any	reason	the
node	 of	 the	 cluster	 where	 namenode	 operates	 is	 damaged,	 all	 files	 in	 the	 file
system	will	be	 lost	since	 there	will	be	no	way	to	reconstruct	 the	files	from	the
blocks	 located	 in	 datanodes.	 For	 this	 reason,	 it	 is	 quite	 important	 that	 the
namenode	 is	 protected	 in	 case	 of	 possible	 hardware	 malfunction	 and	 Hadoop
provides	two	ways	to	for	this.

The	first	way	is	 to	create	backups	for	 the	files	which	make	up	the	metadata	of
the	files	stored	in	the	HDFS.	Hadoop	can	be	set	up	so	that	the	namenode	copies
these	files	in	multiple	file	systems.	A	frequent	choice	is	to	copy	the	files	of	the
metadata	 in	 the	 local	 hard	 drive	 of	 the	 namenode	 and	 also	 in	 a	 remote	 NFS
mount.

It	is	also	possible	to	use	a	secondary	namenode,	a	node	which	despite	its	name
does	not	actually	act	as	a	namenode.	Its	main	goal	 is	 to	periodically	merge	the
namespace	 image	and	 the	edit	 log	 so	 that	 the	edit	 log	doesn’t	get	 a	 large	 size.
The	secondary	namenode	usually	runs	in	a	different	node	of	the	cluster	because
it	demands	high	computing	power	and	memory,	as	namenode	does,	 in	order	 to
accomplish	the	merge.	It	keeps	a	copy	of	the	new	namespace	image	which	can
be	used	in	case	of	namenode	damage.	Though,	the	information	provided	by	the
secondary	namenode	is	inferior	to	the	main	namenode	since	information	merge
is	made	 in	discrete	 time	moments.	Therefore,	 in	case	of	namenode	failure	data
loss	is	inevitable.	The	way	to	handle	this	scenario	is	by	copying	the	namenode’s
metadata,	 located	 in	 the	 remote	 NFS	 mount	 and	 convert	 this	 namenode	 to
primary	namenode.

8.4.4.3	HDFS	Federation

Namenode	keeps	in	its	main	memory	a	reference	for	each	file	and	block	of	the
distributed	 file	 system.	So,	when	we	have	 lots	of	 clusters	with	many	 files,	 the
memory	 becomes	 the	main	 factor	 preventing	 the	 escalation	 of	 the	 file	 system
size.	 HDFS	 Federation	 allows	 a	 node’s	 cluster	 to	 escalate	 its	 distributed	 file
system	 by	 adding	 more	 namenodes.	 In	 this	 case,	 each	 of	 these	 namenodes
manages	a	part	of	the	files	namespace.	For	example,	a	namenode	can	manage	all
files	 under	 “/user”,	 while	 a	 second	 namenode	 could	 manage	 all	 files	 under
“/share”.

Under	Federation’s	supervision,	each	namenode	manages	a	set	of	names,	which
consists	of	the	metadata	for	these	names	and	a	set	of	blocks	which	includes	the
blocks	of	files	which	belong	in	the	set	of	names.	Each	name	set	is	independent
from	each	other,	meaning	that	namenodes	don’t	communicate	between	them	and
additionally,	 an	 error	 in	 a	 namenode	 does	 not	 affect	 the	 availability	 of	 names
managed	by	other	namenodes.	Though,	the	set	of	blocks	is	not	shared,	i.e.	each
datanode	communicates	with	each	namenode	of	the	cluster	and	can	store	blocks
from	different	sets	of	files.

8.4.4.4	HDFS	High	Availability
The	combination	of	metadata	 replication,	which	 a	namenode	holds	 in	multiple
file	 systems	 and	 the	 use	 of	 a	 second	 namenode	 for	 creating	 checkpoints	 and
restore	points	protects	us	from	data	loss	but	does	not	provide	high	availability	of
the	file	system.	The	namenode	continues	to	be	the	only	Single	Point	of	Failure
(SPOF).	If	for	any	reason	it	is	damaged,	all	clients	of	the	file	system	(including
MapReduce)	 executed	 at	 this	 time	 won’t	 be	 able	 to	 read,	 write	 or	 even	 view
available	files	since	the	namenode	is	the	only	repository	of	the	files	metadata.	In
this	case	the	whole	Hadoop	system	will	be	out	of	service	until	a	new	namenode
becomes	available.

In	order	to	recover	a	Hadoop	cluster	in	case	of	damage,	a	user	will	need	to	start	a
new	primary	namenode,	transfer	in	it	one	of	the	metadata	files	copies	and	update
datanodes	and	clients	so	that	they	use	the	new	namenode.	The	new	namenode	is
not	in	position	to	serve	requests	for	file	usage	until	i)	namespace	image	is	loaded
in	memory,	 ii)	 it	 re-executes	 the	 file	 processing	 commands,	 which	 took	 place
from	the	last	creation	of	namespace	copy	and	are	recorded	in	the	edit	log	and	iii)
gets	enough	updates	from	datanodes	about	which	blocks	each	one	has,	so	that	it
can	move	from	safe	mode	to	normal	mode.	In	big	clusters	with	lots	of	files	and
blocks,	the	time	needed	for	a	namenode	to	start	could	be	30	minutes	or	more.

The	long	recovery	time	is	a	major	issue	for	the	routine	maintenance	procedures
of	 the	 cluster.	 In	 practice,	 because	 an	 unexpected	 failure	 of	 the	 namenode	 is
extremely	rare,	planned	shutdown	and	maintenance	is	much	more	important.

The	latest	Hadoop	editions	tried	to	make	thing	better	by	adding	the	HDFS	High-
Availability	(HA).	With	this	approach	there	is	a	pair	of	namenodes,	from	which
the	one	namenode	 is	active	while	 the	other	one	 is	 in	standby	mode.	 In	case	of
error	of	the	first	namenode,	the	second	namenode	becomes	the	active	namenode
so	 that	 everything	 runs	 smoothly	 without	 a	 large	 downtime.	 Some	 changes
should	be	made	in	order	to	support	this	feature:

Namenodes	 should	 use	 high	 availability	 space	 storage,	 so	 that	 they
can	share	the	edit	log.	When	a	namenode	becomes	active,	it	reads	the
whole	edit	log	and	re-executes	all	recorded	actions	in	files,	in	order	to
synchronize	its	state	with	the	damaged	namenode	and	then	read	new
records,	as	the	active	namenode	normally	does.
Datanodes	 should	 send	 the	 sets	 of	 blocks	 they	 manage	 in	 two
namenodes,	 since	 this	 information	 is	 stored	 in	 the	memory	 of	 each
namenode	and	not	in	the	hard	drive.
The	 clients	 of	 the	 file	 system	 need	 to	 be	 configured,	 in	 order	 to
manage	the	transition	in	a	different	namenode,	by	using	a	transparent
for	the	user	mechanism.

When	 the	 active	 namenode	 goes	 out	 of	 order,	 the	 standby	 namenode	 can	 take
over	very	quickly	(within	a	few	tenths	of	a	second),	because	it	has	the	latest	state
of	the	file	system	stored	in	memory:	both	the	last	records	of	the	edit	log	but	also
the	 last	data	for	 the	distribution	of	blocks	 in	datanodes.	 In	practice	 though,	 the
real	 time	 required	 for	 the	 transition	 to	 the	 new	 namenode	 is	 higher	 (about	 a
minute),	because	 the	system	should	be	preservative	as	per	 the	decision	 it	 takes
regarding	when	the	active	namenode	is	actually	disabled.

In	 the	 rare	 case	 scenario	 where	 the	 standby	 namenode	 is	 also	 disabled,	 the
administrator	can	follow	the	procedure	we	described	earlier	for	the	simple	HDFS
file	system	(without	Federation).

The	 transition	 from	 the	 active	 to	 the	 standby	 namenode	 is	managed	 by	 a	 new
entity	of	the	system,	named	failover	controller.	ZooKeeper	can	be	used	in	order
to	ensure	that	only	one	namenode	is	active	on	any	given	time.

Each	namenode	runs	a	very	light	control	service,	which	monitors	the	namenode

for	potential	errors	and	activates	failover	to	the	new	namenode,	once	an	error	is
tracked.	 The	 mechanism	 used	 for	 monitoring	 is	 a	 simple	 “heartbeat”,	 i.e.	 a
simple	 message	 to	 the	 failover	 controller	 is	 sent	 frequently,	 in	 order	 the
mechanism	to	know	that	the	namenode	is	active.

The	 mechanism	 redirecting	 to	 the	 new	 namenode	 can	 be	 activated	 by	 the
administrator	manually	as	well,	 e.g.	 in	 the	 scenario	where	an	active	namenode
should	 stop	 for	 planned	 maintenance.	 This	 process	 is	 known	 as	 “graceful
failover”	since	the	failover	controller	organizes	a	smooth	role	switch	between	the
two	namenodes.

In	 case	 the	 failover	 mechanism	 is	 activated	 due	 to	 failure,	 there	 is	 always	 a
percentage	of	doubt	as	to	if	the	namenode	has	actually	stopped.	For	example,	a
slow	 network	 or	 part	 of	 a	 network	 might	 activate	 the	 failover	 mechanism,
despite	 that	 the	 previous	 active	 namenode	 keeps	 working	 and	 believes	 it
continues	 to	be	the	active	namenode.	HDFS	ΗΑ	makes	a	great	effort	 to	ensure
that	the	previous	active	namenode	will	not	make	any	damage	to	the	system.	The
method	used	in	this	scenario	is	known	as	fencing.	The	system	uses	a	number	of
fencing	mechanisms,	including	killing	the	service	which	runs	the	namenode,	the
revoke	 of	 its	 access	 in	 the	 main	 storage	 directory	 (usually	 by	 using	 specific
commands	of	the	NFS)	and	deactivate	the	network	port	of	this	process	through	a
remote	management	 command.	As	 a	 last	 resort,	 the	 previous	 active	namenode
can	use	a	 fencing	method	with	 the	 (funny)	name	STONITH	(Shoot	The	Other
Node	In	The	Head),	which	uses	a	special	power	unit	 in	order	 to	deactivate	 the
other	namenode	violently.

Redirection	manages	the	applications/clients	in	a	transparent	way.	The	simplest
way	of	managing	this	is	by	using	a	configuration	file	from	the	application/client
side	 to	 control	 the	 redirection.	 Next,	 HDFS	 uses	 a	 logical	 name	 for	 the
namenode,	which	correspond	to	the	pair	of	two	namenodes	addresses.	When	the
application/client	 tries	 to	 access	 a	 file,	 then	 every	 namenode	 address	 in	 the
configuration	file	is	tested	until	the	process	is	successful.

8.4.5	DATA	FLOW	–	DATA	READING

In	order	 to	better	 understand	 the	way	data	 flows	between	 an	 application/client
which	 interacts	 with	 the	 HDFS,	 namenode	 and	 datanodes,	 on	 the	 following
image	we	can	see	the	sequence	of	events	taking	place	when	a	file	is	read.

The	 client	 opens	 the	 file	 it	 wants	 to	 read,	 by	 calling	 the	 open()	method	 for	 a
snapshot	of	the	FileSystem	class.	Specifically,	for	the	HDFS,	this	snapshot	is	of
the	 type	 DistributedFileSystem,	 with	 the	 last	 class	 being	 a	 subclass	 of
FileSystem	 (first	 step,	 image	 above).	 Through	 the	 snapshot	 of
DistributedFileSystem	type,	communication	is	accomplished	with	the	namenode,
by	using	a	method	knows	as	Remote	Procedure	Call	or	RPC,	which	allows	the
execution	of	a	method	in	a	different	system	than	the	one	in	which	the	results	of
the	 call	 are	 required.	The	 purpose	 of	 this	 remote	 call	 is	 to	 identify	 datanodes,
which	include	copies	of	the	first	blocks	of	the	file	(step	2).	For	each	block,	the
namenode	 returns	 the	 locations	 of	 the	 datanodes	 which	 have	 a	 copy	 of	 those
blocks.	 Additionally,	 datanodes	 are	 classified	 accordingly,	 depending	 on	 the
proximity	 of	 the	 cluster’s	 network.	 If	 for	 example	 the	 client	 is	 executed	 in	 a
datanode,	then	the	client	will	read	the	block	copy	from	the	local	datanode,	if	the
block	is	hosted	in	this	particular	datanode.

The	call	of	 the	open()	method	by	using	a	DistributedFileSystem	 type	 snapshot
returns	to	the	client	an	FSDataInputStream	type	report	(input	stream),	in	order	to
read	 data	 from	 the	 file.	 The	 FSDataInputStream	 type	 snapshot	 itself,	 wraps	 a
DFSInputStream	 type	 snapshot,	 which	 manages	 the	 communication	 with
datanodes	and	the	namenode.

Then	 the	client	calls	 the	 read()	method	 in	 the	 input	 stream	(step	3),	which	has
stored	 the	 locations	 of	 the	 datanodes	 in	 which	 the	 first	 blocks	 of	 the	 file	 are

stored,	is	connected	to	the	first	(closest)	datanode	for	the	first	block	of	the	file.
Data	are	 transferred	from	the	datanode	to	 the	client,	which	can	then	repeatedly
call	the	read()	method	for	the	input	stream	(step	4).	When	all	block	data	are	used
from	the	client,	the	DFSInputStream	type	snapshot	will	terminate	the	connection
with	the	datanode	and	then	find	the	best	datanode	to	transfer	the	next	block	(step
5).	All	these	processes	are	completely	transparent	to	the	client,	which	just	sees	a
continuous	data	flow	from	the	file.

Blocks	 are	 read	 in	 sequence,	with	 the	DFSInputStream	 type	 snapshot	 creating
the	proper	connections	with	datanodes,	while	the	client	reads	data	from	the	input
stream.	Additionally,	when	required,	it	will	communicate	with	the	namenode,	in
order	 to	 recover	 the	 locations	 of	 the	 datanodes	which	 have	 available	 the	 next
blocks	of	the	file.	When	the	client	stop	reading,	it	will	call	the	close()	method	for
the	FSDataInputStream	type	snapshot	(step	6).

During	 reading,	 if	 the	 DFSInputStream	 type	 snapshot	 faces	 an	 error	 during
communication	with	a	datanode,	 it	will	 then	 try	 to	communicate	with	 the	next
available	closest	datanode	which	has	the	required	block.	Additionally,	it	records
the	datanodes	 it	 failed	 to	 communicate	with,	 in	order	 to	 avoid	contacting	with
them	in	the	future	for	the	next	blocks.	The	DFSInputStream	type	snapshot	also
verifies	the	accuracy	of	data	transferred	from	the	datanode	by	using	checksums.
If	a	block	is	found	to	be	damaged,	then	this	is	reported	to	the	namenode,	before
attempting	to	read	the	same	block	from	another	datanode.

An	important	aspect	of	this	design	is	that	the	client	communicates	directly	with
the	datanodes	for	data	retrieval	and	is	guided	by	the	namenode	in	order	to	find
the	closest	datanode	 for	 each	block.	This	design	allows	HDFS	 to	escalate	 in	a
large	number	of	clients	requiring	at	 the	same	time	to	access	files,	because	data
flow	is	spread	in	all	datanodes	of	the	cluster.	Meanwhile,	the	namenode	should
just	serve	 the	requests	for	finding	 the	 location	of	blocks	(something	which	can
be	 accomplished	 very	 effectively	 since	 it	 has	 this	 information	 store	 in	 its
memory),	as	 this	would	cause	a	 jam	 in	 the	namenode	as	 the	number	of	clients
would	increase.

8.4.6	NETWORK	TOPOLOGY	IN	HADOOP

What	does	it	mean	for	two	nodes	in	a	local	network	to	be	close	to	each	other?	In
the	 context	 of	 high-volume	 data	 processing,	 the	 limiting	 factor	 is	 the	 rate	 at
which	we	can	transfer	data	between	nodes.	Simply	put,	the	networks	bandwidth

should	be	used	carefully	 in	order	 to	maximize	performance.	The	 idea	 is	 to	use
the	bandwidth	between	two	nodes	as	a	measure	of	distance	between	them.

Rather	than	measuring	bandwidth	between	nodes,	which	can	be	difficult	to	do	in
practice	 (it	 requires	 a	 cluster	 in	 which	 no	 operations	 are	 executed,	 and
additionally	the	number	of	pairs	of	nodes	in	a	cluster	increases	with	the	square	of
the	number	of	nodes),	Hadoop	takes	a	simple	approach	in	which	the	network	is
represented	 as	 a	 tree	 and	 the	 distance	 between	 two	 nodes	 is	 the	 sum	 of	 their
distances	to	their	closest	common	ancestor.	Levels	in	the	tree	are	not	predefined,
but	it	is	common	to	have	levels	that	correspond	to	the	data	center,	the	rack,	and
the	node	 that	a	process	 is	 running	on.	The	 idea	 is	 that	 the	available	bandwidth
between	 two	 running	 processes	 becomes	 progressively	 less	 for	 each	 of	 the
following	scenarios:

Processes	on	the	same	node	(maximum	bandwidth)
Different	nodes	on	the	same	rack
Nodes	in	different	racks	in	the	same	data	center
Nodes	in	different	data	centers	(minimum	bandwidth)

For	 example,	 imagine	 a	 node	 n1	 on	 rack	 r1	 in	 data	 center	 d1.	 This	 can	 be
represented	as	/d1/r1/n1.	Using	this	notation,	we	can	calculate	the	distances	for
the	beblow	four	scenarios:

distance(/d1/r1/n1,	/d1/r1/n1)	=	0	(processes	on	the	same	node)
distance(/d1/r1/n1,	/d1/r1/n2)	=	2	(different	nodes	on	the	same	rack)
distance(/d1/r1/n1,	 /d1/r2/n3)	 =	 4	 (nodes	 on	 different	 racks	 in	 the
same	data	center)
distance(/d1/r1/n1,	/d2/r3/n4)	=	6	(nodes	in	different	data	centers)

Finally,	 it	 is	 important	 to	 realize	 that	Hadoop	cannot	automatically	create	your
network	topology	for	you.	By	default,	though,	it	assumes	that	the	network	is	flat
—a	single	level	hierarchy—or	in	other	words,	that	all	nodes	are	on	a	single	rack
in	a	single	data	center.	For	small	clusters,	this	may	actually	be	the	case,	and	no
further	configuration	is	required.

8.4.7	FILE	WRITING

Next,	we	will	examine	how	data	writing	is	performed	in	HDFS.	It	is	very	useful
to	understand	data	flow,	since	this	will	help	us	in	understanding	later	on	HDFS’s
consistency	model.	More	specifically,	we	will	 study	how	a	new	file	 is	created,

how	 data	 are	written	 in	 it	 and	 finally,	 the	 closing	 of	 the	 file.	We	will	 use	 the
image	below	to	further	understand	this	concept.

The	 client	 creates	 the	 file,	 by	 using	 the	 create()	 method	 for	 a
DistributedFileSystem	 class	 snapshot	 (step	 1).	 The	DistributedFileSystem	 type
snapshot	 makes	 an	 RPC	 call	 to	 the	 namenode,	 to	 create	 a	 new	 file	 in	 the
namespace	of	 the	 file	 system.	This	 file	doesn’t	yet	 capture	 any	block	 (step	2).
The	namenode	will	 then	perform	various	 tests	 in	 order	 to	 be	 sure	 that	 the	 file
does	 not	 already	 exists	 and	 that	 the	 client	 has	 the	 rights	 to	 create	 the	 file.
Otherwise,	the	creation	of	the	file	fails	and	the	client	gets	a	raise	of	an	exception
of	IOException	type.

The	 DistributedFileSystem	 type	 snapshot	 returns	 a	 report	 to	 the	 client	 for	 a
FSDataOutputStream	 type	 output	 stream,	 with	 the	 use	 of	 the	 client	 can	 start
writing	 data.	 Just	 like	 in	 data	 reading,	 FSDataOutputStream	 wraps	 a
DFSOutputStream,	which	manages	 the	 communication	with	datanodes	 and	 the
namenode.

While	 the	 client	 starts	 writing	 data	 (step	 3),	 DFSOutputStream	 splits	 data	 in
packages,	 which	 are	 then	 registered	 in	 an	 internal	 queue	 named	 data	 queue.
Registrations	 in	 the	 data	 queue	 are	 used	 by	 the	 DataStreamer	 which	 is
responsible	for	requesting	from	the	namenode	to	provide	new	blocks	for	the	data
storage,	 choosing	 a	 set	 of	 proper	 datanodes	 in	 order	 to	 store	 data	 and	 create
copies.	 In	order	 to	create	copies,	we	assume	that	all	chosen	datanodes	create	a

pipeline.	We	also	assume,	that	the	copy	levels	are	three,	so	there	are	three	nodes
in	the	pipeline.	DataStreamer	sends	the	data	packages	to	the	first	datanode	of	the
pipeline,	 which	 stores	 the	 package	 and	 forwards	 it	 to	 the	 third	 (and	 final)
datanode	in	the	pipeline	(step	4).

DFSOutputStream	also	keeps	an	internal	queue	of	packages	which	wait	for	the
confirmation	of	their	receiving	by	the	datanodes.	This	queue	is	called	ack	queue
(ack	comes	from	acknowledgment).	A	package	is	removed	from	the	queue	only
when	its	receiving	by	all	datanodes	in	the	pipeline	is	confirmed	(step	5).

If	a	datanode	is	damaged	during	data	writing	in	it,	then	the	following	actions	are
taken,	 which	 are	 completely	 transparent	 to	 the	 client,	 who	 required	 the	 data
writing.	 First	 the	 pipeline	 shuts	 down	 and	 the	 packages	 in	 the	 ack	 queue	 are
added	to	the	front	of	the	data	queue.	This	way	datanodes	which	are	included	in
the	pipeline	after	 the	damaged	datanode	don’t	 lose	data	packages.	Next,	a	new
identity	is	given	to	the	current	block	in	the	datanodes	that	continue	to	work.	This
identity	 is	 also	 shared	 with	 the	 namenode,	 so	 that	 the	 current	 block	 in	 the
damaged	 datanode	 will	 be	 deleted,	 if	 the	 datanode	 comes	 back	 later	 on.	 The
damaged	datanode	 is	 removed	from	the	pipeline	and	 the	 remaining	data	of	 the
block	 are	 written	 in	 the	 remaining	 two	 datanodes	 continuing	 to	 be	 in	 the
pipeline.	Last,	namenode	will	notice	that	the	block	is	not	written	in	all	required
datanodes	 and	will	 create	 another	 copy	 in	 another	 node	 of	 the	 cluster.	 Blocks
created	later	will	be	managed	normally.

Although	 it’s	 extremely	 rare,	 multiple	 datanodes	 which	 need	 to	 store	 a	 block
might	 fail,	 exactly	 when	 data	 are	 written	 in	 them.	 The	 dfs.replication.min
registration	 in	 the	edit	 log	sets	 the	minimum	number	of	copies	 that	each	block
should	have	(one	by	default).	As	long	as	that	many	copies	exist,	the	block	will
be	copied	asynchronously	at	a	random	time	until	it	reaches	the	required	number
of	copies	(three	by	default).

When	 the	 client	 finishes	 data	 writing,	 it	 calls	 the	 close()	 method	 for	 the
FSDataOutputStream	output	stream	(step	6).	The	operation	sends	all	remaining
packages	 from	 the	data	 queue	 to	 the	datanodes	 and	waits	 for	 the	 confirmation
that	 they	 were	 all	 received	 by	 the	 datanodes.	 Next,	 it	 communicates	 with	 the
namenode,	 to	 inform	 it	 that	 the	 file	 is	 ready	 (step	 7).	 The	 namenode	 already
knows	 from	 which	 blocks	 the	 file	 consists	 of	 (through	 DataStreamer,	 which
meanwhile	 requested	 new	blocks).	 Thus,	 the	 namenode	 only	 needs	 to	wait	 all
blocks	 to	 have	 the	 minimum	 required	 number	 of	 copies,	 before	 it	 returns

success.

8.4.8	COPIES	PLACEMENT

How	does	a	namenode	chooses	the	datanodes	on	which	the	copies	of	the	blocks
will	 be	 stored?	 Obviously,	 the	 cost	 between	 the	 system’s	 reliability	 and	 the
bandwidth	for	writing	and	reading	should	be	weighted.	For	example,	by	placing
all	copies	in	only	one	node	we	achieve	the	minimum	cost	in	bandwidth	since	the
copying	 pipeline	 is	 executed	 in	 just	 one	 node.	 Though	 this	 approach	 is	 not
reliable	at	all	 (if	 the	node	 is	damaged,	all	data	 for	 this	particular	block	will	be
lost).	Also,	 the	bandwidth	for	data	reading	is	high,	when	reading	is	made	from
another	 rack.	By	doing	 the	 exact	 opposite,	 i.e.	 by	 placing	 copies	 in	 difference
data	center	we	can	maximize	the	system’s	reliability	but	the	bandwidth	would	be
radically	 decreased.	 Even	 in	 the	 same	 data	 center	 there	 are	 multiple	 copies
placement	strategies	we	can	use.	Hadoop	changed	the	way	copies	are	placed	so
that	blocks	are	distributed	evenly	in	a	cluster.

The	default	strategy	of	Hadoop	is	to	place	the	first	copy	in	the	same	node	as	the
client	 (for	 clients	 running	 outside	 of	 the	 cluster,	 a	 random	 node	 is	 chosen,
although	the	system	tries	not	to	choose	a	node	which	is	very	busy	or	is	already
storing	lots	of	data).	The	second	copy	is	placed	in	a	different	from	the	first	one
rack	(off-rack),	which	is	randomly	chosen.	The	third	copy	is	placed	in	the	same
rack	as	 the	second	one,	but	 in	a	different	node	which	is	also	randomly	chosen.
Additional	 copies	 are	 placed	 in	 random	nodes	of	 the	 cluster,	while	 the	 system
tries	to	avoid	placing	many	copies	in	the	same	rack.

When	 the	 positions	 of	 the	 copies	 are	 chosen,	 the	 pipeline	 is	 created	by	 taking
into	 consideration	 the	 topology	 of	 the	 network.	 If	 three	 copies	 are	 needed	 the
pipeline	could	look	like	the	one	in	the	below	image.

Overall,	 this	 strategy	provides	 a	 very	good	balance	between	 reliability	 (blocks
are	 stored	 in	 two	 racks),	writing	 bandwidth	 (records	 should	 pass	 through	 only
one	network	switch),	 reading	bandwidth	 (there	 is	an	option	between	 two	racks
for	reading)	and	block	distribution	in	the	cluster	(clients	write	only	one	block	in
the	local	rack).

8.4.9	CONSISTENCY	MODEL

A	file	system’s	consistency	model	describes	the	visibility	of	data	which	are	read
or	 written	 in	 a	 file.	 HDFS	 exchanges	 some	 of	 the	 strictest	 requirements	 of
POSIX	with	the	achievement	of	better	performance	in	a	distributed	file	system.
Consequently,	 some	 services	 might	 behave	 differently	 than	 what	 we	 would
expect.

After	a	file	is	created,	it	can	be	seen	in	the	files	namespace,	as	expected.	Though,
it	is	not	guaranteed	that	any	data	written	in	the	file	will	be	immediately	visible,
even	if	we	flush	the	output	stream.	Thus,	the	file	seems	to	have	a	zero	size.

Once	the	data	of	a	whole	block	are	written,	then	it	will	be	available	for	reading
from	 the	 clients-reader	 of	 the	 file.	 The	 same	 happens	 for	 the	 next	 blocks:	 the
current	 block,	 on	 which	 records	 are	 made	 is	 never	 visible	 from	 the
clients/readers	of	the	file.

Though,	 HDFS	 provides	 the	 sync()	 method,	 which	 is	 executed	 for	 the

FSDataOutputStream	 output	 stream	 and	 forces	 all	 data	 to	 synchronize	 in	 all
datanodes.	After	a	successful	return	from	this	method,	HDFS	guarantees	that	the
data	 which	 have	 been	 written	 up	 to	 that	 point	 in	 the	 file,	 have	 reached	 all
datanodes	in	the	reading	pipeline	and	are	visible	to	all	clients/readers.

During	the	closing	of	a	file,	the	sync()	method	is	indirectly	also	executed	for	this
particular	file.	This	behavior	is	similar	to	the	system	call	fsync()	of	the	POSIX,
which	 forces	 stored	 data	 kept	 in	 the	 temporary	 memory	 (buffer)	 for	 a	 file
descriptor	to	be	stored	in	the	hard	drive.

The	above	 consistency	model	has	major	 consequences	 in	 the	way	applications
are	designed.	Without	calling	the	sync()	method	we	should	be	prepared	to	 lose
up	to	one	block	of	data	in	case	of	client	or	node	failure.	For	many	applications
this	 should	 be	 unacceptable,	 so	 the	 sync()	 method	 should	 be	 called	 in	 all
appropriate	points	of	the	code,	like	after	writing	a	certain	number	or	records	or
number	of	bytes.

Although	the	sync()	method	is	designed	to	have	a	small	cost,	it	requires	a	large
amount	 of	 time	 in	 order	 to	 finish.	 Consequently,	 there	 should	 be	 a	 weighting
between	 the	 accuracy	 of	 recorded	 data	 and	 the	 system’s	 performance.	 What
consists	 an	 acceptable	 weighting	 depends	 from	 the	 type	 of	 application	 and
proper	 values	 can	 be	 chosen	 by	measuring	 the	 performance	 of	 the	 application
with	different	frequencies	of	sync()	use.

8.5	THE	HADOOP	CLUSTER	ARCHITECTURE

Over	Hadoop’s	file	system	we	will	find	MapReduce	which	consists	of	a	master
Jobtracker,	 in	which	applications	request	MapReduce	jobs.	Jobtracker	forwards
these	jobs	to	the	available	Tasktrackers	of	the	cluster,	as	close	as	possible	to	the
data.

In	 a	 Hadoop	 cluster	 we	 usually	 have	 a	 node	 running	 the	 namenode,	 a	 node
running	 the	 Jobtracker	 and	 multiple	 machines	 running	 a	 datanode	 and	 a
Tasktracker.

Datanodes	and	tasktrackers	can	be	installed	in	different	machines,	but	in	such	a
way	that	we	don’t	lose	optimized	rack	awareness	provided	by	Hadoop,	where	the
Jobtracker	 knows	which	 node	 owns	 the	 data	 to	 be	 processed	 and	which	 other
nodes	are	close	to	it,	thus	sending	the	information	to	them.	This	optimization	is
based	on	this	principle	which	considers	more	profitable,	in	terms	of	time	needed
for	execution,	the	transfer	of	the	process	instead	of	the	transfer	of	data.

The	user	sends	his	commands	to	the	Jobtracker,	which	places	them	in	a	series	of
jobs	to	be	executed	and	serves	them	with	the	FIFO	(First	In	First	Out)	policy	and
finally	 sends	 them	 to	 the	 tasktrackers	 to	be	executed.	Each	Tasktracker	 simply
executes	the	jobs	assigned	by	the	Jobtracker.	With	a	rack	awareness	file	system,
Jobtracker	 knows	 exactly	 which	 node	 includes	 the	 data	 and	 which	 other
machines	are	near.

If	a	Tasktracker	fails,	this	part	of	the	job	is	reprogrammed.	If	the	Jobtracker	fails,
the	whole	 job	 is	 lost	and	needs	 to	be	re-submitted.	There	 is	no	access	point	or
recovery	point	in	a	MapReduce	job.	If	a	Tasktracker	is	very	slow,	it	can	delay	the
whole	process.

8.6	HADOOP	JAVA	API
In	 order	 for	 a	 program	 to	 be	 able	 to	 use	 Hadoop,	 a	 programming	 language
should	be	used.	Hadoop	offers	APIs	for	the	development	of	programs	in	various
programming	languages.	The	most	established	language	though	is	Java.

By	 using	 a	 classic	 example,	 we	 will	 see	 the	 API	 capabilities.	 On	 the	 below
example	we	give	as	input	a	text	file	and	as	output	we	get	a	new	text	file	which
includes	information	about	how	many	times	each	word	appears	in	the	input	file.
Thus,	 the	 output	 file	 has	 the	 following	 format:	 <Word><Number	 of
appearances>.

We	should	clarify	that	a	word	considers	to	be	any	alphanumeric	between	spaces.
For	the	example	text	“this	is	an	example	(show	me)”,	the	words	are:	“this”,	“is”,
“an”,	 “example”,	 “(show”	and	“me)”.	Obviously	 a	more	 exact	 counting	 (don’t
take	brackets	under	consideration)	would	make	things	more	complex	and	would
distract	us	from	the	basic	points	of	programming	with	Hadoop.	Thus,	no	detailed
checks	are	included	in	this	example.

On	the	example	we	can	see	that	the	code	consists	of	a	number	of	discrete	parts.
The	first	part	(lines	1-11)	informs	the	Java	compiler	about	which	classes	will	be
used	in	the	program.	These	classes	are	part	of	Java	library	and	Hadoop.	The	goal
of	these	classes	is	to	provide	readymade	functionality	to	the	programmer.	Thus,
it	is	not	necessary	for	the	programmer	to	write	new	code	for	each	functionality.
Next	(line	13),	a	new	class	is	defined	for	our	program.	We	should	remember	at
this	point	that	the	file	name,	in	which	our	Java	program	is	saved,	should	have	the
same	name	with	 the	public	class	 it	defines.	Thus,	our	program	will	need	 to	be
saved	 in	 a	 file	 named	 “WordCount.java”	 and	 cannot	 have	more	 public	 classes
definitions.

This	 though,	 does	 not	 prevent	 the	 definition	 of	 non-public	 classes	 within	 the
same	 file.	 On	 our	 example	 we	 define	 the	 non-public	 classes	 “Map”	 and
“Reduce”	 (lines	15-28	 and	30-41	 respectively).	 It	 is	 obvious	 that	 these	 classes
include	the	fields	and	methods	which	accomplish	the	main	job	of	 the	program.
Thus,	we	will	come	back	to	them.

The	last	part	of	our	program	(lines	43-56)	consists	of	the	“main()”	method,	from
which	the	program	starts	executing.	In	this	method	we	have	the	initialization	and
parameterization	 of	 the	 jobs	 that	 Hadoop	will	 need	 to	 execute.	We	will	 come
back	to	this	method	later.

The	 “Mapper”	 class,	 just	 as	 the	 “Reducer”	 class	 is	 parametric.	 Through	 this
feature	we	have	the	option	to	define	ourselves	the	data	types	of	the	fields	and	the
values	of	the	classes	we	create	each	time.	On	the	example	we	saw	previously,	we
can	 see	 that	 the	 “Mapper”	 class	 gets	 4	 parameters.	 The	 parameters	 are	 placed
between	the	“<”	and	“>”	symbols	and	are	separated	with	commas.	The	first	two
parameters	indicate	the	data	type	of	the	input	key	and	input	value.	The	last	two
parameters	indicate	the	type	of	data	of	the	output	key	and	output	value.

Notice	that	Hadoop	defines	its	own	data	types,	corresponding	to	Java	data	types.
For	example,	 the	LongWritable,	 IntWritable	 and	Text	data	 types	correspond	 to
the	 long,	 int	 and	 String	 data	 types	 of	 Java.	 Though,	 Hadoop’s	 data	 types	 are
optimized	for	their	efficient	transfer	through	the	network.	In	any	case,	Hadoop’s
data	types	should	be	used.	Hadoop’s	data	types	are	defined	in	classes,	included
in	 the	 package	 org.apache.hadoop.io.	 This	 is	 the	 reason	 why	 in	 line	 6	 the
compiler	is	informed	that	the	classes	of	this	particular	package	should	be	used.

In	our	case,	the	input	parameters	are	of	LongWritable	and	Text	type	for	the	key
and	input	value	respectively.	As	we	will	see	later	on,	the	input	key	is	not	used	in
our	example	and	consequently	it	could	be	of	any	type.	Though,	the	input	value	is
read	by	the	text	file	we	give	in	the	program	as	input.	So,	it	must	be	of	Text	type.

For	the	key	and	output	value	the	Text	and	IntWritable	types	are	used.	This	makes
sense	 as,	 we	 want	 the	 output	 to	 have	 the	 format	 <word>	 <number	 of
appearances>	as	we	saw	previously.

The	exact	same	applies	for	the	parameters	of	the	“Reducer”	class.	However,	we
should	emphasize	on	the	following	point:	the	input	in	Reducer	tasks	is	the	output
of	the	Mappers	tasks.	Consequently,	the	input	parameters	of	the	“Reducer”	class
should	have	the	same	type	with	the	output	parameters	of	the	“Mapper”	class	(i.e.
for	 the	 last	 two	 “Mapper”	 parameters).	 On	 our	 example	 we	 can	 find	 this
correspondence.	On	 the	contrary,	 the	output	parameters	of	 the	“Reducer”	class
could	be	of	any	type,	depending	on	the	requirements	of	the	problem	we	want	to

solve.	 In	our	case	we	want	 to	combine/add	the	number	of	appearances	of	each
word	 which	 was	 calculated	 by	 each	 Mapper	 task.	 So,	 the	 output	 parameters
should	have	the	type	Text	and	IntWritable.

After	defining	the	proper	classes	as	extensions	of	the	“Mapper”	and	“Reducer”
classes,	the	next	step	is	to	define	the	proper	methods	inside	these	classes.	These
methods	are	responsible	for	the	execution	of	the	services	required	to	solve	each
problem	we	set.	More	specifically,	the	“Mapper”	class	requires	the	existence	of	a
“map()”	 method.	 Therefore,	 in	 the	 “Map”	 class	 we	 want	 to	 override	 the
definition	of	the	“map()”	method	in	the	“Mapper”	class.

This	 can	 be	 seen	 in	 line	 19,	 where	 we	 define	 the	 “map()”	 method	 inside	 the
“Map”	 class.	 Notice	 that	 the	 data	 types	 of	 the	 key	 and	 value	 parameters	 of
“map()”	correspond	to	the	data	types	of	the	first	two	parameters	of	the	“Mapper”
class	 (LongWritable	 and	Text	 respectively).	The	context	parameter	 is	provided
by	Hadoop	and	is	used	to	write	data	produced	by	each	Mapper	task,	so	that	they
can	be	used	later	by	Reducers	tasks.

Notice	that	for	the	“map()”	method	we	don’t	know	in	advance	which	data	from
the	input	file	will	be	assigned	in	each	Mapper	task.	We	only	know	that	these	will
be	part	of	an	input	text.

On	our	example	we	take	advantage	of	 the	“StringTokenizer”	class	provided	by
Java.	This	class	takes	one	String	type	variable	and	returns	one	by	one	all	words
contained	 in	 it.	 For	 this	 reason,	 first,	 we	 convert	 the	 input	 data	 from	 Text	 to
String	(line	21)	and	then	work	with	the	input	data	in	their	new	form.

The	 “while”	 loop	 following	 later,	 examines	 if	 there	 are	 still	 input	 data	 in	 the
String	type	variable,	we	created	in	line	21.	As	long	as	there	are	remaining	words,
it	exports	the	following	one,	converts	in	once	again	in	Text	type	(since	Hadoop
can	process	data	with	this	type)	and	sends	the	result	in	the	context	parameter,	so
that	 the	appearance	of	 this	particular	word	is	stored.	Note	 that	data	send	in	 the
context,	 have	 data	 types	 corresponding	 to	 the	 two	 last	 parameters	 of	 the
“Mapper”	class.	Last,	we	should	mention	that	each	Mapper	task	will	execute	the
same	commands	in	the	part	of	data	assigned	(automatically)	by	Hadoop.

Respectively,	we	should	override	 the	“reduce()”	method	in	 the	“Reduce”	class.
Once	again,	the	key	and	values	parameters	have	data	types	corresponding	to	the
first	two	parameters	of	the	“Reducer”	class.	One	main	difference	with	“map()”	is
the	 fact	 that	 the	 values	 parameter	 more	 specifically	 has	 a

“Iterable<IntWritable>”	 type.	The	“Iterable”	 type	 is	 an	 array	 type	provided	by
Hadoop	and	in	our	example	this	array	contains	values	of	IntWritable	type.	This
definition	 is	 logical	 for	 the	 following	 reason:	 Imagine	 that	 each	Mapper	 task
found	the	word	“the”	in	the	part	of	the	text	assigned	to	it.	This	means	that	any
such	task	has	created	a	pair	of	<”the”,	1>	type	for	each	appearance	of	the	“the”
word.	If	a	Mapper	task,	in	the	text	assigned	to	it,	finds	5	times	this	word,	it	will
create	 5	 of	 these	 pairs.	 Though,	 in	 every	 Mapper	 task,	 the	 output	 of	 more
Mapper	tasks	with	the	same	key	might	be	given	for	processing,	where	each	task
might	 create	 multiple	 key-value	 pairs.	 In	 every	 case,	 the	 key	 is	 common.
Somehow	though,	all	values	given	in	the	Mapper	task	should	be	maintained,	so
that	 it	 can	 decide	what	 to	 do	with	 these	 values.	 In	 our	 example	we	 are	 going
through	all	 features	of	 the	values	 table	and	add	all	values	 in	a	variable,	 i.e.	we
find	how	many	times	that	particular	key	appeared.

We	should	also	mention	the	part	of	the	code	which	uses	and	configures	the	task
and	sends	it	to	JobTracker.	The	description	of	the	task	is	made	through	another
class	provided	by	Hadoop	named	“Job”.	In	order	to	create	a	“Job”	class	snapshot
(line	 46),	 we	 use	 a	 constructor	 with	 two	 parameters.	 The	 first	 parameter	 is	 a
“Configuration”	class	snapshot	(line	44),	while	the	second	parameter	is	the	name
we	 want	 to	 give	 to	 the	 task.	 The	 “Configuration”	 class	 snapshot	 includes
information	 from	 the	 configuration	 made	 in	 Hadoop	 from	 the	 system
administrator	and	maybe	from	a	Hadoop	user	by	creating	 the	appropriate	 files.
However,	we	will	not	discuss	this	topic	further.

Next,	 some	 methods	 of	 the	 “Job”	 class	 are	 called,	 which	 configure	 the	 task
which	 will	 be	 submitted	 in	 the	 JobTracker.	 More	 specifically,	 the
“setOutputKeyClass()”	and	“setOutputValueClass()”	define	the	data	types	for	the
key-value	 pairs	 of	 the	 final	 result.	 The	 “setMapperClass()”	 and
“setReducerClass()”	 define	which	 classes	 of	 our	 program	will	 be	 used	 for	 the
Mappers	 and	 Reducers	 tasks	 respectively.	 The	 “setInputFormatClass()”	 and
“setOutputFormatClass()”	 define	 the	 data	 types	 for	 the	 input	 and	 output
respectively.	In	our	example	both	the	input	and	output	of	our	program	are	a	text
file,	thus	the	“TextInputFormat.class”	and	“TextOutputFormat.class”	classes	are
used	 respectively.	 Last,	 “waitForCompletion()”	 submits	 the	 task	 to	 the
JobTracker	and	waits	for	the	completion	of	the	task.

In	 order	 to	 explain	 the	 remaining	methods	 (lines	 58-59)	we	will	 first	 need	 to
explain	how	we	compile	and	execute	a	Hadoop	program.	The	below	method	is

the	most	common:

1.	 We	create	a	subdirectory	where	we	save	the	“WordCount.java”	file.
Any	name	can	be	given	to	this	directory	but	it	is	suggested	it	has	the
same	name	with	the	file:

	

	
2.	 We	go	to	the	subdirectory	“WordCount”:

3.	 Inside	the	“WordCount”	subdirectory	we	create	two	more
subdirectories”:

In	the	“classes”	subdirectory	the	compiled	files	of	our	application	will	be
added.	In	the	“jar”	subdirectory	a	run-time	library	will	be	added,	created
by	the	files	of	the	“classes”	subdirectory.

4.	 Our	program	is	compiled	with	the	following	command:

5.	 The	run-time	library	is	created	with	the	command:

6.	 To	execute	our	program,	we	type	the	following	command:

For	 the	 execution	 of	 the	 program	 we	 notice	 that	 we	 should	 give	 two	 more
parameters,	the	input	file	and	a	directory	in	the	HDFS	file	system,	in	which	the
results	of	our	program	execution	will	be	placed.

These	 parameters	 are	 stored	 in	 the	 “args”	 table	 (line	 43)	 and	 can	 be	managed
through	this	table.	Therefore,	what	each	parameter	is,	is	defined	by	the	program
itself.	Since	we	want	the	first	parameter	(position	0	in	the	“args”	table)	to	be	an
input	file,	we	should	define	it	accordingly:

Correspondingly,	since	we	want	 the	second	parameter	 (position	1	 in	 the	“args”
table)	to	be	our	output	directory	we	should	also	define	it	accordingly:

In	 a	 Hadoop	 program	 we	 are	 allowed	 to	 define	 only	 one	 output	 directory.
However,	we	are	allowed	to	have	more	input	files.	If	for	example	we	wanted	to
have	 three	 input	 files	 in	our	program	and	one	output	directory	we	can	call	our
program	like	this:

and	the	equivalent	Java	code	in	the	“main()”	method	would	be:

Obviously,	we	can	change	 the	order	of	 the	parameters	as	we	wish,	as	 long	we
have	 correspondence	 to	 the	 Java	 code.	 If	 for	 example	 we	 wanted	 the	 output
directory	to	be	the	first	parameter,	then	we	should	call	our	program	like	this:

and	the	Java	code	should	change	to:

8.7	LISTS	LOOPS	&	GENERIC	CLASSES	AND	METHODS

This	 chapter	 introduces	 some	 concepts	 we	 encountered	 previously	 in	 Chapter
8.1.	The	purpose	of	this	paragraph	is	to	give	more	details	about	these	concepts.

Previously,	we	saw	a	dynamic	 table	or	else	a	“Iterable<IntWritable>”	 list	 type.
The	 “Iterable”	 type	 is	 a	 list	 type	 provided	 by	 Hadoop	 and	 in	 our	 example,
contains	 IntWritable	 type	 values.	 Generally,	 such	 lists	 belong	 to	 the	 general
Iterable<T>.	On	these	lists,	T	type	objects	are	stored.

The	 iterator()	 method,	 defined	 in	 the	 Iterable<T>	 interface	 returns	 an	 Iterator
type	object,	which	goes	through	the	list	from	the	beginning	to	the	end.	Think	of
the	iterator	as	an	index	between	two	elements	of	the	list,	which	can	go	through	it
back	and	forth.	The	Iterator<T>	contains	methods	like:

hasNext()-	Returns	true,	if	there	is	a	next	item	on	the	list.
next()-	It	returns	the	next	item	of	the	list,	if	it	exists
remove()-	Removes	the	item,	just	passed	by	the	iterator.

We	can	go	through	a	collection	by	using	Iterator	as	follows:

Iterator	 use	 though,	 adds	 noise	 and	 is	 also	 used	 three	 times	 inside	 the	 loop,
increasing	 this	way	 the	probability	of	 an	 error.	The	 above	 loop	 can	be	written
without	the	Iterator	as	follows:

When	you	see	the	“:”	symbol	inside	a	loop,	as	we	can	see	above,	then	this	can	be
read	as	“in”.	The	above	loop	is	read	as	“For	every	IntWritable	t	in	C”.	Without
the	Iterator	the	FOR	loop	is	simpler.

8.7.1	GENERIC	CLASSES	AND	METHODS

As	you	might	have	noticed,	 the	Mapper	and	Reducer	 classes	get	data	 types	as
parameters,	 i.e.	 they	can	work	with	objects	of	different	 types,	providing	at	 the

same	time	safety	during	compiling.	This	ability	allows	the	collection	of	objects
in	one	entity	–	Java	Collection

A	generic	class	or	parametric	class	is	defined,	like	the	rest	of	the	classes,	except
that	 after	 its	 name	 at	 least	 one	 standard	 parameter	 should	 follow	 inside	 “<>”.
There	 could	 be	 more	 standard	 parameters,	 separated	 by	 commas	 “,”.	 For
example:

Respectively,	for	the	case	of	methods	we	can	write	a	generic	method,	called	by
parameters	 of	 different	 types.	 Depending	 on	 the	 type	 of	 the	 parameter,	 the
compiler	 manages	 the	 calls.	 The	 method	 accepts	 one	 or	 more	 parameters,
separated	by	commas	“,”.

8.7.2	THE	CLASS	OBJECT

In	lines	47-56	of	our	example	(Chapter	8.1),	necessary	methods	for	the	execution
of	 the	 job	 in	 Hadoop	 are	 used.	 Notice	 that	 the	 methods	 given	 in	 the	 lines
mentioned	previously,	accept	as	parameter	 the	class	 type	modeled	by	the	Class
object.	For	example,	the	type	of	Text.class	is	Class<Text>.

About	The	Author

Andrew	 Oleksy	 is	 Professor	 of	 Computational	 Science	 and	 Engineering	 and
Concurrent	 Professor	 of	 Computational	 Mathematics	 and	 Statistics.	 Andrew
Oleksy	 has	 co-founded	 and	 worked	 for	 several	 successful	 tech	 companies
focusing	on	data	science.

ONE	LAST	THING...
For	 any	 question	 that	might	 have	 popped	 up	while	 reading	 this	 book	 you	 can
send	a	message	to	my	personal	e-mail	address	–	andrewoleksy1@gmail.com

Thank	you

	

	Table of Contents
	Chapter 1: Introduction to Data Mining
	Summary
	Prerequisite Knowledge

	Introduction to Data Mining
	1.1 Data Science
	1.2 Knowledge Discovery in Databases (KDD)
	1.2.1 Data Collection
	1.2.2 Preprocessing
	1.2.3 Transformation
	1.2.4 Data Mining
	1.2.5 Interpretation and Evaluation

	1.3 Model Types
	1.4 Examples and Counterexamples
	1.5 Classification of Data Mining methods
	1.5.1 Classification
	1.5.2 Regression
	1.5.3 Clustering
	1.5.4 Extraction and Association Analysis
	1.5.5 Visualization
	1.5.6 Anomaly Detection

	1.6 Applications
	1.6.1 Medicine
	1.6.2 Finance
	1.6.3 Telecommunications

	1.7 Challenges
	1.8 The R Programming Language
	1.9 Basic Concepts, Definitions and Notations
	1.10 Tool Installation

	Chapter 2: Introduction to R
	Summary
	Prerequisite Knowledge
	Introduction to R
	2.1 Data Types
	2.1.1 Definition and Object Classes
	2.1.2 Vectors and Lists
	2.1.3 Matrix
	2.1.4. Factors and Nominal Data
	2.1.5 Missing Values
	2.1.6 Data Frames

	2.2 Basic Tasks
	2.2.1 Reading Data from File
	2.2.2 Sequence creation
	2.2.3 Reference to Subsets
	2.2.4 Vectorization

	2.3 Control Structures
	2.3.1 Conditional Statement: if-else
	2.3.1 Loops: for, repeat and while
	2.3.3 Next and break statements

	2.4 Functions
	2.5 Scoping Rules
	2.6 Iterated Functions
	2.6.1 lapply
	2.6.2 sapply
	2.6.3 Split
	2.6.4 tapply

	2.7 Help from the console and Package Installation

	Chapter 3: Types, Quality and Data Preprocessing
	Summary
	Prerequisite Knowledge
	Types, Quality and Data Preprocessing
	3.1 Categories and Types of Variables
	3.2 Preprocessing processes
	3.2.1 Data cleansing
	3.2.1.1 Missing Values
	3.2.1.2 Data with Noise
	Example – Data smoothing using binning methods

	3.2.1.3 Inconsistent data
	3.2.2 Data Unification
	3.2.3 Data Transformation and Discretization
	3.2.3.1 Data Transformation
	Example – Data Regularization
	3.2.3.2 Data Discretization
	Example – Entropy-based discretization

	3.2.4 Data Reduction
	3.2.4.1 Dimension Reduction
	3.2.4.2 Data Compression

	3.3 dplyr and tidyr packages
	3.3.1 dplyr
	3.3.2 tidyr

	Chapter 4: Summary Statistics and Visualization
	Summary
	Prerequisite Knowledge
	Summary Statistics and Visualization
	4.1 Measures of Position
	4.1.1 Mean Value
	4.1.2 Median

	4.2 Measures of dispersion
	4.2.1 Minimum value, Maximum value, Range
	4.2.2 Percentile values
	4.2.3 Interquartile Range
	4.2.4 Variance
	4.2.5 Standard Deviation
	4.2.6 Coefficient of Variation

	4.3 Visualization of Qualitative Data
	4.3.1 Frequency Table
	4.3.2 Bar Charts
	4.3.3 Pie Chart
	4.3.4 Contingency Matrix
	4.3.4 Stacked Bar Charts and Grouped Bar Charts

	4.4 Visualization of Quantitative Data
	4.4.1 Frequency Table
	4.4.2. Histograms
	4.4.3 Frequency Polygon
	4.4.4 Boxplot

	Chapter 5: Classification and Prediction
	Summary
	Prerequisite Knowledge
	5.1 Classification
	5.1.2 Decision Trees
	5.1.2.1 Description
	5.1.2.2 Decision Tree creation – ID3 Algorithm
	5.1.2.3 Decision Tree creation – Gini Index

	5.2 Prediction
	5.2.1Difference between Classification and Prediction
	5.2.2 Linear Regression
	5.2.2.1 Description, Definitions and Notations
	5.2.2.2 Cost Function
	5.2.2.3 Gradient Descent Algorithm
	5.2.2.4 Gradient Descent in Linear Regression

	5.2.2.5 Learning Parameter

	5.3 Overfitting and regularization
	5.3.1 Overfitting
	5.3.2 Model Regularization
	5.3.3 Linear Regression with Normalization

	Chapter 6: Clustering
	Summary
	Prerequisite Knowledge
	CLUSTERING
	6.1 Unsupervised Learning
	6.2 Concept of Cluster
	6.3 k-means algorithm
	6.3.1 Algorithm Description
	6.3.2 Random Centroids Initialization
	6.3.3 Choosing the number of Clusters
	6.3.4 Applying k-means in R

	6.4 Hierarchical Clustering Algorithms
	6.4.1 Distance Measurements Between Clusters
	6.4.2 Agglomerative Algorithms
	6.4.3 Divisive Algorithms
	6.4.4 Applying Hierarchical Clustering in R

	6.5 DBSCAN Algorithm
	6.5.1 Basic Concepts
	6.5.2 Algorithm Description
	6.5.3 Algorithm Complexity
	6.5.4 Advantages
	6.5.5 Disadvantages

	Chapter 7: Mining of Frequent Itemsets and Association Rules
	Summary
	Prerequisite Knowledge
	Mining of Frequent Itemsets and Association Rules
	7.1 Introduction
	7.2 Theoretical Background
	7.3 Apriori Algorithm
	7.4 Frequent Itemsets Types
	7.5 Positive and Negative Border of Frequent Itemsets
	7.6 Association Rules Mining
	7.7 Alternative Methods for Large Itemsets generation
	7.7.1 Sampling Algorithm
	7.7.2 Partitioning Algorithm

	7.8 FP-Growth Algorithm
	7.9 Arules package

	Chapter 8: Computational Methods for Big Data Analysis (Hadoop and MapReduce)
	Summary
	Prerequisite Knowledge
	8.1 Introduction
	8.2 Advantages of Hadoop’s Distributed File System
	8.3 Hadoop Users
	8.4 Hadoop Architecture
	8.4.1 Hadoop Distributed File System (HDFS)
	8.4.2 HDFS Architecture
	8.4.3 HDFS – Low Performance Areas
	8.4.3.1 Low Data Access Time
	8.4.3.2 Multiple Small Files
	8.5.3.3 Multiple Data Recording Nodes, Arbitrary File Modifications

	8.4.4 Basic HDFS Concepts
	8.4.4.1 Blocks
	8.4.4.2 Namenodes and Datanodes
	8.4.4.3 HDFS Federation
	8.4.4.4 HDFS High Availability

	8.4.5 Data Flow – Data Reading
	8.4.6 Network Topology in Hadoop
	8.4.7 File Writing
	8.4.8 Copies Placement
	8.4.9 Consistency Model

	8.5 The Hadoop Cluster Architecture
	8.6 Hadoop Java API
	8.7 Lists Loops & Generic Classes and Methods
	8.7.1 Generic Classes and Methods
	8.7.2 The Class Object

