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Introduction
There	is	no	doubt	that	Artificial	Intelligence	(commonly	abbreviated	AI)	is
making	 waves	 these	 days,	 perhaps	 more	 than	 the	 world	 anticipated	 as
recently	 as	 the	mid-2010s.	Back	 then,	AI	was	 an	 esoteric	 topic	 that	was
too	math-heavy	to	attract	the	average	computer	scientist,	but	now,	it	seems
to	be	a	household	term.	While	it	was	once	considered	sci-fi	lingo,	it’s	now
common	 to	 see	 and	 hear	 the	 term	 “AI”	 featured	 in	 ads	 about	 consumer
products	like	smart	phones.
This	is	to	be	expected,	though;	once	an	idea	or	technology	reaches	critical
mass,	 it	 naturally	becomes	more	 acceptable	 to	 a	wider	 audience,	 even	 if
just	on	the	application	level.	This	level	refers	to	what	AI	can	do	for	us,	by
facilitating	certain	processes,	or	automating	others.	However,	all	this	often
gives	rise	to	a	series	of	misunderstandings.	As	AI	itself	has	become	more
well-known,	 so	 have	 spread	 various	 ominous	 predictions	 about	 potential
dangers	 of	 AI	—	 predictions	 that	 are	 fueled	 by	 fear	 and	 fantasy,	 rather
than	fact.
Just	like	every	other	new	technology,	AI	demands	to	be	discussed	with	a
sense	 of	 responsibility	 and	 ethical	 stature.	An	AI	 practitioner,	 especially
one	geared	more	towards	the	practical	aspects	of	the	field,	understands	the
technology	and	its	limitations,	as	well	as	the	possible	issues	it	has,	which
is	 why	 he	 talks	 about	 it	 without	 hyperbole	 and	 with	 projections	 of
measured	scope	–	that	is,	he	projects	realistic	applications	of	AI,	without
talking	about	scenarios	that	resemble	sci-fi	films.	After	all,	the	main	issues
stemming	for	the	misuse	of	a	technology	like	this	have	more	to	do	with	the
people	 using	 it,	 rather	 than	 the	 technology	 itself.	 If	 an	 AI	 system	 is
programmed	well,	its	risks	are	mitigated,	and	its	outcomes	are	predictably
positive.



About	AI	But	what	exactly	is	AI?	For
starters,	it’s	nothing	like	what	sci-fi	books
and	films	make	it	out	to	be.	Modern	AI
technology	helps	to	facilitate	various
processes	in	a	more	automatic	and
autonomous	way,	with	little	to	no
supervision	from	a	human	user.	AI
initiatives	are	realistic	and	purely

functional.	Although	we	can	dream	about
what	AI	may	evolve	into	someday,	as	AI
practitioners,	we	focus	on	what	we	know
and	what	we	are	certain	about,	rather	than

what	could	exist	in	a	few	decades.
AI	comprises	a	set	of	algorithms	that	make	use	of	information	–	mainly	in
the	 form	 of	 data	 –	 to	 make	 decisions	 and	 carry	 out	 tasks,	 much	 like	 a
human	would.	Of	 course,	 the	 emulation	 of	 human	 intelligence	 is	 not	 an
easy	 task;	 as	 such,	 the	 AIs	 of	 today	 are	 rudimentary	 and	 specialized.
Despite	 their	 shortcomings,	 though,	 these	 modern	 systems	 can	 be
particularly	good	at	the	tasks	they	undertake,	even	better	than	humans.	For
example,	an	AI	system,	which	is	a	standalone	program	implementing	one
or	more	AI	algorithms,	that	is	created	for	identifying	words	from	speech,
can	be	more	accurate	than	humans	doing	the	same	task.
It’s	important	to	note	that	all	the	AI	systems	we	have	today	possess	what
is	 termed	narrow	artificial	 intelligence.	This	means	 that	 current	AIs	 can
do	a	limited	set	of	tasks	(or	even	just	a	single	task)	quite	well,	but	offer	at
best	mediocre	performance	at	any	other	task.	For	instance,	an	AI	might	be
great	 at	 figuring	 out	 your	 age	 based	 on	 a	 headshot,	 but	 that	 same	 AI
almost	certainly	couldn’t	tell	a	classical	music	piece	from	a	pop	song.
Some	AIs	 are	 designed	 to	 be	 used	 in	 robots,	 such	 as	 those	 designed	 for
rescue	 missions,	 able	 to	 navigate	 various	 terrains.	 Other	 AIs	 are
specialized	in	crunching	data	and	facilitating	various	data	analytics	tasks.



There	 are	 even	 AIs	 that	 emulate	 creative	 processes,	 like	 the	 AIs	 that
generate	 artistic	works,	 using	 the	 patterns	 they	 deduce	 from	 catalogs	 of
existing	 work.	 Chatbots	 and	 other	 such	 AIs	 are	 focused	 solely	 on
interacting	with	 humans.	 The	 possibility	 of	 a	more	 generalist	AI	 (called
Artificial	 General	 Intelligence,	 or	 AGI)	 exists,	 but	 it	 may	 take	 a	 while
before	it	can	manifest,	or	before	we	are	ready	to	integrate	it	into	our	world.
Since	all	this	may	sound	a	bit	abstract,	let’s	clarify	it	a	bit.	If	a	system	can
make	 some	 decisions	 by	 capturing	 and	 analyzing	 signals	 related	 to	 the
problem,	 that’s	 an	 AI	 (sometimes	 termed	 “an	 AI	 system”).	 You’ve
probably	used	an	AI,	even	if	you	didn’t	know	it.	Online	radios	like	Spotify
and	Pandora	use	AI	to	recommend	songs,	and	virtual	assistants	(like	Siri)
use	 AI	 to	 help	 you	 troubleshoot.	 Factors	 that	 help	 us	 decide	 whether	 a
system	 is	AI	 include	 the	 system’s	 sophistication,	 its	versatility,	 and	how
able	it	is	to	perform	complex	tasks.
Professor	Alan	Turing	was	the	first	 to	talk	about	this	topic	in	a	scientific
manner.	Upon	studying	this	subject	from	both	a	theoretical	and	a	practical
perspective	 (through	 the	creation	of	 the	 first	modern-day	computer,	used
to	crack	the	Enigma	code	in	World	War	II1),	he	envisioned	machines	that
could	think	and	reason	much	like	humans.
One	 of	 Professor	 Turing’s	 most	 famous	 thought	 experiments	 is	 now
named	 after	 him.	 The	 Turing	 test	 is	 a	 simple	 yet	 powerful	heuristic	 for
determining	 if	 a	 computer	 is	 advanced	 enough	 to	 manifest	 intelligence.
This	test	involves	taking	either	a	human	or	a	computer,	and	concealing	it
with	 another	 human.	Another	 human,	 known	 as	 the	 examiner,	 then	 asks
each	of	them	a	series	of	questions,	without	knowing	which	is	which.	If	the
examiner	 cannot	 determine	 from	 the	 answers	 to	 these	 questions	whether
he	 is	speaking	with	a	human	or	a	computer,	 then	the	computer	 is	said	 to
have	passed	the	test.	This	simple	test	has	remained	a	standard	for	AI,	still
adding	value	to	related	research	in	the	field	in	various	ways.2



AI	facilitates	data	science	So,	how	does	AI
fit	within	data	science?	After	all,	folks	have
been	working	in	data	science	for	years

without	these	fancy	AI	algorithms.	While	it
is	certainly	possible	to	gain	valuable

insights	using	traditional	data	science,	AI-
based	algorithms	can	often	bring	about
better	performance	in	our	models	–	the
mathematical	abstractions	we	create	to

simulate	the	phenomena	we	study.	In	highly
competitive	industries,	this	extra

performance	gained	from	AI-based	data
models	can	offer	an	edge	over	others	in	the
market.	Because	many	companies	in	these
industries	already	have	abundant	data	they
can	use	to	train	the	AI	algorithms,	we	term

them	AI-ready.
AI	is	now	far	easier	to	apply	than	ever	before.	The	early	developers	of	AI
have	proven	 that	AI	 can	deliver	 a	 lot	 of	 value	 to	 the	world,	without	 the
help	of	a	rocket	scientist	to	make	it	work.	This	is	largely	thanks	to	a	series
of	 powerful	 AI	 frameworks	 and	 libraries	 that	 make	 AI	 methods	 more
accessible	to	most	data	science	practitioners.
In	 addition,	 AI	 has	 now	 diversified	 and	 matured	 enough	 to	 outperform
conventional	data	science	methods	in	many	applications.	For	this,	we	must
thank	 the	 increased	 computing	 resources	 at	 our	 disposal,	 particularly
computing	 power.	 This	 is	 something	made	 possible	 due	 to	 the	graphics
processing	 units	 (GPUs)	 becoming	 cheaper	 and	 easier	 to	 integrate	 to	 a
computer,	 as	 add-ons.	What’s	more,	 cloud	 computing	 has	 become	more
mainstream,	 enabling	more	 people	 to	 have	 access	 to	 a	 virtual	 computer



cluster,	 which	 they	 customize	 and	 rent,	 to	 run	 their	 AI	 projects.	 This
makes	 AI	 systems	 easily	 scalable	 and	 cost-effective,	 while	 at	 the	 same
time	fostering	experimentation	and	new	use	cases	for	this	technology.
All	 this	 cooperation	 between	 AI	 and	 data	 science	 has	 led	 to	 a	 lot	 of
research	 interest	 in	AI.	Research	 centers,	 individual	 researchers,	 and	 the
R&D	departments	of	various	large	companies	have	been	investigating	new
ways	 to	make	 these	AI	 algorithms	more	 scalable	 and	more	 robust.	 This
naturally	 boosts	 the	 field’s	 impact	 on	 the	 world	 and	 makes	 it	 a	 more
attractive	technology—not	just	for	the	researchers,	but	for	anyone	willing
to	tinker	with	it,	including	many	entrepreneurs	in	this	field.
So	 yes,	 data	 science	 could	 continue	 to	 happen	without	AI.	But	 in	many
cases,	 this	wouldn’t	make	much	 sense.	 It	 is	 now	 clear	 that	 the	world	 of
data	science	has	a	lot	of	problems	and	limitations	that	AI	can	help	address.
The	overlap	of	these	two	closely	related	fields	will	only	continue	to	grow
as	they	both	develop,	so	now	is	the	perfect	time	to	jump	into	learning	AI
with	both	feet.



About	the	book	This	book	covers	various
frameworks,	focusing	on	the	most

promising	ones,	while	also	considering
different	AI	algorithms	that	go	beyond	deep
learning.	Hopefully,	this	book	will	give	you	a
more	holistic	understanding	of	the	field	of
AI,	arming	you	with	a	wide	variety	of	tools
(not	just	the	ones	currently	in	the	limelight).
With	multiple	tools	at	your	disposal,	you
can	make	your	own	decision	about	which
one	is	best	for	any	given	data-related
problem.	After	all,	a	good	data	scientist
must	not	only	know	how	to	use	each	and
every	tool	in	the	toolbox,	but	which	tool	is

right	for	the	job	at	hand.
Although	 most	 technologists	 and	 executives	 involved	 in	 data-driven
processes	can	benefit	 significantly	 from	 this	book,	 it	 is	most	 suitable	 for
data	 science	 professionals,	 AI	 practitioners,	 and	 those	 in	 related
disciplines	(such	as	Python	or	Julia	programmers).
A	basic	understanding	of	data	science	is	an	important	prerequisite	to	this
book	(for	a	 thorough	introduction	to	this,	feel	free	to	check	out	 the	book
“Data	Science	Mindset,	Methodologies,	and	Misconceptions”	by	Technics
Publications).	 Moreover,	 a	 good	 mathematical	 background	 is
recommended	 for	 those	 who	 want	 to	 dig	 deeper	 into	 the	 methods	 we
examine	 in	 this	 book.	 Ultimately,	 though,	 the	 most	 important
qualifications	 are	 determination	 and	 a	 curious	 nature,	 since	 you	 will
ultimately	put	this	knowledge	into	practice	building	your	own	AI	systems.
Although	 this	book	 is	heavy	on	programming,	you	can	 still	 derive	 some
useful	understanding	of	AI,	even	if	you	don’t	do	any	coding.	However,	for
best	 results,	we	 recommend	you	work	 through	 the	various	examples	and



perhaps	experiment	a	little	on	your	own.	We	created	a	Docker	image	of	all
the	code	and	data	used	 in	 the	book’s	examples,	 so	you	can	 follow	along
and	experiment.	See	Appendix	F	for	how	to	set	up	 this	environment	and
use	the	corresponding	code.
This	 book	 provides	 an	 easy	 transition	 for	 someone	 with	 some
understanding	 of	 the	more	well-known	 aspects	 of	AI.	As	 such,	we	 start
with	an	overview	of	 the	deep	 learning	 frameworks	 (chapter	1),	 followed
by	 a	 brief	 description	 of	 the	 other	 AI	 frameworks,	 focusing	 on
optimization	algorithms	and	fuzzy	logic	systems	(chapter	2).	The	objective
of	these	first	two	chapters	is	to	provide	you	with	some	frame	of	reference,
before	proceeding	to	the	more	hands-on	and	specialized	aspects.
Namely,	in	chapter	3	we	examine	the	MXNet	framework	for	deep	learning
and	 how	 it	 works	 on	 Python.	 The	 focus	 here	 is	 on	 the	most	 basic	 (and
most	 widely	 used)	 deep	 learning	 systems,	 namely	 feed	 forward	 neural
networks	(also	known	as	multi-layer	perceptrons,	or	MLPs	for	short).	The
two	chapters	that	follow	examine	these	deep	learning	systems	using	other
popular	 frameworks:	 Tensorflow	 and	 Keras.	 All	 of	 the	 deep	 learning
chapters	 contain	 some	 examples	 (provided	 as	 Jupyter	 notebooks	 with
Python	code	in	the	Docker	image)	for	hands-on	practice	on	these	systems.
Chapters	 6	 through	 8	 examine	 optimization	 algorithms,	 particularly	 the
more	advanced	ones.	Each	chapter	 focuses	on	a	particular	 framework	of
these	 algorithms,	 including	 particle	 swarm	 optimization	 (PSO),	 genetic
algorithms	 (GAs),	 and	 simulated	 annealing	 (SA).	 We	 also	 consider
applications	 of	 these	 algorithms,	 and	 how	 they	 can	 be	 of	 use	 in	 data
science	 projects.	 The	 programming	 language	 we’ll	 be	 using	 for	 these
chapters	is	Julia	(version	1.0),	for	performance	reasons.3

After	that,	we	look	at	more	advanced	AI	methods	as	well	as	alternative	AI
systems.	 In	 chapter	 9,	 specifically,	 we	 examine	 convolutional	 neural
networks	(CNNs)	and	recurrent	neural	networks	(RNNs),	which	are	quite
popular	 systems	 in	 the	 deep	 learning	 family.	 In	 chapter	 10,	 we	 review
optimization	ensembles,	which	are	not	often	discussed,	but	merit	attention
in	 this	 era	 of	 easy	 parallelization.	 Next,	 in	 chapter	 11,	 we	 describe
alternative	 AI	 frameworks	 for	 data	 science,	 such	 as	 extreme	 learning
machines	 (ELMs)	 and	capsule	networks	 (CapsNets)	which	 are	 either	 too
new	or	too	advanced	for	the	mainstream	of	the	AI	field.
In	the	final	chapter	of	 the	book,	we	mention	about	big	data,	data	science



specializations,	 and	 to	 help	 you	 practice	 we	 provide	 some	 sources	 of
public	datasets.	The	book	concludes	with	some	words	of	advice	along	with
resources	 for	additional	 learning.	For	example,	 in	Appendix	A	we’ll	 talk
about	Transfer	Learning,	while	 the	 topic	of	Reinforcement	Learning	will
be	covered	in	Appendix	B.	Autoencoder	Systems	will	be	briefly	described
in	Appendix	 C,	 while	Generative	 Adversarial	 Networks	 (GANs)	 will	 be
introduced	 in	Appendix	D.	Appendix	E	will	 take	 a	 look	 at	 the	 business
aspect	of	AI	 in	data	 science	projects,	while	 for	 those	new	 to	 the	Docker
software,	we	have	Appendix	F.
This	book	contains	a	variety	of	technical	terms,	which	are	described	in	the
glossary	 section	 that	 follows	 these	 chapters.	 Note	 that	 the	 first	 time	 a
glossary	term	appears	 in	 the	 text	of	 the	book,	 it	 is	marked	in	 italics.	The
glossary	also	 includes	a	 few	terms	 that	are	not	mentioned	 in	 the	 text	but
are	relevant.
The	 field	 of	 AI	 is	 vast.	 With	 this	 book,	 you	 can	 obtain	 a	 solid
understanding	 of	 the	 field	 and	 hopefully	 some	 inspiration	 to	 explore	 it
further	as	it	evolves.	So,	let’s	get	right	to	it,	shall	we?
https://bit.ly/2mEHUpc.
https://stanford.io/2useY7T.
For	a	brief	tutorial	on	the	language,	you	can	watch	this	YouTube	video:	http://bit.ly/2Me0bsC.



CHAPTER	3

Building	a	DL	Network	Using	MXNet
We’ll	begin	our	in-depth

examinations	of	the	DL	frameworks
with	that	which	seems	one	of	the
most	promising:	Apache’s	MXNet.
We’ll	cover	its	core	components
including	the	Gluon	interface,

NDArrays,	and	the	MXNet	package	in
Python.	You	will	learn	how	you	can
save	your	work	like	the	networks	you
trained	in	data	files,	and	some	other
useful	things	to	keep	in	mind	about

MXNet.
MXNet	 supports	 a	 variety	 of	 programming	 languages	 through	 its	 API,
most	of	which	are	useful	 for	data	 science.	Languages	 like	Python,	 Julia,
Scala,	R,	Perl,	 and	C++	have	 their	own	wrappers	of	 the	MXNet	 system,
which	makes	them	easily	integrated	with	your	pipeline.
Also,	 MXNet	 allows	 for	 parallelism,	 letting	 you	 take	 full	 advantage	 of
your	 machine’s	 additional	 hardware	 resources,	 such	 as	 extra	 CPUs	 and
GPUs.	 This	 makes	 MXNet	 quite	 fast,	 which	 is	 essential	 when	 tackling
computationally	 heavy	 problems,	 like	 the	 ones	 found	 in	 most	 DL
applications.



Interestingly,	the	DL	systems	you	create	in	MXNet	can	be	deployed	on	all
kinds	 of	 computer	 platforms,	 including	 smart	 devices.	 This	 is	 possible
through	a	process	called	amalgamation,	which	ports	a	whole	system	into	a
single	 file	 that	 can	 then	 be	 executed	 as	 a	 standalone	 program.
Amalgamation	 in	 MXNet	 was	 created	 by	 Jack	 Deng,	 and	 involves	 the
development	 of	 .cc	 files,	 which	 use	 the	 BLAS	 library	 as	 their	 only
dependency.	Files	 like	 this	 tend	 to	be	quite	 large	(more	 than	30000	lines
long).	There	is	also	the	option	of	compiling	.h	files	using	a	program	called
emscripten.	This	program	is	 independent	of	any	 library,	and	can	be	used
by	other	programming	languages	with	the	corresponding	API.
Finally,	there	exist	several	tutorials	for	MXNet,	should	you	wish	to	learn
more	 about	 its	 various	 functions.	 Because	 MXNet	 is	 an	 open-source
project,	 you	 can	 even	 create	 your	 own	 tutorial,	 if	 you	 are	 so	 inclined.
What’s	more,	 it	 is	 a	 cross-platform	 tool,	 running	 on	 all	major	 operating
systems.	MXNet	has	been	around	 long	enough	 that	 it	 is	a	 topic	of	much
research,	including	a	well-known	academic	paper	by	Chen	et	al.7

Core	components

Gluon	interface
Gluon	 is	 a	 simple	 interface	 for	 all	 your	 DL	 work	 using	 MXNet.	 You
install	it	on	your	machine	just	like	any	Python	library:	pip	install	mxnet	--
pre	--user

The	main	 selling	point	of	Gluon	 is	 that	 it	 is	 straightforward.	 It	offers	an
abstraction	 of	 the	 whole	 network	 building	 process,	 which	 can	 be
intimidating	 for	 people	 new	 to	 the	 craft.	 Also,	 Gluon	 is	 very	 fast,	 not
adding	 any	 significant	 overhead	 to	 the	 training	 of	 your	 DL	 system.
Moreover,	Gluon	can	handle	dynamic	graphs,	offering	some	malleability
in	the	structure	of	the	ANNs	created.	Finally,	Gluon	has	an	overall	flexible
structure,	making	the	development	process	for	any	ANN	less	rigid.
Naturally,	 for	 Gluon	 to	 work,	 you	must	 have	MXNet	 installed	 on	 your
machine	(although	you	don’t	need	to	if	you	are	using	the	Docker	container
provided	 with	 this	 book).	 This	 is	 achieved	 using	 the	 familiar	 pip



command:	pip	install	mxnet	--pre	--user

Because	of	its	utility	and	excellent	integration	with	MXNet,	we’ll	be	using
Gluon	 throughout	 this	 chapter,	 as	 we	 explore	 this	 DL	 framework.
However,	 to	 get	 a	 better	 understanding	 of	 MXNet,	 we’ll	 first	 briefly
consider	how	you	can	use	some	of	its	other	functions	(which	will	come	in
handy	for	one	of	the	case	studies	we	examine	later).

NDArrays
The	NDArray	is	a	particularly	useful	data	structure	that’s	used	throughout
an	MXNet	project.	NDArrays	are	essentially	NumPy	arrays,	but	with	the
added	 capability	 of	 asynchronous	 CPU	 processing.	 They	 are	 also
compatible	 with	 distributed	 cloud	 architectures,	 and	 can	 even	 utilize
automatic	differentiation,	which	is	particularly	useful	when	training	a	deep
learning	 system,	 but	 NDArrays	 can	 be	 effectively	 used	 in	 other	 ML
applications	too.	NDArrays	are	part	of	the	MXNet	package,	which	we	will
examine	shortly.	You	can	import	 the	NDArrays	module	as	follows:	from
mxnet	import	nd

To	 create	 a	 new	 NDArray	 consisting	 of	 4	 rows	 and	 5	 columns,	 for
example,	you	can	type	the	following:	nd.empty((4,	5))

The	 output	 will	 differ	 every	 time	 you	 run	 it,	 since	 the	 framework	 will
allocate	whatever	value	it	finds	in	the	parts	of	the	memory	that	it	allocates
to	 that	 array.	 If	 you	want	 the	NDArray	 to	 have	 just	 zeros	 instead,	 type:
nd.zeros((4,	5))

To	find	the	number	of	rows	and	columns	of	a	variable	having	an	NDArray
assigned	to	it,	you	need	to	use	the	.shape	function,	just	like	in	NumPy:	x	=
nd.empty((2,	7))
x.shape

Finally,	 if	you	want	 to	 find	 to	 total	number	of	 elements	 in	an	NDArray,



you	use	the	.size	function:	x.size

The	 operations	 in	 an	 NDArray	 are	 just	 like	 the	 ones	 in	 NumPy,	 so	 we
won’t	elaborate	on	them	here.	Contents	are	also	accessed	in	the	same	way,
through	indexing	and	slicing.
Should	you	want	 to	 turn	an	NDArray	 into	a	more	 familiar	data	structure
from	 the	 NumPy	 package,	 you	 can	 use	 the	 asnumpy()	 function:	 y	 =
x.asnumpy()

The	reverse	can	be	achieved	using	the	array()	function:	z	=	nd.array(y)

One	 of	 the	 distinguishing	 characteristics	 of	 NDArrays	 is	 that	 they	 can
assign	different	computational	contexts	 to	different	arrays—either	on	 the
CPU	 or	 on	 a	 GPU	 attached	 to	 your	 machine	 (this	 is	 referred	 to	 as
“context”	when	discussing	about	NDArrays).	This	is	made	possible	by	the
ctx	parameter	 in	all	 the	package’s	relevant	 functions.	For	example,	when
creating	an	empty	array	of	zeros	that	you	want	to	assign	to	the	first	GPU,
simply	type:	a	=	nd.zeros(shape=(5,5),	ctx=mx.gpu(0))

Of	 course,	 the	 data	 assigned	 to	 a	 particular	 processing	 unit	 is	 not	 set	 in
stone.	 It	 is	easy	 to	copy	data	 to	a	different	 location,	 linked	 to	a	different
processing	 unit,	 using	 the	 copyto()	 function:	 y	 =	 x.copyto(mx.gpu(1))	 #
copy	the	data	of	NDArray	x	to	the	2nd	GPU

You	 can	 find	 the	 context	 of	 a	 variable	 through	 the	 .context	 attribute:
print(x.context)

It	is	often	more	convenient	to	define	the	context	of	both	the	data	and	the
models,	using	a	separate	variable	for	each.	For	example,	say	that	your	DL
project	uses	data	that	you	want	to	be	processed	by	the	CPU,	and	a	model
that	 you	 prefer	 to	 be	 handled	 by	 the	 first	GPU.	 In	 this	 case,	 you’d	 type
something	like:	DataCtx	=	mx.cpu()
ModelCtx	=	mx.gpu(0)



MXNet	package	in	Python
The	MXNet	package	(or	“mxnet,”	with	all	lower-case	letters,	when	typed
in	Python),	 is	a	very	robust	and	self-sufficient	 library	 in	Python.	MXNet
provides	 deep	 learning	 capabilities	 through	 the	 MXNet	 framework.
Importing	 this	package	 in	Python	 is	 fairly	 straightforward:	 import	mxnet
as	mx

If	you	want	 to	perform	some	additional	processes	 that	make	 the	MXNet
experience	even	better,	it	is	highly	recommended	that	you	first	install	the
following	packages	on	your	computer:

graphviz	(ver.	0.8.1	or	later)
requests	(ver.	2.18.4	or	later)
numpy	(ver.	1.13.3	or	later)

You	can	learn	more	about	the	MXNet	package	through	the	corresponding
GitHub	repository.8

MXNet	in	action
Now	let’s	take	a	look	at	what	we	can	do	with	MXNet,	using	Python,	on	a
Docker	 image	 with	 all	 the	 necessary	 software	 already	 installed.	 We’ll
begin	with	a	brief	description	of	the	datasets	we’ll	use,	and	then	proceed	to
a	 couple	 specific	 DL	 applications	 using	 that	 data	 (namely	 classification
and	 regression).	 Upon	 mastering	 these,	 you	 can	 explore	 some	 more
advanced	DL	systems	of	this	framework	on	your	own.

Datasets	description
In	 this	section	we’ll	 introduce	 two	synthetic	datasets	 that	we	prepared	 to
demonstrate	classification	and	regression	methods	on	them.	First	dataset	is
for	classification,	and	the	other	for	regression.	The	reason	we	use	synthetic



datasets	 in	 these	exercises	 to	maximize	our	understanding	of	 the	data,	so
that	 we	 can	 evaluate	 the	 results	 of	 the	DL	 systems	 independent	 of	 data
quality.
The	 first	dataset	 comprises	4	variables,	3	 features,	 and	1	 labels	variable.
With	250,000	data	points,	it	is	adequately	large	for	a	DL	network	to	work
with.	Its	small	dimensionality	makes	it	ideal	for	visualization	(see	Figure
2).	It	is	also	made	to	have	a	great	deal	of	non-linearity,	making	it	a	good
challenge	 for	 any	 data	 model	 (though	 not	 too	 hard	 for	 a	 DL	 system).
Furthermore,	 classes	 2	 and	 3	 of	 this	 dataset	 are	 close	 enough	 to	 be
confusing,	 but	 still	 distinct.	 This	 makes	 them	 a	 good	 option	 for	 a
clustering	application,	as	we’ll	see	later.



The	 second	 dataset	 is	 somewhat	 larger,	 comprising	 21	 variables—20	 of
which	are	the	features	used	to	predict	the	last,	which	is	the	target	variable.
With	250,000	data	points,	again,	it	is	ideal	for	a	DL	system.	Note	that	only
10	 of	 the	 20	 features	 are	 relevant	 to	 the	 target	 variable	 (which	 is	 a
combination	of	these	10).	A	bit	of	noise	is	added	to	the	data	to	make	the
whole	problem	a	bit	more	challenging.	The	remaining	10	features	are	just
random	data	 that	must	be	filtered	out	by	 the	DL	model.	Relevant	or	not,
this	 dataset	 has	 enough	 features	 altogether	 to	 render	 a	 dimensionality
reduction	application	worthwhile.	Naturally,	due	to	its	dimensionality,	we
cannot	plot	this	dataset.

Loading	a	dataset	into	an	NDArray
Let’s	now	take	a	look	at	how	we	can	load	a	dataset	in	MXNet,	so	that	we
can	process	it	with	a	DL	model	later	on.	First	let’s	start	with	setting	some
parameters:	 DataCtx	 =	 mx.cpu()	 #	 assign	 context	 of	 the	 data	 used
BatchSize	=	64	#	batch	parameter	for	dataloader	object	r	=	0.8	#	ratio	of
training	data
nf	=	3	#	number	of	features	in	the	dataset	(for	the	classification	problem)

Now,	we	can	import	the	data	like	we’d	normally	do	in	a	conventional	DS
project,	 but	 this	 time	 store	 it	 in	NDArrays	 instead	 of	 Pandas	 or	NumPy
arrays:	with	open(“../data/data1.csv”)	as	f:
				data_raw	=	f.read()
lines	=	data_raw.splitlines()	#	split	the	data	into	separate	lines	ndp	=
len(lines)	#	number	of	data	points
X	=	nd.zeros((ndp,	nf),	ctx=data_ctx)
Y	=	nd.zeros((ndp,	1),	ctx=data_ctx)
for	i,	line	in	enumerate(lines):
tokens	=	line.split()
Y[i]	=	int(tokens[0])
for	token	in	tokens[1:]:
				index	=	int(token[:-2])	-	1
				X[i,	index]	=	1

Now	we	can	split	the	data	into	a	training	set	and	a	testing	set,	so	that	we



can	 use	 it	 both	 to	 build	 and	 to	 validate	 our	 classification	model:	 import
numpy	as	np	#	we’ll	be	needing	this	package	as	well	n	=	np.round(N	*	r)	#
number	of	training	data	points	train	=	data[:n,	]	#	training	set	partition
test	=	data[(n	+	1):,]	#	testing	set	partition
data_train	=	gluon.data.DataLoader(gluon.data.ArrayDataset(train[:,:3],
train[:,3]),	batch_size=BatchSize,	shuffle=True)	data_test	=
gluon.data.DataLoader(gluon.data.ArrayDataset(test[:,:3],	test[:,3]),
batch_size=BatchSize,	shuffle=True)

We’ll	 then	need	 to	 repeat	 the	 same	process	 to	 load	 the	 second	dataset—
this	time	using	data2.csv	as	the	source	file.	Also,	to	avoid	confusion	with
the	 dataloader	 objects	 of	 dataset	 1,	 you	 can	 name	 the	 new	 dataloaders
data_train2	and	data_test2,	respectively.

Classification
Now	let’s	explore	how	we	can	use	this	data	to	build	an	MLP	system	that
can	 discern	 the	 different	 classes	 within	 the	 data	 we	 have	 prepared.	 For
starters,	let’s	see	how	to	do	this	using	the	mxnet	package	on	its	own;	then
we’ll	examine	how	the	same	thing	can	be	achieved	using	Gluon.
First,	 let’s	 define	 some	 constants	 that	we’ll	 use	 later	 to	 build,	 train,	 and
test	the	MLP	network:	nhn	=	256	#	number	of	hidden	nodes	for	each	layer
WeightScale	=	0.01	#	scale	multiplier	for	weights
ModelCtx	=	mx.cpu()	#	assign	context	of	the	model	itself	no	=	3	#
number	of	outputs	(classes)
ne	=	10	#	number	of	epochs	(for	training)
lr	=	0.001	#	learning	rate	(for	training)
sc	=	0.01	#	smoothing	constant	(for	training)
ns	=	test.shape[0]	#	number	of	samples	(for	testing)

Next,	let’s	initialize	the	network’s	parameters	(weights	and	biases)	for	the
first	layer:	W1	=	nd.random_normal(shape=(nf,	nhn),	scale=WeightScale,
ctx=ModelCtx)	 b1	 =	 nd.random_normal(shape=nhn,	 scale=WeightScale,
ctx=ModelCtx)



And	do	the	same	for	the	second	layer:
W2	=	nd.random_normal(shape=(nhn,	nhn),	scale=WeightScale,
ctx=ModelCtx)	b2	=	nd.random_normal(shape=nhn,	scale=WeightScale,
ctx=ModelCtx)

Then	let’s	initialize	the	output	layer	and	aggregate	all	the	parameters	into	a
single	data	structure	called	params:	W3	=	nd.random_normal(shape=(nhn,
no),	 scale=WeightScale,	 ctx=ModelCtx)	 b3	 =
nd.random_normal(shape=no,	scale=WeightScale,	ctx=ModelCtx)	params
=	[W1,	b1,	W2,	b2,	W3,	b3]

Finally,	 let’s	 allocate	 some	 space	 for	 a	 gradient	 for	 each	 one	 of	 these
parameters:	for	param	in	params:
				param.attach_grad()

Remember	 that	without	 any	 non-linear	 functions	 in	 the	MLP’s	 neurons,
the	whole	system	would	be	too	rudimentary	to	be	useful.	We’ll	make	use
of	 the	 ReLU	 and	 the	 Softmax	 functions	 as	 activation	 functions	 for	 our
system:	 def	 relu(X):	 return	 nd.maximum(X,	 nd.zeros_like(X))	 def
softmax(y_linear):
				exp	=	nd.exp(y_linear	-	nd.max(y_linear))
				partition	=	nd.nansum(exp,	axis=0,	exclude=True).reshape((-1,	1))
return	exp	/	partition

Note	that	 the	Softmax	function	will	be	used	in	 the	output	neurons,	while
the	 ReLU	 function	 will	 be	 used	 in	 all	 the	 remaining	 neurons	 of	 the
network.
For	 the	 cost	 function	 of	 the	 network	 (or,	 in	 other	 words,	 the	 fitness
function	of	the	optimization	method	under	the	hood),	we’ll	use	the	cross-
entropy	 function:	 def	 cross_entropy(yhat,	 y):	 return	 -	 nd.nansum(y	 *
nd.log(yhat),	axis=0,	exclude=True)

To	 make	 the	 whole	 system	 a	 bit	 more	 efficient,	 we	 can	 combine	 the
softmax	 and	 the	 cross-entropy	 functions	 into	 one,	 as	 follows:	 def



softmax_cross_entropy(yhat_linear,	y):
				return	-	nd.nansum(y	*	nd.log_softmax(yhat_linear),	axis=0,
exclude=True)

After	all	this,	we	can	now	define	the	function	of	the	whole	neural	network,
based	on	the	above	architecture:	def	net(X):
				h1_linear	=	nd.dot(X,	W1)	+	b1
				h1	=	relu(h1_linear)
				h2_linear	=	nd.dot(h1,	W2)	+	b2
				h2	=	relu(h2_linear)
				yhat_linear	=	nd.dot(h2,	W3)	+	b3
				return	yhat_linear

The	optimization	method	for	training	the	system	must	also	be	defined.	In
this	case	we’ll	utilize	a	form	of	Gradient	Descent:	def	SGD(params,	lr):
for	param	in	params:
								param[:]	=	param	-	lr	*	param.grad
return	param

For	the	purposes	of	this	example,	we’ll	use	a	simple	evaluation	metric	for
the	 model:	 accuracy	 rate.	 Of	 course,	 this	 needs	 to	 be	 defined	 first:	 def
evaluate_accuracy(data_iterator,	net):
				numerator	=	0.
				denominator	=	0.
				for	i,	(data,	label)	in	enumerate(data_iterator):	data	=
data.as_in_context(model_ctx).reshape((-1,	784))	label	=
label.as_in_context(model_ctx)
								output	=	net(data)
								predictions	=	nd.argmax(output,	axis=1)
								numerator	+=	nd.sum(predictions	==	label)
								denominator	+=	data.shape[0]
				return	(numerator	/	denominator).asscalar()

Now	we	can	train	the	system	as	follows:



for	e	in	range(epochs):
				cumulative_loss	=	0
				for	i,	(data,	label)	in	enumerate(train_data):
								data	=	data.as_in_context(model_ctx).reshape((-1,	784))	label	=
label.as_in_context(model_ctx)
								label_one_hot	=	nd.one_hot(label,	10)
								with	autograd.record():
												output	=	net(data)
												loss	=	softmax_cross_entropy(output,	label_one_hot)
loss.backward()
								SGD(params,	learning_rate)
								cumulative_loss	+=	nd.sum(loss).asscalar()
				test_accuracy	=	evaluate_accuracy(test_data,	net)	train_accuracy	=
evaluate_accuracy(train_data,	net)	print(“Epoch	%s.	Loss:	%s,	Train_acc
%s,	Test_acc	%s”	%
										(e,	cumulative_loss/num_examples,	train_accuracy,
test_accuracy))

Finally,	 we	 can	 use	 to	 system	 to	 make	 some	 predictions	 using	 the
following	code:	def	model_predict(net,	data):
output	=	net(data)
return	nd.argmax(output,	axis=1)
SampleData	=	mx.gluon.data.DataLoader(data_test,	ns,	shuffle=True)	for
i,	(data,	label)	in	enumerate(SampleData):
data	=	data.as_in_context(ModelCtx)
im	=	nd.transpose(data,(1,0,2,3))
im	=	nd.reshape(im,(28,10*28,1))
imtiles	=	nd.tile(im,	(1,1,3))
plt.imshow(imtiles.asnumpy())
plt.show()
pred=model_predict(net,data.reshape((-1,784)))
print(‘model	predictions	are:’,	pred)
print(‘true	labels	:’,	label)
break

If	 you	 run	 the	 above	 code	 (preferably	 in	 the	 Docker	 environment



provided),	 you	will	 see	 that	 this	 simple	MLP	 system	does	 a	good	 job	 at
predicting	 the	 classes	 of	 some	 unknown	 data	 points—even	 if	 the	 class
boundaries	 are	highly	non-linear.	Experiment	with	 this	 system	more	 and
see	how	you	can	improve	its	performance	even	further,	using	the	MXNet
framework.
Now	we’ll	see	how	we	can	significantly	simplify	all	this	by	employing	the
Gluon	interface.	First,	let’s	define	a	Python	class	to	cover	some	common
cases	 of	 Multi-Layer	 Perceptrons,	 transforming	 a	 “gluon.Block”	 object
into	something	that	can	be	leveraged	to	gradually	build	a	neural	network,
consisting	 of	 multiple	 layers	 (also	 known	 as	 MLP):	 class
MLP(gluon.Block):
def	__init__(self,	**kwargs):
super(MLP,	self).__init__(**kwargs)
		with	self.name_scope():
		self.dense0	=	gluon.nn.Dense(64)	#	architecture	of	1st	layer	(hidden)
self.dense1	=	gluon.nn.Dense(64)	#	architecture	of	2nd	layer	(hidden)
self.dense2	=	gluon.nn.Dense(3)	#	architecture	of	3rd	layer	(output)	def
forward(self,	x):	#	a	function	enabling	an	MLP	to	process	data	(x)	by
passing	it	forward	(towards	the	output	layer)	x	=	nd.relu(self.dense0(x))
#	outputs	of	first	hidden	layer	x	=	nd.relu(self.dense1(x))	#	outputs	of
second	hidden	layer	x	=	self.dense2(x)	#	outputs	of	final	layer	(output)
return	x

Of	course,	 this	 is	 just	 an	example	of	how	you	can	define	an	MLP	using
Gluon,	not	a	one-size-fits-all	kind	of	solution.	You	may	want	to	define	the
MLP	class	differently,	since	the	architecture	you	use	will	have	an	impact
on	 the	 system’s	 performance.	 (This	 is	 particularly	 true	 for	 complex
problems	 where	 additional	 hidden	 layers	 would	 be	 useful.)	 However,	 if
you	 find	 what	 follows	 too	 challenging,	 and	 you	 don’t	 have	 the	 time	 to
assimilate	 the	 theory	 behind	DL	 systems	 covered	 in	Chapter	 1,	 you	 can
use	an	MLP	object	like	the	one	above	for	your	project.
Since	DL	systems	are	rarely	as	compact	as	the	MLP	above,	and	since	we
often	need	to	add	more	layers	(which	would	be	cumbersome	in	the	above
approach),	 it	 is	 common	 to	 use	 a	 different	 class	 called	Sequential.	After
we	 define	 the	 number	 of	 neurons	 in	 each	 hidden	 layer,	 and	 specify	 the
activation	function	for	these	neurons,	we	can	build	an	MLP	like	a	ladder,



with	each	step	representing	one	layer	in	the	MLP:	nhn	=	64	#	number	of
hidden	neurons	(in	each	layer)	af	=	“relu”	#	activation	function	to	be	used
in	each	neuron	net	=	gluon.nn.Sequential()
with	net.name_scope():
net.add(gluon.nn.Dense(nhn	,	activation=af))
net.add(gluon.nn.Dense(nhn	,	activation=af))
net.add(gluon.nn.Dense(no))

This	 takes	 care	 of	 the	 architecture	 for	 us.	 To	 make	 the	 above	 network
functional,	we’ll	 first	need	 to	 initialize	 it:	 sigma	=	0.1	#	sigma	value	 for
distribution	of	weights	for	the	ANN	connections	ModelCtx	=	mx.cpu()
lr	=	0.01	#	learning	rate
oa	=	‘sgd’	#	optimization	algorithm
net.collect_params().initialize(mx.init.Normal(sigma=sigma),
ctx=ModelCtx)	softmax_cross_entropy	=
gluon.loss.SoftmaxCrossEntropyLoss()	trainer	=
gluon.Trainer(net.collect_params(),	oa,	{‘learning_rate’:	lr})	ne	=	10	#
number	of	epochs	for	training

Next,	we	must	define	how	we	assess	 the	network’s	progress,	 through	an
evaluation	metric	 function.	 For	 the	 purposes	 of	 simplicity,	we’ll	 use	 the
standard	accuracy	rate	metric:	def	AccuracyEvaluation(iterator,	net):
				acc	=	mx.metric.Accuracy()
				for	i,	(data,	label)	in	enumerate(iterator):
								data	=	data.as_in_context(ModelCtx).reshape((-1,	3))	label	=
label.as_in_context(ModelCtx)
								output	=	net(data)
								predictions	=	nd.argmax(output,	axis=1)
								acc.update(preds=predictions,	labels=label)	return	acc.get()[1]

Finally,	 it’s	 time	 to	 train	 and	 test	 the	 MLP,	 using	 the	 aforementioned
settings:	for	e	in	range(ne):
				cumulative_loss	=	0
				for	i,	(data,	label)	in	enumerate(train_data):
								data	=	data.as_in_context(ModelCtx).reshape((-1,	784))	label	=



label.as_in_context(ModelCtx)
								with	autograd.record():
												output	=	net(data)
												loss	=	softmax_cross_entropy(output,	label)	loss.backward()
								trainer.step(data.shape[0])
								cumulative_loss	+=	nd.sum(loss).asscalar()
				train_accuracy	=	AccuracyEvaluation(train_data,	net)	test_accuracy	=
AccuracyEvaluation(test_data,	net)	print(“Epoch	%s.	Loss:	%s,
Train_acc	%s,	Test_acc	%s”	%
										(e,	cumulative_loss/ns,	train_accuracy,	test_accuracy))

Running	 the	 above	 code	 should	 yield	 similar	 results	 to	 those	 from
conventional	mxnet	commands.
To	make	 things	 easier,	we’ll	 rely	on	 the	Gluon	 interface	 in	 the	 example
that	 follows.	Nevertheless,	we	still	 recommend	 that	you	experiment	with
the	standard	mxnet	functions	afterwards,	should	you	wish	to	develop	your
own	architectures	(or	better	understand	the	theory	behind	DL).

Regression
Creating	 a	 regression	MLP	 system	 is	 similar	 to	 creating	 a	 classification
one	but	with	some	differences.	In	the	regression	case,	the	regression	will
be	 simpler,	 since	 regressors	 are	 typically	 lighter	 architecturally	 than
classifiers.	For	this	example,	we’ll	use	the	second	dataset.
First,	 let’s	 start	 by	 importing	 the	 necessary	 classes	 from	 the	 mxnet
package	and	setting	the	context	for	the	model:	import	mxnet	as	mx
from	mxnet	import	nd,	autograd,	gluon
ModelCtx	=	mx.cpu()

To	 load	 data	 to	 the	model,	 we’ll	 use	 the	 dataloaders	 created	 previously
(data_train2	 and	 data_test2).	 Let’s	 now	 define	 some	 basic	 settings	 and
build	 the	 DL	 network	 gradually:	 nf	 =	 20	 #	 we	 have	 20	 features	 in	 this
dataset
sigma	=	1.0	#	sigma	value	for	distribution	of	weights	for	the	ANN
connections	net	=	gluon.nn.Dense(1,	in_units=nf)	#	the	“1”	here	is	the



number	of	output	neurons,	which	is	1	in	regression

Let’s	now	initialize	the	network	with	some	random	values	for	the	weights
and	 biases:	 net.collect_params().initialize(mx.init.Normal(sigma=sigma),
ctx=ModelCtx)

Just	like	any	other	DL	system,	we	need	to	define	the	loss	function.	Using
this	function,	the	system	understands	how	much	of	an	error	each	deviation
from	 the	 target	 variable’s	 values	 costs.	At	 the	 same	 time,	 cost	 functions
can	also	deal	with	 the	complexity	of	 the	models	 (since	 if	models	are	 too
complex	they	can	cost	us	overfitting):	square_loss	=	gluon.loss.L2Loss()

Now	it’s	time	to	train	the	network	using	the	data	at	hand.	After	we	define
some	 essential	 parameters	 (just	 like	 in	 the	 classification	 case),	 we	 can
create	 a	 loop	 for	 the	 network	 to	 train:	 ne	 =	 10	 #	 number	 of	 epochs	 for
training
loss_sequence	=	[]	#	cumulative	loss	for	the	various	epochs	nb	=	ns	/
BatchSize	#	number	of	batches
for	e	in	range(ne):
				cumulative_loss	=	0				
				for	i,	(data,	label)	in	enumerate(train_data):	#	inner	loop	data	=
data.as_in_context(ModelCtx)
								label	=	label.as_in_context(ModelCtx)
								with	autograd.record():
												output	=	net(data)
												loss	=	square_loss(output,	label)
								loss.backward()
								trainer.step(BatchSize)
								CumulativeLoss	+=	nd.mean(loss).asscalar()
				print(“Epoch	%s,	loss:	%s”	%	(e,	CumulativeLoss	/	ns))
loss_sequence.append(CumulativeLoss)

If	 you	 wish	 to	 view	 the	 parameters	 of	 the	 model,	 you	 can	 do	 so	 by
collecting	them	into	a	dictionary	structure:	params	=	net.collect_params()
for	param	in	params.values():



print(param.name,	param.data())

Printing	out	the	parameters	may	not	seem	to	be	useful	as	we	have	usually
too	many	of	them	and	especially	when	we	add	new	layers	to	the	system,
something	we’d	accomplish	as	follows:	net.add(gluon.nn.Dense(nhn))

where	nhn	is	the	number	of	neurons	in	that	additional	hidden	layer.	Note
that	the	network	requires	an	output	layer	with	a	single	neuron,	so	be	sure
to	insert	any	additional	layers	between	the	input	and	output	layers.

Creating	checkpoints	for	models	developed
in	MXNet	As	training	a	system	may	take
some	time,	the	ability	to	save	and	load	DL
models	and	data	through	this	framework	is
essential.	We	must	create	“checkpoints”	in
our	work	so	that	we	can	pick	up	from	where
we’ve	stopped,	without	having	to	recreate	a
network	from	scratch	every	time.	This	is
achieved	through	the	following	process.
First	 import	 all	 the	 necessary	 packages	 and	 classes,	 and	 then	 define	 the
context	parameter:	import	mxnet	as	mx
from	mxnet	import	nd,	autograd,	gluon
import	os
ctx	=	mx.cpu()	#	context	for	NDArrays

We’ll	then	save	the	data,	but	let’s	put	some	of	it	into	a	dictionary	first:	dict
=	{“X”:	X,	“Y”:	Y}

Now	we’ll	set	the	name	of	the	file	and	save	it:	filename	=	“test.dat”
nd.save(filename,	dict)



We	 can	 verify	 that	 everything	 has	 been	 saved	 properly	 by	 loading	 that
checkpoint	as	follows:	Z	=	nd.load(filename)
print(Z)

When	using	gluon,	there	is	a	shortcut	for	saving	all	the	parameters	of	the
DL	network	we	have	developed.	 It	 involves	 the	save_params()	 function:
filename	=	“MyNet.params”
net.save_params(filename)

To	restore	 the	DL	network,	however,	you’ll	need	 to	 recreate	 the	original
network’s	 architecture,	 and	 then	 load	 the	 original	 network’s	 parameters
from	 the	 corresponding	 file:	 net2	 =	 gluon.nn.Sequential()with
net2.name_scope():	 net2.add(gluon.nn.Dense(num_hidden,
activation=”relu”))	 net2.add(gluon.nn.Dense(num_hidden,
activation=”relu”))	net2.add(gluon.nn.Dense(num_outputs))
net2.load_params(filename,	ctx=ctx)

It’s	best	to	save	your	work	at	different	parts	of	the	pipeline,	and	give	the
checkpoint	 files	 descriptive	 names.	 It	 is	 also	 important	 to	 keep	 in	mind
that	 we	 don’t	 have	 “untraining”	 option	 and	 it	 is	 likely	 that	 the	 optimal
performance	happens	before	the	completion	of	the	training	phase.	Because
of	 this,	we	may	want	 to	 create	 checkpoints	 after	 each	 training	 epoch	 so
that	 we	 can	 revert	 to	 it	 when	 we	 find	 out	 at	 which	 point	 the	 optimal
performance	is	achieved.
Moreover,	 for	 the	 computer	 to	make	 sense	 of	 these	 files	when	you	 load
them	in	your	programming	environment,	you’ll	need	to	have	the	nd	class
of	mxnet	in	memory,	in	whatever	programming	language	you	are	using.

MXNet	tips
The	 MXNet	 framework	 is	 a	 very	 robust	 and	 versatile	 platform	 for	 a
variety	 of	 DL	 systems.	 Although	 we	 demonstrated	 its	 functionality	 in
Python,	 it	 is	 equally	 powerful	 when	 used	 with	 other	 programming



languages.
In	addition,	the	Gluon	interface	is	a	useful	add-on.	If	you	are	new	to	DL
applications,	 we	 recommend	 you	 use	 Gluon	 as	 your	 go-to	 tool	 when
employing	the	MXNet	framework.	This	doesn’t	mean	that	the	framework
itself	is	limited	to	Gluon,	though,	since	the	mxnet	package	is	versatile	and
robust	in	a	variety	of	programming	platforms.
Moreover,	in	this	chapter	we	covered	just	the	basics	of	MXNet	and	Gluon.
Going	through	all	the	details	of	these	robust	systems	would	take	a	whole
book!	Learn	more	about	the	details	of	the	Gluon	interface	in	the	Straight
Dope	tutorial,	which	is	part	of	the	MXNet	documentation.9

Finally,	 the	examples	 in	 this	chapter	are	executed	 in	a	Docker	container;
as	such,	you	may	experience	some	lagging.	When	developing	a	DL	system
on	a	computer	cluster,	of	course,	it	is	significantly	faster.

Summary

MXNet	is	a	deep	learning	framework	developed	by	Apache.	It
exhibits	ease	of	use,	flexibility,	and	high	speed,	among	other	perks.
All	of	this	makes	MXNet	an	attractive	option	for	DL,	in	a	variety
of	programming	languages,	including	Python,	Julia,	Scala,	and	R.
MXNet	models	can	be	deployed	to	all	kinds	of	computing	systems,
including	smart	devices.	This	is	achieved	by	exporting	them	as	a
single	file,	to	be	executed	by	these	devices.
Gluon	is	a	package	that	provides	a	simple	interface	for	all	your	DL
work	using	MXNet.	Its	main	benefits	include	ease	of	use,	no
significant	overhead,	ability	to	handle	dynamic	graphs	for	your
ANN	models,	and	flexibility.
NDArrays	are	useful	data	structures	when	working	with	the
MXNet	framework.	They	can	be	imported	as	modules	from	the
mxnet	package	as	nd.	They	are	similar	to	NumPy	arrays,	but	more
versatile	and	efficient	when	it	comes	to	DL	applications.
The	mxnet	package	is	Python’s	API	for	the	MXNet	framework	and
contains	a	variety	of	modules	for	building	and	using	DL	systems.



Data	can	be	loaded	into	MXNet	through	an	NDArray,	directly	from
the	data	file;	and	then	creating	a	dataloader	object,	to	feed	the	data
into	the	model	built	afterward.
Classification	in	MXNet	involves	creating	an	MLP	(or	some	other
DL	network),	training	it,	and	using	it	to	predict	unknown	data,
allocating	one	neuron	for	every	class	in	the	dataset.	Classification
is	significantly	simpler	when	using	Gluon.
Regression	in	MXNet	is	like	classification,	but	the	output	layer	has
a	single	neuron.	Also,	additional	care	must	be	taken	so	that	the
system	doesn’t	overfit;	therefore	we	often	use	some	regularization
function	such	as	L2.
Creating	project	checkpoints	in	MXNet	involves	saving	the	model
and	any	other	relevant	data	into	NDArrays,	so	that	you	can	retrieve
them	at	another	time.	This	is	also	useful	for	sharing	your	work	with
others,	for	reviewing	purposes.
Remember	that	MXNet	it	is	generally	faster	than	on	the	Docker
container	used	in	this	chapter’s	examples,	and	that	it	is	equally
useful	and	robust	in	other	programming	languages.

https://bit.ly/2uweNb0.
https://github.com/apache/incubator-mxnet.
http://gluon.mxnet.io/index.html.



CHAPTER	4

Building	a	DL	Network	Using
TensorFlow	This	chapter	provides	an
introduction	to	the	most	popular

programming	framework	in	the	deep
learning	community:	TensorFlow.
Developed	and	backed	by	Google,
TensorFlow	has	been	adapted	and
advanced	by	a	huge	open	source
community.	It	is	therefore	essential
for	the	deep	learning	practitioners	to
at	least	master	the	basics.	In	fact,
much	of	the	codes	that	you	can	find

on	the	Internet	are	written	in
TensorFlow.

We’ll	cover	the	ingredients	of	the	TensorFlow	core	library	as	well	as	some
high-level	APIs	that	are	available	in	the	Python	ecosystem.	Our	discussion
in	 this	 chapter	 should	 help	 you	 understand	 the	 basic	 structures	 of	 the
framework,	allowing	you	to	build	your	own	DL	models	using	TensorFlow.
Although	 we	 recommend	 using	 Keras	 (which	 we	 cover	 in	 the	 next
chapter)	 if	 you	 are	 new	 to	DL,	 learning	 the	 essentials	 of	 TensorFlow	 is
quite	useful,	as	Keras	is	also	built	on	top	of	TensorFlow.10



TensorFlow	 is	 available	 both	 for	 Python	 2	 and	 Python	 3.	 Since	 we’re
using	Python	3	 in	 this	book,	we	briefly	cover	how	to	 install	TensorFlow
on	 your	 local	 computer.	 However,	 if	 you’re	 using	 the	 Docker	 file
provided,	TensorFlow	is	already	installed	for	you.
Before	 installing	 TensorFlow,	 it	 is	 important	 to	 make	 note	 of	 the
computation	units	on	your	machine	that	can	be	used	by	TensorFlow.	You
have	 two	options	 to	run	your	TensorFlow	code:	you	can	use	 the	CPU	or
the	GPU.	Since	GPUs	are	designed	to	run	linear	matrix	operations	faster
than	 the	 CPUs,	 data	 scientists	 prefer	 to	 use	 GPUs	 when	 available.
However,	the	TensorFlow	code	you	write	will	be	the	same	(except	for	the
statement	of	your	preference	 regarding	 the	computation	units	you	would
like	to	use).
Let’s	start	with	the	installation	of	 the	TensorFlow.	In	doing	so,	we	make
use	 of	 the	 pip	 package	manager	 of	 Python.	 So,	 if	 Python	 3	 is	 the	 only
installed	version	of	Python	in	your	machine,	then	the:	pip	install	–upgrade
tensorflow

command	would	install	Tensorflow	for	Python	3.	However,	if	both	Python
2	and	Python	3	are	 installed	 in	your	computer,	 then	 the	command	above
might	install	the	TensorFlow	for	Python	2.	In	that	case,	you	can	also	use
the	following	command	to	install	TensorFlow	for	Python	3:	pip3	install	–
upgrade	tensorflow

The	TensorFlow	 framework	 is	 now	 installed	 for	 you	 to	 explore.	 In	your
code,	import	the	TensorFlow	to	use	it:	import	tensorflow

If	 you	 wish,	 you	 can	 rename	 it	 to	 “tf”.	We	will	 do	 this	 throughout	 the
chapter	because	it	is	the	convention	in	the	community:	import	tensorflow
as	tf

TensorFlow	architecture
The	basic	architecture	of	TensorFlow	is	shown	in	Figure	3.	TensorFlow	is
designed	 as	 a	 distributed	 system	 by	 nature,	 so	 it	 is	 quite	 easy	 to	 run



TensorFlow	 models	 in	 distributed	 settings.	 The	 TensorFlow	 Distributed
Execution	 Engine	 is	 responsible	 for	 handling	 this	 capability	 of
TensorFlow.	As	we	mentioned	before,	TensorFlow	models	can	be	run	on
top	 of	 CPUs	 and	 GPUs.	 However,	 other	 computation	 units	 are	 also
available	 to	 use.	 Recently,	 Google	 announced	 Tensor	 Processing	 Units
(TPUs)	that	are	designed	to	swiftly	run	TensorFlow	models.	You	can	even
run	TensorFlow	in	Android	devices	directly.

Although	Python	is	the	most	commonly	used	language	with	TensorFlow,
you	 can	 use	 TensorFlow	 with	 C++,	 Java,	 Julia,	 Go,	 R,	 and	 more.



TensorFlow	includes	two	relatively	high-level	abstraction	modules	called
layers	 and	 datasets.	 The	 Layers	module	 provides	methods	 that	 simplify
the	creation	of	fully	connected	layers,	convolutional	layers,	pooling	layers,
and	 more.	 It	 also	 provides	 methods	 like	 adding	 activation	 functions	 or
applying	dropout	regularization.	The	Datasets	module	includes	capabilities
to	manage	your	datasets.
Higher-level	APIs	 (like	Keras	 or	Estimators)	 are	 easier	 to	 use,	 and	 they
provide	 the	 same	 functionality	 of	 these	 lower-level	modules.	 Lastly,	we
should	mention	that	TensorFlow	includes	some	pre-trained	models	out	of
the	box.

Core	components
To	 understand	 the	 core	 architecture	 of	 the	 TensorFlow	 framework,	 we
introduce	 some	 basic	 concepts.	 First,	 let’s	 begin	 with	 a	 fundamental
design	 principle	 of	 TensorFlow:	 TensorFlow	 is	 designed	 to	 work	 with
“static	graphs”.	The	computational	flow	of	your	model	will	be	converted
to	a	graphical	representation	in	the	framework	before	execution.	The	static
graph	 in	 TensorFlow	 is	 the	 computational	 graph	 and	 not	 the	 data.	 This
means	 that	 before	 you	 run	 the	 code,	 you	must	 define	 the	 computational
flow	of	your	data.	After	that,	all	of	the	data	that	is	fed	to	the	system	will
flow	through	this	computational	graph,	even	if	the	data	changes	from	time
to	time.
Let’s	start	with	the	basic	concepts	of	the	framework.	The	first	concept	you
have	 to	understand	 is	 the	“tensor”	which	 is	also	 included	 in	 the	name	of
the	framework.	Tensors	are	the	units	that	hold	the	data.	You	can	think	of
tensors	as	NumPy	n-dimensional	arrays.	The	rank	of	the	tensor	defines	the
dimension,	and	the	shape	defines	the	lengths	of	each	dimension	in	a	tuple
form.	So	[	[1.0,	2.0,	3.0],	[4.0,	5.0,	6.0]	]

is	a	tensor	that	has	rank	2	and	shape	(2,3).
Another	 crucial	 concept	 of	 TensorFlow	 is	 the	 “directed	 graph”,	 which
contains	operations	and	 tensors.	 In	 this	graph,	operations	are	 represented
as	nodes;	tensors	are	represented	as	edges.	Operations	take	tensors	as	input
and	produces	tensors	as	output.	Let’s	give	a	simple	example	here:	#	first,



we	have	to	import	tensorflow
Import	tensorflow	as	tf
#	constants	are	the	most	basic	type	of	operations
x	=	tf.constant(1.0,	dtype	=	tf.float32)
y	=	tf.constant(2.0,	dtype	=	tf.float32)
z	=	x	+	y

In	 the	 code	 above,	 we	 define	 two	 tensors	 x	 and	 y	 by	 the	 tf.constant
operation.	 This	 operation	 takes	 1.0	 and	 2.0	 as	 inputs	 and	 just	 produces
their	tensor	equivalents	and	nothing	more.	Then	using	x	and	y,	we	created
another	tensor	called	z.	Now,	what	do	you	expect	from	this	code	below?
print(z)

You	 are	 incorrect	 if	 you	 expect	 to	 see	 3.0.	 Instead,	 you	 just	 see:
Tensor(“add:0”,	shape=(),	dtype=float32)

Defining	graphs	 is	different	 than	executing	 the	statements.	For	now,	z	 is
just	a	tensor	object	and	has	no	value	associated	to	it.	We	somehow	need	to
run	 the	 graph	 so	 that	 we	 can	 get	 3.0	 from	 the	 tensor	 z.	 This	 is	 where
another	concept	in	the	TensorFlow	comes	in:	the	session.
Sessions	 in	TensorFlow	are	 the	objects	 that	hold	 the	state	of	 the	runtime
where	 our	 graph	will	 be	 executed.	We	 need	 to	 instantiate	 a	 session	 and
then	run	the	operations	we	have	already	defined:	sess	=	tf.Session()

The	code	above	instantiates	the	session	object.	Now,	using	that	object,	we
can	run	our	operations:	print(sess.run(z))

and	 we	 get	 3.0	 from	 the	 print	 statement!	 When	 we	 run	 an	 operation
(namely	a	node	 in	 the	graph),	 the	TensorFlow	executes	 it	 by	calculating
the	 tensors	 that	 our	 operation	 takes	 as	 input.	 This	 involves	 a	 backward
calculation	of	the	nodes	and	tensors,	until	it	reaches	a	natural	starting	point
–	just	like	in	our	tf.constant	operations	above.
As	you	have	already	noticed,	 tf.constant	simply	provides	constants	as	an



operation;	 it	 may	 not	 be	 suitable	 to	 work	 with	 external	 data.	 For	 these
kinds	 of	 situations,	 TensorFlow	 provides	 another	 object	 called	 the
placeholder.	You	can	think	of	placeholders	as	arguments	to	a	function.	It
is	something	 that	you’ll	provide	 later	on	 in	your	code!	For	example:	k	=
tf.placeholder(tf.float32)
l	=	tf.placeholder(tf.float32)
m	=	k	+	l

This	time	we	define	k	and	l	as	placeholders;	we	will	assign	some	values	to
them	 when	 we	 run	 them	 in	 the	 session.	 Using	 the	 session	 above:
print(sess.run(m,	feed_dict={k	=	1.0,	l	=	2.0}))

will	print	3.0.	Here	we	used	feed_dict	object,	which	is	a	dictionary	used	to
pass	values	to	the	placeholders.	Effectively,	we	pass	1.0	and	2.0	to	k	and	l
placeholders,	respectively,	in	the	runtime.	You	can	also	use	the	feed_dict
parameter	of	the	run	method	of	session	to	update	values	of	the	tf.constants.
We	 have	 seen	 that	 constants	 and	 placeholders	 are	 useful	 TensorFlow
constructs	 to	 store	 values.	 Another	 useful	 construct	 is	 the	 TensorFlow
variable.	 One	 can	 think	 of	 a	 variable	 as	 something	 that	 lies	 between
constants	 and	 placeholders.	 Like	 placeholders,	 variables	 do	 not	 have	 an
assigned	 value.	 However,	 much	 like	 constants,	 they	 can	 have	 default
values.	Here	is	an	example	of	a	TensorFlow	variable:	v=		tf.Variable([0],
tf.float32)

In	 the	 above	 line,	 we	 define	 a	 TensorFlow	 variable	 called	 v	 and	 set	 its
default	value	as	0.	When	we	want	to	assign	some	value	different	than	the
default	one,	we	can	use	the	tf.assign	method:	w=		tf.assign(v,	[-1.])

It	 is	 crucial	 to	 know	 that	 TensorFlow	 variables	 are	 not	 initialized	when
defined.	Instead,	we	need	to	initialize	them	in	the	session	like	this:	init	=
tf.global_variables_initializer()
sess.run(init)

The	 code	 above	 initializes	 all	 the	 variables!	 As	 a	 rule	 of	 thumb,	 you



should	use	 tf.constant	 to	define	constants,	 tf.placeholder	 to	hold	 the	data
fed	 to	 your	 model,	 and	 tf.Variable	 to	 represent	 the	 parameters	 for	 your
model.
Now	 that	 we	 have	 learned	 the	 basic	 concepts	 of	 TensorFlow	 and
demonstrated	how	to	use	them,	you	are	all	set	to	use	TensorFlow	to	build
your	own	models.

TensorFlow	in	action
We’ll	 begin	 our	 TensorFlow	 exercises	 by	 implementing	 a	 DL
classification	model,	utilizing	the	elements	of	TensorFlow	we	covered	in
the	last	section.
The	 datasets	 we	 use	 to	 demonstrate	 TensorFlow	 are	 the	 same	 synthetic
datasets	we	used	 in	 the	 previous	 section.	We	use	 them	 for	 classification
and	regression	purposes	in	this	chapter.	Remember	that	those	datasets–as
well	as	the	codes	we	go	over	in	this	section–are	already	provided	with	the
Docker	image	distributed	with	this	book.	You	can	run	that	Docker	image
to	access	the	datasets	and	the	source	codes	of	this	chapter.

Classification
Before	 we	 begin	 to	 implement	 our	 classifier,	 we	 need	 to	 import	 some
libraries	 to	 use	 them.	 Here	 are	 the	 libraries	 we	 need	 to	 import:	 import
numpy	as	np
import	pandas	as	pd
import	tensorflow	as	tf
from	sklearn.model_selection	import	train_test_split

First,	we	should	 load	 the	dataset	and	do	a	bit	of	preprocessing	 to	 format
the	 data	we’ll	 use	 in	 our	model.	As	 usual,	we	 load	 the	 data	 as	 a	 list:	 #
import	the	data
with	open(“../data/data1.csv”)	as	f:
				data_raw	=	f.read()
				#	split	the	data	into	separate	lines
				lines	=	data_raw.splitlines()



Then,	 we	 separate	 the	 labels	 and	 the	 three	 features	 into	 lists,	 called
“labels”	and	“features”:	labels	=	[]
features	=	[]
for	line	in	lines:
				tokens	=	line.split(‘,’)
				labels.append(int(tokens[-1]))
				x1,x2,x3	=	float(tokens[0]),	float(tokens[1]),	float(tokens[2])
features.append([x1,	x2,	x3])

Next,	 we	 make	 dummy	 variables	 of	 the	 three	 label	 categories,	 using
Pandas’	 get_dummies	 function:	 labels	 =
pd.get_dummies(pd.Series(labels))

After	 this,	 the	 labels	 list	 should	 look	 like	 this:	

The	next	step	is	to	split	our	data	into	train	and	test	sets.	For	this	purpose,
we	use	the	scikit-learn’s	train_test_split	function	that	we	imported	before:
X_train,	 X_test,	 y_train,	 y_test	 =	 train_test_split(features,	 \	 labels,
test_size=0.2,	random_state=42)

We’re	 now	 ready	 to	 build	 up	 our	 model	 using	 TensorFlow.	 First,	 we
define	 the	 hyperparameters	 of	 the	 model	 that	 are	 related	 with	 the
optimization	process:	#	Parameters	



learning_rate	=	0.1	
epoch	=	10

Next,	we	define	the	hyperparameters	that	are	related	with	the	structure	of
the	model:	#	Network	Parameters	
n_hidden_1	=	16	#	1st	layer	number	of	neurons	
n_hidden_2	=	16	#	2nd	layer	number	of	neurons	
num_input	=	3	#	data	input		
num_classes	=	3	#	total	classes

Then	we	need	the	placeholders	to	store	our	data:	#	tf	Graph	input
X	=	tf.placeholder(“float”,	[None,	num_input])
Y	=	tf.placeholder(“float”,	[None,	num_classes])

We	 will	 store	 the	 model	 parameters	 in	 two	 dictionaries:	 #	 weights	 and
biases	
weights	=	{	
				‘h1’:	tf.Variable(tf.random_normal([num_input,n_hidden_1])),
‘h2’:	tf.Variable(tf.random_normal([n_hidden_1,n_hidden_2])),
‘out’:	tf.Variable(tf.random_normal([n_hidden_2,	\
								num_classes]))	

}	

biases	=	{	
				‘b1’:	tf.Variable(tf.random_normal([n_hidden_1])),
‘b2’:	tf.Variable(tf.random_normal([n_hidden_2])),
‘out’:	tf.Variable(tf.random_normal([num_classes]))	}	

We	can	now	define	our	graph	 in	TensorFlow.	To	 that	end,	we	provide	a
function:	#	Create	model	
def	neural_net(x):	
				#	Hidden	fully	connected	layer	with	16	neurons	
				layer_1	=	tf.nn.relu(tf.add(tf.matmul(x,	weights[‘h1’]),



\		biases[‘b1’]))	#	Hidden	fully	connected	layer	with	16	neurons	
				layer_2	=	tf.nn.relu(tf.add(tf.matmul(layer_1,	\	weights[‘h2’]),
biases[‘b2’]))	#	Output	fully	connected	layer	with	a	neuron	for	each	class
out_layer	=	tf.add(tf.matmul(layer_2,	weights[‘out’]),	\				biases[‘out’])	#
For	visualization	in	TensorBoard	
				tf.summary.histogram(‘output_layer’,	out_layer)	
				return	out_layer

This	function	takes	the	input	data	as	an	argument.	Using	this	data,	it	first
constructs	a	hidden	layer.	In	this	layer,	each	input	data	point	is	multiplied
by	 the	weights	 of	 the	 first	 layer,	 and	 added	 to	 the	bias	 terms.	Using	 the
output	 of	 this	 layer,	 the	 function	 constructs	 another	 hidden	 layer.
Similarly,	this	second	layer	multiplies	the	output	of	the	first	layer	with	the
weights	of	its	own	and	adds	the	result	to	the	bias	term.	Then	the	output	of
the	second	layer	is	fed	into	the	last	layer	which	is	the	output	layer	of	the
neural	 network.	 The	 output	 layer	 does	 the	 same	 thing	 as	 the	 previous
layers.	As	a	result,	the	function	we	define	just	returns	the	output	of	the	last
layer.
After	this,	we	can	define	our	loss	function,	optimization	algorithm,	and	the
metric	we	will	use	to	evaluate	our	model:	#	Construct	model	
logits	=	neural_net(X)	
		
#	Define	loss	and	optimizer	
loss_op	=	tf.losses.softmax_cross_entropy(logits=logits,	\	
	onehot_labels=Y)	
#	For	visualization	in	TensorBoard	
tf.summary.scalar(‘loss_value’,	loss_op)	
optimizer	=	tf.train.AdamOptimizer(learning_rate=learning_rate)
train_op	=	optimizer.minimize(loss_op)	
		
#	Evaluate	model	with	test	logits	
correct_pred	=	tf.equal(tf.argmax(logits,	1),	tf.argmax(Y,	1))	accuracy
=	tf.reduce_mean(tf.cast(correct_pred,	tf.float32))	#	For	visualization
in	TensorBoard	
tf.summary.scalar(‘accuracy’,	accuracy)	
		



#For	TensorBoard	
merged	=	tf.summary.merge_all()	
train_writer	=	tf.summary.FileWriter(“events”)	
#	Initialize	the	variables	(assign	their	default	value)
init	=	tf.global_variables_initializer()

As	 our	 loss	 function,	we	 use	 the	 cross-entropy	 loss	with	 softmax.	Apart
from	this,	 there	are	other	 loss	functions	 that	are	pre-built	 in	TensorFlow.
Some	 of	 them	 are:	 softmax,	 tanh,	 log_softmax,	 and
weighted_cross_entropy_with_logits.
Adam	 is	one	of	 the	most	 commonly	used	optimization	algorithms	 in	 the
machine	 learning	 community.	 Some	 other	 optimizers	 available	 in
TensorFlow	 are:	 GradientDescentOptimizer,	 AdadeltaOptimizer,
AdagradOptimizer,	 MomentumOptimizer,	 FtrlOptimizer,	 and
RMSPropOptimizer.
Accuracy	is	our	evaluation	metric,	as	usual.
Now	it’s	time	to	train	our	model!
with	tf.Session()	as	sess:	
		
				#	Run	the	initializer	
				sess.run(init)	
				#	For	visualization	of	the	graph	in	TensorBoard	
				train_writer.add_graph(sess.graph)	
				for	step	in	range(0,	epoch):	
								#	Run	optimization	
								sess.run(train_op,	feed_dict={X:	X_train,	Y:	y_train})	#	Calculate
loss	and	accuracy	
								summary,	loss,	acc	=	sess.run([merged,	loss_op,	\	
											accuracy],	feed_dict={X:	X_train,	Y:	y_train})	#	Add	summary
events	for	TensorBoard	
								train_writer.add_summary(summary,step)	
								print(“Step	“	+	str(step)	+	“,	Loss=	“	+	\	
														“{:.4f}”.format(loss)	+	“,	Training	Accuracy=	“+	\	
														“{:.3f}”.format(acc))	
		
				print(“Optimization	Finished!”)	



		
				#	Calculate	test	accuracy					
				acc	=	sess.run(accuracy,	feed_dict={X:	X_test,	Y:	y_test})
print(“Testing	Accuracy:”,	acc)	
					
				#	close	the	FileWriter	
				train_writer.close()

After	 several	 iterations,	you	should	 see	an	output	 similar	 to	 this:	Step	0,
Loss=	0.4989,	Training	Accuracy=	0.821	
Step	1,	Loss=	0.2737,	Training	Accuracy=	0.898	
Step	2,	Loss=	0.2913,	Training	Accuracy=	0.873	
Step	3,	Loss=	0.3024,	Training	Accuracy=	0.864	
Step	4,	Loss=	0.2313,	Training	Accuracy=	0.892	
Step	5,	Loss=	0.1640,	Training	Accuracy=	0.933	
Step	6,	Loss=	0.1607,	Training	Accuracy=	0.943	
Step	7,	Loss=	0.1684,	Training	Accuracy=	0.938	
Step	8,	Loss=	0.1537,	Training	Accuracy=	0.944	
Step	9,	Loss=	0.1242,	Training	Accuracy=	0.956	
Optimization	Finished!	
Testing	Accuracy:	0.95476	

Regression
Although	 today’s	 deep	 learning	 applications	 are	 quite	 successful	 in
challenging	 classification	 tasks,	 TensorFlow	 also	 enables	 us	 to	 build
regression	models	in	almost	the	same	manner.	In	this	section,	we’ll	show
you	how	to	predict	a	continuous	outcome	variable	using	regression.
It	 is	 critical	 to	 choose	 a	 different	 loss	 function	 than	 we	 used	 in	 the
classification	model	–	one	that	is	more	suitable	to	a	regression	task.	We’ll
choose	the	L2	metric,	as	it	is	one	of	the	most	popular	metrics	in	regression
analysis.	 In	 terms	 of	 evaluation,	 we’ll	 use	 R-squared	 to	 assess	 the
performance	of	our	model	in	the	test	set.
We	import	the	same	libraries	that	we	imported	for	the	classification	task:
import	numpy	as	np
import	pandas	as	pd



import	tensorflow	as	tf
from	sklearn.model_selection	import	train_test_split

The	dataset	we	use	is	the	same	synthetic	set	provided,	with	20	features	and
1	 outcome	 variable.	 Below,	 we	 load	 the	 dataset	 and	 do	 some
preprocessing	to	format	the	data	we’ll	use	in	our	model:	import	the	data
with	open(“../data/data2.csv”)	as	f:
				data_raw	=	f.read()
				#	split	the	data	into	separate	lines
				lines	=	data_raw.splitlines()

Instead	 of	 calling	 the	 outcome	 variable	 as	 “labels”,	 we	 prefer	 to	 call	 it
“outcomes”	 in	 this	 case	 as	 this	 seems	 more	 appropriate	 for	 regression
models.	As	usual,	we	separate	20%	of	our	dataset	as	our	test	data.
outcomes	=	[]
features	=	[]
for	line	in	lines:
				tokens	=	line.split(‘,’)
				outcomes.append(float(tokens[-1]))
				features.append([float(x)	for	x	in	tokens[:-1]])
X_train,	X_test,	y_train,	y_test	=	train_test_split(features,	\	outcomes,
test_size=0.2,	random_state=42)

We	 can	 now	 set	 the	 hyperparameters	 of	 the	 model	 regarding	 the
optimization	process,	and	define	the	structure	of	our	model:	#	Parameters	
learning_rate	=	0.1	
epoch	=	500	
	
#	Network	Parameters	
n_hidden_1	=	64	#	1st	layer	number	of	neurons	
n_hidden_2	=	64	#	2nd	layer	number	of	neurons	
num_input	=	20	#	data	input	
num_classes	=	1	#	total	classes	
	
#	tf	Graph	input	



X	=	tf.placeholder(“float”,	[None,	num_input])	
Y	=	tf.placeholder(“float”,	[None,	num_classes])

This	time,	our	outcome	is	single-value	in	nature,	and	we	have	20	features.
We	 set	 the	 relevant	 parameters	 accordingly,	 above.	 Next,	 we	 store	 the
model	parameters	in	two	dictionaries	as	we	did	in	the	classification	case:	#
weights	&	biases	
weights	=	{	
				‘h1’:	tf.Variable(tf.random_normal([num_input,n_hidden_1])),
‘h2’:	tf.Variable(tf.random_normal([n_hidden_1,n_hidden_2])),
‘out’:	tf.Variable(tf.random_normal([n_hidden_2,	\	
								num_classes]))	

}	

biases	=	{	
				‘b1’:	tf.Variable(tf.random_normal([n_hidden_1])),
‘b2’:	tf.Variable(tf.random_normal([n_hidden_2])),
‘out’:	tf.Variable(tf.random_normal([num_classes]))	}

It’s	 time	 to	 define	 the	 structure	 of	 our	model.	 The	 graph	 is	 exactly	 the
same	as	the	graph	of	the	classification	model	we	used	in	the	previous	part:
#	Create	model	
def	neural_net(x):	
				#	Hidden	fully	connected	layer	with	64	neurons	
				layer_1	=	tf.add(tf.matmul(x,	weights[‘h1’]),	biases[‘b1’])	#	Hidden
fully	connected	layer	with	64	neurons	
				layer_2	=	tf.add(tf.matmul(layer_1,	weights[‘h2’]),	\	
					biases[‘b2’])	
				#	Output	fully	connected	layer	
				out_layer	=	tf.matmul(layer_2,	weights[‘out’])	\							+	biases[‘out’]	
				return	out_layer	

The	difference	between	the	classification	model	and	the	regression	model
is	 that	 the	 latter	 uses	 the	L2	 loss	 as	 a	 loss	 function.	This	 is	 because	 the



outcome	 of	 the	 regression	model	 is	 continuous;	 as	 such,	we	must	 use	 a
loss	function	that	is	capable	of	handling	continues	loss	values.	We	also	use
the	Adam	optimization	algorithm	in	this	regression	model.
#	Construct	model	
output	=	neural_net(X)	
		
#	Define	loss	and	optimizer	
loss_op	=	tf.nn.l2_loss(tf.subtract(Y,	output))	
optimizer	=	tf.train.AdamOptimizer(learning_rate=learning_rate)
train_op	=	optimizer.minimize(loss_op)

Another	difference	between	our	classification	and	regression	models	is	the
metric	we	use	to	evaluate	our	model.	For	regression	models,	we	prefer	to
use	 the	R-squared	metric;	 it	 is	 one	of	 the	most	 common	metrics	used	 to
assess	 the	performance	of	 regression	models:	#	Evaluate	model	using	R-
squared	
	
total_error	=	tf.reduce_sum(tf.square(tf.subtract(Y,	\		
				tf.reduce_mean(Y))))	
	
unexplained_error	=	tf.reduce_sum(tf.square(tf.subtract(Y,	\	
				output)))	
	
R_squared	=	tf.subtract(1.0,tf.div(unexplained_error,	\		
				total_error))	
	
#	Initialize	the	variables	(assign	their	default	values)
init	=	tf.global_variables_initializer()

We	are	all	set	to	train	our	model:
#	Start	training	
with	tf.Session()	as	sess:	
	
				#	Run	the	initializer	
				sess.run(init)	
	



				for	step	in	range(0,	epoch):	
								#	Run	optimization	
								sess.run(train_op,feed_dict=	\	
											{X:	X_train,	\	
												Y:np.array(y_train).reshape(200000,1)})	
	
								#	Calculate	batch	loss	and	accuracy	
								loss,	r_sq	=	sess.run([loss_op,	R_squared],	\	
												feed_dict={X:	X_train,	\	
																							Y:	np.array(y_train).reshape(200000,1)})
								print(“Step	“	+	str(step)	+	“,	L2	Loss=	“	+	\	
														“{:.4f}”.format(loss)	+	“,	Training	R-squared=	“	\	
																+	“{:.3f}”.format(r_sq))	
	
				print(“Optimization	Finished!”)	
	
				#	Calculate	accuracy	for	MNIST	test	images	
				print(“Testing	R-squared:”,	\	
								sess.run(R_squared,	feed_dict={X:	X_test,	\	
																	Y:	np.array(y_test).reshape(50000,1)}))

The	 outcome	 of	 the	 model	 should	 look	 like	 this:	 Step	 497,	 L2	 Loss=
81350.7812,	Training	R-squared=	0.992
Step	498,	L2	Loss=	81342.4219,	Training	R-squared=	0.992
Step	499,	L2	Loss=	81334.3047,	Training	R-squared=	0.992
Optimization	Finished!
Testing	R-squared:	0.99210745



Visualization	in	TensorFlow:	TensorBoard
Visualization	of	your	model’s	results	is

useful	method	for	investigation,
understanding,	and	debugging	purposes.

To	this	end,	TensorFlow	offers	a
visualization	library	called	TensorBoard;
with	that	library,	you	can	visualize	your
models	and	their	outcomes.	TensorBoard
comes	with	TensorFlow;	once	you	install

TensorFlow	on	your	machine,	TensorBoard
should	be	present.

TensorBoard	 reads	 event	 files	 containing	 the	 summary	 data	 of	 the
TensorFlow	 model.	 To	 generate	 summary	 data,	 TensorFlow	 provides
some	 functions	 in	 the	 summary	module.	 In	 this	module,	 there	 are	 some
functions	that	operate	just	like	the	operations	in	TensorFlow.	This	means
that	 we	 can	 use	 tensors	 and	 operations	 as	 input	 for	 these	 summary
operations.
In	 the	 classification	 example,	 we	 actually	 used	 some	 of	 these
functionalities.	Here	 is	 a	 summary	of	 the	operations	 that	we	used	 in	our
example:	tf.summary.scalar:	If	we	want	data	about	how	a	scalar	evolves	in
time	(like	our	loss	function),	we	can	use	the	loss	function	node	as	an	input
for	 the	 tf.summary.scalar	 function—right	 after	 we	 define	 the	 loss,	 as
shown	 in	 the	 following	 example:	 loss_op	 =
tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
logits=logits,	labels=Y))
tf.summary.scalar(‘loss_value’,	loss_op)

tf.summary.histogram:	We	may	 also	 be	 interested	 in	 the	 distributions	 of
some	variables,	like	the	results	of	a	matrix	multiplication.	In	this	case	we
use	 tf.summary.histogram,	 as	 follows:	 out_layer	 =	 tf.matmul(layer_2,
weights[‘out’])	+	biases[‘out’]



tf.summary.histogram(‘output_layer’,	out_layer)

tf.summary.merge_all:	 Summary	 nodes	 do	 not	 alter	 the	 graph	 of	 the
model,	 but	 we	 need	 them	 to	 run	 our	 summary	 operations.	 The
tf.summary.merge_all	 function	merges	 all	 of	 our	 summary	operations	 so
that	we	do	not	need	to	run	each	operation	one	by	one.
tf.summary.FileWriter:	This	function	is	used	to	store	the	summary	(which
was	generated	using	the	tf.summary.merge_all	function)	to	the	disk.	Here
is	an	example	of	how	to	do	that:	merged	=	tf.summary.merge_all()
train_writer	=	tf.summary.FileWriter(“events”)

Once	we	define	our	file	writers,	we	also	need	to	initialize	them	inside	the
session:	train_writer.add_graph(sess.graph)

After	we	 integrate	 summary	 functions	 to	 our	 code,	we	 should	write	 the
summaries	 to	 the	 files	 and	 visualize	 them.	When	we	 run	 our	model,	we
also	 receive	 the	 summaries:	 summary,	 loss,	 acc	 =	 sess.run([merged,
loss_op,	accuracy],	feed_dict={X:	batch_x,	Y:	batch_y})

After	 that	 we	 add	 the	 summary	 to	 our	 summary	 file:
train_writer.add_summary(summary,step)

Last,	we	close	the	FileWriter:
train_writer.close()

Next,	we	can	visualize	the	summaries	in	the	browser.	To	do	that,	we	need
to	run	the	following	command:	tensorboard	—logdir=path/to/log-directory

where	 the	 log-directory	 refers	 to	 the	 directory	 where	 we	 saved	 our
summary	 files.	 When	 you	 open	 localhost:6006	 in	 your	 browser,	 you
should	see	the	dashboard	with	the	summaries	of	your	model,	similar	to	the
one	in	Figure	4.





High	level	APIs	in	TensorFlow:	Estimators
So	far,	we’ve	discussed	the	low-level

structures	of	TensorFlow.	We	saw	that	we
must	build	our	own	graph	and	keep	track	of
the	session.	However,	TensorFlow	also

provides	a	high-level	API,	where	the	tedious
works	are	handled	automatically.	This	high-

level	API	is	called	“Estimators”.
Estimators	 API	 also	 provides	 pre-made	 estimators.	 You	 can	 use	 these
estimators	 quickly,	 and	 customize	 them	 if	 needed.	Here	 are	 some	of	 the
advantages	of	this	API,	with	respect	to	the	low-level	APIs	of	TensorFlow:

With	fewer	lines	of	codes,	you	can	implement	the	same	model.
Building	the	graph,	opening	and	closing	the	session,	and
initializing	the	variables	are	all	handled	automatically.
The	same	code	runs	in	CPU,	GPU,	or	TPU.
Parallel	computing	is	supported.	As	such,	if	multiple	servers	are
available,	the	code	you	write	on	this	API	can	be	run	without	any
modification	of	the	code	you	run	on	your	local	machine.
Summaries	of	the	models	are	automatically	saved	for	TensorBoard.

When	you	are	writing	your	code	using	this	API,	you	basically	follow	four
steps:

1.	 Reading	the	dataset.
2.	 Defining	the	feature	columns.
3.	 Setting	up	a	pre-defined	estimator.
4.	 Training	and	evaluating	the	estimator.



Now	we	will	demonstrate	each	of	these	steps	using	our	synthetic	data	for
classification.	First,	we	read	the	data	from	our	.csv	file,	as	usual:	#	import
the	data
with	open(“../data/data1.csv”)	as	f:
				data_raw	=	f.read()
				lines	=	data_raw.splitlines()	#	split	the	data	into	separate	lines	labels	=
[]
x1	=	[]
x2	=	[]
x3	=	[]
for	line	in	lines:
				tokens	=	line.split(‘,’)
				labels.append(int(tokens[-1])-1)
				x1.append(float(tokens[0]))
				x2.append(float(tokens[1]))
				x3.append(float(tokens[2]))
features	=	np.array([x1,x2,x3]).reshape(250000,3)
labels	=	np.array(pd.Series(labels))
																		
X_train,	X_test,	y_train,	y_test	=	train_test_split(features,	labels,
test_size=0.2,	random_state=42)

Second,	we	write	a	function	that	converts	our	features	to	a	dictionary,	and
returns	the	features	and	labels	for	the	model:	def	inputs(features,labels):
				features	=	{‘x1’:	features[:,0],
																‘x2’:	features[:,1],
																‘x3’:	features[:,2]}
				labels	=	labels
				return	features,	labels

Third,	we	write	a	function	that	transforms	our	data	into	a	DataSet	object:
def	train_input_fn(features,	labels,	batch_size):
				#	Convert	the	inputs	to	a	Dataset.
				dataset	=	tf.data.Dataset.from_tensor_slices((dict(features),	labels))	#
Shuffle,	repeat,	and	batch	the	examples.
				return	dataset.shuffle(1000).repeat().batch(batch_size)



Defining	our	feature	columns	only	requires	a	few	lines	of	code:	#	Feature
columns	describe	how	to	use	the	input.
my_feature_columns	=	[]
for	key	in	[‘x1’,’x2’,’x3’]:
				my_feature_columns.append(tf.feature_column.numeric_column(key
=key))

Before	we	run	our	model,	we	should	select	a	pre-defined	estimator	that	is
suitable	 for	our	needs.	Since	our	 task	 is	classification,	we	use	 two	 fully-
connected	 layers,	 as	 we	 did	 previously.	 For	 this,	 the	 estimator’s	 API
provides	a	classifier	called	DNNClassifier:	#	Build	a	DNN	with	2	hidden
layers	and	256	nodes	in	each	hidden	layer.
classifier	=	tf.estimator.DNNClassifier(
				feature_columns=my_feature_columns,
				#	Two	hidden	layers	of	256	nodes	each.
				hidden_units=[256,	256],
				#	The	model	must	choose	between	3	classes.
				n_classes=3,
				optimizer=tf.train.AdamOptimizer(
						learning_rate=0.1
				))

As	before,	we	defined	 two	dense	 layers	of	 size	256,	we	 set	 the	 learning
rate	to	0.1,	and	we	set	the	number	of	classes	to	3.
Now,	we	are	ready	to	train	and	evaluate	our	model.	Training	is	as	simple
as:	 classifier.train(input_fn=lambda:train_input_fn(inputs(X_train,y_train)
[0],	 inputs(X_train,y_train)[1],	64),	steps=500)	We	provided	 the	 function
that	we	wrote	above,	which	returns	the	DataSet	object	for	the	model	as	an
argument	 to	 the	 train()	 function.	 We	 also	 set	 training	 steps	 to	 500,	 as
usual.	 When	 you	 run	 the	 code	 above,	 you	 should	 see	 something	 like:
INFO:tensorflow:loss	 =	 43.874107,	 step	 =	 401	 (0.232	 sec)
INFO:tensorflow:Saving	 checkpoints	 for	 500	 into
tmptmp8xv6svzr/model.ckpt.
INFO:tensorflow:Loss	for	final	step:	34.409817.



<tensorflow.python.estimator.canned.dnn.DNNClassifier	at
0x7ff14f59b2b0>

After	this,	we	can	evaluate	the	performance	of	our	model	in	our	test	set:	#
Evaluate	the	model.
eval_result	=	classifier.evaluate(
				input_fn=lambda:train_input_fn(inputs(X_test,y_test)[0],
inputs(X_test,y_test)[1],	64),	steps=1)	print(‘Test	set	accuracy:
{accuracy:0.3f}\n’.format(**eval_result))

The	output	should	look	like	this:
INFO:tensorflow:Starting	evaluation	at	2018-04-07-12:11:21
INFO:tensorflow:Restoring	parameters	from
tmptmp8xv6svzr/model.ckpt-500
INFO:tensorflow:Evaluation	[1/1]
INFO:tensorflow:Finished	evaluation	at	2018-04-07-12:11:21
INFO:tensorflow:Saving	dict	for	global	step	500:	accuracy	=	0.828125,
average_loss	=	0.6096449,	global_step	=	500,	loss	=	39.017273
Test	set	accuracy:	0.828

Summary

TensorFlow	is	a	deep	learning	framework	initially	developed	by
Google	and	now	backed	by	a	huge	open	source	community.
TensorFlow	is	by	far	the	most	popular	deep	learning	framework.
Even	if	you	choose	to	use	other	frameworks,	learning	the	basics	of
TensorFlow	is	beneficial;	many	of	the	codes	you’ll	encounter	that
are	written	by	others	will	likely	be	written	in	TensorFlow.
TensorFlow	supports	distributed	computing	by	nature.
TensorFlow	models	can	be	run	on	CPUs,	GPUs,	and	TPUs.
You	can	write	TensorFlow	code	in	Python,	Java,	Julia,	C++,	R,	and
more.
Although	you	can	use	low-level	structures	of	TensorFlow,	there	are



also	many	high-level	APIs	that	simplify	the	model	building
process.

You	can	also	use	Keras	on	top	of	Theano	or	CNTK,	but	using	it	on	top	of	TensorFlow	is	by	far	the
most	common	usage	in	the	industry.



CHAPTER	5

Building	a	DL	Network	Using	Keras
Now	that	you	understand	the	basics
of	the	TensorFlow	framework,	we’ll

explore	another	very	popular
framework	that	is	built	on	top	of
TensorFlow:	Keras.	Keras	is	a

framework	that	reduces	the	lines	of
code	you	need	to	write	by	means	of
its	abstraction	layers.	It	provides	a
simple	yet	powerful	API	that	almost

anyone	can	implement	even	a
complicated	DL	models	with	just	a

few	lines	of	code.
Our	advice	 is	 to	use	Keras	 if	you	are	new	 to	DL,	as	you	can	 implement
almost	 anything	 just	 using	 Keras.	 Nevertheless,	 being	 familiar	 with
TensorFlow	 is	 also	 beneficial.	 You’ll	 likely	 encounter	 models	 that	 are
written	 in	TensorFlow,	and	 to	understand	 them	you’ll	need	a	good	grasp
of	TensorFlow.	This	is	one	of	the	reasons	why	we	introduced	TensorFlow
before	 Keras.	 The	 other	 reason	 is	 that	 we	 can	 now	 appreciate	 the
simplicity	Keras	brings	to	the	table,	compared	to	TensorFlow!
We	cover	the	basic	structures	in	Keras,	and	show	how	you	can	implement
DL	 models	 in	 Keras	 using	 our	 synthetic	 dataset.	 Next,	 we	 explore	 the



visualization	 capabilities	 of	 the	 framework.	 Then,	 we	 show	 you	 how	 to
transform	your	models	written	in	Keras	into	TensorFlow	estimators.
Keras	sits	on	top	of	a	backend	engine	which	is	either	TensorFlow,	Theano,
or	CNTK.	So,	before	installing	Keras,	one	should	first	install	one	of	these
three	 back	 ends	 that	 Keras	 supports.	 By	 default,	 Keras	 supports	 the
TensorFlow	 backend	 engine.	 Since	 we	 covered	 TensorFlow	 in	 the	 last
chapter,	 we	 assume	 that	 you’ve	 already	 installed	 TensorFlow	 on	 your
system.	 If	not,	 refer	 to	 the	 relevant	section	of	 the	TensorFlow	chapter	 to
install	TensorFlow	first.
After	installing	TensorFlow,	Keras	can	be	installed	via	PyPl.11	Simply	run
this	command:	pip	install	keras

After	 you	 run	 the	 command	 above,	 the	 Keras	 deep	 learning	 framework
should	be	installed	in	your	system.	After	importing	it,	you	can	use	Keras
in	your	Python	code	as	follows:	import	keras

Keras	 abstracts	 away	 the	 low-level	 data	 structures	 of	 TensorFlow,
replacing	them	with	intuitive,	easily	integrated,	and	extensible	structures.
When	 designing	 this	 framework,	 the	 developers	 followed	 these	 guiding
principles:

1.	 User	friendliness:	Keras	makes	human	attention	focus	on	the
model	and	builds	up	the	details	around	this	structure.	In	doing	so,
it	reduces	the	amount	of	work	done	in	common-use	cases	by
providing	relevant	functionality	by	default.

2.	 Modularity:	In	Keras,	we	can	easily	integrate	the	layers,
optimizers,	activation	layers,	and	other	ingredients	of	a	DL
model	together,	as	if	they	were	modules.

3.	 Easy	extensibility:	We	can	create	new	modules	in	Keras	and
integrate	them	to	our	existing	models	quite	easily.	They	can	be
used	as	objects	or	functions.



Core	components
The	basic	component	 in	Keras	 is	called	 the	model.	You	can	 think	of	 the
Keras	model	as	an	abstraction	of	a	deep	learning	model.	When	we	start	to
implement	a	DL	model	in	Keras,	we	usually	begin	by	creating	a	so-called
model	 object.	 Of	 the	 many	 types	 of	 models	 in	 Keras,	 Sequential	 is	 the
simplest	and	the	most	commonly	used.
Another	basic	structure	in	Keras	is	called	the	layer.	Layer	objects	in	Keras
represent	the	actual	layers	in	a	DL	model.	We	can	add	layer	objects	to	our
model	object	by	 just	defining	 the	 type	of	 the	 layer,	 the	number	of	units,
and	 the	 input/output	 sizes.	 The	 most	 commonly	 used	 layer	 type	 is	 the
Dense	layer.
And	that	is	all!	You	might	be	surprised	that	the	authors	forgot	to	mention
some	other	critical	parts	of	the	Keras	framework.	However,	as	you’ll	see
below,	you	can	now	start	to	build	up	your	model	with	what	you’ve	already
learned	so	far!

Keras	in	action
Now	it’s	time	to	see	Keras	in	action.	Remember	that	the	datasets	and	the
codes	examined	in	this	section	are	available	to	you	via	the	Docker	image
provided	with	the	book.
The	 datasets	 used	 to	 demonstrate	 Keras	 are	 the	 same	 synthetic	 datasets
used	in	the	chapter	on	TensorFlow.	We’ll	again	use	them	for	classification
and	regression	purposes.

Classification
Before	 we	 begin	 to	 implement	 our	 classifier,	 we	 need	 to	 import	 some
libraries	 in	 order	 to	 use	 them.	Here	 are	 the	 libraries	we	 need	 to	 import:
import	numpy	as	np
import	pandas	as	pd
from	keras.models	import	Sequential
from	keras.layers	import	Dense
from	keras	import	optimizers



from	sklearn.model_selection	import	train_test_split

First,	we	should	load	the	dataset,	and	do	a	bit	of	pre-processing	to	format
the	 data	we’ll	 use	 in	 our	model.	As	 usual,	we	 load	 the	 data	 as	 a	 list:	 #
import	the	data
with	open(“../data/data1.csv”)	as	f:
																data_raw	=	f.read()
									lines	=	data_raw.splitlines()	#	split	the	data	into	separate	lines

Then,	we	separate	the	labels	and	the	three	features	into	lists,	respectively
called	labels	and	features:	labels	=	[]
features	=	[]
for	line	in	lines:
																	tokens	=	line.split(‘,’)
																	labels.append(int(tokens[-1]))	x1,x2,x3	=	float(tokens[0]),
float(tokens[1]),	float(tokens[2])	features.append([x1,	x2,	x3])

Next,	 we	 make	 dummy	 variables	 of	 the	 three	 label	 categories	 using
Pandas’	 get_dummies	 function:	 labels	 =
pd.get_dummies(pd.Series(labels))

The	next	step	is	to	split	our	data	into	train	and	test	sets.	For	this	purpose,
we	use	the	scikit-learn’s	train_test_split	function	that	we	imported	before:
X_train,	 X_test,	 y_train,	 y_test	 =	 train_test_split(features,	 labels,
test_size=0.2,	random_state=42)

We’re	now	ready	to	build	up	our	model	using	Keras.	We	first	define	our
model	and	then	add	three	layers;	the	first	two	are	the	dense	layers	and	the
third	is	the	output	layer:	model	=	Sequential()
model.add(Dense(units=16,	activation=’relu’,	input_dim=3))
model.add(Dense(units=16,	activation=’relu’))
model.add(Dense(units=3,	activation=‘softmax’))

As	you	can	see,	building	a	graph	in	Keras	is	quite	an	easy	task.	In	the	code



above,	we	 first	 define	 a	model	object	 (which	 is	 sequential,	 in	 this	 case).
Then	we	add	three	fully-connected	layers	(called	dense	layers).
After	we	define	our	model	and	layers,	we	must	choose	our	optimizer	and
compile	our	model.	For	 the	optimizer,	we	use	Adam,	setting	 its	 learning
rate	to	0.1:	sgd	=	optimizers.Adam(lr=0.1)

Then	we	compile	our	model.	In	doing	so,	we	define	our	loss	function	to	be
categorical	crossentropy,	which	is	one	of	the	pre-defined	loss	functions	in
Keras.	For	 the	metric	 to	 evaluate	 the	performance	of	 our	model,	we	use
accuracy,	 as	 usual.	All	 these	 definitions	 can	 be	 implemented	 in	 a	 single
line	 in	 Keras	 as	 seen	 here:
model.compile(loss=’categorical_crossentropy’,		optimizer=sgd,		metrics=
		[‘accuracy’])

Now,	it’s	time	to	train	our	model	in	a	single	line!	We	train	our	models	by
calling	the	fit	function	of	the	model	object.	As	parameters,	we	provide	our
features	and	labels	as	NumPy	arrays—the	batch	size	and	the	epochs.	We
define	 the	 batch	 size	 as	 10.000	 and	 the	 epochs	 as	 5:
model.fit(np.array(X_train),	 np.array(y_train),	 batch_size=10000,	 epochs
=	5)

During	 the	 training	 you	 should	 see	 something	 like	 this	 in	 the	 console:
Epoch	1/5
200000/200000	[==============================]	-	0s	2us/step
-	loss:	0.3671	-	acc:	0.8255
Epoch	2/5
200000/200000	[==============================]	-	0s	2us/step
-	loss:	0.0878	-	acc:	0.9650
Epoch	3/5
200000/200000	[==============================]	-	0s	2us/step
-	loss:	0.0511	-	acc:	0.9790
Epoch	4/5
200000/200000	[==============================]	-	0s	2us/step
-	loss:	0.0409	-	acc:	0.9839
Epoch	5/5



200000/200000	[==============================]	-	0s	2us/step
-	loss:	0.0368	-	acc:	0.9854

Next,	 we	 evaluate	 the	 performance	 of	 the	 model	 in	 our	 test	 data:
loss_and_metrics	 =	 model.evaluate(np.array(X_test),	 np.array(y_test),
batch_size=100)	print(loss_and_metrics)

It	should	print	out:
[0.03417351390561089,	0.9865800099372863]

So	our	model’s	 loss	value	 is	approximately	0.03	and	 the	accuracy	 in	 the
test	set	is	about	0.99!

Regression
In	Keras,	building	regression	models	is	as	simple	as	building	classification
models.	We	first	define	our	models	and	the	layers.	One	thing	to	be	aware
of	is	that	the	output	layer	of	a	regression	model	must	produce	only	a	single
value.
We	 also	 must	 choose	 a	 different	 loss	 function.	 As	 we	 did	 in	 the
TensorFlow	chapter,	we	use	the	L2	metric,	as	it	is	one	of	the	most	popular
metrics	in	regression	analysis.	Finally,	we	evaluate	the	performance	of	our
model	using	R-squared.
Import	the	following	libraries:
import	numpy	as	np
import	pandas	as	pd
from	keras.models	import	Sequential
from	keras.layers	import	Dense
from	keras	import	optimizers
import	keras.backend	as	K
from	sklearn.model_selection	import	train_test_split

We’ll	again	utilize	the	synthetic	dataset	from	the	previous	chapter.	Recall
that	 it	 includes	 20	 features	 and	 1	 outcome	 variable.	Below,	we	 load	 the



dataset	and	pre-process	the	data	into	the	format	we’ll	use	in	our	model:	#
import	the	data
with	open(“../data/data2.csv”)	as	f:
				data_raw	=	f.read()
				lines	=	data_raw.splitlines()	#	split	the	data	into	separate	lines

Instead	of	“label”	we	prefer	to	call	the	target	variable	“outcome,”	as	it	 is
more	appropriate	for	regression	models.	As	usual,	we	separate	20%	of	our
dataset	as	our	test	data.
outcomes	=	[]
features	=	[]
for	line	in	lines:
				tokens	=	line.split(‘,’)
				outcomes.append(float(tokens[-1]))
										features.append([float(x)	for	x	in	tokens[:-1]])
X_train,	X_test,	y_train,	y_test	=	train_test_split(features,	outcomes,
test_size=0.2,	random_state=42)

We	define	our	model	and	the	layers	as	follows:	model	=	Sequential()
model.add(Dense(units=64,	activation=’relu’,	input_dim=20))
model.add(Dense(units=64,	activation=’relu’))
model.add(Dense(units=1,	activation=‘linear’))

This	time,	our	outcome	is	a	single	value	and	we	have	20	features.	So,	we
set	the	relevant	parameters	accordingly.
It’s	 time	 to	compile	our	model.	First,	 though,	we	must	define	a	 function
that	 calculates	 the	 R-squared	 metric.	 Unfortunately,	 as	 of	 this	 writing,
Keras	does	not	provide	a	built-in	R-squared	metric	in	its	package.	As	such,
consider	our	implementation:	def	r2(y_true,	y_pred):
				SS_res	=		K.sum(K.square(y_true	-	y_pred))	SS_tot	=
K.sum(K.square(y_true	-	K.mean(y_true)))	return	(	1	-	SS_res/(SS_tot	+
K.epsilon())	)

After	 that	we	choose	Adam	as	our	optimizer	and	set	 the	 learning	 rate	 to



0.1:	sgd	=	optimizers.Adam(lr=0.1)

Now	we	 can	 compile	 our	model.	We	use	 the	mean-squared	 error	 as	 our
loss	 function,	 and	 we	 feed	 our	 r2()	 function	 to	 the	 model	 as	 a	 metric:
model.compile(optimizer=sgd,
														loss=’mean_squared_error’,
														metrics=[r2])

Training	 a	 model	 is	 quite	 simple	 in	 Keras,	 as	 we	 saw	 earlier	 with
classification.	We	provide	our	features	and	outcomes	as	NumPy	arrays	to
the	fit	function	of	the	model	object.	We	also	set	 the	batch	size	to	10.000
and	 epochs	 to	 10:	 model.fit(np.array(X_train),	 np.array(y_train),
batch_size=10000,	epochs	=	10)

The	outcome	of	the	model	should	look	like	this:	Epoch	1/10
200000/200000	[==============================]	-	1s	5us/step
-	loss:	240.4952	-	r2:	-1.3662
Epoch	2/10
200000/200000	[==============================]	-	0s	2us/step
-	loss:	83.3737	-	r2:	0.1800
Epoch	3/10
200000/200000	[==============================]	-	0s	2us/step
-	loss:	27.3745	-	r2:	0.7308
Epoch	4/10
200000/200000	[==============================]	-	0s	2us/step
-	loss:	5.7173	-	r2:	0.9439
Epoch	5/10
200000/200000	[==============================]	-	0s	2us/step
-	loss:	3.4069	-	r2:	0.9665
Epoch	6/10
200000/200000	[==============================]	-	0s	2us/step
-	loss:	3.0487	-	r2:	0.9700
Epoch	7/10
200000/200000	[==============================]	-	0s	2us/step
-	loss:	2.9293	-	r2:	0.9712



Epoch	8/10
200000/200000	[==============================]	-	0s	2us/step
-	loss:	2.8396	-	r2:	0.9721
Epoch	9/10
200000/200000	[==============================]	-	0s	2us/step
-	loss:	2.7537	-	r2:	0.9729
Epoch	10/10
200000/200000	[==============================]	-	0s	2us/step
-	loss:	2.6688	-	r2:	0.9738

Next	 we	 evaluate	 the	 performance	 of	 our	 model	 on	 the	 test	 data:
loss_and_metrics	 =	 model.evaluate(np.array(X_test),	 np.array(y_test),
batch_size=100)	print(loss_and_metrics)

The	output	should	be	similar	to	this:
50000/50000	[==============================]	-	0s	7us/step
[2.6564363064765932,	0.9742180906534195]

So	our	model	achieves	0.97	R-squared	in	the	test	data.

Model	Summary	and	Visualization	If	you
don’t	need	any	visuals,	Keras	can	easily
provide	a	textual	summary	of	the	layers	of
the	model.	For	this	purpose,	Keras	provides
a	summary()	function.	When	called	from	a
model,	it	returns	the	textual	information
about	the	model.	By	just	printing	the

summary	of	a	model	using	the	code	below,
it	is	possible	to	check	out	the	structure	of

the	model:	print(model.summary())



Depending	 on	 the	 structure	 of	 the	 model,	 the	 output	 should	 look
something	 like	 this:
____________________________________________________________
_____
Layer	(type)																	Output	Shape														Param	#

======================================
===========================

dense_1	(Dense)														(None,	2)																	4
__________________________________________________________
_______
dense_2	(Dense)														(None,	1)																	3

======================================
===========================

Total	params:	7
Trainable	params:	7
Non-trainable	params:	0

Of	course,	visualizations	are	not	only	more	aesthetically	pleasing,	but	also
can	help	you	easily	explain	and	share	your	findings	with	stakeholders	and
team	 members.	 Graphically	 visualizing	 the	 model	 in	 Keras	 is
straightforward.	 A	 module	 named	 keras.utils.vis_utils	 includes	 all	 the
utilities	 for	 visualizing	 the	 graph	 using	 a	 library	 called	 graphviz.
Specifically,	the	plot_model()	function	is	the	basic	tool	for	visualizing	the
model.	 The	 code	 below	 demonstrates	 how	 to	 create	 and	 save	 the	 graph
visualization	for	a	model:	from	keras.utils	import	plot_model
plot_model(model,	to_file	=	“my_model.png”)

Depending	 on	 the	 structure	 of	 the	model,	 the	 png	 file	 should	 contain	 a



graph	 like	 the	 one	 in	 Figure	 5:	

The	plot_model()	function	accepts	two	optional	arguments:

show_shapes:	if	True	the	graph	shows	the	output	shapes.	The
default	setting	is	False.
show_layer_names:	if	True	the	graph	shows	the	names	of	the
layers.	The	default	setting	is	True.



Converting	Keras	models	to	TensorFlow
Estimators	As	we	mentioned	in	the

previous	chapter,	TensorFlow	provides	a
rich	set	of	pre-trained	models	that	you	can
use	without	any	training.	The	Estimators
abstraction	of	TensorFlow	will	allow	you	to
use	these	pre-trained	models.	To	make	full
use	of	this	rich	set	of	models,	it	would	be
nice	to	convert	our	Keras	models	into

TensorFlow	Estimators.	Thankfully,	Keras
provides	this	functionality	out	of	the	box.
With	just	a	single	line	of	code,	Keras

models	turn	into	TensorFlow	Estimators,
ready	to	be	used.	The	function	is	called

model_to_estimator()	in	the	keras.estimator
module,	and	looks	like	this:

estimator_model	=
keras.estimator.model_to_estimator(keras_

model	=	model)

Once	we	convert	our	Keras	model	into	TensorFlow	Estimator,	we	can	use
this	 estimator	 in	 TensorFlow	 code	 (as	 we	 demonstrated	 in	 the	 previous
chapter).
Before	closing	the	chapter,	we	encourage	our	users	to	read	more	about	the
Keras	 framework.	 If	 you	 are	 using	 DL	 models	 for	 research	 purposes,
Keras	is	probably	the	most	convenient	tool	for	you.	Keras	will	save	a	lot
of	 time	 in	 implementing	 the	 many	 models	 you’ll	 try.	 If	 you’re	 a	 data
science	 practitioner,	 Keras	 is	 one	 of	 the	 best	 choices	 for	 you	 both	 in



prototyping	 and	 production.	 Hence,	 enhancing	 your	 understanding	 and
expertise	in	Keras	is	beneficial	regardless	of	your	particular	problem.

Summary

Keras	is	a	deep	learning	framework	that	provides	a	convenient	and
easy-to-use	abstraction	layer	on	top	of	the	TensorFlow	framework.
Keras	brings	a	more	user-friendly	API	to	the	TensorFlow
framework.	Along	with	easy	extensibility	and	modularity,	these	are
the	key	advantages	of	Keras	over	other	frameworks.
The	main	structure	in	Keras	is	the	model	object,	which	represents
the	deep	learning	model	to	be	used.	The	most	commonly-used
model	type	is	the	sequential	model.	Another	important	structure	in
Keras	is	the	layer,	which	represents	the	layers	in	the	model;	the
most	common	layer	is	the	Dense	layer.
Visualizing	the	model	structure	in	Keras	is	accomplished	with	a
single	function	call	to	plot_model().
It	is	a	good	idea	to	start	building	deep	learning	models	in	Keras
instead	of	TensorFlow	if	you	are	new	to	the	field.
Although	Keras	provides	a	very	wide	range	of	functionality,	one
may	need	to	switch	to	TensorFlow	to	write	some	sophisticated
functionality	for	non-standard	deep	learning	models.

TensorFlow	 now	 integrates	 Keras	 in	 its	 core.	 So,	 no	 need	 to	 install	 Keras	 additionally	 if	 you
already	installed	TensorFlow.	However,	we	want	to	emphasize	Keras	as	a	separate	framework	as
you	might	prefer	to	use	it	on	top	of	Theano	or	CNTK.	In	this	respect,	we	prefer	to	install	Keras
separately.



CHAPTER	6



Building	an	Optimizer	Based	on	the
Particle	Swarm	Optimization

Algorithm	We’ll	start	our	examination
of	optimization	frameworks	with	one
of	the	most	powerful	and	easy-to-use
optimizers,	known	as	Particle	Swarm
Optimization	(or	PSO).	This	optimizer

was	named	after	the	biological
phenomenon	of	a	“swarm,”	say	of

bees	or	of	starlings.	In	such	swarms,
large	groups	of	individuals	behave	in
a	cooperative	manner,	more	like	one
large	organism	than	the	sum	of	its
parts.	The	name	fits	because	the
optimizer	mimics	the	swarm

movement	in	an	attempt	to	solve	the
complex	optimization	problems	it	is
designed	for.	In	fact,	many	of	the

other	optimizers	we’ll	discuss	later	in
the	book	are	similarly	named	after
such	types	of	natural	phenomena.

The	 significance	 of	 PSO	 lies	 in	 the	 fact	 that	 many	 of	 the	 alternative
optimizers	 are	 merely	 variations	 of	 the	 cornerstone	 PSO.	 As	 a	 result,



understanding	 this	 optimizer	 grants	 you	 access	 to	 a	 whole	 set	 of
optimization	methods	 that	 can	 solve	much	more	 than	 conventional	 data
analytics	problems.	In	fact,	their	applications	span	over	so	many	fields	that
one	 can	 argue	 that	 many	 data	 analytics	 methods	 are	 just	 a	 niche
application	of	this	AI	framework.
PSO	 belongs	 to	 a	 general	 class	 of	 systems	 called	 Evolutionary
Computation,	 which	 is	 a	 type	 of	 Computational	 Intelligence.
Computational	 Intelligence	 is	 a	 popular	 subclass	 of	 AI	 (at	 least	 in	 the
research	world)	 that	 involves	 the	 development	 and	 application	 of	 clever
ways	to	solve	complex	problems,	using	just	a	computational	approach.
In	this	chapter,	we’ll	examine	the	inner	workings	of	PSO,	as	well	as	some
of	its	most	important	variants,	with	a	focus	on	the	Firefly	optimizer.	We’ll
also	show	how	PSO	can	be	implemented	in	Julia.	We’ll	close	with	some
useful	considerations	about	PSO,	and	a	summary	of	the	key	points	of	this
chapter.

PSO	algorithm
The	 logic	 behind	 PSO	 is	 to	 have	 a	 set	 of	 potential	 solutions	 (akin	 to	 a
swarm	of	particles)	that	continuously	evolve,	becoming	better	and	better,
based	on	some	fitness	function	the	system	tries	to	maximize	or	minimize.
The	particles	“move”	with	varying	speeds	throughout	several	dimensions
(also	called	variables),	influenced	by	the	best-performing	particle,	so	that
they	collectively	reach	an	optimal	solution	in	an	efficient	manner.
In	 addition,	 each	 particle	 “remembers”	 its	 best	 performance	 historically,
and	 it	 takes	 that	 into	 account	when	 changing	 its	 position.	Naturally,	 the
best	 performing	particle	may	be	 a	 different	 one	over	 the	 duration	of	 the
search	 (you	can	 imagine	 the	group	of	 solutions	moving	 towards	 the	best
possible	solution	like	a	swarm	of	insects,	so	which	insect	is	closest	to	that
solution	is	bound	to	be	different	every	time	you	look	at	the	swarm).	Still,
there	 is	generally	an	 improvement	 in	 the	best	solution	over	 time,	even	 if
the	 rate	 of	 this	 improvement	 gradually	 diminishes.	 This	 is	 because	 the
closer	you	get	to	the	best	solution,	the	more	likely	the	swarm	is	bound	to
deviate	from	it	(albeit	slightly)	while	“zeroing	in”	on	that	best	solution.
All	 these	 traits	 make	 the	 PSO	 algorithm	 ideal	 for	 optimizing	 the
parameters	of	a	complex	system.	PSO	is	relatively	new	as	an	algorithm;	its



creators,	 Dr.	 Eberhart	 and	 Dr.	 Kennedy,	 invented	 it	 in	 1995.	 The
pseudocode	of	PSO	is	as	follows:	For	each	particle	in	the	swarm
				Initialize	particle	by	setting	random	values	to	its	initial	state	End
Do
				For	each	particle	in	the	swarm
								Calculate	fitness	value
								If	the	fitness	value	is	better	than	the	best	fitness	value	in	its	history
(pBest):	pBest	<--	fitness	value	of	particle	End
gBest	<--	particle	with	the	best	fitness	value	of	all	the	particles	in	the
swarm	For	each	particle
								Calculate	particle	velocity	according	to	equation	A	Update	particle
position	according	to	equation	B
				End
Repeat	Until	maximum	iterations	is	reached	OR	minimum	error	criteria
is	attained

The	 key	 equations	 for	 the	 updating	 of	 a	 particle’s	 speed	 and	 position,
respectively,	are	the	following:	eq.	A:	v[]	+=	c1	rand()	(pbest[]	-	present[])
+	c2	rand()	(gbest[]	-	present[])	eq.	B:	present[]	+=	v[]

Note	that	c1	and	c2	are	parameters	of	the	PSO	algorithm,	each	having	the
default	value	of	2.0	(though	any	values	between	0.0	and	4.0	can	be	used),
while	the	value	of	each	is	independent	of	the	value	of	the	other.	Also,	the
velocity	of	a	particle	for	any	given	dimension	 is	 limited	 to	Vmax	 (another
parameter	set	by	 the	user)	 to	avoid	 the	particles	swarming	out	of	control
(something	that	would	destabilize	the	whole	process).	The	exact	value	of
this	parameter	depends	on	the	problem.
Other	parameters	include	the	number	of	particles	(usually	at	least	20,	with
more	complex	problems	usually	requiring	more	particles),	the	range	of	the
values	 of	 the	 particles	 (which	 is	 dependent	 on	 the	 problem),	 and	 the
stopping	 conditions—namely	 the	 total	 number	 of	 iterations	 and	 the
minimum	error	threshold.	These	stopping	conditions	are	also	dependent	on
the	problem.
To	make	PSO	faster,	we	can	 include	an	additional	parameter	 that	affects
the	progress	the	algorithm	makes	as	it	searches	through	the	solution	space.



If	 a	 certain	 number	 of	 iterations	 take	 place	 without	 any	 significant
progress	 in	 the	 objective	 function,	 then	 the	 algorithm	 can	 terminate;	 in
these	cases,	the	swarm	usually	has	gotten	stuck	in	a	local	optimum.

Main	PSO	variants
Just	 like	 most	 well-established	 algorithms	 in	 AI,	 PSO	 has	 its	 share	 of
variants,	most	of	which	are	better-suited	for	certain	sets	of	problems.	The
most	important	of	these	variants	are:

PSO	with	inertia	(by	Shi	and	Eberhart):	a	variation	of	PSO	that
uses	an	“inertia	weight”	(usually	around	0.9),	which	gradually
decreases,	allowing	for	a	narrowing	of	the	search	over	time.	This
enables	PSO	to	switch	from	exploratory	to	exploitative	mode,
yielding	more	accurate	solutions.
PSO	with	Neighborhood	Operator	(by	Suganthan):	a	popular
variant	of	PSO	that	considers	other	particles	in	the	same
neighborhood.	The	idea	is	that	through	this	method	the	chances	of
getting	trapped	in	a	local	optimum	are	greatly	reduced,	making	the
whole	system	more	robust.
Discrete	PSO	(by	Kennedy	and	Eberhart):	a	variant	of	PSO	that
enables	the	solution	of	discrete	optimization	problems.
Constriction	PSO	(by	Clerc	and	Kennedy):	a	version	of	PSO	that
doesn’t	make	use	of	the	Vmax	parameter.	It	manages	keep	velocities
in	check	by	introducing	a	couple	of	additional	parameters,	one	of
which	is	the	constriction	coefficient	χ	(suggested	value:	0.7289).
These	parameters	ensure	that	the	velocity	of	the	algorithm	remains
manageable,	making	PSO	converge	smoothly.
Fully	informed	PSO	(by	Mendes	et	al.):	a	case	of	Constriction
PSO,	where	the	two	parameters	are	the	same;	this	is	generalized	to
any	number	of	particles.	This	enables	each	particle	to	be	influenced
by	each	other	particle,	making	the	whole	process	more	stable.
Bare-bones	PSO	(by	Kennedy):	a	lighter	version	of	the	original
PSO	algorithm,	with	the	whole	velocity	aspect	dropped	altogether.



Firefly	(by	Xin-She	Yang):	a	somewhat	different	approach	to	the
whole	“movement”	part	of	the	algorithm.	We’ll	examine	this	in
more	detail	in	the	following	section.

Note	that	since	PSO	is	a	topic	of	active	research,	there	are	continually	new
variants	 being	 developed.	 The	 variants	 mentioned	 here	 are	 just	 the	 few
that	have	stood	the	 test	of	 time;	 they	go	on	to	show	that	 there	 is	a	 lot	of
promise	in	this	optimization	framework.

Firefly	optimizer
The	Firefly	optimizer	 is	one	of	 the	most	 interesting	variants	of	PSO—in
fact,	 it	 is	unique	enough	 to	be	considered	a	different	optimizer	by	many
people.	 However,	 when	 examined	 in	 depth,	 it	 becomes	 clear	 that	 the
Firefly	optimizer	is	a	more	creative	take	on	the	key	components	of	PSO.
Despite	 sharing	 the	 same	 principles	 as	 PSO,	 a	 couple	 of	 distinct
differences	give	Firefly	its	niche.	For	starters,	each	particle	is	attracted	by
all	other	particles—not	just	the	best-performing	one.	This	is	reminiscent	of
the	Fully-Informed	PSO	variant.
In	 addition,	 there	 is	 no	 velocity	 in	 this	 algorithm,	 since	 the	 concept	 of
inertia	 is	 replaced	 by	 “fogginess.”	 In	 other	words,	 light	 is	 not	 dispersed
perfectly	as	 if	 in	 a	vacuum	(such	a	case	would	make	 the	algorithm	very
unstable	 and	 the	 particles’	movement	 chaotic).	 This	 is	 expressed	 by	 the
light-absorption	 coefficient	 γ,	 which	 ensures	 that	 the	 attraction	 fades
exponentially,	 while	 the	 intensity	 of	 the	 light	 follows	 the	 Newtonian
model	 of	 gravity.	 The	 exponential	 diminishing	 of	 the	 attractiveness	 of
other	particles	ensures	that	the	fireflies	don’t	get	too	confused	and	that	it	is
generally	the	closest	well-performing	firefly	that	has	the	most	impact.
Other	than	all	that,	the	Firefly	algorithm	follows	the	same	strategy	as	the
PSO	algorithm.	You	can	read	about	the	details	of	the	Firefly	algorithm	in
its	documentation.12

The	 key	 advantages	 of	 Firefly	 over	 PSO	 are	 that	 it	 is	 faster	 and	 more
accurate,	across	a	variety	of	objective	functions.	On	the	downside,	it	has	a
bunch	 of	 parameters	 that	 need	 to	 be	 set,	 and	 tweaking	 the	 algorithm	 is
quite	a	challenge.	Fortunately,	the	Firefly	algorithm	is	good	enough	to	be



useful	 off	 the	 shelf	 with	 the	 default	 parameter	 values.	 The	 code	 that
accompanies	 this	 book	 includes	 an	 implementation	 of	 Firefly	 that	 we’ll
examine	in	Chapter	10,	when	we	discuss	optimization	ensembles.

PSO	versus	other	optimization	methods	A
few	optimization	methods	are	similar	to

PSO,	but	are	not	part	of	its	taxonomy.	The
two	most	well-known	of	these	are	Ant
Colony	Optimization	(ACO)	and	Genetic
Algorithms	(GAs).	Note	that	both	these

algorithms	are	also	part	of	the	Evolutionary
Computing	(EC)	family.

Despite	 its	 similarities	 to	 PSO,	 ACO	 takes	 a	 probabilistic	 approach	 to
optimization.	 The	 whole	 framework	 resembles	 a	 chaotic	 system,	 with
pheromones	playing	the	role	of	attractors.	Pheromones	are	the	influential
forces	a	solution	exercises	over	other	solutions.	The	potential	solutions	are
called	“ants”	 instead	of	particles,	but	 the	 idea	 is	 the	same.	What’s	more,
ACO	 has	 spawned	 its	 own	 set	 of	 variants	 and	 similar	methods,	 such	 as
Bee	Colony	Optimization	(BCO).
As	 for	 GAs,	 they	 involve	 a	 lot	 of	 tweaking	 of	 solutions,	 both	 through
random	 changes	 and	 through	 interactions	 with	 other	 solutions.
Furthermore,	they	involve	coding	each	solution	in	a	binary	pattern.	We’ll
explore	GA	optimization	in	detail	 in	 the	next	chapter.	Although	GAs	are
versatile	 in	 terms	of	 the	kind	of	problems	they	can	solve,	 they	are	rarely
used	 for	 optimizing	 continuous	 variables.	 This	 is	 because	 they	 fail	 to
perform	as	well	as	PSOs	and	other	similar	methods	in	the	EC	family.



PSO	implementation	in	Julia	PSO	can	be
easily	implemented	in	any	programming
language.	For	simplicity	and	performance,
we’ll	be	using	Julia	(ver.	1.0)	for	this	and	all

the	other	optimization	methods	in	this
book.	Note	that	a	PSO	implementation	is

already	available	on	Github.13	However,	it	is
unlikely	that	you’ll	find	an	implementation
more	comprehensive	than	the	one	we

provide	here,	since	few	Julia	programmers
have	delved	into	this	topic	extensively.

The	PSO	implementation	in	this	section	takes	the	fitness	function	as	input
argument	 ff,	which	in	 turn	takes	as	 input	an	array	of	numbers.	This	way,
there	is	no	way	for	PSO	to	know	how	many	variables	it	deals	with,	since
there	is	nothing	in	the	function	ff	to	denote	that.	As	a	result,	the	number	of
variables	 to	optimize	needs	 to	be	 included	as	well,	 in	 its	 inputs	(variable
nv).	It	has	been	found	empirically	that	a	swarm	size	of	about	10	times	the
number	of	variables	works	well;	 this	 is	what	ps,	 the	number	of	particles
parameter,	 defaults	 to.	 Beyond	 these,	 there	 are	 a	 few	 additional	 inputs
based	on	what	we’ve	discussed	previously.
function	pso(ff::Function,	nv::Int64,	minimize::Bool	=	true,	ps::Int64	=
10*nv,	ni::Int64	=	2000,	c	=	[2.0,	2.0],	maxv	=	2.0,	iwp	=	50)	buffer	=
div(iwp,	2)
				ni	+=	iwp
				tol	=	1e-6
				PP	=	randn(ps,	nv)														#	population	positions	PV	=	randn(ps,
nv)														#	population	velocities	PC	=	Array{Float64}(undef,	ps)		#
population	costs	(scores)	Pp_best	=	copy(PP)														#	particle’s	best
position	gb	=	Array{Float64}(undef,	ni)		#	global	best	over	time	if
minimize
								temp	=	Inf
				else



								temp	=	-Inf
				end
				for	I	=	1:iwp;	gb[i]	=	temp;	end
				for	I	=	1:ps;	PC[i]	=	ff(PP[I,:][:]);	end	p_best	=	copy(PC)
				if	minimize
								m,	ind	=	findmin(PC)
				else
								m,	ind	=	findmax(PC)
				end
				gb[1+buffer]	=	m
				Pg_best	=	PP[ind,:]
				for	iter	=	(iwp	+	1):ni
								for	I	=	1:ps
												PV[I,:]	+=	c[1]	rand()	(Pp_best[I,:]	–	PP[I,:])	+	c[2]	rand()
(Pg_best	–	PP[I,:])	for	j	=	1:nv
																if	PV[I,j]	>	maxv;	PV[I,j]	=	maxv;	end	if	PV[I,j]	<	-maxv;
PV[I,j]	=	-maxv;	end	end
												PP[I,:]	+=	PV[I,:]
												PC[i]	=	ff(PP[I,:][:])
												gb[iter]	=	gb[iter	–	1]
												if	minimize
																if	PC[i]	<	p_best[i]
																				p_best[i]	=	PC[i]
																				Pp_best[I,:]	=	PP[I,:]
																				if	PC[i]	<	gb[iter]
																								gb[iter]	=	PC[i]
																								Pg_best	=	PP[I,:]
																				end
																end
												else	#	maximizing	mode
																if	PC[i]	>	p_best[i]
																				p_best[i]	=	PC[i]
																				Pp_best[I,:]	=	PP[I,:]
																				if	PC[i]	>	gb[iter]
																								gb[iter]	=	PC[i]
																								Pg_best	=	PP[I,:]
																				end



																end	#	of	2nd	if
												end	#	of	1st	if
								end	#	of	I	loop
								if	abs(gb[iter]	–	gb[iter-iwp])	<	tol	return	Pg_best,	gb[iter]	#	best
solution	and	best	value	respectively	end
				end	#	of	iter	loop
				return	Pg_best,	gb[end]	#	best	solution	and	best	value	respectively	end

Despite	 its	 length,	 the	 core	 of	 the	 algorithm	 is	 simple,	 quite	 fast,	 and
relatively	 light	 on	 computational	 resources.	 Note	 that	 most	 of	 the
parameters	are	optional,	since	their	default	values	are	predefined.	Simply
feed	 it	 the	 fitness	 function	 and	 the	 number	 of	 variables,	 and	 decide
whether	you	want	it	to	be	minimized	or	not.	If	you	don’t	specify	the	latter,
the	PSO	method	defaults	to	minimization	of	the	fitness	function.
Note	that	we	use	here	the	“vanilla”	version	of	PSO,	with	minimal	add-ons.
As	 a	 result,	 its	 performance	 is	 not	 great.	 We’ll	 investigate	 a	 more
improved	 Julia	 script	 of	 PSO	 in	 Chapter	 10,	 along	 with	 its	 parallelized
version.

PSO	in	action
The	first	practical	application	of	PSO	proposed	by	its	creators	was	training
ANNs.	However,	PSOs	flexible	nature	has	made	it	useful	in	various	other
domains,	 such	 as	 combinatorial	 optimization,	 signal	 processing,
telecommunications,	control	systems,	data	mining,	design,	power	systems,
and	more.	Also,	as	more	specialized	algorithms	for	training	ANNs	became
available,	PSO	ceased	being	a	relevant	option	for	optimizing	the	weights
of	an	ANN.
Although	 most	 versions	 of	 PSO	 involve	 a	 single-objective	 approach
(having	a	single	fitness	function),	with	some	changes,	PSO	can	be	used	in
multiple-objective	 and	 dynamic	 problems	 (with	 varying	 configurations).
The	possibility	 of	 having	 constraints	 in	 the	 solution	 space	has	 also	been
explored	 (the	 constraints	 in	 this	 latter	 case	 are	 inherently	 different	 from
the	constriction	PSO	variant).
So,	even	though	PSO	was	originally	a	data	science-oriented	algorithm,	its
applicability	 has	 made	 it	 a	 useful	 tool	 for	 all	 sorts	 of	 problems.	 This



clearly	 shows	 how	 AI	 is	 an	 independent	 field	 that	 dovetails	 well	 with
almost	any	data-related	scenario.
Nevertheless,	 some	 organizational	 problems	 require	 the	 use	 of	 an
optimizer,	rather	than	a	machine	learning	system.	Examples	of	such	issues
include	 creating	 an	 optimal	 schedule,	 finding	 the	 best	 way	 to	 stock	 a
warehouse,	or	working	out	 the	most	efficient	 route	 for	a	delivery	driver.
These	problems	are	so	common	in	so	many	industries	that	familiarity	with
a	 robust	 optimizer	 like	 PSO	 can	 be	 a	 good	 distinguishing	 factor,
professionally.	Besides,	having	a	variety	of	skills	can	help	you	develop	a
more	holistic	 view	of	 a	 challenging	 situation,	 empowering	you	 to	 find	 a
better	strategy	for	tackling	it.
Note	that	just	like	any	other	AI	optimizer,	PSO	does	not	provide	the	best
solution	to	a	problem,	nor	does	it	have	mathematical	precision.	However,
it	 is	 very	 efficient.	As	 such,	 PSO	 adds	 a	 lot	 of	 value	 in	 cases	where	 an
approximate	solution	is	sufficient,	especially	if	the	time	it	takes	to	find	this
solution	 is	 also	 important.	 Furthermore,	 when	 the	 problems	 involve
functions	 that	 cannot	 be	 easily	 analyzed	 mathematically	 (e.g.	 functions
that	aren’t	“smooth”	enough	to	calculate	a	derivative	function),	a	method
like	PSO	is	the	most	viable	option.

Minimizing	a	polynomial	expression
The	 examples	 of	 the	PSO	 involve	 different	 problems,	 as	 expressed	by	 a
couple	 of	 different	 fitness	 functions.	 In	 the	 first	 case	 we	 consider	 a
minimization	 problem,	while	 in	 the	 latter,	 we’ll	 look	 at	 a	maximization
problem.	First,	let’s	start	with	defining	the	fitness	function,	F,	for	the	first
problem,	 which	 involves	 a	 complex	 (highly	 non-linear)	 polynomial
expression:	function	F(X::Array{Float64})
return	y	=	X[1]^2	+	X[2]^2	+	abs(X[3])	+	sqrt(abs(X[4]*X[5]))	+	1.0
end

You	can	also	write	the	above	function	as:	F(X::Array{Float64})	=	X[1]^2
+	X[2]^2	+	abs(X[3])	+	sqrt(abs(X[4]*X[5]))	+	1.0

Though	more	 compact,	 this	may	 not	 be	 as	 useful	 for	 complex	 functions



involving	a	lot	of	variables.
Whatever	the	case,	we	expect	to	get	a	solution	that’s	close	to	(0,	0,	0,	0,	0),
since	this	is	the	solution	that	corresponds	to	the	absolute	minimum	of	this
function	(which	is	in	this	case	1.0	since	0^2	+	0^2	+	|0|	+	sqrt(|0*0|)	+	1	=
1).
Next,	we	need	 to	 run	 the	PSO	algorithm,	using	 the	above	function	as	an
input.	We’ll	work	with	the	default	values	for	the	input	parameters,	for	the
majority	of	them:	pso(F,	5)

For	 one	 of	 the	 runs	 of	 PSO,	 the	 solution	 [-0.0403686,	 0.0717666,
-0.0102388,	 0.0966982,	 -0.129386]	 was	 yielded,	 corresponding	 to	 a
fitness	 score	 of	 approximately	 1.243.	 Although	 this	 solution	 is	 not
particularly	 impressive,	 it	 is	 decent,	 considering	 the	 complexity	 of	 the
problem	and	the	fact	that	we	used	the	most	basic	version	of	the	optimizer.
We	can	try	a	smaller	swarm	–	say,	of	20	particles	–	for	comparison:	pso(F,
5,	true,	20)

The	result	in	this	case	was	[0.164684,	-0.241848,	0.0640438,	-0.0186612,
-0.882855],	 having	 a	 fitness	 score	 of	 about	 1.388.	 Additional	 runs	 may
yield	 better	 scores.	 This	 shows	 that	 PSO	 systems	 can	 yield	 acceptable
results,	even	without	lots	of	particles.
We	can	measure	how	long	this	whole	process	takes	using	the	@time	meta-
command,	as	follows:	@time	pso(F,	5)

In	this	case,	for	a	solution	of	comparable	fitness,	we	learn	that	the	whole
process	 took	 about	 0.008	 seconds—not	 bad	 at	 all.	 As	 a	 bonus,	 we	 get
some	 information	 about	 how	many	 computational	 resources	 the	 process
consumes.	That	is,	7.179	MB	of	RAM	through	its	87.6K	allocations.	Note
that	for	this	report	to	be	accurate,	the	command	must	run	more	than	once.
This	is	true	of	all	Julia	functions	benchmarked	using	this	meta-command.

Maximizing	an	exponential	expression
Let’s	try	something	a	bit	more	challenging	for	the	maximization	example.



This	 problem	 consists	 of	 six	 variables,	 one	 of	which	 is	 raised	 to	 the	 4th
power,	making	the	solution	space	a	bit	rougher.
Function	F2(X::Array{Float64})
return	y	=	exp(-X[1]^2)	+	exp(-X[2]^2)	+	exp(-abs(X[3]))	+	exp(-
sqrt(abs(X[4]*X[5])))	+	exp(-X[6]^4)	end

Like	in	the	previous	case,	we	expect	to	get	something	close	to	(0,	0,	0,	0,
0,	 0)	 as	 a	 solution,	 since	 this	 is	 the	 absolute	maximum	 of	 this	 function
(which	is	equal	to	5.0	since	F2(0,	0,	0,	0,	0,	0)	=	exp(-0^2)	+	exp(-0^2)	+
exp(-|0|)	+	exp(-sqrt(|0*0}))	+	exp(-0^4)	=	1	+	1	+	1	+	1	+	1	=	5).
To	use	PSO,	we	simply	type:
pso(F2,	6,	false)

The	 solution	 obtained	 is	 [0.370003,	 0.0544304,	 0.0980422,	 0.00426721,
-0.011095,	 0.294815],	 corresponding	 to	 a	 fitness	 score	 of	 about	 4.721,
which	is	quite	close	to	the	maximum	value	we	were	expecting.
Again,	we	can	see	how	much	time	and	computational	resources	this	whole
process	took	in	this	case:	@time	pso(F2,	6,	false)

The	time	the	whole	problem	took	was	about	0.009	seconds,	while	it	took
about	15.006	MB	of	memory,	and	around	183.1K	allocations.	Clearly,	this
is	a	somewhat	tougher	problem,	involving	a	larger	swarm,	so	it	takes	a	bit
more	 time	and	memory	 (though	 the	 time	overhead	 is	quite	 small).	 If	we
were	to	solve	either	one	of	these	problems	with	a	deterministic	optimizer,
though,	it	would	probably	take	the	same	computer	longer.

PSO	tips
Despite	its	simplicity,	avoiding	suboptimal	results	with	PSO	requires	some
attention	 to	 detail.	 For	 instance,	 if	 you	 use	 a	 low	 value	 for	 Vmax,	 the
algorithm	will	take	a	long	time	to	converge	(not	to	mention	the	increased
risk	of	it	getting	stuck	at	a	local	optimum,	yielding	a	mediocre	solution).
On	the	other	hand,	a	very	large	value	would	make	the	whole	process	very
unstable	(and	unable	to	converge	on	any	optimum).



Furthermore,	 a	 very	 large	 number	 of	 particles	 make	 the	 whole	 system
fairly	 slow;	 too	 few	 particles	 make	 it	 difficult	 to	 find	 the	 optimum
solution.	The	empirical	default	value	of	10	times	the	number	of	variables
seems	 to	 work	 well	 for	 all	 the	 benchmarks	 tried,	 but	 it’s	 just	 a	 rule	 of
thumb;	make	sure	you	experiment	with	this	parameter	when	you	fine-tune
your	PSO	model.
In	addition,	in	some	cases,	PSO	is	used	with	a	variable	Vmax	parameter,	to
ensure	that	it	converges	more	smoothly.	For	example,	you	can	reduce	it	by
a	factor	k,	every	so	many	iterations,	so	that	as	it	approaches	the	optimum
value	of	 the	 function,	 the	particles	of	 the	 swarm	will	 be	 closer	 together,
yielding	 a	 better	 precision.	 Once	 you	 get	 the	 hang	 of	 PSO,	 you	 can
experiment	with	such	parameters	to	improve	its	performance.
What’s	 more,	 it’s	 a	 good	 idea	 to	 make	 sure	 that	 the	 swarm	 covers	 a
meaningful	area	when	deployed,	to	ensure	that	it	won’t	get	stuck	in	a	local
optimum.	In	other	words,	 if	you	are	optimizing	a	set	of	 three	parameters
that	all	take	place	between	0	and	1,	it’s	best	to	spread	the	swarm	to	cover
as	much	volume	as	possible,	instead	of	having	them	all	close	to	(0,	0,	0).
This	is	because	if	the	optimal	solution	is	close	to	(0,	1,	1),	for	example,	it
could	take	the	swarm	a	long	time	to	approach	it.
How	much	area	exactly	a	swarm	covers	when	deployed	is	something	you
may	want	 to	experiment	with,	since	it	 largely	depends	on	the	problem	at
hand.	 Also	 consider	 the	 distribution	 of	 the	 particles	 across	 the	 various
dimensions	 of	 the	 problem	 space.	 The	 distribution	 used	 in	 this
implementation	 is	Gaussian,	 as	 shown	 through	 the	 randn()	 function	used
to	initialize	the	particles.
The	algorithm’s	performance	can	be	greatly	improved	if	you	parallelize	it.
The	best	way	 to	do	 so	 involves	defining	a	number	of	workers,	 each	one
undertaking	 an	 instance	 of	 the	 algorithm,	 and	 then	 comparing	 their
findings,	 taking	the	smaller	or	 larger	of	 their	solutions,	depending	on	the
type	 of	 optimization	 problem	 you	 are	 solving.	 Make	 sure	 you	 use	 the
@everywhere	meta-command	in	front	of	all	the	functions,	however,	or	the
parallelization	 will	 not	 work.	 We’ll	 further	 examine	 the	 parallelized
version	of	PSO	in	Chapter	10.
Finally,	PSO	is	still	a	work	in	progress,	so	don’t	be	afraid	to	experiment	a
bit,	changing	it	to	suit	the	problem	you	need	to	solve.	We	also	recommend
you	try	to	implement	the	Firefly	algorithm.	We’ll	be	using	the	latter	a	bit



in	 Chapter	 10,	 where	 we’ll	 explore	 the	 possibilities	 of	 optimization
ensembles.

Summary

Particle	Swarm	Optimization	(PSO)	is	a	fundamental	optimization
algorithm	under	the	umbrella	of	nature-inspired	optimizers.	It	is
also	part	of	the	Computational	Intelligence	group	of	systems,
which	is	a	subclass	of	AI.
PSO	entails	a	set	of	potential	solutions	which	constantly	evolve	as
a	group,	becoming	better	and	better,	based	on	some	fitness	function
the	system	tries	to	optimize.
Just	like	most	robust	algorithms	of	this	type,	PSO	is	ideal	for
tackling	complex,	highly	non-linear	problems,	usually	involving
many	variables,	such	as	the	parameters	of	a	complex	system	like	an
ANN.
PSO	is	noticeably	different	from	Ant	Colony	Optimization	(ACO)
as	well	as	from	Genetic	Algorithms	(Gas).	There	also	exist	some
differences	among	the	variants	of	PSO;	differences	mainly	concern
the	scope	and	the	specifics	of	the	method.
There	are	various	versions	of	PSO.	Firefly	is	one	of	the	most
noteworthy	variations,	partly	due	to	its	distinct	approach	to	the
problem	space.
The	“swarm”	used	in	Firefly	is	a	set	of	fireflies,	attracted	to	each
other	based	on	how	well	they	perform	in	the	fitness	function	the
swarm	is	trying	to	optimize.	Instead	of	using	velocities,	however,
the	particles	in	this	case	are	“pulled”	by	all	of	the	other	particles,
based	on	how	far	they	are	and	how	“bright”	they	shine.
Firefly	is	generally	faster	and	more	accurate	as	an	optimizer,
compared	to	PSO	(as	well	as	a	few	other	nature-inspired
optimizers).
The	original	PSO	and	most	of	its	variants	are	ideal	for	optimizing
continuous	variables.



The	fitness	function	of	an	optimizer	like	PSO	does	not	need	to	be
differentiable,	since	no	derivatives	of	it	are	ever	calculated.
PSO	has	a	variety	of	applications,	including	ANN	training,	signal
processing,	and	combinatorial	optimization	problems.	Different
versions	of	PSO	can	handle	more	sophisticated	optimization
scenarios,	such	as	multiple-objective	problems,	constrains-based
cases,	and	dynamic	problems.	One	version	of	PSO	(Discrete	PSO)
even	tackles	discrete	optimization	problems.
PSO	on	its	own	is	not	as	robust	as	its	variants,	but	it’s	very	useful
to	know.	Understanding	its	original	form	makes	learning	its
variants	(or	creating	new	ones)	significantly	easier.

https://arxiv.org/pdf/1308.3898.pdf.
https://bit.ly/2NyIiBv.



CHAPTER	7

Building	an	Optimizer	Based	on
Genetic	Algorithms	The	Genetic
Algorithm	(GA)	is	a	popular

optimization	method	predating	most
similar	approaches	to	nature-

inspired	optimizers.	It	is	part	of	the
Evolutionary	Computing	family	of

methods,	which	is	a	very	robust	kind
of	AI.	Although	this	optimization

approach	was	first	introduced	in	the
1960s	by	Ingo	Rechenberg,	the	GA
framework	wasn’t	fully	realized	until
a	bit	later,	in	the	early	1970s,	by	John

Holland’s	team.	John	Holland
popularized	this	new	approach	with

his	book	Adaption	in	Natural	and
Artificial	Systems,	which	was	published

in	1975.
GAs	are	heavily	influenced	by	Darwinian	evolution.	The	idea	behind	them



is	 that	 each	 solution	 is	 part	 of	 a	 group	 of	 cells	 that	 are	 evolving	 over	 a
number	of	generations	(the	equivalent	of	epochs	in	ANNs	and	iterations	in
PSO).	 As	 the	 group	 evolves,	 it	 gets	 closer	 and	 closer	 to	 the	 optimal
solution	to	the	optimization	problem	it	models.
We’ll	 examine	 the	 specifics	 of	 the	 GA	 optimization	 framework	 and	 its
core	algorithm,	see	how	to	implement	it	in	Julia,	point	out	several	variants,
and	 discuss	 how	Gas	 are	 applicable	 to	 data	 science	The	 idea	 of	 the	GA
framework	 is	 to	view	 the	problem	as	a	 set	of	discrete	elements,	 forming
what	 is	 referred	 to	 as	 a	 chromosome.	 Each	 one	 of	 these	 elements	 is
referred	to	as	a	gene,	and	they	can	be	arbitrary	 in	number,	depending	on
the	 problem	 at	 hand.	Although	 each	 gene	 is	 usually	 a	 bit,	 encoding	 can
take	a	variety	of	forms.14	A	collection	of	all	these	chromosomes	is	called	a
genome.	Through	a	series	of	processes,	the	genome	evolves	into	the	ideal
combination	of	genes.	This	“perfect	combination”	is	called	a	“genotype,”
and	it	encapsulates	the	solution	we	are	after.	The	information	captured	in
each	gene	encoding	is	referred	to	as	a	trait.
Unlike	PSO,	solution	elements	of	GAs	don’t	change	through	motion,	but
through	a	pair	of	processes	called	mutation	and	crossover.	These	terms	are
again	 borrowed	 from	 biology,	 as	 the	 processes	 are	 similar	 to	 those	 that
occur	in	replicating	DNA.	In	nature,	this	process	leads	to	the	birth	of	new
organisms;	that’s	why	we	refer	to	different	iterations	of	this	evolutionary
process	as	“generations”.
Mutation	 is	 the	 simplest	 process,	 as	 it	 involves	 a	 single	 chromosome.
Basically,	it	ensures	that	over	each	generation,	there	is	a	chance	that	some
gene	 in	 the	 chromosome	 will	 change	 randomly.	 The	 probability	 of	 this
happening	is	fairly	small,	but	the	whole	evolutionary	process	takes	so	long
that	 it	 is	 almost	 guaranteed	 to	 happen	 at	 least	 once.	 Furthermore,	 it	 is
theoretically	possible	to	have	multiple	mutations	in	the	same	chromosome
(especially	 if	 it	 is	 large	 enough).	 The	 purpose	 of	 the	mutation	 is	 that	 it
ensures	diversity	in	the	traits,	which	would	otherwise	remain	stagnant.
Crossover	 (or	 recombination)	 is	 the	 most	 common	 process	 by	 which
elements	change.	It	involves	two	chromosomes	merging	into	a	single	one,
at	either	a	random	or	a	predefined	location	such	as	the	middle,	as	can	be
seen	in	Figure	6.
However,	certain	instances	of	crossover	can	involve	two	locations,	or	even
a	 logical	 operator	 like	AND.	For	 the	 purposes	 of	 simplicity,	we’ll	work



with	the	basic	single-point	crossover	in	this	chapter.

The	crossover	process	ensures	that	the	genome	changes	over	time,	through
traits	that	already	manifest	in	the	parents	(e.g.	eye	color).	Which	of	these
traits	survive	in	the	long	run	depends	on	another	aspect	of	the	evolutionary
process	called	fitness.	Not	all	chromosomes	get	to	cross	over,	since	there
exists	a	selection	process	to	ensure	that	the	best-performing	chromosomes
are	most	likely	to	have	descendants	in	the	next	generation,	much	like	in	a
species,	only	 the	better	equipped	individuals	(e.g.	 faster,	more	adaptable,
with	 better	 immune	 systems,	 etc.)	 manage	 to	 survive	 and	 procreate,
ensuring	that	their	genes	don’t	die	out.
Fitness	 is	 the	 measure	 of	 how	 well	 these	 chromosomes	 perform	 as
potential	solutions	to	the	problem	we	are	solving.	Just	like	with	PSO,	we
are	 trying	 to	 maximize	 or	 minimize	 a	 fitness	 function	 that	 evaluates	 a
solution.	As	 the	 number	 of	 chromosomes	must	 remain	 constant	 through
the	 whole	 evolutionary	 process	 (otherwise	 we’d	 risk	 a	 population
explosion,	 draining	 our	 computational	 resources),	 only	 the	 best
chromosomes	make	it	to	the	next	generation,	based	on	their	fitness.
Elitism	 is	an	auxiliary	aspect	of	 the	GAs	framework	that	 is	often	used	to
ensure	 that	 the	 best	 solution	 is	 constantly	 present.	 It’s	 like	 a	 fail-safe,
guarding	against	the	possibility	that	the	new	genome	is	worse	than	that	of
the	previous	generation,	due	to	some	bad	crossovers	and/or	bad	mutations.
Elitism	makes	sure	that	the	best	performing	chromosome	or	chromosomes
remain	in	the	next	generation	regardless.



Although	elitism	was	not	part	of	the	original	GA	framework,	it	is	strongly
recommended	 you	 make	 use	 of	 it,	 as	 it	 has	 been	 shown	 to	 generally
improve	the	performance	of	the	optimizer.	However,	if	you	overdo	it	with
elitism	 by	 getting	 too	 many	 well-performing	 chromosomes	 to	 the	 next
generation	at	the	expense	of	other,	not	as	well-performing	chromosomes,
you	 may	 end	 up	 with	 an	 overly	 homogeneous	 population.	 This	 would
result	 in	 an	 optimization	 process	 that	 converges	 prematurely	 with	 the
yielded	solution	more	likely	to	be	suboptimal.	Note	that	the	elitism	option
is	 controlled	 by	 a	 parameter	 that	 indicates	 how	 many	 best-performing
chromosomes	to	keep	(see	elitism()	function	later	on).
The	 search	 space	of	 problems	 tackled	with	GAs	 ideally	 involves	 a	 huge
number	 of	 potential	 solutions	 to	 the	 problem—usually	 larger	 than	 what
could	be	solved	analytically.	A	modest	example:	 if	a	GA	tried	to	solve	a
problem	 where	 each	 chromosome	 has	 60	 genes	 represented	 as	 bits,	 it
would	have	260	or	over	a	billion	billion	potential	solutions.
In	general,	problems	that	lend	themselves	to	GAs	fall	under	the	umbrella
of	 “NP-hard”	 problems.	 These	 are	 problems	 whose	 solving	 cannot	 be
reduced	to	a	fast	process,	as	they	take	exponential	time.	This	means	that	if
the	 dimensionality	 of	 the	 problem	 increases	 by	 a	 factor	 of	 2,	 the
complexity	of	the	problem	is	bound	to	quadruple,	or	worse.
A	 typical	 NP-hard	 problem	 with	 many	 applications	 in	 logistics	 is	 the
Traveling	Salesman	Problem	(TSP).	This	involves	finding	the	optimal	way
to	traverse	a	graph	so	that	at	the	end	of	your	trip	you	are	back	where	you
started.	 Despite	 its	 simple	 description,	 this	 is	 an	 exceptionally	 difficult
problem	as	the	number	of	nodes	in	that	graph	gets	larger.
As	 the	 scope	 of	 these	 problems	 makes	 finding	 the	 best	 solution	 quite
unrealistic,	we	opt	for	a	“good	enough”	solution—one	that	yields	a	quite
large	(or	small)	value	for	the	fitness	function	we	are	trying	to	maximize	or
minimize.



Standard	Genetic	Algorithm	Let’s	now	look
at	the	actual	algorithm	that	lies	at	the	core
of	the	GAs	framework,	the	original	Genetic
Algorithm	itself.	The	main	process	is	as

follows:

1.	 Initialization	stage:	Generate	a	random	population	of	n
chromosomes	(potential	solutions	for	the	problem).	Define
Fitness	function	F()	and	optimization	mode	(maximization	or
minimization).	Define	stopping	conditions	such	as	the	maximum
number	of	generations,	or	minimum	progress	of	fitness	over	a
given	number	of	generations.	Define	crossover	and	mutation
probabilities	(pc	and	pm	respectively),	as	well	as	selection
scheme.

2.	 Fitness	evaluation:	Evaluate	the	fitness	of	each	chromosome	x
in	the	population	by	calculating	F(x).

3.	 New	population:	Create	a	new	genome	by	repeating	the
following	steps	until	the	new	set	of	chromosomes	is	complete:

a.	 Selection:	Select	two	parent	chromosomes	from	a
population	according	to	their	fitness.	Namely,	select
them	with	a	probability	p	that	is	proportional	to	their
fitness	scores.

b.	 Crossover:	With	a	crossover	probability	pc,	cross	over
the	parents	to	form	new	offspring	(children).	If	no
crossover	is	performed,	the	offspring	are	exact	copies	of
their	parents.

c.	 Mutation:	With	a	mutation	probability	pm,	mutate	new
offspring	at	each	position	in	it.

d.	 Population	update:	Place	new	offsprings	in	a	new
population	and	discard	the	previous	population.



4.	 Loop	Process:	Repeat	steps	2-3	until	a	stopping	condition	has
been	met.

5.	 Output	results:	Output	the	best-performing	chromosome	and	its
fitness	score.

The	selection	process	involves	one	of	two	main	methods	to	stochastically
determine	 which	 chromosomes	 get	 to	 be	 parents	 (candidates	 of	 the
crossover	process)	and	which	don’t.	These	are	roulette	wheel	selection	and
rank	selection.
The	first	approach	involves	creating	a	“wheel”	based	on	the	fitnesses	of	all
the	chromosomes,	by	basically	normalizing	them	so	that	they	add	up	to	1.
This	normalization	takes	place	based	on	a	scaling	function	like	exp(x)	or
sqrt(x),	 depending	 on	 the	 problem	 at	 hand.	 After,	 we	 obtain	 a	 random
number	in	the	[0,	1)	interval,	and	we	pick	the	chromosome	corresponding
to	the	wheel	section	that	includes	that	random	number.	We	then	repeat	that
process	one	more	time	to	find	the	other	parent.
The	rank	selection	approach	uses	the	ranking	of	the	fitness	scores	instead
of	the	scores	themselves.	So,	the	worst	performing	chromosome	will	have
a	value	of	1,	the	second	worse	a	value	of	2,	and	the	best	one	a	value	of	n,
where	n	is	the	total	number	of	chromosomes.	In	all	the	other	aspects,	it’s
the	 same	 as	 the	 roulette	 wheel	 approach.	 The	 rank	 selection	 approach
ensures	 that	 all	 chromosomes	 have	 a	 decent	 chance	 of	 getting	 selected,
especially	 in	 cases	where	 a	 small	number	of	 chromosomes	dominate	 the
population	 in	 terms	of	performance	(because	 they	are	significantly	better
than	the	rest).
With	so	many	parameters	 in	 the	GA	framework,	 it	can	be	overwhelming
to	figure	out	how	to	use	it	for	your	optimization	problems.	What	follows
are	 some	 rules	 of	 thumb	 for	 selecting	 values	 for	 these	 parameters.
Naturally,	fiddling	with	these	parameters	is	a	great	way	to	learn,	but	these
guidelines	will	help	you	at	least	get	started.
As	 far	 as	 crossover	 is	 concerned,	 you	 can	use	 a	probability	between	0.8
and	 0.95.	 This	 means	 that	 around	 90%	 of	 the	 time,	 there	 will	 be	 a
crossover	taking	place	for	a	given	chromosome.
Regarding	mutation	 probability,	 a	 value	 around	 0.005	 to	 0.01	 generally



works.	 Over	 time,	 mutation	 on	 its	 own	 can	 produce	 a	 decent	 solution
without	 any	 crossover	 at	 all.	Setting	 this	 too	high	will	 result	 in	 a	highly
unstable	genome	that	will	change	uncontrollably	and	never	converge.
Population	size	is	a	bit	trickier	to	set,	since	a	larger	population	would	still
work,	 but	 take	 longer	 for	 the	 algorithm	 to	 run.	 That’s	 why	 having	 a
number	of	chromosomes	equal	to	the	number	of	genes	in	a	chromosome	is
generally	a	good	place	to	start.
When	 it	 comes	 to	 selection	 type,	 generally	 the	 roulette	wheel	method	 is
fine.	However,	if	you	find	that	a	small	set	of	chromosomes	monopolize	the
solution	 process	 (resulting	 in	 largely	 suboptimal	 results	 for	 the	 whole
system),	then	rank	selection	may	be	a	better	option.

Implementation	of	GAs	in	Julia	Let’s	now
look	at	how	this	algorithm	can	be

implemented	in	Julia.	Below	is	a	sample
implementation	of	a	GA,	with	the	elitism
add-on	included.	We’ve	also	included	a

sample	fitness	function	so	that	you	can	test
it.	Note	that	some	variables	in	this	code	are

abbreviated.	These	are	as	follows:

X	=	population	data	(matrix)
c	=	coefficients	vector	for	sample	function,	for	testing	purposes
ff	=	fitness	function	to	maximize
nv	=	number	of	variables	to	consider
maximize	=	whether	the	function	needs	to	be	maximized	or	not
ips	=	initial	population	size
s	=	desired	sum	of	chromosomes	in	generated	population	(an
optional	but	useful	parameter	for	certain	problems)
px	=	probability	of	event	x	happening



ng	=	number	of	generations

The	code	 is	written	 to	be	easily	customized	whenever	needed,	as	per	 the
functional	programming	paradigm	that	Julia	follows.
function	sample_ff(x::Array{<:Real,	1},	c::Array{<:Real,	1}	=
ones(Int64,	length(x)))	#	function	to	maximize	z	=	abs.(x)	.*	c
				return	1	/	(1	+	sum(z))
end
ShouldActivate(p::Float64)	=	rand()	<	p	#	activation	trigger	for	an	event
of	probability	p	evaluation(ff::Function,	x::Array{<:Real,	1})	=	ff(x)
function	scaling(y::Array{Float64,	1})	#	scaling	fitness	function	values
y_	=	exp(y)
#	y_	=	sqrt(y)	#	another	alternative	for	scaling	return	y_	/	sum(y_)
end
function	selection(X::Array{<:Real,	2},	y::Array{Float64,	1},	nv::Int64,
ips::Int64)	y_	=	scaling(y)
				c	=	0
				ind	=	1
				xs	=	Array{eltype(X)}(undef,	2,	nv)
				ys	=	Array{Float64}(undef,	2)
				while	true
								if	ShouldActivate(y_[ind])
												c	+=	1
												xs[c,	:]	=	X[ind,	:]
												ys[c]	=	y[ind]
												if	c	==	2;	return	xs,	ys;	end
								end
								ind	+=	1
								if	ind	>	ips;	ind	=	1;	end
				end
end
function	mutation(x::Array{<:Real,	1},	p::Float64,	nv::Int64)	#	change
population	a	bit	new	=	false
				for	i	=	1:nv
								if	ShouldActivate(p)



												new	=	true
												if	eltype(x)	<:	Bool
																x[i]	=	!x[i]
												else
																x[i]	=	1	-	x[i]
												end
								end
				end
				return	x,	new
end
function	crossover(xs::Array{<:Real,	2},	ys::Array{Float64,	1},
p::Float64,	nv::Int64)	d	=	rand(1:2)	#	dominant	gene
				z	=	xs[d,	:]
				w	=	ys[d]
				new	=	false
				if	ShouldActivate(p)
								new	=	true
								r	=	3	-	d	#	recessive	gene
								q	=	rand(1:(nv-1))
								z[1:q]	=	xs[r,	1:q]
								w	=	[NaN]
				end
				return	z,	w,	new
end
function	elitism(X::Array{<:Integer,	2},	y::Array{Float64,	1},	n::Int64)
YX	=	hcat(y,	X)
				YX_sorted	=	swi(YX)[1]
				X_elite	=	round.(Int64,	YX_sorted[1:n,	2:end])	y_elite	=
YX_sorted[1:n,	1]
				return	X_elite,	y_elite
end
function	GeneratePopulation(ips::Int64,	nv::Int64,	s::Int64	=	-1)	#
function	for	creating	original	population	if	s	==	-1
								X	=	rand(Bool,	ips,	nv)
								for	i	=	1:ips
												if	sum(X[i,:])	==	0
																X[i,rand(1:nv)]	=	true



												end
								end
				else
								x	=	falses(nv)
								for	i	=	1:s;	x[i]	=	true;	end
								X	=	Array{Bool}(undef,	ips,	nv)
								for	i	=	1:ips
												X[i,:]	=	x[randperm(nv)]
								end
				end
				return	X
end
function	runga(ff::Function,	nv::Int64,	ips::Int64	=	nv,	s::Int64	=	div(nv,
2),	ng::Int64	=	1000,	pm::Float64	=	0.01,	pc::Float64	=	0.9,	pr::Float64	=
0.1)	#	wrapper	function	X	=	GeneratePopulation(ips,	nv,	s)
				y	=	Array{Float64}(undef,	ips)
				for	i	=	1:ips
								y[i]	=	evaluation(ff,	X[i,:])	#	fitness	scores	of	population	end
				n	=	round(Int64,	ips*pr)	#	elite	size
				X_	=	Array{Bool}(undef,	ips,	nv)	#	offspring	population	y_	=
Array{Float64}(undef,	ips)	#	fitness	scores	of	offspring	population	for	i
=	1:ng
								X_[1:n,	:],	y_[1:n]	=	elitism(X,	y,	n)
								for	j	=	(n+1):ips
												xs,	ys	=	selection(X,	y,	nv,	ips)
												z,	w,	new1	=	crossover(xs,	ys,	pc,	nv)	z,	new2	=	mutation(z,	pm,
nv)
												if	new1	||	new2
																y_new	=	evaluation(ff,	z)
												else
																y_new	=	w
												end
												X_[j,:]	=	copy(z)
												y_[j]	=	y_new[1]
								end
								X	=	copy(X_)
								y	=	copy(y_)



				end
				ind	=	findmax(y)[2]
				return	X[ind,	:],	y[ind]
end

GAs	in	action
Let’s	 now	 examine	 a	 couple	 of	 GAs	 at	 work.	 Before	 typing	 any	 code,
make	sure	you	have	loaded	the	packages	Random	and	Statistics	from	the
Base	package,	as	their	functions	will	be	used	in	these	examples.	You	can
do	this	as	follows:	using	Random,	Statistics
We’ll	examine	two	problems	using	the	GAs	optimization	framework.	The
first	problem	helps	you	get	the	hang	of	the	method	using	an	example	you
may	have	encountered	before.	The	second	example	is	more	related	to	the
data	science	craft,	so	we’ll	use	our	second	synthetic	dataset	for	that.
For	 starters,	 let’s	 examine	 an	 old	 puzzle	 problem	 involving	 some
geometry.	 We	 chose	 this	 “matchstick	 problem”	 since	 it	 is	 easy	 to
comprehend,	 while	 at	 the	 same	 time	 challenging	 enough	 to	 have	 non-
obvious	 solutions.	 The	 goal	 is	 to	 form	 two	 squares,	 limiting	 the	 total
number	of	matchsticks	used	to	a	maximum	of	8.
In	the	first	example,	we’re	looking	at	a	maximization	problem.	So,	given	a
set	of	8	matches,	what’s	the	best	arrangement	so	that	we	have	two	squares,
in	a	2x2	grid	(Figure	7)?



We	must	 first	define	 the	 right	 fitness	 function.	This	may	seem	a	bit	of	a
daunting	task,	so	let’s	break	it	down	into	smaller	sub-tasks,	each	with	its
own	 function.	 (That’s	 one	 of	 the	 strengths	 of	 a	 functional	 programming
language,	anyway.)	This	process	may	seem	a	bit	overwhelming	at	first,	but
at	 the	 very	 least,	 it’s	 good	 practice	 for	 your	 analytical	 skills	 (which	 are
quite	transferable	to	other	aspects	of	AI	and	data	science).
Let’s	 start	 by	 pinpointing	 all	 the	 possible	 squares,	 in	 relation	 to	 the
indexes	of	matchsticks,	based	on	the	grid	illustrated	above:	global	S	=	[[1,
3,	4,	6],	[2,	4,	5,	7],	[6,	8,	9,	11],	[7,	9,	10,	12],	[1,	2,	3,	5,	8,	10,	11,	12]];

Then	we	can	create	a	function	that	shows	whether	the	sum	of	true	values
in	a	chromosome	is	valid	or	not:	IsSumRight(x::Array{Bool,	1},	n::Int64)
=	(sum(x)	==	n)		

In	 this	 case,	 n	 would	 be	 8.	 However,	 it’s	 good	 practice	 to	 make	 these
functions	 parametric,	 so	 that	 you	 can	 experiment	 with	 variants	 of	 the
problem	afterwards	if	needed.
Next,	we’ll	need	to	create	a	function	that	calculates	how	many	squares	are
formed	 with	 the	 matches	 from	 a	 given	 chromosome.	 This	 would	 look
something	like	this:	function	NumberOfSquares(x::Array{Bool,	1})
				z	=	0



				
				for	s	in	S
								q	=	true
								
								for	i	in	s
												q	=	q	&&	x[i]
								end
								
								if	q;	z	+=	1;	end
				end
				
				return	z
end

Also,	we’ll	need	a	function	to	help	us	decipher	a	chromosome,	turning	its
1s	 and	 0s	 into	 indexes	 we	 can	 interpret	 using	 the	 grid:	 function
MatchIndexes(X::Array{Bool,	1})
				q	=	collect(1:12)	.*	X
				return	q[q	.>	0]
end

Now	it’s	 time	 for	 the	actual	 fitness	 function,	which	makes	use	of	all	 the
above	 auxiliary	 functions	 in	 a	 way	 that’s	 meaningful	 to	 the	 problem	 at
hand:	function	ff1(x::Array{Bool,	1})
				z	=	2.0	#	fitness	score
				if	IsSumRight(x,	8)
								z	+=	1
								Q	=	MatchIndexes(x)
								OK	=	true
								for	q	in	Q
												ok	=	false
												for	s	in	S
																if	q	in	s
																				ok_	=	true
																				for	s_	in	s
																								if	!(s_	in	Q)



																												ok_	=	false
																												break
																								end
																				end
																				if	ok_;	ok	=	true;	end
																end
												end
												if	!ok
																OK	=	false
												end
								end
								if	!OK;	z	-=	1.5;	end	#	loose	ends	in	the	squares	formation	s	=
NumberOfSquares(x)
								if	s	==	2	#	have	needed	number	of	squares	z	+=	1.0
								elseif	s	==	1	#	have	just	one	square
												z	+=	0.75
								end
				end
				return	z
end

This	 function	 may	 seem	 a	 bit	 complex	 because	 it	 also	 scans	 for	 loose
matchsticks,	 which	 it	 penalizes	 since	 they	 are	 not	 part	 of	 the	 desirable
solution	(i.e.	their	use	would	make	the	problem	easier).
Naturally,	we’ll	need	to	maximize	this	function.	We	assign	the	values	we
assign	 to	 the	 fitness	 score	 of	 the	 chromosome	 for	 the	 various	 states,
because	 even	 a	 suboptimal	 solution	 needs	 to	 be	 rewarded	 somehow.
Otherwise	it	would	be	much	more	difficult	for	the	optimizer	to	know	if	it’s
going	 towards	 the	 right	 direction	 since	 it	would	 only	 be	 able	 to	 discern
between	a	great	solution	and	a	terrible	one.	With	the	intermediate	rewards,
however,	 for	 solutions	 that	 are	OK	 (towards	 the	 right	 direction)	but	 still
not	acceptable,	the	whole	solution	landscape	becomes	smoother	and	easier
for	the	algorithm	to	navigate.	Also,	it’s	important	to	avoid	using	extreme
values	 such	 as	 Inf	 or	NaN	 as	 part	 of	 the	 fitness	 function,	 as	 this	would
confuse	the	whole	system	during	the	selection	process.
Running	 the	GA	algorithm	for	 this	problem	should	be	straightforward	at



this	point,	though	for	a	problem	like	this,	it	is	best	to	use	more	generations
than	the	default	(at	least	2500):	x,	f	=	runga(ff1,	12,	12,	8,	25000)
println(MatchIndexes(x))
println(f)

There	 are	 two	 possible	 solutions	 to	 this	 problem	 (which	 are	 also
symmetrical),	and	the	system	correctly	identifies	one	of	them:	[2,	4,	5,	6,
7,	 8,	 9,	 11].	 This	 corresponds	 to	 the	 configuration	 shown	 in	 Figure	 8:	

This	solution	has	a	fitness	score	of	4.0,	which	is	the	highest	possible.	Note
that	to	obtain	this	solution,	you	may	need	to	run	the	optimizer	a	couple	of
times	at	 least,	since	it	won’t	always	converge	on	it.	Alternatively,	 it	may
converge	on	a	symmetric	arrangement,	also	having	a	fitness	score	of	4.0.
For	the	second	example	of	the	GA	framework,	we’ll	look	at	a	simple	data
science	 problem	 involving	 data	 engineering.	Given	 a	 set	 of	 40	 features,
we’ll	 figure	out	 the	20	 features	 that	are	 least	correlated	 to	each	other.	 In
this	 case,	we’ll	 use	 the	 second	 dataset	 (consisting	 of	 20	 features),	 along
with	 a	 set	 of	 new	 features	 derived	 from	 the	 original	 20	 ones,	 using	 the
square	 root	 operator.	 As	 you	 might	 expect,	 these	 20	 new	 features	 are
strongly	correlated	to	the	original	20	ones,	so	20	of	the	features	of	the	final
feature	set	should	be	removed	through	this	whole	process.
Let’s	get	started	by	loading	the	dataset:



data	=	readcsvfile(“data2.csv”);

Note	that	you	could	also	load	the	data	using	the	read()	function	from	the
CSV	library	by	typing	CSV.read(“data2.csv”).	However,	the	custom-made
function	readcsvfile()	used	here	is	somewhat	faster	as	 it	 is	customized	to
the	problem	at	hand.	We	won’t	show	the	code	for	this	method	for	brevity,
but	you	can	find	it	in	the	corresponding	Jupyter	notebook.
Next,	we’ll	need	to	isolate	the	features	of	the	dataset,	and	create	the	new
features	 that	 the	 GA	 system	 should	 be	 able	 to	 identify	 and	 eliminate:
features	=	data[:,	1:20]
Z	=	Array{Float64}(undef,	250000,	40)
Z[:,	1:20]	=	features
for	i	=	1:20
				Z[:,	20	+	i]	=	sqrt.(features[:,	i])
end

Clearly,	 the	new	 features	are	going	 to	be	correlated	 to	 the	original	ones,
which	we	can	verify	as	follows:	cor(Z[:,1],	Z[:,21])

However,	 we’ll	 need	 easy	 access	 to	 all	 correlations	 among	 the	 various
features.	 As	 such,	 it	 makes	 sense	 to	 compute	 all	 these	 correlations
beforehand	 and	 store	 them	 in	 a	 variable	 that	 all	 functions	 can	 easily
access:	global	CM	=	cor(Z);
for	i	=	1:40
				CM[i,i]	=	0.0
end

Note	that	we	set	the	correlation	of	each	variable	with	itself	to	0,	to	avoid
allowing	that	value	to	dominate	all	the	others.
Now,	it’s	time	to	define	the	fitness	function	for	this	problem,	which	should
look	something	like	this:	function	ff2(X::Array{Bool,	1})
				N	=	length(X)
				f	=	collect(1:N)	.*	X
				f	=	f[f	.>	0]



				n	=	length(f)
				
				if	n	!=	20
								return	-Inf
				end
				
				y	=	Array{Float64}(undef,	n)
				
				for	i	=	1:n
							y[i]	=	(maximum(abs.(CM[f,	f])))
				end
				
				return	-maximum(y)
end

In	order	to	find	the	optimal	selection	of	features,	we	must	ensure	that	only
one	version	of	each	feature	exists	in	the	final	feature	set	(e.g.	by	getting	rid
of	 all	 the	 newer	 features,	 or	 all	 the	 older	 ones,	 or	 some	 combination	 of
both,	 so	 that	 for	 each	one	of	 the	 original	 features	 only	 one	version	of	 it
remains	in	the	reduced	feature	set).	As	such,	we’ll	need	to	make	the	final
result	 of	 the	 fitness	 function	 negative;	 this	 makes	 the	 whole	 process	 a
minimization	 problem.	 Upon	 doing	 this,	 we	 can	 now	 run	 the	 GAs
optimizer	as	follows:	x,	f	=	runga(ff2,	40)

To	 better	 understand	 the	 results,	 we	 can	 do	 some	 wrangling:	 ind	 =
collect(1:40)	.*	x
println(ind[ind	.>	0])
println(f)

The	outputs	in	this	case	are	[1,	2,	3,	4,	5,	6,	7,	8,	11,	12,	13,	14,	15,	16,	17,
18,	 19,	 20,	 29,	 30]	 and	 -0.00505,	 corresponding	 to	 the	 indexes	 of	 the
selected	 features	 and	 the	 corresponding	 (negative	 of	 the)	 maximum
absolute	 correlation	 among	 them.	 Although	 this	 is	 not	 the	 result	 we
expected,	 it	 makes	 sense;	 in	 two	 cases,	 the	 original	 features	 were
substituted	 with	 the	 synthetic	 ones.	 Nevertheless,	 the	 overall	 result	 is



perfectly	 acceptable,	 since	 no	 duplicate	 features	 are	 in	 the	 optimized
result.	Note	that	due	to	the	inherent	randomness	of	the	GAs	algorithm,	you
are	bound	to	obtain	slightly	different	results.	However,	they	should	yield	a
fitness	score	that’s	similar	to	the	one	obtained	here.
Hopefully	 these	 examples	 have	 demonstrated	 that	 you	must	 take	 special
care	 when	 encoding	 a	 GA	model.	 Contrary	 to	 other	 AI	 systems	 of	 this
class,	 GAs	 aren’t	 always	 straightforward	 when	 it	 comes	 to	 creating	 a
fitness	function	and	encoding	the	problem	parameters	accordingly.	Many
GAs	require	additional	functions	to	be	coded,	to	be	practical.
Beyond	 these	examples,	 there	are	various	applications	of	GAs	 that	make
learning	them	a	worthwhile	effort.	Many	of	these	cases	are	often	referred
to	 as	 the	 knapsack	 problem,	 which	 involves	 finding	 the	 optimum
collection	 of	 items	 to	 put	 in	 a	 knapsack,	 given	 some	weight	 restrictions
and	some	value	for	each	item.	The	idea	is	to	maximize	the	overall	value	of
the	collection,	while	also	keeping	the	total	weight	under	a	given	threshold,
for	 each	 container	 (knapsack).	 However,	 other	 kinds	 of	 problems,
including	optimization	of	continuous	variables,	can	be	solved	using	GAs.
For	 example,	GAs	 can	 be	 used	 in	 feature	 selection,	 as	 a	 dimensionality
reduction	 methodology.	 The	 restriction	 in	 this	 case	 would	 be	 that	 the
selected	features	are	below	a	given	proportion	of	 the	original	feature	set,
while	 at	 the	 same	 time	 capturing	 as	 much	 information	 of	 the	 original
feature	set	as	possible.	Naturally,	in	cases	with	a	lot	of	features,	selecting	a
good	subset	of	those	features	can	be	quite	challenging	due	to	the	enormous
amount	 of	 combinations	 that	 are	 possible—which	 is	 exactly	where	GAs
come	in	handy.
In	 addition,	 GAs	 can	 be	 used	 in	 all	 kinds	 of	 situations	 where	 discrete
optimization	 is	 required,	 such	 as	 non-linear	 dynamic	 systems.	One	 such
case	is	the	stock	market,	where	GAs	can	be	used	to	select	the	best	stocks
for	a	portfolio.	Naturally,	building	a	portfolio	this	way	would	require	some
additional	analysis	to	determine	the	value	of	each	stock,	but	GAs	can	play
an	 important	 role	 in	 the	 selection	 process	 itself,	 once	 those	 values	 have
been	established.
GAs	can	also	be	used	in	other	optimization	scenarios,	such	as	scheduling.
Building	an	optimal	schedule	around	many	restrictions	and	preferences	is
a	 classical	 discrete	 optimization	 problem,	 applicable	 nearly	 everywhere
from	project	management	to	logistics.	As	long	as	the	problem	is	properly



encoded,	GAs	can	be	very	effective	at	finding	a	solution.
An	application	closer	 to	data	science	 is	 the	use	of	GAs	to	design	ANNs,
both	in	terms	of	architecture	and	in	terms	of	weights	(training).	Although
PSO	can	be	great	at	figuring	out	the	weight	values,	it	isn’t	best	suited	for
working	out	the	architecture	of	an	ANN.	As	we	saw	in	the	first	chapters	of
this	 book,	 the	 architecture	 of	 such	 a	 network	 involves	 the	 number	 of
neurons	 in	 each	 layer,	 as	 well	 as	 how	 they	 are	 connected	 (and	 not	 all
ANNs	have	a	dense	connectivity).
Finally,	GAs	are	used	for	biological	research,	as	in	the	case	of	finding	the
shape	of	a	protein	molecule.	This	is	particularly	useful	for	the	research	of
potential	treatments	for	cancer,	since	the	closely-linked	problem	of	protein
folding	is	an	NP-hard	problem	with	a	huge	solution	space.
There	are	several	more	applications	beyond	these,	some	more	specialized
than	 others.	 The	 fact	 that	 GAs	 find	 use	 in	 such	 a	 broad	 spectrum	 of
domains	is	a	testament	to	their	versatility	and	value	.

Main	variants	of	GAs
The	GA	 is	 a	very	general	 framework,	 so	 the	 standard	 algorithm	we	 saw
earlier	has	several	variations	that	perform	better	in	many	cases.
One	 such	 variant	 is	 the	 Hybrid	 Genetic	 Algorithms	 (HGAs),	 which	 is
basically	 an	 ensemble	 approach	 to	 GAs,	 executed	 in	 sequential	 fashion
(we’ll	talk	about	PSO-related	optimization	ensembles	in	detail	in	Chapter
10).	The	standard	GA	is	combined	with	a	different	optimizer	that	is	better
suited	 for	 finding	 an	optimum	 in	 a	 smaller	 solution	 space,	 usually	using
derivatives	 or	 any	 other	 additional	 information	 regarding	 the	 fitness
function.	GA	 is	applied	globally	and	once	a	 local	optimum	is	 found,	 the
other	optimizer	 takes	over	 to	 refine	 the	 solution.	HGAs	are	useful	when
the	fitness	function	can	be	differentiated,	or	when	a	more	accurate	solution
is	required.
Another	 interesting	 variant	 is	 the	 Self-Organizing	 Genetic	 Algorithm
(SOGA).	As	their	name	suggests,	SOGAs	involve	a	process	whereby	the
parameters	of	the	optimization	method	are	also	optimized,	along	with	the
variables	 of	 the	 problem	 at	 hand.	 So,	 instead	 of	 fine-tuning	 the
optimization	model	yourself,	the	model	does	it	for	you.



The	Variable	Selective	Pressure	Model	(VSPM)	is	a	newer	variant	of	GAs
worth	considering.	This	relatively	sophisticated	approach	to	GAs	involves
changing	the	selection	strategy	so	 that	you	can	steer	how	much	diversity
exists	 in	 the	population,	 thereby	avoiding	overly	homogeneous	or	overly
diverse	populations.	The	idea	is	to	introduce	an	“infant	mortality”	rate	that
limits	the	presence	of	weaker	chromosomes	in	the	population.

Genetic	programming
Moreover,	 Genetic	 Programming	 (GP)	 is	 a	 powerful	 GA	 variant	 that
focuses	on	continuous	variables.	As	 it	 is	quite	distinct	 from	 the	standard
GA,	 and	 since	 its	 usefulness	 in	 data	 science	 applications	 is	 noteworthy,
we’ll	take	a	closer	look	at	GP.
Finally,	any	add-on	 to	 the	standard	GA,	such	 the	elitism	process,	can	be
viewed	as	a	variant	of	sorts.	After	all,	the	broad	framework	lends	itself	to
tweaking,	so	if	you	delve	into	it	a	bit,	you	are	bound	to	come	up	with	your
own	variant	of	the	optimization	method.
Genetic	Programming	is	an	interesting	variant	of	GAs,	which	has	received
a	lot	of	attention	in	the	past	few	years.	It	 involves	“building”	a	synthetic
function	off	other	simpler	functions	that	take	the	form	of	genes.	However,
there	 is	also	some	data	 that	 is	used	 in	 those	functions,	so	 the	 inputs	of	a
GP	model	include	a	couple	of	data	streams,	one	for	the	inputs	and	one	for
the	outputs	of	the	function	that	needs	to	be	approximated.
Note	that	this	problem	can	be	solved	with	a	regression	model,	though	the
model’s	 success	will	be	quite	 limited	by	 linear	combinations.	Of	course,
you	can	have	a	non-linear	regression	model,	but	you’d	have	to	create	the
non-linear	 features	 yourself	 (which	 takes	 considerable	 effort).You	 could
also	 use	 an	 ANN,	 but	 you	 wouldn’t	 be	 able	 to	 see	 how	 the	 inputs	 are
mapped	 to	 the	 outputs	 (just	 like	 the	 “black	 box”	 issue	 we	 discussed	 in
previous	chapters).	 If	you	require	a	mapping	 through	a	function	 that	you
can	view	in	its	entirety,	GP	is	the	best	way	to	go.
However,	 the	 function	 that	 GP	 yields	 is	 not	 necessarily	 a	 good	 model
since	it	is	bound	to	overfit	if	you	use	the	error	as	a	fitness	function	(which
you’d	minimize	afterwards).	That’s	why	it	would	make	more	sense	to	use
some	heuristic,	such	as	the	correlation	coefficient	or	a	similarity	metric	in
general,	as	the	fitness	function	(which	you’d	maximize	in	this	case).	Such



problems	 have	 been	 solved	 successfully	 for	 feature	 fusion	 scenarios,	 as
part	of	a	predictive	analytics	model.15

The	functions	that	GP	uses	can	be	anything	from	a	simple	polynomial	to
some	complex	trigonometrical	function.	They	must	be	in	their	most	basic
form,	 since	more	 complex	 functions	 will	 inevitably	 emerge	 through	 the
evolution	 process	 of	 the	 GP	 system.	 For	 example,	 if	 you	 have	 the
functions	 tan(x),	 x2,	 and	 x3,	 GP	 will	 at	 one	 point	 have	 chromosomes
consisting	 of	 tan(x2),	 tan(x3),	 (tan(x))2,	 x6,	 etc.	 That’s	 why	 special	 care
must	 be	 taken	when	 selecting	 those	 functions	 so	 that	 the	 data	 used	with
them	makes	sense.	For	instance,	no	point	in	using	sqrt(x)	if	you	have	data
points	of	negative	x,	though	sqrt(abs(x))	could	be	used	instead.
GP	 is	 a	 truly	 ingenious	 method	 that	 often	 adds	 more	 value	 than	 the
conventional	GA	variants,	 opening	 new	possibilities.	Apart	 from	 feature
fusion,	it	has	been	used	for	building	LISP	programs.	Don’t	let	the	fact	that
many	AI	experts	don’t	know	about	GP	deter	you	from	trying	it	out.

GA	framework	tips
Although	useful,	many	GAs	are	not	so	straightforward;	you	must	be	aware
of	 several	 considerations.	 For	 starters,	 as	GAs	 have	 a	 lot	 of	 parameters,
some	 fine-tuning	 is	 usually	 necessary.	 Sometimes	 configuring	 a	 GA
properly	is	a	big	part	of	its	effectiveness,	especially	in	complex	problems.
Also,	 even	 though	GAs	are	 capable	of	handling	continuous	optimization
problems,	 they	are	generally	not	 that	effective	 in	 those	situations.	That’s
why	if	you	want	to	tackle	such	problems	you	have	to	either	use	some	other
optimization	framework,	or	some	specialized	variant	of	GAs,	such	as	GP.
Moreover,	the	standard	GA	is	not	all	that	robust,	compared	to	its	variants.
So,	if	you	are	to	use	the	GA	framework	for	a	complex	problem,	it	is	best
to	 explore	 the	 algorithm’s	 various	 add-ons,	 so	 that	 you	 get	 a	 more
effective	and	more	efficient	optimization	system.
Furthermore,	just	like	PSO,	GAs	are	great	if	your	fitness	function	cannot
be	 differentiated,	 or	 the	 process	 of	 differentiating	 is	 very	 expensive
computationally.	However,	 if	 you	 have	 easy	 access	 to	 the	 derivatives	 of
the	fitness	function,	other	optimization	methods	may	be	more	effective	for
finding	an	accurate	solution.



Summary

The	Genetic	Algorithm	(or	GA)	is	an	evolutionary	computation
framework.	These	algorithms	mimic	the	biology	of	genetic
reproduction	in	order	to	model	optimization	problems.	Here,
chromosomes	represent	potential	solutions.
The	bulk	of	all	the	chromosomes	are	called	the	genome	and	it
progresses	in	terms	of	fitness	over	several	iterations	called
generations.
GAs	involve	two	main	processes	for	evolving	the	solutions	into
something	closer	to	the	optimum	they	are	after.	These	are	mutation
and	crossover.
Mutation	is	the	process	according	to	which	at	any	given	generation,
a	chromosome	may	change	at	a	random	gene,	by	flipping	its	value.
Mutation	ensures	that	the	genome	doesn’t	get	stagnant	and
therefore	the	solutions	are	limited	to	a	particular	part	of	the	search
space.
Crossover	is	the	process	whereby	two	chromosomes	A	and	B
merge	to	form	two	other	chromosomes,	each	consisting	of	a	part	of
A	and	a	part	of	B.	The	split	of	the	parent	chromosomes	can	happen
either	at	a	random	or	a	predefined	position.	Crossover	ensures	that
the	solutions	are	dynamic	and	therefore	able	to	evolve	over	time.
The	best-performing	chromosome	(or	chromosomes)	is	sometimes
retained	in	the	next	generation.	This	ensures	that	the	best	solution
doesn’t	degrade	when	the	crossovers,	mutations,	or	selections	don’t
work	out	favorably.	This	process	is	called	elitism.
The	original	Genetic	Algorithm	involves	creating	a	population	of
chromosomes,	evaluating	them	using	a	fitness	function,
stochastically	selecting	some	of	them	based	on	their	fitness	scores,
applying	crossover	and	mutation	to	them	based	on	these	selections,
creating	a	new	population	based	on	the	results,	and	repeating	this
process	for	a	given	number	of	generations	or	until	some	other
stopping	criterion	has	been	met.
Special	care	must	be	taken	during	the	encoding	part	of	a	GAs



model,	since	it’s	not	always	straightforward,	while	some	additional
functions	may	need	to	be	coded.
Some	of	the	main	variants	of	GAs	include	Hybrid	GAs,	Self-
organizing	GAs,	Variable	Selective	Pressure	Models,	and	Genetic
Programming.
Genetic	Programming	(GP)	is	a	very	useful	variant	of	the	GA.	In
GPs,	different	functions	are	used	as	chromosomes,	in	order	to
create	a	synthetic	function	that	approximates	a	given	mapping	(like
a	regression	system).	GP	has	been	used	for	feature	fusion,	among
other	applications.
Although	GAs	can	handle	continuous	variables	(with	the	proper
encoding),	they	are	not	as	accurate	as	other	AI	systems,	such	as
PSO	and	Simulated	Annealing.
GAs	are	ideal	for	cases	where	the	fitness	function	cannot	be
differentiated	or	the	differentiation	process	is	too	computationally
expensive.

https://bit.ly/2qw8gvZ.
Unfortunately,	NDA	restrictions	prohibit	the	discussion	of	details	about	such	problems.



CHAPTER	8

Building	an	Optimizer	Based	on
Simulated	Annealing

The	last	(but	definitely	not	least)	of	all	the	optimization	methods	covered
in	this	book	is	one	that	has	been	around	for	quite	a	while	now.	Created	in
the	1983s	by	Dr.	S.	Kirkpatrick	and	his	associates,16	Simulated	Annealing
(SA)	 has	 been	 an	 optimizer	 ahead	 of	 its	 time.	Although	 some	 trace	 this
optimizer	back	to	the	1950s	as	a	variant	of	Monte	Carlo,	it	was	officially
recognized	 as	 an	 independent	 optimizer	 in	 the	 1980s.	 It	 makes	 use	 of
concepts	 that	only	came	about	 in	 some	variants	of	PSO	and	other,	more
modern	optimizers.	Also,	even	though	it	has	been	around	in	some	form	or
another	for	over	half	a	century,	it	only	became	popular	in	the	1980s,	when
computational	intelligence	started	to	take	off.
Just	 like	 swarms	 and	 genetics,	 the	 natural	 phenomenon	 of	 “annealing”
inspired	 the	 name	 of	 this	 type	 of	 optimizer.	 Annealing	 is	 a	 term	 in
thermodynamics	 referring	 to	 the	 cooling	 process	 of	 liquids,	 related	 to
crystal	 formation.	 Simulated	 Annealing	 applies	 this	 concept	 to
mathematical	functions.
At	 the	 core	 of	 the	 annealing	 process	 emulated	 by	 SA	 is	 temperature:	 a
control	parameter	 for	 the	whole	process.	Temperature	starts	with	a	 fairly
high	value	(such	as	10,000	degrees),	and	then	it	gradually	falls,	usually	at
a	geometric	rate.	Through	all	this,	the	energy	level	of	the	liquid	also	falls,
as	it	gradually	takes	a	solid	form.	This	represents	the	value	of	the	fitness
function,	 which	 is	 generally	 minimized	 (although	 maximization	 is	 also
possible).
As	 the	 temperature	 is	 relatively	high,	 larger	 changes	 in	 the	 search	 space
are	 possible;	 this	 makes	 the	 exploration	 of	 more	 potential	 solutions
feasible,	at	least	in	the	beginning	of	the	process.	Once	the	temperature	gets
lower,	exploration	is	diminished,	as	the	method	favors	exploitation	of	the



search	space;	later,	the	algorithm	prefers	to	refine	the	solutions	discovered.
Thermodynamic	context	aside,	this	strategy	is	closer	to	what	we	do	when
we,	 as	 humans,	 solve	 an	 optimization	 problem.	 First,	 we	 try	 to	 find	 a
“good-enough”	solution	that	may	be	crude	but	still	somewhat	useful,	and
then	 we	 try	 to	 make	 this	 solution	 better	 by	 playing	 around	 with	 the
corresponding	parameters.
SA	 has	 been	 viewed	 as	 a	 major	 improvement	 of	 the	 “hill	 climbing”
optimization	method,	which	opts	for	the	best	possible	improvement	of	the
fitness	 function,	 at	 any	 given	 point.	 The	 rudimentary	 hill	 climbing
approach	 to	 optimization	 may	 work	 for	 simple	 functions,	 but	 when	 the
search	 space	 is	 more	 challenging,	 it	 is	 one	 of	 the	 worst	 optimization
strategies	 out	 there.	 SA	 is	 said	 to	 emulate	 the	 hill	 climbing	 algorithm
towards	the	end	of	its	search,	when	it	tries	to	“zero	in”	on	the	optimum	of
the	 function	 after	 having	 identified	 its	 neighborhood	 (where	 the	 search
space	is	more	manageable).
The	main	advantage	of	the	SA	method	is	that	it	is	quite	robust,	in	the	sense
that	 it	 avoids	 local	 optima	 (see	 Figure	 9).	 This	 is	 particularly	 useful	 in
cases	where	 the	 solution	 space	 is	 not	 clear-cut,	 as	 the	 fitness	 function	 is
quite	 complex.	 This	 feature	 of	 SA,	 along	 with	 the	 fact	 that	 it	 is	 quite
simple,	makes	it	a	powerful	option	for	the	optimization	of	such	problems.
Furthermore,	 the	 standard	 SA	 algorithm	 (which	 we’ll	 examine	 in	 a
moment)	 can	 be	 further	 improved	 by	 other	 procedures,	 making	 it	 even
more	effective.



The	downside	of	SA	is	mainly	the	fine-tuning	of	the	parameters	involved.
Although	most	 optimization	 algorithms	 have	 a	 set	 of	 default	 values	 for
these	parameters,	SA	doesn’t;	there	are	no	“rules	of	thumb”	that	generally
work.	The	initial	temperature	is	particularly	challenging	to	define.	The	rate
at	 which	 it	 falls	 is	 also	 a	 matter	 of	 debate,	 and	 can	 vary	 greatly	 from
problem	to	problem.	So,	even	though	SA	can	be	quite	fast	in	converging,
it	 can	 have	 long	 computation	 times	 (if	 not	 properly	 configured)	 as	 the
search	slowly	“cools	down”	to	a	solution.
For	more	information	on	SA,	from	a	more	formalized	perspective,	you	can
check	out	the	paper	“Simulated	Annealing”	by	Professor	D.	Bertsimas	and
Professor	 J.	 Tsitsiklis,	 which	 was	 published	 at	 the	 Statistical	 Science
journal	in	1993.17



Pseudo-code	of	the	Standard	Simulated
Annealing	Algorithm

Let’s	now	examine	at	the	steps	of	the	standard	SA	algorithm.	In	a	nutshell,
the	process	looks	like	this:

1.	 Define	the	optimization	mode	(minimization	or	maximization),
initial	temperature,	temperature	decrease	rate,	radius	of
neighborhood	for	each	variable,	and	initial	solution	vector.

2.	 Propose	an	updated	solution	in	the	same	neighborhood	and
evaluate	it	using	the	fitness	function.

3.	 Accept	updates	that	improve	this	solution.
4.	 Accept	some	updates	that	don’t	improve	this	solution.	This

“acceptance	probability”	depends	on	the	temperature	parameter.
5.	 Drop	the	temperature.
6.	 Repeat	steps	2-5	until	the	temperature	has	reached	zero,	or	a

predefined	minimum	temperature.
7.	 Output	the	best	solution	found.

During	the	iterations,	it’s	important	to	keep	in	mind	the	following	points:

When	selecting	a	new	update	for	the	solution,	you	first	need	to
randomly	pick	a	data	point	in	the	search	space	(representing	a
potential	solution)	from	the	predefined	neighborhood	area.
The	new	solution	may	not	necessarily	be	better,	as	there	is	a	chance
that	a	sub-optimal	update	may	take	place,	based	on	the
temperature.
The	cooling	is	typically	geometric;	it	involves	a	cooling	parameter
β	which	usually	takes	values	between	0.8	and	0.99.	The	higher	β	is,
the	slower	the	cooling.	At	an	iteration	k	the	temperature	is	Tk	=	β
Tk-1.	If	this	cooling	strategy	is	employed,	make	sure	you	have	a



non-zero	positive	value	for	the	minimum	temperature	set,	to	ensure
that	the	search	will	eventually	“cool	off.”
The	acceptance	probability	is	p	=	exp(-	ΔC	/	T),	where	ΔC	is	the
difference	in	fitness	function	values	between	the	current	and
previous	solutions,	and	T	is	the	temperature	at	that	time.
If	cooling	is	sufficiently	slow,	the	global	optimum	will	be	reached
eventually.	However,	this	is	bound	to	take	some	time.

Implementation	of	Simulated	Annealing	in
Julia

Let’s	 now	 explore	 how	we	 can	 implement	 a	 practical	 version	 of	 SA	 in
Julia.	We	can	start	with	some	auxiliary	functions:
function	sample_ff(x::Array{<:Real,	1},	c::Array{Int64,	1}	=
ones(Int64,	length(x)))	#	function	to	maximize
				z	=	abs.(x)	.*	c
				return	1	/	(1	+	sum(z))
end
function	SelectNeighbor(x::Array{<:Real,	1},	nv::Int64,
r::Array{Float64,	1}	=	ones(nv))
				y	=	Array{eltype(x)}(undef,	nv)
				for	i	=	1:nv
								y[i]	=	x[i]	+	(1	-	2*rand())*r[i]
				end
				return	y
end
function	ChancePick(absDE::Float64,	T::Float64)
				z	=	exp(absDE	/	T)
				return	rand()	<	z
end

Note	that	the	sample_ff()	function	is	not	essential,	but	it’s	useful	to	have	a
fitness	 function	 to	 test	 the	 algorithm	 with,	 to	 make	 sure	 that	 it	 works
properly.	 Also,	 the	 neighbor	 function	 is	 not	 entirely	 necessary	 as	 an



independent	 function.	 However,	 since	 that’s	 a	 weak	 point	 of	 the	 SA
algorithm	(and	hasn’t	been	explained	properly	in	any	of	the	sources	of	the
algorithm	we’ve	found),	it	would	be	best	to	have	it	as	an	auxiliary	function
so	that	we	can	explore	it	more.	After	all,	in	an	optimization	problem,	not
all	 variables	 are	 of	 the	 same	 scale.	 It’s	 helpful	 to	 have	 different	 radius
options	 for	 each	 variable’s	 neighborhood,	which	 is	 possible	 through	 the
SelectNeighbor()	function	and	its	r	parameter.
With	all	that	out	of	the	way,	we	can	now	look	at	the	SA	algorithm	itself,
which	can	be	coded	as	follows:
function	SA(ff::Function,	nv::Int64,	maximize::Bool	=	true,
x::Array{<:Real,	1}	=	rand(nv),	T::Float64	=	1e4,	beta::Float64	=	0.9,
Tmin::Float64	=	1e-9,	r::Array{Float64,	1}	=	0.5*ones(nv))
				x	=	map(Float64,	x)
				E	=	ff(x)
				E_best	=	E
				x_best	=	copy(x)
				while	T	>	Tmin
								x_n	=	SelectNeighbor(x,	nv,	r)
								E_n	=	ff(x_n)
								DE	=	E_n	-	E
								if	(maximize	&&	DE	>=	0)||(!maximize	&&	DE	<=	0)
												x	=	copy(x_n)
												E	=	E_n
								elseif	ChancePick(abs(DE),	T)
												x	=	copy(x)
												E	=	E_n
								end
								if	(maximize	&&	(E	>	E_best))||(!maximize	&&	(E	<	E_best))
												E_best	=	E
												x_best	=	x
								end
								T	*=	beta
				end
				return	x_best,	E_best
end



Notice	that	in	this	implementation	of	the	SA	method,	we	maintain	a	record
of	the	best	solution	found.	This	was	not	present	in	the	original	algorithm,
perhaps	 because	 at	 the	 time	 that	 the	 SA	 algorithm	 came	 about,	 people
weren’t	 fully	 aware	 of	 how	 stochastic	 search	 algorithms	 behaved,	 and
incorrectly	 assumed	 these	 algorithms	 always	 veer	 towards	 an	 improved
solution.	 Other	 implementations	 of	 the	 SA	 optimizer	maintain	 a	 similar
strategy	of	keeping	a	record	of	the	best	solution,	since	without	this	add-on
the	SA	algorithm	wouldn’t	perform	as	well.
If	you	prefer	a	more	established	package	for	the	SA	framework,	you	can
also	 make	 use	 of	 the	 Optim.jl	 package,	 which	 is	 well-maintained	 and
covers	 a	 variety	 of	 optimization	 systems	 in	 Julia.	 It	 also	 has	 decent
documentation	for	the	algorithms	it	covers.	For	SA	in	particular,	you	can
use	the	SimulatedAnnealing()	function,	explained	in	such	documentation.18

Simulated	Annealing	in	action
SA	has	a	variety	of	applications,	usually	involving	challenging	problems.
A	classical	application	 is	graph	 traversal,	 as	 in	 the	case	of	 the	Traveling
Salesman	 Problem.	 This	 straightforward	 problem	 quickly	 escalates	 in
complexity	 as	 the	 number	 of	 nodes	 in	 the	 graph	 increases,	 making	 it
difficult	 to	 tackle	with	conventional	optimizers.	So	 far,	SA	and	GAs	are
the	best	practical	methods	of	solving	it.
SA	 is	 also	 used	 in	 the	 realm	 of	 Bioinformatics,	 including	 the	 design	 of
protein	molecules	for	3-D	representations.	This	is	an	NP	kind	of	problem,
sharing	 the	 same	 computational	 challenges	 as	 the	 Traveling	 Salesman
Problem	 one,	 which	 is	 why	 it	 is	 usually	 tackled	 with	 advanced
optimization	methods.
SA’s	applications	also	include	the	design	of	printer	circuit	boards,	as	well
as	 robotics	 logistics.	Both	 types	of	problems	are	particularly	challenging
and	 cannot	 be	 solved	 effectively	 with	 standard	 optimizers.	 Also,	 for
logistics	 problems,	 the	 solution	 time	 is	 of	 the	 essence;	 therefore
optimization	methods	like	SA	are	often	preferred.
Beyond	 these	 domains,	 SA	 has	 applications	 in	 all	 areas	 involving
problems	 with	 complex	 search	 spaces,	 having	 various	 local	 optima.	 In
such	scenarios,	most	common	optimizers	under-perform	or	 take	 too	 long
to	 converge,	 making	 algorithms	 like	 SA	 the	 most	 practical	 options



available.
Let’s	 now	 examine	 how	 this	 SA	 program	 works	 in	 practice,	 through	 a
couple	of	examples	of	minimization	and	maximization.
In	 the	 first	 example,	 we’ll	 use	 a	 fairly	 simple	 function	 that	 we’ll	 try	 to
optimize	using	SA.	Namely,	a	four-variable	function	ff1,	which	consists	of
two	cosines	and	a	joint	absolute,	taking	the	following	form:
ff1(x::Array{<:Real,	1})	=	(cos(x[1])	+	2)*(cos(x[2])	+	3)	+
abs(x[3]*x[4])

This	function	has	a	global	minimum	of	2.0,	for	 the	solutions	[π,	π,	0,	R]
and	[π,	π,	R,	0],	where	R	is	any	real	number.	However,	due	to	the	nature	of
the	search	space,	these	two	groups	of	solutions	are	not	so	obvious—not	to
an	optimization	algorithm,	anyway.
For	 this	 problem	we’ll	 start	with	 the	 potential	 solution	x	=	 [2,	 4,	 1,	 -1],
which	has	a	value	of	4.716.	That’s	pretty	bad,	but	we	don’t	want	to	make
it	too	easy	for	the	algorithm!	We	don’t	need	to	provide	SA	with	a	starting
position.	 Doing	 so,	 though,	 gives	 us	 a	 better	 understanding	 of	 how	 the
optimizer	 performs.	 Otherwise,	 if	 we	 give	 it	 a	 random	 solution,	 it	 may
make	 things	 too	 easy,	 misleading	 us	 about	 algorithm’s	 performance.
Running	the	SA	function	on	this	data	is	quite	straightforward:
SA(ff1,	4,	false,	x)

This	 yields	 a	 solution	 and	 corresponding	 fitness	 function	 value	 of
[3.13373,	 3.10918,	 0.0130858,	 -0.683512],	 2.00953,	which	 is	 not	 bad	 at
all.	The	last	variable	(x4)	is	irrelevant	in	this	scenario	(since	it	is	covered
by	 variable	 x3,	 in	 the	 fitness	 function),	 while	 all	 the	 other	 ones	 that
contribute	 to	 the	 solution	 are	 fairly	 close	 to	 the	 actual	 minimum	 the
algorithm	was	after.
The	second	example	 tackles	an	equally	challenging	function,	 involving	a
couple	of	trigonometric	expressions	as	well	as	a	simple	polynomial.	This
function,	which	we’ll	call	ff2,	takes	the	following	form	in	Julia:
ff2(x::Array{<:Real,	1})	=	-x[1]^2	+	2	/	(1	+	abs(tan(x[2])))	-	cos(x[3])

Naturally,	 it	 has	 a	 global	 maximum	 of	 3.0,	 which	 corresponds	 to	 the



solution	[0,	0,	π].	Since	we	want	to	push	the	algorithm	to	its	limits,	we’ll
start	 with	 a	 potential	 solution	 of	 x	 =	 [1,	 -1,	 2],	 which	 corresponds	 to	 a
pretty	terrible	fitness	score	of	about	0.198.	Let’s	now	make	use	of	the	SA
function,	 to	 see	 how	 this	 solution	 can	 be	 improved.	 For	 this	 problem	 it
takes	the	form:
SA(ff2,	3,	true,	x)

A	 solution	 it	 yields	 is	 [0.0731461,	 -0.00582237,	 2.93553]	 which	 has	 a
fitness	score	of	2.96192—a	big	improvement,	and	quite	close	to	the	global
maximum.

Main	Variants	of	Simulated	Annealing
Unlike	 other	 optimization	 systems,	 SA	doesn’t	 have	many	 variants.	 The
three	key	flavors	are	described	here:

1.	 1.	Deterministic	SA.	Although	SA	is	stochastic	by	design,	there
is	a	variant	of	it	that	is	deterministic.	The	key	benefit	of	it	is	that
it	is	faster	than	the	standard	SA	method.	However,	it	cannot
guarantee	the	optimum	solution	to	the	problem	it	is	tackling.
Deterministic	SA	has	been	applied	to	clustering	problems,
particularly	the	Fuzzy	C-means	approach	to	it,	an	alternative	to
the	well-known	K-means	algorithm,	using	Fuzzy	Logic.19

2.	 2.	Adaptive	SA.	This	variant	tackles	the	issue	of	having	too
many	parameters	to	configure,	by	using	heuristics	to	handle	the
temperature	scheduling.	This	makes	this	variant	more	efficient
than	the	standard	SA	algorithm	and	somewhat	easier	to	use.
Adaptive	SA	also	has	a	parallel	processing	version,	which	is
even	more	efficient.

3.	 3.	Quantum	Annealing.	This	is	a	somewhat	different	approach
to	the	whole	problem,	though	it	borrows	all	the	key	elements	of
the	standard	SA	algorithm.	The	main	difference	is	that	Quantum
Annealing	uses	“quantum	fluctuations”	(instead	of	thermal
fluctuations)	to	bypass	irregular	areas	in	the	landscape	of	the
search	space	in	relation	to	the	fitness	function.	Note	that	the



physical	process	of	quantum	annealing	is	what’s	used	in	D-
Wave’s	quantum	computers	and	what	makes	them	“quantum”
even	though	other	quantum	properties	could	also	be	used	in	such
a	computer.

Simulated	Annealing	Optimizer	tips
Although	 the	SA	optimization	 framework	has	been	 tested	 thoroughly	 for
several	 years,	 there	 are	 still	 things	 to	 keep	 in	 mind.	 Contrary	 to	 most
modern	optimizers,	SA	is	not	created	with	practicality	in	mind;	as	such,	a
lot	 of	 fine-tuning	 is	 required	 for	 it	 to	work	well.	 If	 you	 plan	 to	 use	 this
optimization	 approach,	 make	 sure	 you	 spend	 some	 time	 configuring	 it
properly,	before	accepting	its	proposed	solution	as	truth.
Sometimes	when	 hunting	 for	 a	 good	 solution,	much	 like	 a	 hound	 going
after	some	game,	an	SA	will	stray	off	the	trail	and	fail	to	find	anything	of
value.	 If	 this	 happens,	 you	 can	 implement	 an	 add-on	 called	 a	 “restart,”
whereby	the	system	can	decide	to	regress	to	a	significantly	better	solution,
if	the	solutions	it	 is	veering	towards	are	not	any	better.	There	are	several
factors	 to	consider	before	executing	a	“restart.”	 It	 inevitably	slows	down
the	 search,	 so	 make	 sure	 you	 know	 the	 algorithm	 quite	 well	 before
implementing	such	a	strenuous	add-on.
Finally,	it	is	best	to	start	with	high	temperatures	when	using	SA,	as	these
are	guaranteed	to	provide	you	with	a	good	solution.	If	the	algorithm	takes
way	 too	 long,	 you	 can	 always	 speed	 up	 the	 cooling	 rate	 or	 start	with	 a
lower	temperature.	Whatever	the	case,	be	aware	of	this	trade-off	between
effectiveness	and	speed	in	the	SA	algorithm.

Summary

Simulated	Annealing	(SA)	is	a	simple,	robust,	and	efficient
algorithm	for	optimization.
SA	emulates	the	cooling	process	of	liquids	as	they	form	crystals	to
optimize	the	whole	search	process.	As	the	temperature	is	high,	SA



focuses	on	exploring	more	of	the	solution	space;	as	it	“cools
down,”	it	focuses	on	refining	the	solutions	it’s	already	found.	This
way,	it	usually	avoids	becoming	trapped	in	local	optima.
The	standard	SA	algorithm	can	guarantee	an	optimum	solution	if
the	cooling	rate	is	low	enough.
A	few	variants	of	SA	include	deterministic	SA,	adaptive	SA,	and
quantum	annealing.	Each	of	these	methods	has	unique	advantages
over	the	core	SA	algorithm.
There	are	various	applications	of	SA,	such	as	graph	traversal,
Bioinformatics,	designing	of	printer	circuit	boards,	and	logistics	for
Robotics	use	cases.	SA	is	especially	good	to	solve	“NP”	problems,
which	have	various	optima,	making	them	especially	challenging.
The	“restart”	add-on	of	the	SA	method,	which	allows	for	reverting
to	a	“good”	solution	in	case	of	having	“gone	down	a	wrong	trail”	in
the	search,	can	be	useful.	However,	deciding	when	to	apply	a
restart	is	not	a	trivial	task.
SA	is	best	suited	for	complex	problems	having	multiple	optima,
most	of	which	are	local	optima	whose	fitness	values	are
substandard	for	the	optimization	application	we	are	working	with.

http://bit.ly/2Oac0fP.
https://bit.ly/2I9fOei.
https://bit.ly/2GdhJBW.
http://bit.ly/2MiIfZM.



CHAPTER	9

Building	an	Advanced	Deep	Learning
System	In	the	previous	chapters,	we

discovered	how	to	build	deep
learning	models	using	MXNet,

TensorFlow,	and	Keras	frameworks.
Recall	that	the	models	we	used	in
those	chapters	are	known	as

Artificial	Neural	Networks,	or	ANNs
for	short.	Recent	research	on	ANNs
has	uncovered	a	broad	type	of	neural

networks	that	have	special
architectures,	different	than	that	of

ANNs.
In	 this	 chapter,	 we	 introduce	 two	 of	 the	 most	 popular	 alternative
architectures,	which	are	quite	useful	for	tasks	like	image	classification	and
natural	language	translation.
The	first	model	we	mention	 is	 the	Convolutional	Neural	Network.	These
models	 perform	well	 in	computer	 vision-related	 tasks;	 in	 some	domains,
like	image	recognition,	it	has	already	surpassed	human	performance.	The
second	model	we	 cover	 is	 the	Recurrent	Neural	Network,	which	 is	 very
convenient	 for	 sequence	 modeling,	 including	 machine	 translation	 and
speech	recognition.	Although	we	restrict	our	attention	 to	 these	 two	 types



of	neural	networks	in	this	chapter,	you	can	read	more	on	other	prominent
network	architectures	in	the	appendices	of	this	book.

Convolutional	Neural	Networks	(CNNs)	One
of	the	most	interesting	DL	systems	is	the
Convolutional	Neural	Network	(usually
called	CNNs,	though	some	use	the	term

ConvNets).	These	are	DL	networks	that	are
very	effective	in	solving	image-or	sound-
related	problems,	particularly	within	the

classification	methodology.
Over	the	years,	though,	their	architecture	has	evolved	and	applicability	has
expanded	 to	 include	 a	 variety	 of	 cases,	 such	 as	 NLP	 (natural	 language
processing—the	 processing	 and	 classification	 of	 various	 human
sentences).	 Furthermore,	 convolutional	 layers	 used	 in	 CNNs	 can	 be
integrated	 as	 components	of	more	 advanced	DL	 systems,	 such	 as	GANs
(see	 Appendix	 D).	 Let’s	 start	 by	 describing	 the	 architecture	 and	 the
building	blocks	of	CNNs.

CNN	components
CNNs	 have	 evolved	 considerably	 since	 their	 introduction	 in	 the	 1980s.
However,	 most	 of	 them	 use	 some	 variation	 of	 the	 LeNet	 architecture,
which	was	introduced	by	Yann	LeCun	and	flourished	in	the	1990s.	Back
then,	CNNs	were	used	primarily	for	character	recognition	tasks;	this	niche
changed	as	they	become	more	versatile	in	other	areas	like	object	detection
and	segmentation.
Figure	 10	 shows	 a	 simple	 CNN	 architecture,	 geared	 towards	 image
classification.	 It	 is	 composed	of	 several	 layers,	 each	 specialized	 in	 some
way.	These	layers	eventually	develop	a	series	of	meta-features,	which	are
then	 used	 to	 classify	 the	 original	 data	 into	 one	 of	 the	 classes	 that	 are
represented	 as	 separate	 neurons	 in	 the	 output	 layer.	 In	 the	 output	 layer,
usually	a	function	like	sigmoid	is	used	to	calculate	scores	for	each	class.



Those	scores	can	be	interpreted	as	probabilities.	For	example,	if	the	score
for	the	first	class	is	0.20	we	can	say	that	the	probability	of	the	observation
belong	to	the	first	class	is	20%.

Data	flow	and	functionality
The	data	 in	a	CNN	flows	 the	same	way	as	 in	a	basic	DL	system	like	an
MLP.	However,	a	CNN’s	functionality	is	characterized	by	a	series	of	key
operations	 that	 are	 unique	 for	 this	 type	 of	 DL	 network.	 Namely,
functionality	is	described	in	terms	of:

1.	 Convolution
2.	 Non-linearity	(usually	through	the	ReLU	function,	though	tanh

and	sigmoid	are	also	viable	options)
3.	 Pooling	(a	special	kind	of	sub-sampling)
4.	 Classification	through	the	fully	connected	layer(s)



We’ll	go	over	each	of	these	operations	below.	Before	that,	note	that	all	the
data	of	the	original	image	(or	audio	clip,	etc.)	takes	the	form	of	a	series	of
integer	 features.	 In	 the	 case	 of	 an	 image,	 each	 one	 of	 these	 features
corresponds	 to	 a	 particular	 pixel	 in	 that	 image.	However,	CNN	can	 also
use	sensor	data	as	input,	making	it	a	very	versatile	system.

Convolution
This	is	where	CNNs	get	their	name.	The	idea	of	convolution	is	to	extract
features	 from	 the	 input	 image	 in	a	methodical	and	efficient	manner.	The
key	benefit	of	 this	process	 is	 that	 it	considers	 the	spatial	 relationships	of
the	pixels.	This	is	accomplished	by	using	a	small	square	(aka	the	“filter”)
that	 traverses	 the	 image	 matrix	 in	 pixel-long	 steps.	 Figure	 11	 below
demonstrates	 the	 convolution	 operator:	

From	a	programmatic	point	of	view,	it	is	helpful	to	think	of	the	input	to	a
convolutional	 layer	as	a	 two-dimensional	matrix	 (represented	as	matrix	 I
in	Figure	11).	In	effect,	the	convolution	operation	is	just	a	series	of	matrix
multiplications,	where	 the	 filter	matrix	 is	multiplied	 by	 a	 shifted	 part	 of
the	 input	matrix	 each	 time,	 and	 the	 elements	 of	 the	 resulting	matrix	 are
summed.	 This	 simple	mathematical	 process	 enables	 the	 CNN	 system	 to
obtain	information	regarding	the	local	aspects	of	the	data	analyzed,	giving
it	 a	 sense	 of	 context,	 which	 it	 can	 leverage	 in	 the	 data	 science	 task	 it
undertakes.
The	output	of	this	process	is	represented	by	a	series	of	neurons	comprising



the	 feature	map.	Normally,	more	 than	one	 filter	 is	used	 to	better	capture
the	 subtleties	 of	 the	 original	 image,	 resulting	 in	 a	 feature	 map	 with	 a
certain	 “depth”	 (which	 is	 basically	 a	 stack	 of	 different	 layers,	 each
corresponding	to	a	filter).

Non-linearity
Non-linearity	 is	 essential	 in	 all	 DL	 systems	 and	 since	 convolution	 is	 a
linear	 operation,	 we	 need	 to	 introduce	 non-linearity	 in	 a	 different	 way.
One	such	way	is	the	ReLU	function	which	is	applied	to	each	pixel	in	the
image.	Note	that	other	non-linear	functions	can	also	be	used,	such	as	the
hyperbolic	 tangent	 (tanh)	or	 the	sigmoid.	Descriptions	of	 these	 functions
are	in	the	glossary.

Pooling
Since	the	feature	maps	and	the	results	of	the	non-linear	transformations	to
the	original	data	are	 rather	 large,	 in	 the	part	 that	 follows,	we	make	 them
smaller	 through	 a	 process	 called	 pooling.	 This	 involves	 some
summarization	operation,	such	as	taking	the	maximum	value	(called	“max
pooling”),	the	average,	or	even	the	sum	of	a	particular	neighborhood	(e.g.
a	 3x3	 window).	 Various	 experiments	 have	 indicated	 that	 max	 pooling
yields	 the	 best	 performance.	 Finally,	 the	 pooling	 process	 is	 an	 effective
way	to	prevent	overfitting.

Classification
This	 final	part	 of	 a	CNN’s	 functionality	 is	 almost	 identical	 to	 that	of	 an
MLP	 which	 uses	 softmax	 as	 a	 transfer	 function	 in	 the	 final	 layer.	 As
inputs,	 the	 CNN	 uses	 the	 meta-features	 created	 by	 pooling.	 Fully-
connected	layers	in	this	part	of	the	CNN	allow	for	additional	non-linearity
and	different	 combinations	 of	 these	 high-level	 features,	 yielding	 a	 better
generalization	at	a	relatively	low	computational	cost.

Training	process
When	training	a	CNN,	we	can	use	various	algorithms;	the	most	popular	is
backpropagation.	Naturally,	we	must	model	 the	outputs	using	a	series	of
binary	vectors,	the	size	of	which	is	the	number	of	classes.	Also,	the	initial
weights	 in	 all	 the	 connections	 and	 the	 filters	 are	 all	 random.	 Once	 the



CNN	is	fully	trained,	it	can	be	used	to	identify	new	images	that	are	related
to	the	predefined	classes.

Visualization	of	a	CNN	model
Visualizing	 a	 CNN	 is	 often	 necessary,	 as	 this	 enables	 us	 to	 better
understand	 the	 results	 and	 decide	 whether	 the	 CNN	 has	 been	 trained
properly.	This	 is	particularly	useful	when	dealing	with	 image	data,	 since
we	can	see	how	the	CNN’s	perception	of	the	input	image	evolves	through
the	various	layers.	Figure	12	shows	an	example	of	such	a	visualization	of	a
CNN.

CNNs	in	action
Now	it’s	time	to	see	just	how	CNNs	work	with	a	real-world	problem.	Here
we	 provide	 an	 image	 classification	 example	 of	CNNs	 using	 Python	 and
Keras.	In	the	example,	we	use	one	of	the	most	popular	databases	in	image
recognition,	 which	 is	 the	 MNIST	 dataset.	 This	 dataset	 consists	 of
handwritten	digits	from	0	to	9.	Our	task	is	to	discern	the	true	digit	from	the



images	 that	 include	 handwritten	 characters.	 Figure	 13	 shows	 examples
from	the	MNIST	dataset.

We’ll	see	that	Keras’	datasets	module	already	provides	this	dataset,	so	no
additional	download	is	required.	The	code	below	is	taken	from	the	official
Keras	repository.20

As	 usual,	 we	 begin	 by	 importing	 the	 relevant	 libraries.	We	 should	 also
import	 the	 MNIST	 dataset	 from	 the	 datasets	 module	 of	 Keras:	 from
__future__	import	print_function
import	keras
from	keras.datasets	import	mnist
from	keras.models	import	Sequential
from	keras.layers	import	Dense,	Dropout,	Flatten	from	keras.layers
import	Conv2D,	MaxPooling2D
from	keras	import	backend	as	K



Then	we	 define	 the	 batch	 size	 as	 128,	 the	 number	 of	 classes	 as	 10	 (the
number	of	digits	from	0	to	9),	the	epochs	to	run	the	model	as	12,	and	the
input	 image	dimension	as	 (28,28),	 since	 all	 of	 the	 corresponding	 images
are	28	by	28	pixels:	batch_size	=	128
num_classes	=	10
epochs	=	12
img_rows,	img_cols	=	28,	28

Next,	we	obtain	the	MNIST	data	and	load	it	to	variables,	after	splitting	as
train	and	test	sets:	(x_train,	y_train),	(x_test,	y_test)	=	mnist.load_data()

It	 is	 time	 for	 some	 preprocessing—mostly	 reshaping	 the	 variables	 that
hold	the	data:	if	K.image_data_format()	==	‘channels_first’:
				x_train	=	x_train.reshape(x_train.shape[0],	1,	img_rows,	img_cols)
x_test	=	x_test.reshape(x_test.shape[0],	1,	img_rows,	img_cols)
input_shape	=	(1,	img_rows,	img_cols)
else:
				x_train	=	x_train.reshape(x_train.shape[0],	img_rows,	img_cols,	1)
x_test	=	x_test.reshape(x_test.shape[0],	img_rows,	img_cols,	1)
input_shape	=	(img_rows,	img_cols,	1)
x_train	=	x_train.astype(‘float32’)
x_test	=	x_test.astype(‘float32’)
x_train	/=	255
x_test	/=	255
print(‘x_train	shape:’,	x_train.shape)
print(x_train.shape[0],	‘train	samples’)
print(x_test.shape[0],	‘test	samples’)

Then	we	convert	 the	vectors	 that	hold	classes	 into	binary	class	matrices:
y_train	 =	 keras.utils.to_categorical(y_train,	 num_classes)	 y_test	 =
keras.utils.to_categorical(y_test,	num_classes)

After	these	steps,	we	are	now	ready	to	build	our	graph,	using	a	sequential



model.	We	first	add	two	convolutional	layers	on	top	of	each	other,	then	we
apply	the	max-pooling	operation	to	the	output	of	the	second	convolutional
layer.	Next,	we	apply	dropout.	Before	we	feed	the	resulting	output	to	the
dense	 layer,	we	flatten	our	variables,	 to	comply	with	 the	 input	shapes	of
the	dense	layer.	The	output	of	this	dense	layer	is	regulated	with	dropout;
the	resulting	output	is	then	fed	into	the	last	dense	layer	for	classification.
The	softmax	function	is	used	to	turn	the	results	into	something	that	can	be
interpreted	in	terms	of	probabilities.	Here	is	the	code	snippet	of	the	model
building	part:	model	=	Sequential()
model.add(Conv2D(32,	kernel_size=(3,	3),
																	activation=’relu’,
																	input_shape=input_shape))
model.add(Conv2D(64,	(3,	3),	activation=’relu’))
model.add(MaxPooling2D(pool_size=(2,	2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128,	activation=’relu’))
model.add(Dropout(0.5))
model.add(Dense(num_classes,	activation=’softmax’))

We	 next	 compile	 our	 model	 using	 cross-entry	 loss	 and	 the	 Adadelta
optimization	 algorithm.	 We	 use	 accuracy	 as	 the	 evaluation	 metric,	 as
usual:	 model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.Adadelta(),	metrics=[‘accuracy’])

It	is	time	to	train	our	model	on	the	training	set	that	we	separated	from	the
original	MNIST	dataset	before.	We	just	use	the	fit()	function	of	the	model
object	to	train	our	model:	model.fit(x_train,	y_train,
										batch_size=batch_size,
										epochs=epochs,
										verbose=1,
										validation_data=(x_test,	y_test))

Finally,	we	evaluate	the	performance	of	our	model	on	the	test	set:	score	=
model.evaluate(x_test,	y_test,	verbose=0)	print(‘Test	loss:’,	score[0])



print(‘Test	accuracy:’,	score[1])

After	12	epochs,	our	model	reaches	99%	accuracy	on	the	test	set—a	quite
satisfactory	result	for	a	simple	model	like	this.	This	example	demonstrates
how	 successful	 CNNs	 are	 in	 image	 classification	 tasks.	 Below	 is	 the
output	 of	 the	 all	 of	 the	 code	 above:	 Downloading	 data	 from
https://s3.amazonaws.com/img-datasets/mnist.npz	 11493376/11490434
[==============================]	 -	 15s	 1us/step	 x_train	 shape:
(60000,	28,	28,	1)
60000	train	samples
10000	test	samples
Train	on	60000	samples,	validate	on	10000	samples	Epoch	1/12
60000/60000	[==============================]	-	105s
2ms/step	-	loss:	0.2674	-	acc:	0.9184	-	val_loss:	0.0584	-	val_acc:	0.9809
Epoch	2/12
60000/60000	[==============================]	-	106s
2ms/step	-	loss:	0.0893	-	acc:	0.9734	-	val_loss:	0.0444	-	val_acc:	0.9863
Epoch	3/12
60000/60000	[==============================]	-	108s
2ms/step	-	loss:	0.0682	-	acc:	0.9798	-	val_loss:	0.0387	-	val_acc:	0.9864
Epoch	4/12
60000/60000	[==============================]	-	109s
2ms/step	-	loss:	0.0565	-	acc:	0.9835	-	val_loss:	0.0365	-	val_acc:	0.9889
Epoch	5/12
60000/60000	[==============================]	-	110s
2ms/step	-	loss:	0.0472	-	acc:	0.9860	-	val_loss:	0.0311	-	val_acc:	0.9899
Epoch	6/12
60000/60000	[==============================]	-	110s
2ms/step	-	loss:	0.0418	-	acc:	0.9878	-	val_loss:	0.0343	-	val_acc:	0.9893
Epoch	7/12
60000/60000	[==============================]	-	109s
2ms/step	-	loss:	0.0354	-	acc:	0.9895	-	val_loss:	0.0266	-	val_acc:	0.9918
Epoch	8/12
60000/60000	[==============================]	-	107s
2ms/step	-	loss:	0.0341	-	acc:	0.9897	-	val_loss:	0.0306	-	val_acc:	0.9910
Epoch	9/12



60000/60000	[==============================]	-	102s
2ms/step	-	loss:	0.0298	-	acc:	0.9907	-	val_loss:	0.0282	-	val_acc:	0.9915
Epoch	10/12
60000/60000	[==============================]	-	103s
2ms/step	-	loss:	0.0290	-	acc:	0.9911	-	val_loss:	0.0273	-	val_acc:	0.9915
Epoch	11/12
60000/60000	[==============================]	-	108s
2ms/step	-	loss:	0.0285	-	acc:	0.9911	-	val_loss:	0.0283	-	val_acc:	0.9915
Epoch	12/12
60000/60000	[==============================]	-	118s
2ms/step	-	loss:	0.0253	-	acc:	0.9920	-	val_loss:	0.0249	-	val_acc:	0.9918
Test	loss:	0.024864526777043875
Test	accuracy:	0.9918

CNNs	can	be	used	in	several	different	applications:

Identifying	faces.	This	application	is	particularly	useful	in	image
analysis	cases.	It	works	by	first	rejecting	parts	of	the	image	that
don’t	contain	a	face,	which	are	processed	in	low	resolution.	It	then
focuses	on	the	parts	containing	a	face,	and	draws	the	perceived
boundaries	in	high	resolution	for	better	accuracy.21

Computer	vision	(CV)	in	general.	Beyond	face	recognition,
CNNs	are	applied	in	various	other	scenarios	of	computer	vision.
This	has	been	a	hot	topic	for	the	past	decade	or	so,	and	has	yielded
a	variety	of	applications.22

Self-driving	cars.	Since	CV	features	heavily	in	self-driving	cars,
the	CNN	is	often	the	AI	tool	of	choice	for	this	technology.	Their
versatility	in	the	kind	of	inputs	they	accept,	and	the	fact	that	they
have	been	studied	thoroughly,	make	them	the	go-to	option	for
NVIDIA’s	self-driving	car	project,	for	example.23

NLP.	Due	to	their	high	speed	and	versatility,	CNNs	lend
themselves	well	to	NLP	applications.	The	key	here	is	to	“translate”
all	the	words	into	the	corresponding	embeddings,	using	specialized
methods	such	as	GloVe	or	word2vec.	CNNs	are	optimal	here	since
NLP	models	range	from	incredibly	simple	like	a	“bag	of	words”	to



computationally	demanding	like	n-grams.24

Recurrent	Neural	Networks	Recurrent
Neural	Networks	(RNNs)	are	an	interesting
type	of	DL	network,	widely	used	for	NLP

applications.	They	process	data
sequentially,	resulting	in	an	improved

analysis	of	complex	datasets,	through	the
modeling	of	the	temporal	aspect	of	the	data

at	hand.	In	a	way,	RNNs	mimic	human
memory;	this	enables	them	to	understand
relationships	among	the	data	points	like	we

do.
Interestingly,	RNNs	can	also	be	used	 for	 text-related	artificial	 creativity.
It’s	 common	 for	 them	 to	 generate	 text	 that	 stylistically	 resembles	 some
famous	writer’s	prose	or	even	poems,	as	we	saw	in	chapter	2.	Because	of
their	 popularity,	RNNs	have	 a	 few	variants	 that	 are	 even	more	 effective
for	the	tasks	in	which	they	specialize.

RNN	components
RNNs	 have	 “recurrent”	 as	 part	 of	 their	 name	 because	 they	 perform	 the
same	task	for	each	element	of	a	sequence,	while	the	output	depends	on	the
previous	 computations.	 This	 takes	 the	 form	 of	 loops	 in	 an	 RNN’s
architecture,	such	as	the	one	in	Figure	14.



This	 architecture	 could	make	 it	 possible	 for	 the	 network	 to	 consider	 an
unlimited	 number	 of	 previous	 states	 of	 the	 data.	 In	 reality,	 though,	 it
usually	 includes	 merely	 a	 few	 steps.	 This	 is	 enough	 to	 give	 the	 RNN
system	a	sense	of	“memory,”	enabling	it	to	see	each	data	point	within	the
context	of	the	other	data	points	preceding	it.
Since	the	recurrent	connections	in	an	RNN	are	not	always	easy	to	depict
or	 comprehend	 (particularly	 when	 trying	 to	 analyze	 its	 data	 flow),	 we
often	“unfold”	 them.	This	creates	a	more	spread-out	version	of	 the	same
network,	where	 the	 temporal	aspect	of	 the	data	 is	more	apparent,	as	you
can	see	in	Figure	15.	This	process	is	sometimes	referred	to	as	“unrolling”
or	“unfolding”.



Data	flow	and	functionality
The	data	 in	 an	RNN	 flows	 in	 loops,	 as	 the	 system	gradually	 learns	how
each	data	point	correlates	with	some	of	the	previous	ones.	In	this	context,
the	hidden	nodes	of	an	RNN	(which	are	often	referred	to	as	“states”)	are
basically	 the	memory	 of	 the	 system.	As	 you	would	 expect,	 these	 nodes
have	a	non-linear	activation	function	such	as	ReLU	or	tanh.	The	activation
function	 of	 the	 final	 layer	 before	 the	 output	 usually	 has	 a	 softmax
function,	though,	so	as	to	approximate	probabilities.
Contrary	to	a	traditional	DL	system,	which	uses	different	weights	at	each
layer,	an	RNN	shares	the	same	parameters	across	all	steps.	This	is	because
it	 is	 basically	 performing	 the	 same	 task	 at	 every	 step,	 with	 the	 only
difference	being	 the	 inputs.	This	significantly	decreases	 the	 total	number
of	parameters	it	must	learn,	making	the	training	phase	significantly	faster
and	computationally	lighter.

Training	process
When	training	an	RNN,	we	employ	many	of	 the	same	principles	as	with
other	 DL	 networks—with	 a	 key	 difference	 in	 the	 training	 algorithm
(which	 is	 typically	 backpropagation).	 RNNs	 demand	 an	 algorithm	 that
considers	 the	number	of	 steps	we	needed	 to	 traverse	before	 reaching	 the



node	when	calculating	the	gradient	of	the	error	of	each	output	node.	This
variant	of	the	training	algorithm	is	called	Backpropagation	Through	Time
(BPTT).	Because	 the	 gradient	 function	 is	 unstable	 as	 it	 goes	 through	 an
RNN,	 the	 BPTT	 is	 not	 good	 at	 helping	 the	 RNN	 learn	 long-term
dependencies	 among	 its	 data	 points.	 Fortunately,	 this	 issue	 is	 resolved
using	a	specialized	architecture	called	 the	LSTM,	which	we’ll	discuss	 in
the	next	section.

RNN	variants
When	 it	 comes	 to	 variants	 of	 RNNs,	 the	 ones	 that	 stand	 out	 are
Bidirectional	RNNs	(as	well	as	their	“deep”	version),	LSTMs,	and	GRUs.

Bidirectional	RNNs	and	their	deeper	counterparts	A
bidirectional	RNN	is	like	an	ensemble	of	two	RNNs.	The	key
difference	between	these	two	networks	is	that	one	of	them
considers	previous	data	points,	while	the	other	looks	at	data
points	that	follow.	This	way,	the	two	of	them	together	can	have
a	more	holistic	view	of	the	data	at	hand,	since	they	know	both
what’s	before	and	what’s	after.	A	deep	bidirectional	RNN	is	like
a	regular	bidirectional	RNN,	but	with	several	layers	for	each
time	step.	This	enables	a	better	prediction,	but	it	requires	a
much	larger	dataset.

LSTMs	and	GRUs
Short	for	Long	Short	Term	Memory,	an	LSTM	network	(or	cell)	is	a	very
unique	 type	 of	RNN	 that	 is	widely	 used	 in	NLP	problems.	 It	 comprises
four	distinct	ANNs	that	work	together	to	create	a	kind	of	memory	that	is
not	 limited	 by	 the	 training	 algorithm	 (like	 it	 is	 in	 conventional	 RNNs).
This	 is	possible	because	LSTMs	have	an	 internal	mechanism	that	allows
them	 to	 selectively	 forget,	 and	 to	 combine	different	previous	 states,	 in	 a
way	 that	 facilitates	 the	 mapping	 of	 long-term	 dependencies.	 Figure	 16
demonstrates	 a	 standard	 LSTM	 cell	 with	 three	 gates	 (input,	 update,	 and
output):	



LSTMs	 are	 quite	 complex;	 as	 such,	 developers	 quickly	 sought	 a	 more
straightforward	 version.	This	 is	where	GRUs,	 or	Gated	Recurrent	Units,
come	 into	 play;	 a	GRU	 is	 basically	 a	 lightweight	 LSTM.	A	GRU	 is	 an
LSTM	network	with	 two	 gates—one	 for	 resetting,	 and	 one	 for	 updating
previous	 states.	 The	 first	 gate	 determines	 how	 to	 best	 combine	 the	 new
input	 with	 the	 previous	 memory,	 while	 the	 second	 gate	 specifies	 how
much	of	the	previous	memory	to	hold	onto.

RNNs	in	action
Here	we	provide	an	example	of	text	classification	using	the	LSTM	variant
of	 the	RNN.	The	code	 is	 implemented	 in	Python	and	Keras.	The	dataset
we	use	is	from	the	IMDB	movie	database;	it	is	already	available	with	the
Keras’	datasets	module.	The	dataset	includes	IMDB’s	users’	comments	on
movies	and	their	associated	sentiments.	Our	 task	 is	 to	classify	comments
as	positive	or	negative	sentiments—a	binary	classification	task.	The	code
below	is	taken	from	the	official	Keras	repository.25

First,	we	begin	by	importing	the	relevant	libraries,	as	usual.	Notice	that	we



also	 import	 the	 IMDB	 dataset	 from	 Keras’	 datasets	 module:	 from
__future__	import	print_function
from	keras.preprocessing	import	sequence
from	keras.models	import	Sequential
from	keras.layers	import	Dense,	Embedding
from	keras.layers	import	LSTM
from	keras.datasets	import	imdb

Then,	we	 set	 the	maximum	number	of	 features	 to	20,000;	 the	maximum
number	 of	 words	 in	 a	 text	 to	 80;	 and	 batch	 size	 to	 32:	max_features	 =
20000
maxlen	=	80
batch_size	=	32

Next,	we	load	the	dataset	into	some	variables,	after	splitting	train	and	test
sets:	 (x_train,	 y_train),	 (x_test,	 y_test)	 =
imdb.load_data(num_words=max_features)

We	need	to	pad	some	text	comments,	as	some	of	them	are	shorter	than	80
words,	 and	 our	model	 only	 accepts	 inputs	 of	 the	 same	 length.	 In	 short,
padding	works	by	adding	a	predefined	word	 to	 the	end	of	a	 sequence	 to
make	 the	 sequence	 of	 the	 desired	 length.	 The	 code	 below	 pads	 the
sequences:	 x_train	 =	 sequence.pad_sequences(x_train,	 maxlen=maxlen)
x_test	=	sequence.pad_sequences(x_test,	maxlen=maxlen)

Now,	 we	 are	 all	 set	 to	 build	 our	 sequential	 model.	 First	 we	 add	 an
embedding	layer,	and	then	we	add	an	LSTM.	Last,	we	add	the	dense	layer
for	classification:	model	=	Sequential()
model.add(Embedding(max_features,	128))
model.add(LSTM(128,	dropout=0.2,	recurrent_dropout=0.2))
model.add(Dense(1,	activation=‘sigmoid’))

After	 we	 build	 our	 model,	 we	 can	 now	 train	 on	 our	 train	 set.	 We	 use
binary	crossentropy	loss	as	our	 loss	function,	 the	Adam	algorithm	as	our



optimizer,	 and	 accuracy	 as	 our	 evaluation	 metric:
model.compile(loss=’binary_crossentropy’,
														optimizer=’adam’,
														metrics=[‘accuracy’])

It	is	time	to	train	our	model:
model.fit(x_train,	y_train,
										batch_size=batch_size,
										epochs=10,
										validation_data=(x_test,	y_test))

Last,	we	test	the	performance	of	our	model	using	the	test	set:	score,	acc	=
model.evaluate(x_test,	y_test,
																												batch_size=batch_size)	print(‘Test	score:’,	score)
print(‘Test	accuracy:’,	acc)

The	model	achieves	almost	82%	accuracy	on	the	test	set	after	10	epochs,
which	 is	a	satisfactory	 result	 for	such	a	simple	model.	The	output	of	 the
code	above	is:	Train	on	25000	samples,	validate	on	25000	samples	Epoch
1/10
25000/25000	[==============================]	-	91s	4ms/step
-	loss:	0.4555	-	acc:	0.7836	-	val_loss:	0.3905	-	val_acc:	0.8279
Epoch	2/10
25000/25000	[==============================]	-	90s	4ms/step
-	loss:	0.2941	-	acc:	0.8813	-	val_loss:	0.3796	-	val_acc:	0.8316
Epoch	3/10
25000/25000	[==============================]	-	94s	4ms/step
-	loss:	0.2140	-	acc:	0.9178	-	val_loss:	0.4177	-	val_acc:	0.8311
Epoch	4/10
25000/25000	[==============================]	-	96s	4ms/step
-	loss:	0.1565	-	acc:	0.9416	-	val_loss:	0.4811	-	val_acc:	0.8238
Epoch	5/10
25000/25000	[==============================]	-	96s	4ms/step
-	loss:	0.1076	-	acc:	0.9614	-	val_loss:	0.6152	-	val_acc:	0.8150
Epoch	6/10



25000/25000	[==============================]	-	92s	4ms/step
-	loss:	0.0786	-	acc:	0.9727	-	val_loss:	0.7031	-	val_acc:	0.8225
Epoch	7/10
25000/25000	[==============================]	-	91s	4ms/step
-	loss:	0.0513	-	acc:	0.9831	-	val_loss:	0.7056	-	val_acc:	0.8166
Epoch	8/10
25000/25000	[==============================]	-	91s	4ms/step
-	loss:	0.0423	-	acc:	0.9865	-	val_loss:	0.8886	-	val_acc:	0.8112
Epoch	9/10
25000/25000	[==============================]	-	91s	4ms/step
-	loss:	0.0314	-	acc:	0.9895	-	val_loss:	0.8625	-	val_acc:	0.8140
Epoch	10/10
25000/25000	[==============================]	-	91s	4ms/step
-	loss:	0.0255	-	acc:	0.9920	-	val_loss:	1.0046	-	val_acc:	0.8152
25000/25000	[==============================]	-	14s
563us/step	Test	score:	1.0045836124545335
Test	accuracy:	0.8152

Before	closing	 this	chapter,	we	will	bring	 to	your	attention	several	other
advanced	DL	models	(e.g.	GANs),	contained	 in	appendices	of	 this	book.
We	strongly	encourage	you	to	read	those	appendices	to	learn	more	on	DL
models.	After	 that,	 you	can	 find	many	other	useful	 resources	 to	dig	 into
the	details	of	DL	models.
RNNs	are	ideal	tools	to	solve	the	following	problems:

NLP.	As	mentioned	before,	RNNs	excel	at	working	with	natural
language	text.	Tasks	like	predicting	the	next	word	or	figuring	out
the	general	topic	of	a	block	of	text	are	solved	well	by	RNNs.
Text	synthesis.	A	particular	NLP	application	that	deserves	its	own
bullet	point	is	text	synthesis.	This	involves	creating	new	streams	of
words,	which	is	an	extension	of	the	“predicting	the	next	word”
application.	RNNs	can	create	whole	paragraphs	of	text,	taking	text
prediction	to	a	whole	new	level.
Automated	translation.	This	is	a	harder	problem	than	it	seems,
since	each	language	and	dialect	has	its	own	intricacies	(for



instance,	the	order	of	words	in	constructing	a	sentence).	To
accurately	translate	something,	a	computer	must	process	sentences
as	a	whole—something	that’s	made	possible	through	an	RNN
model.
Image	caption	generation.	Although	this	is	not	entirely	RNN-
related,	it	is	certainly	a	valid	application.	When	combined	with
CNNs,	RNNs	can	generate	short	descriptions	of	an	image,	perfect
for	captions.	They	can	even	evaluate	and	rank	the	most	important
parts	of	the	image,	from	most	to	least	relevant.
Speech	recognition.	When	the	sound	of	someone	talking	is
transformed	into	a	digitized	sound	wave,	it	is	not	far-fetched	to	ask
an	RNN	to	understand	the	context	of	each	sound	bit.	The	next	step
is	turning	that	into	written	text,	which	is	quite	challenging,	but
plausible	using	the	same	RNN	technology.

Summary

Convolutional	Neural	Networks	(CNNs)	and	Recurrent	Neural
Networks	(RNNs)	are	two	of	the	most	popular	neural	network
architectures	beyond	ANNs.	CNNs	are	very	good	at	image	related
tasks	like	image	recognition	and	image	captioning	and	RNNs	are
quite	efficient	in	sequential	tasks	like	machine	translation.
CNNs	achieve	state-of-the-art	performance	on	some	computer
vision	tasks,	and	have	even	surpassed	human	performance.
RNNs	are	very	suitable	for	tasks	that	can	be	represented	as
sequences.
There	are	many	variants	of	RNNs.	Two	most	popular	are	LSTMs
and	GRUs.	LSTMs	are	comprised	of	four	gates	and	GRUs	are
comprised	of	two	gates.	In	this	respect,	GRUs	are	lightweight
versions	of	LSTMs.

https://bit.ly/2qfAjPM.
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CHAPTER	11

Alternative	AI	Frameworks	in	Data
Science

Since	the	inception	of	AI,	a	lot	of	efforts	have	been	made	to	discover	new
techniques	 and	 approaches,	 contributing	 to	 the	 development	 of	 the
discipline.	Sometimes	new	advances	 are	 subtle	 variations	 on	older	 ones;
other	 times	 we	 abolish	 the	 older	 techniques	 and	 start	 from	 scratch.
Although	 the	 literature	 on	 artificial	 intelligence	 rests	 upon	 the	 decades-
long	efforts	of	researchers	and	practitioners,	 the	dynamics	of	change	and
improvement	persist.
Here	we’ll	mention	some	alternative	AI	frameworks	that	seem	promising
to	 us.	 In	 doing	 so,	 we	 hope	 not	 only	 to	 equip	 you	with	more	 problem-
solving	 tools,	 but	 also	 to	 highlight	 this	 dynamic	 field’s	 tremendous
potential	for	improvement	and	change.	The	topics	covered	in	the	previous
chapters	cover	the	more	popular	AI	frameworks.	Becoming	familiar	with
some	alternative	AI	frameworks	can	help	you	explore	the	possibilities	of
future	frontiers	of	the	current	research.
In	this	chapter	we	cover	the	three	alternative	frameworks	that	we	believe
will	stand	the	test	of	time	and	be	used	into	the	future.	The	first	of	these	is
the	Extreme	Learning	Machines,	a	family	of	network-based	systems	quite
similar	to	the	neural	network	ones	we	saw	before,	with	a	major	difference
regarding	 optimization	 of	 hidden	 layers.	 The	 second	 alternative
framework	 is	 the	 Capsule	 Network,	 which	 is	 another	 invention	 of
renowned	AI	expert	Professor	Geoffrey	Hinton.	The	final	alternative	we’ll
discuss	 is	 the	 Fuzzy	 Logic	 and	 Fuzzy	 Inference	 System,	 a	 framework
developed	by	one	of	the	people	who	put	AI	on	the	map,	Professor	Zadeh.

Extreme	Learning	Machines	(ELMs)



You	 may	 recall	 from	 our	 discussion	 of	 Deep	 Learning	 that	 multi-layer
feed	forward	networks	comprise	multiple	 layers	connected	 to	each	other.
The	 first	 layer	 is	called	 the	 input	 layer,	 the	 last	 layer	 is	 the	output	 layer,
and	 between	 are	 the	 hidden	 layers.	 When	 we	 train	 a	 multi-layer	 feed
forward	 network	 using	 backpropagation,	 we	 tune	 all	 the	 weights
associated	with	the	connections	that	are	present	between	all	the	connected
layers.	Even	if	we	start	with	a	random	initialization	for	the	weights	(as	we
usually	do),	in	each	iteration	of	the	backpropagation	algorithm,	we	update
the	weights	accordingly.	Remember	that	we	use	numerical	approximation
methods	 (like	 Gradient	 Descent,	 for	 instance)	 to	 implement
backpropagation.
The	 central	 idea	 in	 ELMs	 is	 that	 only	 the	 weights	 of	 the	 output	 layers
should	 be	 tuned;	 the	 weights	 of	 the	 hidden	 nodes	 should	 not	 be	 tuned.
Before	explaining	ELMs	in	detail,	 let’s	first	consider	the	goals	of	ELMs,
to	understand	why	we’d	choose	to	not	tune	weights	for	the	hidden	nodes.

Motivation	behind	ELMs
When	Frank	Rosenblatt	proposed	the	concept	of	a	perceptron	in	1958,	he
believed	that	perceptrons	would	one	day	enable	a	computer	to	“walk,	talk,
see,	write,	 reproduce	itself	and	be	conscious	of	 its	existence.”26	Not	 long
after	 that,	 though,	 Minsky	 and	 Papert	 showed	 that	 perceptrons	 without
hidden	 layers	could	not	even	handle	a	simple	XOR	problem.27	However,
AI	researchers	have	realized	that	hidden	layers	are	critical	components	of
any	 neural	 network	 model.	 Furthermore,	 it	 is	 proven	 that	 sufficiently
complex	architectures	of	a	neural	network	model	with	hidden	 layers	can
approximate	 any	 continuous	 function	 -	 known	 as	 the	 universal
approximation!	 Since	 then,	 including	 hidden	 layers	 in	 a	 neural	 network
model	 and	 tuning	 the	 parameters	 of	 the	 hidden	 layer	 became	 a	 major
practice	in	the	neural	networks	literature.
According	 to	 the	 opponents	 of	 the	 idea	 that	 the	 ultimate	 goal	 of	 any
artificial	 neural	 network	 is	 to	 mimic	 the	 functioning	 of	 the	 biological
brains,	 the	ANNs	should	be	designed	 in	accordance	with	 the	 findings	of
Neuroscience.	A	central	tenet	in	ELM	literature	is	also	this	idea.	Because,
we	 know	 that	 biological	 brains	 and	 especially	 the	 human	 brains	 are
excellent	at	 learning	new	things.	But	 the	structure	of	 the	biological	brain



seems	 in	 sharp	 contrast	with	 the	notion	 that	 the	hidden	 layers	 should	be
tuned.	In	short,	the	neurons	in	biological	brains	form	layered	structures	as
ANNs	 mimic.	 However,	 it	 sounds	 naive	 to	 expect	 that	 any	 single
connection	between	two	neurons	in	our	brains	adjust	to	every	observation
we	encounter	in	our	lives.	Indeed,	recent	findings	in	neuroscience	confirm
this	idea.28	Hence,	proponents	of	ELMs	argue	that	in	order	for	the	ANNs
to	confirm	with	the	workings	of	the	biological	brain,	the	hidden	nodes	of
the	ANNs	should	not	be	tuned.

Architectures	of	ELMs
The	simplest	Extreme	Learning	Machine	is	a	feed-forward	network	with	a
single	hidden	layer;	it’s	actually	quite	similar	to	a	single-layer	perceptron
model.	 However,	 if	 we	 use	 different	 ELMs	 for	 each	 layer,	 it	 is	 easy	 to
extend	 this	 single-hidden-layer	 architecture	 to	 multi-hidden-layer	 feed
forward	networks.
Let’s	start	with	a	single-hidden-layer	feed	forward	architecture.	Figure	18
shows	 the	 basic	 architecture	 of	 an	 ELM,	 with	 an	 input	 layer,	 a	 hidden
layer,	 and	 an	 output	 layer.	 As	 mentioned	 earlier,	 the	 architecture	 is
comparable	to	that	of	a	single-layer	feed	forward	network.	The	difference
is	that	when	we	optimize	single-layer	ELM,	we	do	not	tune	the	weights	of
the	hidden	layer.	We	just	tune	the	output	layer’s	weights.



The	building	blocks	of	multi-hidden-layer	feed	forward	ELMs	are	simply
single-hidden-layer	feed	forward	ELMs.	In	this	case,	we	combine	different
single-layer	 elements	 stack	 by	 stack.	 In	 effect,	 each	 hidden	 layer	 is	 just
another	ELM.	This	essentially	makes	a	multi-layer	ELM	an	ensemble	of
ELMs,	though	a	bit	more	sophisticated	than	those	we	saw	in	the	previous
chapter.
Figure	 19	 demonstrates	 a	 multi-hidden-layer	 feed	 forward	 ELM	 as	 a
combination	 of	 two	 single	 layer	 ELMs.	 In	 this	 multi-hidden-layer
architecture,	consider	each	hidden	layer	representative	of	an	operation	or
role.	 For	 example,	 each	 single	ELM	 layer	 could	 deal	with	 compression,
feature	 learning,	 clustering,	 regression,	 or	 classification,	 which	 are	 the
basic	operations	or	roles	of	any	ELM.





In	another	alternative	architecture	for	multi-hidden-layer	ELMs,	a	hidden
node	 itself	 can	 be	 a	 sub-network	 formed	 by	 several	 nodes.	 As	 a	 result,
some	local	parts	of	a	single	ELM	can	contain	multi-hidden	layers.
Again,	the	basic	tenet	of	ELMs	is	that	hidden	layers	should	not	be	tuned.
Although	randomly	assigning	values	to	the	weights	of	hidden	layers	is	an
option,	 it’s	not	 the	only	available	option.	Alternatively,	a	hidden	node	 in
any	 given	 layer	 might	 be	 a	 linear	 transformation	 of	 the	 nodes	 in	 the
previous	layer.	As	a	result,	some	nodes	are	randomly	generated	and	some
are	not,	but	none	of	them	are	tuned.29	One	last	thing	to	note	before	closing
the	discussion	of	ELMs	is	that	ELMs	can	be	combined	with	other	learning
models.	The	output	of	the	other	models	can	be	fed	into	the	ELMs,	or	the
output	of	the	ELMs	can	be	fed	into	other	models	as	inputs.	This	is	referred
to	as	stacked	models,	and	is	another	form	of	ensembles.30

Capsule	Networks	(CapsNets)
The	 Capsule	 Network	 (or	 CapsNet)	 is	 a	 new	 type	 of	 neural	 network
model,	 proposed	 in	2017	by	Professor	Geoffrey	Hinton	 and	 some	of	his
students.	 It	 shows	 incredible	 promise	 for	 computer	 vision	 tasks	 in
particular.	As	we	discussed	 earlier,	CNNs	are	usually	 sufficient	 to	 solve
these	problems,	but	CNNs	do	have	some	drawbacks.	CapsNets	might	be
able	to	cover	some	of	the	CNNs’	blind	spots.
Although	 the	 idea	of	 a	 basic	 architectural	 element	 “capsule”	 is	 not	 new,
the	model	developed	by	Hinton	and	his	students	is	truly	novel.	Until	their
work,	 nobody	 had	 known	 how	 to	 train	 a	 model	 built	 upon	 capsules.
Professor	Hinton	and	his	colleagues	also	proposed	a	new	method	to	train
these	methods,	called	“dynamic	routing	between	capsules.”

Motivations	behind	CapsNets
The	 Convolutional	 Neural	 Networks	 have	 proven	 to	 be	 remarkably
successful	 at	 computer	 vision	 tasks,	 including	 image	 recognition	 and
object	 detection.	 However,	 the	 orientation	 of	 and	 spatial	 relationships
between	 these	 components	 are	 not	 important	 to	 CNNs.	 Factors	 such	 as
view	 angle,	 perspective,	 and	 the	 relative	 positions	 of	 objects	 are	 not
considered.	For	example,	 in	Figure	20,	 a	CNN	would	 find	 the	 two	 face-



like	shapes	are	almost	identical.	Of	course,	it	is	obvious	to	us	humans	that
the	 right	 figure	 is	 not	 a	 face	 at	 all,	 even	 if	 some	modern	 art	 enthusiasts
would	still	see	a	face	in	that	image.

To	 mitigate	 these	 drawbacks	 of	 CNNs,	 Hinton	 argued	 that	 we	 should
come	up	with	new	types	of	network	structures	that	resemble	the	workings
of	our	brains	as	they	are	great	at	handling	the	aforementioned	drawbacks
of	 the	 CNNs.	 According	 to	 Hinton,	 our	 brains	 do	 something	 called
“inverse	graphics”	such	that	when	we	see	something	in	the	world	with	our
eyes,	 our	 brains	 deconstruct	 a	 hierarchical	 representation	 of	 the
information,	trying	to	match	it	with	learned	relationships	and	patterns	that
are	 already	 stored	 in	 our	 brains.	 Those	 concepts	 in	 our	 brains	 do	 not
depend	on	the	perspective	or	view	angle	of	the	objects.	To	classify	images
and	recognize	objects	more	accurately,	the	key	is	to	preserve	hierarchical
“pose”	relationships	between	different	components	of	the	objects.
CapsNets	 incorporate	 these	 relative	 relationships	 between	 objects	 by
representing	them	as	4-dimensional	pose	matrices.	For	a	capsule	network,
the	 same	 objects	 in	 the	 upper	 and	 lower	 rows	 of	 Figure	 21	 would	 be
interpreted	as	identical.



The	CapsNet	created	by	Hinton	and	his	students	decreased	the	error	rate	of
the	 previous	 state-of-the-art	 model	 by	 45%	 in	 a	 3-dimensional	 image
recognition	task!	Moreover,	CapsNet	achieves	its	performance	using	only
a	fraction	of	the	previous	model’s	training	set.	In	these	regards,	CapsNets
do	a	good	job	of	acting	more	like	our	human	brains	do.	Next,	let’s	briefly
look	at	the	architecture	of	CapsNets.

Architecture	of	CapsNets
CapsNet	includes	six	layers.	The	first	three	are	the	encoders,	and	the	last
three	are	the	decoders:

1.	 Convolutional	layer
2.	 PrimaryCaps	layer
3.	 DigitCaps	layer
4.	 Fully	connected	layer
5.	 Fully	connected	layer
6.	 Fully	connected	layer



Figure	22	illustrates	the	first	three	layers	of	encoders:

We’ve	already	discussed	the	convolutional	 layer.	 It’s	 the	next	 two	layers
that	use	capsules.	A	capsule	is	a	set	of	neurons	that	individually	turns	on
for	various	properties	of	a	type	of	object,	such	as	position,	size,	and	hue.
Formally,	a	capsule	is	a	set	of	neurons	that	collectively	produce	an	activity
vector	with	one	element	for	each	neuron	to	hold	that	neuron’s	instantiation
value,	 such	 as	 hue.31	 In	 other	words,	 a	 capsule	 is	 a	 nested	 set	 of	 neural
layers	 (much	 like	 a	 sophisticated	 ensemble	 of	 sorts).	 In	 the	 neural
networks	we	examined	in	previous	chapters,	we	were	adding	layers	on	top
of	 each	 other.	 In	 CapsNets,	 though,	we	 add	more	 layers	 inside	 a	 single
layer.	 Effectively,	 inside	 a	 capsule,	 the	 state	 of	 the	 neurons	 capture	 the
properties	(like	size,	position,	or	hue)	of	one	object	inside	an	image.32

After	 encoders,	 the	 decoding	 layers	 come	 in.	 Figure	 23	 illustrates	 these
last	three	layers,	which	are	all	fully-connected	that	work	as	decoders.



Now,	 how	 do	 we	 train	 CapsNets,	 given	 that	 backpropagation	 doesn’t
apply?

Dynamic	routing	between	capsules
CapsNets	 learn	by	using	 a	 dynamic	 routing	 algorithm	between	 capsules,
which	we	will	examine	here	in	some	detail.	Table	1	shows	the	steps	of	the
algorithm,	 as	 explained	 in	 the	 original	 paper	 by	Hinton	 et	 al.33	We	will
omit	the	detailed	explanation	of	the	algorithm	to	the	readers,	but	will	point
out	that	the	novel	part	of	the	algorithm	occurs	at	line	7,	where	the	weights
are	updated.	At	 this	 line,	each	low-level	capsule	consults	each	high-level
capsule,	examines	the	input	for	each,	and	then	updates	the	corresponding
weight.
The	 updating	 formula,	which	 is	 used	 in	 the	 optimization	when	 updating
the	weights,	states	that	the	new	weight	value	equals	the	old	value	plus	the
dot	product	of	the	current	output	of	capsule	j,	and	the	input	to	this	capsule
from	a	lower-level	capsule	i.	The	lower-level	capsule	will	send	its	output
to	 the	 higher-level	 capsule	 where	 the	 higher-level	 capsule’s	 output	 is
similar.	 This	 similarity	 is	 captured	 by	 the	 dot	 product.	 Notice	 that	 the
algorithm	repeats	r	times,	where	r	is	the	number	of	routing	iterations.



If	you	want	to	delve	deeper	into	CapsNets,	start	with	the	papers	written	by
Hinton	 and	 his	 students,	 already	mentioned	 in	 this	 section.	 Research	 to
further	investigate	CapsNets	has	already	begun.	In	the	future,	we’ll	likely
see	 remarkable	 performances	 from	 these	 models	 in	 some	 challenging
tasks.

Fuzzy	logic	and	fuzzy	inference	systems
As	 we	 saw	 briefly	 in	 Chapter	 2,	 Fuzzy	 Inference	 Systems	 (FIS)	 are
systems	 based	 on	 Fuzzy	 Logic	 (FL),	 and	 are	 designed	 to	 perform
predictive	analytics	in	a	comprehensive	manner.	The	approach	they	use	is
somewhat	different	 from	other	AI	systems,	as	 they	generate	 rules	during
their	 training,	and	apply	 them	when	given	unknown	data.	Since	 they	use
membership	 functions	 instead	 of	 probability	 estimates,	 the	 approach
employed	in	this	whole	process	is	possibilistic.	We’ll	explain	this	concept
shortly.

Fuzzy	sets
At	 the	 core	 of	 FL	 is	 the	 concept	 of	 “fuzzy	 sets”,	which	 are	 entities	 that
don’t	have	crisp	boundaries	and	therefore	lend	themselves	to	a	potentially
infinite	number	of	grades.	Just	as	our	eyes	cannot	identify	one	exact	point



where	the	color	green	ends	and	the	color	yellow	begins,	a	fuzzy	set	A	has
different	levels	of	membership	for	the	various	data	points	that	may	have	A
as	an	attribute.
For	 instance,	 if	 you	 want	 to	 know	 how	 far	 away	 a	 place	 is,	 you	 could
represent	 its	 distance	 as	 a	 series	 of	 fuzzy	 sets.	 Each	 fuzzy	 set	 would
correspond	 to	 a	 certain	 threshold	 or	 level	 of	 distance—like	 walking
distance,	 a	 bus	 ride,	 or	 a	 day-trip;	 or	 the	 more	 abstract	 terms	 close,
medium,	 and	 far).	 Each	 one	 of	 these	 levels	 may	 be	 expressed	 as	 a
mathematical	 function	 (represented	 as	 the	 letter	 μ),	 referring	 to	 different
parts	 of	 the	 distance	 variable	 (e.g.	 far).	 These	 functions	 almost	 always
overlap	in	some	way,	and	are	often	triangular	or	trapezoidal	in	shape,	for
lower	computational	cost	(see	Figure	24).

It	 is	 important	 to	 note	 that	 these	 levels	 are	 often	 selected	 in	 a	way	 that
makes	sense	to	us,	since	they	tend	to	correspond	to	how	we	express	these
quantities	 in	 our	 own	 natural	 language.	 The	 inherent	 ambiguity	 of	 these
expressions	 is	 perfectly	 acceptable,	 however,	 since	 it	 captures	 the
uncertainty	that	is	always	involved	in	these	scenarios	(e.g.	“far”	may	mean



different	 things	 to	different	people).	This	uncertainty	 is	modeled	 through
the	values	of	the	membership	functions	of	these	levels.

FIS	functionality	and	fuzzy	rules
A	FIS	basically	 examines	 the	data	 it	 is	 given,	 expresses	 it	 in	 a	 series	of
fuzzy	 rules,	 and	 creates	 a	 model	 synthesizing	 the	 most	 useful	 of	 these
rules.	It	works	very	much	like	a	decision	tree,	though	more	sophisticated
and	better-performing.	The	rules	that	a	FIS	ends	up	using	are	also	easy	to
plot,	and	can	be	insightful	on	their	own.
Making	use	of	a	FIS	involves	applying	the	best	rules	it	has	found	during
its	training	phase	to	generate	a	set	of	predictions,	usually	accompanied	by
a	confidence	metric.	Even	if	a	lot	of	ambiguity	is	involved	in	these	rules,
the	 end-result	 is	 always	 unambiguous	 (crisp)	 since	 after	 the
defuzzification	process,	everything	becomes	clear-cut.	The	whole	process
can	be	summarized	in	Figure	25.

The	aforementioned	rules	involve	connecting	two	or	more	fuzzy	sets	in	an
intuitive	 way	 that	 takes	 the	 form	 of	 an	 IF-THEN	 clause.	 A	 fuzzy	 rule,
then,	 is	 a	 systematic	 way	 to	 link	 one	 or	 more	 fuzzy	 sets	 to	 a	 decision
(which	 is	 usually	 crisp).	For	 example,	 depending	on	how	you	wanted	 to
traverse	a	certain	city	distance	over	time,	such	as	walk,	take	a	bike	or	bus,
or	 call	 a	 Lyft	 or	 Uber	 cab,	 you	 could	 model	 the	 problem	 using	 the
following	rules	(among	others):
IF	{distance	=	close}	THEN	{walk}
IF	{time	=	limited}	THEN	{call	a	cab}
IF	{distance	=	medium}	AND	{time	=	enough}	THEN	{take	a	bike	/
bus}



IF	{distance	=	medium}	AND	{time	=	plenty}	THEN	{walk}
IF	{distance	=	high}	AND	{time	=	plenty}	THEN	{take	a	bike	/	bus}
IF	{distance	=	high}	AND	{time	=	enough}	THEN	{call	a	cab}

These	rules	may	be	expressed	in	a	matrix	format	as	well,	for	convenience:

Although	 a	 well-designed	 FIS	 should	 keep	 the	 overlap	 of	 rules	 to	 a
minimum,	it	is	still	possible.	Also,	it	is	possible	that	certain	scenarios	are
not	covered	by	a	rule—though	such	cases	are	best	avoided,	unless	you	are
certain	that	they	would	never	occur	in	practice.
Naturally,	when	you	apply	 these	 rules,	you’ll	be	using	specific	numbers,
so	they’ll	manifest	in	a	more	mathematical	way.	In	other	words,	while	the
different	rules	may	appear	very	general,	they	become	quite	specific	when
applied.	Say,	for	example,	you	have	an	engagement	1200	yards	away	and
you	 have	 30	 minutes	 to	 get	 there.	 We	 may	 construct	 the	 following
membership	mappings:

The	 values	 for	 each	 means	 of	 transport	 are	 derived	 from	 the	 rule
application	 process,	 which	 involves	 predefined	 mathematical	 operators



like	min,	mean,	 or	max,	 that	 apply	 to	 the	membership	 functions	 for	 the
variables	involved.
The	combining	of	the	above	values	into	a	“crisp”	number	(i.e.	one	that	has
no	 membership	 values	 attached	 to	 it)	 for	 each	 transport	 option	 is	 done
through	 the	 defuzzification	 method.	 This	 is	 usually	 performed	 using	 a
method	 like	 “moment	 of	 area,”	 corresponding	 to	 the	 center	 point	 of	 the
polygon	 deriving	 from	 the	 merged	 membership	 functions).	 So,	 we	 may
end	up	with	something	like	the	following:

From	 this,	 we	 can	 predict	 with	 reasonable	 confidence	 that,	 in	 this
particular	situation,	 it	 is	best	 to	walk.	Note,	however,	 that	 for	a	different
city,	 the	mappings	would	be	different,	and	the	results	would	likely	differ
too.
Fortunately,	 plenty	 of	 packages	 (in	most	 data	 science	 languages)	 enable
the	use	of	FL	and	FIS	in	various	applications.	Below	are	some	of	the	most
interesting	ones.

Python
scikit-fuzzy:	 an	 extension	 of	 the	 well-known	 scikit	 learn	 package,
focusing	on	the	core	FL	operations.	More	at	https://pypi.org/project/scikit-
fuzzy.
fuzzywuzzy:	an	interesting	package	focusing	on	string	matching	using	FL.
More	at	https://github.com/seatgeek/fuzzywuzzy.
pyfuzzy:	 an	 older	 package	 covering	 FL	 operations.	 More	 at
http://pyfuzzy.sourceforge.net/	.
Peach:	 possibly	 the	 most	 relevant	 package	 out	 there	 on	 this	 topic,
covering	various	AI	 systems	used	 in	data	 science	 as	 predictive	 analytics
systems.	More	at	https://code.google.com/archive/p/peach/.



Julia
Fuzzy.jl:	a	compact	package	containing	various	tools	for	both	basic	FL	as
well	as	FIS.	This	 is	an	unofficial	package	 that’s	still	under	development.
More	at	https://github.com/phelipe/Fuzzy.jl.

Some	fuzzy	logic	tips
Fuzzy	 Logic	 is	 ideal	 in	 cases	 where	 the	 uncertainty	 inherent	 in	 the
phenomena	 modeled	 is	 better	 described	 by	 language	 than	 by	 math.
Sometimes	 mathematical	 functions	 may	 be	 suitable	 to	 represent	 the
memberships	 like	 the	 Gaussian	 function,	 so	 FL	 could	 be	 considered	 a
flexible	 extension	 of	 conventional	 modeling	 methods.	 FL	 shines	 where
there	exists	knowledge	(perhaps	from	a	domain	expert)	that	can	be	utilized
to	create	fuzzy	rules,	or	when	you	wish	to	extend	an	expert	system	model.
In	 this	 case,	 FL	 is	 like	 an	 intermediary	 between	 human	 knowledge	 and
machine-structured	information.
The	refinement	of	membership	function	in	a	FIS	is	often	achieved	via	an
optimization	 method.	 However,	 care	 must	 be	 taken	 so	 that	 the	 system
doesn’t	 overfit,	 since	 the	 possibility	 of	 creating	 an	 overly-sophisticated
model	 is	 present	 in	 this	 kind	of	AI	 too.	One	of	 the	most	 robust	 systems
under	 the	 FIS	 umbrella	 is	 ANFIS,	 which	 makes	 use	 of	 an	 ANN
architecture	to	optimize	the	membership	functions	involved.
Although	 FL	 is	 great	 at	 modeling	 uncertainty	 and	 building	 robust
predictive	models	based	on	a	variety	of	datasets	(through	a	FIS),	it	is	not
so	 practical	 when	 it	 comes	 to	 high-dimensionality	 datasets,	 due	 to	 the
explosion	 of	 potential	 rules.	 In	 cases	 like	 these	 we	 often	 sacrifice
interpretability	 for	 performance	 (for	 example,	 by	 reducing
dimensionality).	However,	if	you	have	a	relatively	small	feature	selection
method	 at	 your	 disposal,	 you	 may	 want	 to	 use	 that	 first;	 such	 a
dimensionality	 reduction	method	preserves	 the	comprehensiveness	of	 the
original	feature	set	as	no	meta-features	are	created	(as	in	the	case	of	PCA,
for	example).
Finally,	 the	 number	 of	 levels	 used	 for	 each	 variable	 can	 be	 either	 set
manually	or	derived	automatically.	Not	all	variables	need	to	be	modeled	in
the	three-level	fashion	of	the	examples	shown	here.



Summary

Extreme	Learning	Machines	(ELMs)	are	among	the	most	popular
alternative	frameworks	in	data	science.
The	basic	tenet	of	ELMs	is	that	hidden	layers	should	not	be	tuned
at	all.
Although	ELMs	can	be	used	individually,	they	can	also	be
integrated	with	other	learning	models.
Capsule	Networks	(CapsNets)	are	a	new	type	of	neural	network
that	aim	to	better	capture	the	hierarchical	representations	of
objects.
The	optimization	algorithm	used	in	the	CapsNets	is	called
Dynamic	Routing	Between	Capsules.
CapsNets	are	good	at	identifying	the	perspectives	and	view	angle
in	images;	these	are	main	weak	points	of	the	alternative	CNNs.
A	Fuzzy	Inference	System	(FIS)	examines	the	data	it	is	given,
expresses	it	in	a	series	of	fuzzy	rules,	and	creates	a	model
comprising	the	most	useful	of	these	rules.
The	rules	a	FIS	ends	up	using	are	easy	to	plot,	and	can	be	insightful
on	their	own.
Although	Fuzzy	Logic	(FL)	is	great	at	modeling	uncertainty	and
building	robust	predictive	models	based	on	a	variety	of	datasets
(through	a	FIS),	it	is	not	so	practical	when	it	comes	to	high-
dimensionality	datasets,	due	to	the	explosion	of	potential	rules	that
can	be	derived.

http://en.wikipedia.org/wiki/Perceptron.
Minsky	M,	 Papert	 S.	 Perceptrons:	 an	 introduction	 to	 computational	 geometry.	 Cambridge:	MIT
Press;	1969.
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X,	Bekolay	T,	DeWolf	T,	Tang	Y,	Rasmussen	D.	A	large-scale	model	of	 the	functioning	brain.
Science.	 2012;338:1202–5;	 Barak	 O,	 Rigotti	 M,	 Fusi	 S.	 The	 sparseness	 of	 mixed	 selectivity
neurons	 controls	 the	 generalization–discrimination	 trade-off.	 J	 Neurosci.	 2013;33(9):3844–56;



Rigotti	M,	Barak	O,	Warden	MR,	Wang	X-J,	Daw	ND,	Miller	EK,	Fusi	S.	The	 importance	of
mixed	selectivity	in	complex	cognitive	tasks.	Nature.	2013;497:585–90.

Moreover,	 another	 kind	of	 randomness	 can	 also	 be	 integrated	 into	 the	ELMs.	 In	 this	 case,	 input
layers	 to	 hidden	 nodes	 can	 be	 fully	 or	 partially	 randomly	 connected	 according	 to	 different
continuous	probability	distribution	function.

A	great	resource	for	the	properties	of	the	ELMs	can	be	found	here:	https://bit.ly/2JoHhcg.
https://bit.ly/2PP3NQ0.
Other	 minor	 differences	 between	 CNNs	 and	 CapsNets	 exist,	 but	 are	 not	 as	 significant.	 Consult
Footnote	22	for	a	link	with	further	reading.

https://arxiv.org/abs/1710.09829.



Closing	Thoughts
Our	hope	is	that	you	have	received	a	very	broad	yet	practical	perspective
on	AI	from	this	book.	Since	this	field	changes	so	rapidly,	with	advances	in
AI	coming	from	both	older	and	newer	players	around	the	world,	keep	your
eyes	out	for	the	upcoming	second	edition!
What	will	 not	 require	 any	 updates	 for	 a	 second	 edition,	 however,	 is	 the
general	 framework	 of	 thinking	 about	 data	 science	 and	 AI	 from	 a
practitioner’s	 lens.	After	all,	no	matter	how	much	 the	 tools	change,	 core
methodologies	are	bound	to	remain	relevant.	We	made	a	deliberate	effort
to	focus	on	principles	and	approaches,	without	getting	lost	in	the	hype	that
surrounds	this	field.
We	 hope	 that	 you	 will	 use	 this	 book	 as	 a	 basis	 to	 further	 your
understanding	 and	 aptitude	 in	 AI,	 so	 that	 you	 make	 good	 use	 of	 this
promising	technology.	You	don’t	need	to	be	an	AI	expert	to	benefit	from
AI	 systems—	 especially	when	 it	 comes	 to	 data	 science	 related	 projects.
However,	 if	 you	 really	 want	 to	 maximize	 your	 benefit,	 we	 recommend
dedicating	at	least	6	months	of	your	time	to	serious	study	of	this	field.	No
book	can	replace	a	hands-on	course	with	 individualized	 instruction;	such
classes	 can	 be	 found	 at	 universities	 or	 other	 specialized	 learning
institutions.	 After	 all,	 data	 science	 AI	 is	 a	 field	 that	 involves	 problem-
solving	 and	 creativity,	 rather	 than	 the	 mechanical	 application	 of	 some
“recipe”	geared	towards	a	particular	programming	language.
Speaking	 of	 programming,	 with	 the	 rapid	 growth	 of	 functional
programming	 languages	 these	 days,	 we	 thought	 it	 would	 be	 useful	 to
expose	 you	 to	 both	 a	 conventional	 OOP	 language	 (like	 Python)	 and	 a
newer	 one	 (like	 Julia),	 which	 is	 geared	 more	 towards	 the	 functional
paradigm.	 This	 way,	 whatever	 happens	 with	 the	 constantly	 changing
programming	landscape	in	the	AI	field,	you’ll	be	ready.
Thank	you	for	taking	the	time	to	read	this	book.	We	hope	you	have	found
it	 useful	 and	 we	 look	 forward	 to	 contributing	 to	 this	 field	 through
additional	 materials	 on	 its	 various	 relevant	 topics.	 We	 believe	 that
curiosity	 is	 the	main	 driver	 of	 the	 successes	 of	 the	AI	 and	 data	 science



today.	 If	 this	book	has	provoked	your	curiosity	about	 this	 field,	 then	we
count	ourselves	successful.



Glossary

A
Activation	function:	see	transfer	function.
Agents:	 also	 known	 as	 bots	 or	 intelligent	 agents,	 they	 are	 autonomous
software	programs	that	aim	to	“sense”	through	sensors	and	“act”	through
actuators,	according	to	their	target	function.	Often	they	are	leveraged	as	a
way	to	mimic	human	behavior	as	assistants	in	a	variety	of	functions.	There
are	 five	 classes	 of	 agents	 according	 to	 Russell	 &	Norvig:	 simple	 reflex
agents,	model-based	reflex	agents,	goal-based	agents,	utility-based	agents,
and	learning	agents.
Algorithm:	 a	 step-by-step	 procedure	 for	 calculations	 and	 logical
operations.	 In	 an	 AI	 setting,	 algorithms	 can	 be	 designed	 to	 facilitate
machine	 learning	 and	 acquire	 knowledge	 by	 themselves,	 rather	 than
relying	on	hard-coded	rules.
Amalgamation:	the	process	of	putting	a	system	into	a	single	file,	that	can
be	 ported	 to	 different	 computer	 platforms.	 The	 executable	 file	 that	 it
yields,	 has	 a	 very	 limited	 number	 of	 dependencies	 (sometimes	 it’s	 even
self-sufficient),	making	it	a	flexible	option	for	deploying	a	system.
Apache	Spark:	a	unified	analytics	engine	for	large	scale	data	processing.
It	 is	 designed	 for	 distributed	 computing	 and	 supports	 distributed	 data
storage	like	HDFS.
API	 (Application	 Programming	 Interface):	 a	 set	 of	 definition,
protocols,	 tools,	and	routines,	 for	 interacting	with	a	program,	usually	via
the	 Internet.	 APIs	 are	 essential	 for	 linking	 programming	 languages	 to
various	frameworks	like	deep	learning	ones.
Architecture	 (of	 a	Deep	Learning	 system):	 the	way	 the	neurons	of	 an
artificial	neural	network	are	organized	and	the	connections	among	them.
Artificial	creativity:	a	novel	methodology	of	AI	whereby	the	AI	system



emulates	 human	 creativity	 in	 a	 variety	 of	 domains,	 including	 painting,
poetry,	music	composition,	and	even	problem-solving.	Artificial	creativity
has	an	important	role	in	data	science	also.
Artificial	Intelligence	(AI):	a	field	of	computer	science	dealing	with	the
emulation	 of	 human	 intelligence	 using	 computer	 systems	 and	 its
applications	on	a	variety	of	domains.	AI’s	application	on	data	 science	 is
noteworthy	and	an	important	factor	in	the	field,	since	the	2000s.
Artificial	 Neural	 Network	 (ANN):	 a	 graph-based	 artificial	 intelligence
system,	 implementing	 the	 universal	 approximator	 idea.	 Although	 ANNs
have	 started	 as	 a	 machine	 learning	 system,	 focusing	 on	 predictive
analytics,	they	have	expanded	over	the	years	to	include	a	large	variety	of
tasks.	 ANNs	 comprise	 of	 a	 series	 of	 nodes	 called	 neurons,	 which	 are
organized	in	layers.	The	first	layer	corresponds	to	all	the	inputs,	the	final
layer	 to	 all	 the	 outputs,	 and	 the	 intermediary	 layers	 to	 a	 series	 of	meta-
features	the	ANN	creates,	each	having	a	corresponding	weight.	ANNs	are
stochastic	 in	nature	so	every	 time	 they	are	 trained	over	a	set	of	data,	 the
weights	are	noticeably	different.
Augmented	 Reality	 (AR):	 a	 sub-field	 /	 application	 of	 artificial
intelligence	 that	 delves	 in	 the	 combination	 of	 real	world	 data,	 such	 as	 a
video	feed	of	what’s	in	front	of	you,	with	computer-generated	data	stream,
related	 to	what	 is	observed,	 in	a	 single	video	 feed.	The	augmented	view
can	have	an	informative	role	or	increase	functionality	in	some	other	way.
AR	requires	specialized	hardware	as	well	as	software	combining	computer
vision	and	other	processes.
Autoencoder:	 an	artificial	 neural	 network	 system	 designed	 to	 represent
codings	 in	a	very	efficient	manner.	Autoencoders	are	a	popular	artificial
intelligence	system	that	are	used	for	dimensionality	reduction,	as	well	as	a
few	other	unsupervised	learning	applications.
Automated	 Machine	 Learning	 (AutoML):	 Google’s	 AI	 project
responsible	for	creating	an	AI	that	designs	and	implements	its	own	AI,	for
computer	vision	purposes.

B



Backpropagation:	 a	 very	 popular	 training	 algorithm	 for	 deep	 learning
systems	and	artificial	neural	networks	 in	general.	 It	 involves	moving	the
errors	 of	 the	 network	 backwards	 (towards	 the	 inputs),	 and	 changing	 the
weights	of	the	various	neurons	based	on	the	partial	derivatives	of	the	error
function,	as	well	as	their	location	on	the	network.
Big	 data:	 an	 area	 of	 computer	 science	 that	 is	 interested	 in	 the	 efficient
processing	and	storage	of	very	 large	amounts	of	data.	Although	defining
the	 term	changes	person	 to	person,	one	can	succinctly	define	big	data	as
the	amount	of	data	that	is	big	enough	so	that	an	average	personal	computer
is	unable	to	process	it.
Binarization:	 the	data	engineering	process	of	 turning	a	discreet	variable
into	a	binary	feature.

C
Chatbot:	an	artificial	intelligence	system	that	emulates	a	person	on	a	chat
application.	A	chatbot	 takes	as	 its	 inputs	 text,	processes	 it	 in	an	efficient
manner,	 and	yields	 a	 reply	 in	 text	 format.	A	 chatbot	may	 also	 carry	 out
simple	tasks,	based	on	its	inputs	and	it	can	reply	with	a	question	in	order
to	clarify	the	objective	involved.
Chromosome:	a	potential	 solution	 to	a	problem,	modeled	using	Genetic
Algorithms.
Classification:	 a	 very	 popular	 data	 science	 methodology,	 under	 the
predictive	analytics	umbrella.	Classification	aims	to	solve	the	problem	of
assigning	 a	 label	 (aka	 class)	 to	 a	 data	 point,	 based	 on	 pre-existing
knowledge	of	categorized	data,	available	in	the	training	set.
Classifier:	 a	 predictive	 analytics	 system	 geared	 towards	 classification
problems.
Cloud	 (computing):	 a	model	 that	 enables	 easy,	 on-demand	 access	 to	 a
network	 of	 shareable	 computing	 resources	 that	 can	 be	 configured	 and
customized	 to	 the	 application	 at	 hand.	 The	 cloud	 is	 a	 very	 popular
resource	 in	 large-scale	 data	 analytics	 and	 a	 common	 resource	 for	 data
science	applications.



Clustering:	 a	 data	 science	 methodology	 involving	 finding	 groups	 in	 a
given	 dataset,	 usually	 using	 the	 distances	 among	 the	 data	 points	 as	 a
similarity	metric.
Cognitive	computing	(CC):	a	set	of	processes	and	methods	that	involves
self-learning	 systems	 that	 use	 data	 mining,	 pattern	 recognition,	 natural
language	processing	and	speech	recognition	to	mimic	the	way	the	human
brain	works.	CC	can	be	viewed	as	a	special	kind	of	artificial	intelligence.
Computational	 Intelligence	 (CI):	 a	 subclass	 of	 artificial	 intelligence,
geared	towards	computational	problems,	such	as	optimization.
Computer	 cluster:	 a	 collection	 of	 computers	 sharing	 resources	 and
working	together,	usually	as	a	single	machine.	Computer	clusters	are	very
useful	 for	 tackling	 big	 data	 problems	 in-house,	 though	more	 often	 than
not,	are	found	in	data	centers,	forming	public	computer	clouds.
Computer	 Vision:	 an	 application	 of	 artificial	 intelligence,	 where	 a
computer	is	able	to	discern	a	variety	of	visual	inputs	and	effectively	“see”
a	 lot	 of	 different	 real-world	 objects	 in	 real-time.	 Computer	 vision	 is	 an
essential	component	of	all	modern	robotics	systems.
Context:	a	characteristic	of	an	NDArray,	whereby	the	data	is	assigned	to	a
particular	 processing	 unit	 (a	 GPU),	 to	 better	 utilize	 the	 available
computing	resources.
Convolutional	Neural	Networks	 (CNNs	or	ConvNets):	a	 type	of	deep
learning	ANN	that	involves	a	series	of	specialized	layers	when	processing
the	 (usually	 high-dimensionality)	 data,	 for	 various	 predictive	 analytics
applications	 (mainly	 classification).	 CNNs	 are	 closely	 tied	 to	 computer
vision	and	Natural	Language	Processing.
Crossover:	a	process	in	the	Genetic	Algorithms	framework,	whereby	two
chromosomes	merge	 resulting	 to	 a	 new	 pair	 of	 chromosomes,	 that	 are
candidates	for	the	next	generation.

D
Data	 analytics:	 a	 general	 term	 to	 describe	 the	 field	 involving	 data
analysis	as	its	main	component.	Data	analytics	is	more	general	 than	data



science,	although	the	two	terms	are	often	used	interchangeably.
Data	 engineering:	 the	 part	 of	 the	 data	 science	 pipeline	 where	 data	 is
acquired,	cleaned,	and	processed,	 so	 that	 it	 is	 ready	 to	be	used	 in	a	data
model.	Most	artificial	intelligence	systems	handle	a	large	part	of	the	data
engineering	once	they	are	given	the	data	that	we	want	them	to	model.
Data	exploration:	the	part	of	the	data	science	pipeline	where	the	various
variables	are	examined	using	statistics	and	data	visualization,	 in	order	 to
understand	 it	better	and	work	out	 the	best	ways	 to	 tackle	 it	 in	 the	stages
that	follow.
Data	 model:	 a	 data	 science	 module	 processing	 and/or	 predicting	 some
piece	 of	 information,	 using	 existing	 data,	 after	 the	 latter	 has	 been	 pre-
processed	 and	made	 ready	 for	 this	 task.	Data	models	 add	 value	 and	 are
comprised	 of	 non-trivial	 procedures.	 In	 AI,	 data	 models	 are	 usually
sophisticated	 systems	making	use	of	 several	 data-driven	processes	under
the	hood.
Data	 science:	 the	 interdisciplinary	 field	undertaking	data	 analytics	work
on	all	kinds	of	data,	with	a	 focus	on	big	data,	 for	 the	purpose	of	mining
insights	and/or	building	data	products.
Data	visualization:	 the	process	of	creating	visuals	based	on	 the	original
data,	 or	 the	 data	 stemming	 from	 the	data	model	built	 using	 the	 original
data.
Dataset:	 the	data	 available	 to	be	used	 in	 a	data	analytics	project,	 in	 the
form	of	 a	 table	 or	 a	matrix.	A	dataset	may	need	 some	work	before	 it	 is
ready	 for	 being	 used	 in	 a	 data	 model,	 though	 in	 many	 artificial
intelligence	models,	you	can	use	it	as	is.
Data	structure:	a	collection	of	data	points	 in	a	 structured	 form,	used	 in
programming	as	well	as	various	parts	of	the	data	science	pipeline.
Deep	 belief	 network	 (DBN):	 several	 Restricted	 Bolzmann	 Machines
stacked	together	in	a	deep	learning	network	fashion.
Deep	Learning	 (DL):	an	artificial	 intelligence	methodology,	 employing
large	 artificial	 neural	 networks,	 to	 tackle	 very	 complex	 problems.	 DL
systems	require	a	lot	of	data	in	order	to	yield	a	real	advantage	in	terms	of
performance.
Dimensionality	 reduction:	 the	 process	 of	 reducing	 the	 number	 of
features	in	a	dataset,	usually	through	the	merging	of	the	original	features



in	a	more	compact	form	(feature	fusion),	or	through	the	discarding	of	the
less	 information-rich	 features	 (feature	 selection).	 Dimensionality
reduction	 can	 be	 accomplished	 in	 many	 ways,	 usually	 using	 some
specialized	 artificial	 intelligence	 systems	 such	 as	 autoencoders	 and
Restricted	Bolzmann	Machines.
Docker:	 a	 container	 software	 geared	 towards	 creating	 programming
environments	 on	 a	 computer,	 containing	 all	 the	 required	 programs	 and
data,	so	that	an	application	can	run	on	that	computer	smoothly,	even	if	it
was	developed	on	a	machine	with	a	completely	different	configuration.

E
Elitism:	 an	 aspect	 of	Genetic	 Algorithms,	 according	 to	 which,	 the	 best
performing	 chromosome	 or	 chromosomes	 are	 preserved	 as	 they	 are,	 for
the	next	generation.
Ensemble:	“The	process	by	which	multiple	models,	such	as	classifiers	or
experts,	 are	 strategically	 generated	 and	 combined	 to	 solve	 a	 particular
computational	 intelligence	problem.	Ensemble	 learning	 is	 primarily	used
to	 improve	 the	 (classification,	 prediction,	 function	 approximation,	 etc.)
performance	 of	 a	 model,	 or	 reduce	 the	 likelihood	 of	 an	 unfortunate
selection	of	a	poor	one.”	(Dr.	Robi	Polikar).	Ensembles	may	also	involve
AI	systems	too,	such	as	optimizers,	in	order	to	attain	a	better	performance
than	a	single	such	system.
Embedding:	 a	 low-dimensional	 representation	 of	 a	 given	 set	 of	 data.
Embeddings	 are	 quite	 common	 in	 deep	 learning	 systems,	 particularly	 in
autoencoders	and	in	representing	words	in	Natural	Language	Processing
tasks.
Epoch:	an	iteration	in	the	training	phase	of	an	Artificial	Neural	Network.
Error	function:	the	function	used	for	assessing	the	deviation	of	predicted
values	 of	 a	 machine	 learning	 model	 from	 the	 actual	 values	 (target
variable).	In	artificial	neural	network	models,	 the	error	function	needs	to
be	continuous.
ETL	 (Extract,	 Transform	 and	 Load):	 a	 process	 in	 all	 data	 related
pipelines,	having	to	do	with	pulling	data	out	of	the	source	systems	(usually



databases)	 and	 placing	 it	 into	 a	 data	 warehouse	 or	 a	 data	 governance
system.	ETL	 is	an	 important	part	of	data	acquisition,	preceding	any	data
modeling	efforts.
Extreme	Learning	Machines	(ELMs):	a	relatively	new	type	of	artificial
neural	networks	that	are	very	fast	to	train	and	exhibit	decent	performance
in	predictive	analytics	problems.	Their	key	characteristics	is	 that	most	of
the	 connections	 have	 random	weights,	 apart	 from	 those	 of	 the	 last	 layer
(outputs),	which	are	optimized	during	the	training	process.

F
Feature:	 a	 processed	 variable	 capable	 of	 being	 used	 in	 a	 data	 science
model.	Features	are	generally	the	columns	of	a	dataset.
Feature	engineering:	the	process	of	creating	new	features,	either	directly
from	the	data	available,	or	via	the	processing	of	existing	features.	Feature
engineering	is	part	of	data	engineering,	in	the	data	science	process.
Feature	fusion:	see	fusion.
Feature	 selection:	 the	 data	 science	 process	 according	 to	 which	 the
dimensionality	 of	 a	 dataset	 is	 reduced	 through	 the	 selection	 of	 the	most
promising	 features	 and	 the	 discarding	 of	 the	 less	 promising	 ones.	 How
promising	a	feature	is	depends	on	how	well	 it	can	help	predict	 the	target
variable	and	is	related	to	how	information-rich	it	is.
Feed-forward	network:	see	Multi-Layer	Perceptron.
Filter:	 a	 process	 in	 convolutional	 neural	 networks	whereby	 features	 are
created	 from	 an	 image	 by	 scanning	 it	 through	 a	moving	window	 (e.g.	 a
3x3	matrix).
Fitness	function:	an	essential	part	of	most	artificial	intelligence	systems,
particularly	optimization	 related	ones.	 It	 depicts	how	close	 the	 system	 is
getting	to	the	desired	outcome	and	helps	it	adjust	its	course	accordingly.	In
most	AI	systems	the	fitness	function	represents	an	error	or	some	form	of
cost,	which	needs	 to	be	minimized,	 though	 in	 the	general	 case	 it	 can	be
anything	and	depending	on	the	problem,	it	may	need	to	be	maximized.
Framework:	a	set	of	tools	and	processes	for	developing	a	certain	system,



testing	 it,	 and	 deploying	 it.	 Most	 AI	 systems	 today	 are	 created	 using	 a
framework.	A	framework	is	usually	accompanied	by	a	library/package	in
the	 programming	 languages	 it	 supports.	 In	 the	 deep	 learning	 case,	 for
example,	 a	 framework	 can	 be	 a	 programming	 suite	 like	 MXNet,	 that
enables	a	variety	of	DL	related	processes	and	classes	to	be	utilized.
Fusion:	 usually	 used	 in	 conjunction	 with	 feature	 (feature	 fusion),	 this
relates	 to	 the	merging	of	 a	 set	of	 features	 into	a	 single	meta-feature	 that
encapsulates	all,	or	at	least	most,	of	the	information	in	these	features.	This
is	a	popular	method	of	dimensionality	reduction	and	it	 is	an	integral	part
of	every	deep	learning	system.
Fuzzy	 Inference	 System	 (FIS):	 an	 AI	 system	 based	 on	 Fuzzy	 Logic,
geared	 towards	making	 predictions	 using	 inference	 rules.	A	FIS	 is	 quite
useful	 particularly	 when	 interpretability	 is	 a	 concern.	 However,	 it	 is
limited	to	lower	dimensionality	datasets.
Fuzzy	Logic:	a	term	coined	by	Lotfi	Aliasker	Zadeh	in	1965,	referring	to
a	 different	 way	 of	 processing	 information	 which,	 unlike	 classical	 logic,
also	 involves	 partial	 truths	 (instead	 of	 just	 the	 conventional	 black-and-
white	 logical	 paradigm).	 Fuzzy	 logic	 uses	 degrees	 of	 truth	 as	 a
mathematical	 model	 of	 vagueness	 and	 allows	 for	 all	 intermediate
possibilities	 between	 digital	 values	 of	 YES	 and	 NO,	 much	 like	 how	 a
human	will	 assess	 the	 nature	 of	 a	 situation	 in	 full	 color	 and	multi-polar
fashion,	 rather	 than	 a	bi-polar,	monochrome	way.	Fuzzy	 logic	 is	 a	well-
established	part	of	artificial	intelligence.

G
Gene:	an	element	of	a	chromosome,	in	a	Genetic	Algorithms	optimization
model.	Genes	are	coded	as	bits	and	they	represent	a	characteristic,	referred
to	as	a	trait.
Generalization:	a	key	 characteristic	 of	 a	data	 science	model,	where	 the
system	is	able	to	handle	data	beyond	its	 training	set	 in	a	reliable	way.	A
proxy	to	good	generalization	is	similar	performance	between	the	training
set	 and	 a	 testing	 set,	 as	 well	 as	 consistency	 among	 different	 training-
testing	set	partitions	of	the	whole	dataset.



Generation:	an	iteration	in	the	Genetic	Algorithms	framework.
Generative	Adversarial	Networks	(GANs):	a	family	of	AI	systems,	each
of	 which	 comprises	 two	 ANNs,	 one	 geared	 towards	 learning	 and	 one
geared	towards	“breaking”	the	first	ANN,	by	creating	data	that	makes	the
first	ANN	get	its	predictions	wrong.	As	a	GAN	is	trained,	each	one	of	its
components	becomes	better	 at	 its	 task,	 resulting	 in	 a	highly	 effective	AI
system	that	can	yield	good	generalization,	even	with	a	limited	amount	of
data.
Genetic	 Algorithms	 (GAs):	 a	 family	 of	 optimization	 algorithms
resembling	the	process	of	gene	selection,	combining,	and	mutation.	They
are	well-suited	for	problems	involving	discreet	variables,	though	they	can
be	 applied	 to	 continuous	 variables	 also.	 GAs	 are	 a	 well-established
artificial	 intelligence	methodology	 that	 finds	 many	 applications	 in	 data
science,	such	as	feature	selection.
Genetic	 Programming	 (GP):	 an	 artificial	 intelligence	 methodology
based	 on	 genetic	 algorithms,	 but	 geared	 towards	 finding	 an	 optimal
mathematical	function,	to	approximate	a	mapping	of	a	particular	variable.
Genome:	 the	 set	 of	 all	 the	 chromosome	 data	 in	 a	 Genetic	 Algorithms
system.	 Genome	 and	 population	 are	 often	 used	 interchangeably	 in	 this
context.
Gluon:	a	component	of	the	MXNet	deep	learning	framework,	acting	as	an
interface	for	the	framework’s	various	functions.
GPU	 (Graphics	 Processing	 Unit):	 a	 specialized	 component	 of	 a
computer’s	 hardware,	 designed	 for	 processing	 data	 related	 to	 the
computer’s	 display	 such	 as	 image-like	 data.	 GPUs	 can	 be	 leveraged	 to
obtain	additional	computing	power	for	resource-demanding	tasks,	such	as
AI	systems,	as	in	the	case	of	Deep	Learning.
Graph:	 a	 kind	 of	 dimensionless	 structure	 that	 is	 an	 abstraction	 of	 the
objects	involved	in	a	process	as	well	as	their	relationships	(connections).	It
is	 characterized	 by	 nodes	 and	 arcs,	 representing	 the	 objects	 and	 the
connections	 respectively.	 The	 latter	 also	 carry	 other	 characteristics	 too,
such	as	weights,	corresponding	to	the	strength	of	each	connection.
Graph	 analytics:	 a	 data	 science	 methodology	 making	 use	 of	 Graph
Theory	to	tackle	problems	through	the	analysis	of	the	relationships	among
the	entities	involved.



GRU	(Gated	Recurrent	Units):	a	simpler	version	of	an	LTSM	network.

H
Hadoop:	 a	 distributed	 data	 storage	 technology	 developed	 by	 Apache
Foundation.
HDFS:	abbreviation	for	Hadoop	Distributed	File	System,	a	framework	for
storing	 and	 accessing	 data	 over	 a	 computer	 cluster,	 in	 an	 effective	 and
efficient	manner.
Heuristic:	 an	 empirical	 metric	 or	 function	 that	 aims	 to	 provide	 some
useful	 tool	or	 insight,	 to	facilitate	a	method	or	project	of	data	science	or
artificial	intelligence.
Hive:	 an	 open	 source	 project	 of	 Apache	 Foundation.	 It	 is	 software	 that
facilitates	 reading,	 writing,	 and	 managing	 large	 datasets	 residing	 in
distributed	storage	using	a	variant	of	SQL	called	HiveQL.
HiveQL:	query	language	of	Hive.

I
IDE	 (Integrated	 Development	 Environment):	 a	 system	 designed	 for
facilitating	the	creation	and	running	of	scripts	as	well	as	their	debugging.
Jupyter	is	a	popular	IDE	for	data	science	applications.
Interpretability:	 the	 ability	 to	 more	 thoroughly	 understand	 a	 data
model’s	outputs	and	derive	how	they	relate	to	its	inputs	(features).	Lack	of
interpretability	is	an	issue	for	deep	learning	systems.

J
Julia:	 a	 modern	 programming	 language	 of	 the	 functional	 programming
paradigm,	 comprising	 characteristics	 for	 both	 high-level	 and	 low-level



languages.	Its	ease	of	use,	high	speed,	scalability,	and	sufficient	amount	of
packages,	make	it	a	robust	language	well-suited	for	data	science.	Recently
v.	1.0	of	the	language	was	released,	making	it	officially	production-ready.
Jupyter:	a	popular	browser-based	IDE	for	various	data	science	languages,
such	as	Python	and	Julia.

K
Kaggle:	 a	 web	 site	 that	 hosts	 data	 science	 competitions	 and	 provides
many	useful	datasets.
Keras:	is	a	very	popular	high	level	deep	learning	API	that	can	run	on	top
of	TensofFlow,	CNTK,	and	Theano.
Kohonen’s	Maps:	see	Self-organizing	Maps.

L
Layer:	 a	 set	 of	neurons	 in	 an	 artificial	 neural	 network.	 Inner	 layers	 are
usually	 referred	 to	 as	 hidden	 layers	 and	 consist	mainly	 of	meta-features
created	by	the	system.
Logistic	function:	see	sigmoid	function.
LTSM	 (Long	 Short	 Term	 Memory)	 network:	 a	 kind	 of	 Recurrent
Neural	Network	that	specializes	in	long-term	dependencies	among	the	data
points.	 Comprising	 of	 four	 distinct	artificial	 neural	 networks,	 an	 LTSM
network	is	ideal	of	natural	language	processing	applications.

M
Machine	Learning	 (ML):	a	 set	 of	 algorithms	and	programs	 that	 aim	 to
process	data	without	relying	on	statistical	methods.	ML	is	generally	faster
and	 some	 methods	 of	 it	 are	 significantly	 more	 accurate	 than	 the



corresponding	statistical	ones,	while	the	assumptions	they	make	about	the
data	 are	 fewer.	 There	 is	 a	 noticeable	 overlap	 between	ML	 and	artificial
intelligence	systems	designed	for	data	science.
Mapping:	 the	process	of	connecting	a	variable	or	a	set	of	variables,	 to	a
variable	we	 are	 trying	 to	 predict	 (aka	 target	 variable).	Mappings	 can	 be
analytical	using	a	mathematical	function,	or	not,	such	as	employing	a	set
of	 rules,	 or	 a	network	of	 functions,	 as	 in	 the	 case	of	 an	artificial	neural
network.	Mappings	are	inherent	in	every	data	model.
Meta-features	 (aka	super	 features	or	synthetic	 features):	high	quality
features	 that	 encapsulate	 larger	 amounts	 of	 information,	 usually
represented	 in	 a	 series	 of	 conventional	 features.	Meta-features	 are	 either
synthesized	 in	 an	 artificial	 intelligence	 system,	 or	 created	 through
dimensionality	reduction.
Methodology:	a	set	of	methods	and	the	theory	behind	those	methods,	for
solving	a	particular	kind	of	problem	 in	a	certain	 field.	Methodologies	of
data	 science	 include	 classification,	 regression,	 etc.	 while	 for	 artificial
intelligence,	we	have	methodologies	like	deep	learning,	autoencoders,	etc.
Model	Maintenance:	 the	 process	 of	 updating	 or	 even	 upgrading	 a	data
model,	 as	 new	 data	 becomes	 available	 or	 as	 the	 assumptions	 of	 the
problem	change.
Multi-Layer	Perceptron	(MLP):	a	deep	learning	system	that	comprises
of	a	series	of	layers	of	neurons,	much	like	a	normal	ANN,	but	larger.	It	is
often	referred	to	as	a	feed-forward	network	and	it’s	the	first	system	in	the
deep	learning	family	to	have	been	developed.	MLPs	are	great	for	various
standard	data	science	problems,	such	as	classification	and	regression.
Mutation:	a	process	 in	 the	Genetic	Algorithms	 framework,	 according	 to
which	 a	 random	 gene	 changes	 its	 value	 at	 random,	 with	 a	 given
probability.
MXNet:	 a	 deep	 learning	 framework	 developed	 by	 Apache.	 MXNet	 is
linked	to	Amazon,	although	it	can	run	on	any	cloud	computing	service.	Its
main	API	 is	 called	Gluon	 and	 it’s	 part	 of	 the	main	 package	 of	MXNet.
There	are	several	such	packages	in	different	programming	languages,	each
one	 an	 API	 for	 that	 language.	 MXNet	 can	 support	 more	 programming
languages	than	any	other	AI	framework.



N
Natural	 Language	 Processing	 (NLP):	 a	 text	 analytics	 methodology
focusing	on	categorizing	 the	various	parts	of	 speech	 for	a	more	 in-depth
analysis	of	the	text	involved.
Narrow	AI:	see	weak	AI.
NDArray:	 a	 data	 structure	 that	 is	 prominent	 in	 the	MXNet	 framework.
NDArrays	 are	 flexible	 like	 conventional	 data	 arrays,	 but	 also	 allow	 for
context	in	the	data	stored	in	them,	for	more	efficient	processing	of	it.
Network:	a	collection	of	nodes,	forming	a	data	structure	often	used	in	AI
systems.	In	computer	science,	networks	are	what	are	known	as	graphs	in
mathematics.
Neuron:	 a	 fundamental	 component	 of	 an	 artificial	 neural	 networks,
usually	 representing	 an	 input	 (feature),	 a	 meta-feature,	 or	 an	 output.
Neurons	in	a	network-based	AI	system	are	organized	in	layers.

O
Objective	function:	see	fitness	function.
Optimization:	an	artificial	intelligence	process,	aimed	at	finding	the	best
value	of	a	function	(usually	referred	to	as	the	fitness	function)	given	a	set
of	 restrictions.	 Optimization	 is	 key	 in	 all	 modern	 data	 science	 systems.
Although	 there	 are	 deterministic	 optimization	 algorithms	out	 there,	most
of	the	modern	algorithms	are	stochastic.
Optimizer:	 an	 artificial	 intelligence	 system	 designed	 to	 perform
optimization.
Overfitting:	 the	 case	whereby	 a	model	 is	 too	 specialized	 to	 a	 particular
dataset.	Its	main	characteristic	is	great	performance	for	the	training	set	and
poor	performance	for	any	other	dataset.	Overfitting	is	a	characteristic	of	an
overly	complex	model.



P
Package:	 a	 set	 of	 programs	 designed	 for	 a	 specific	 set	 of	 related	 tasks,
sharing	 the	 same	 data	 structures,	 and	 freely	 available	 to	 the	 users	 of	 a
given	 programming	 language.	 Packages	 may	 require	 other	 packages	 in
order	 to	 function,	 which	 are	 called	 dependencies.	 Once	 installed,	 the
package	can	be	imported	in	the	programming	language	and	used	in	scripts.
Parallelizable:	 an	 attribute	 of	 many	 systems	 and	 algorithms,	 whereby
different	 parts	 of	 them	 can	 be	 split	 among	 various	 CPUs	 or	 GPUs,
working	in	parallel.	This	brings	about	a	boost	in	performance	that	is	often
essential	 for	 AI	 processes.	 A	 parallelizable	 system	 is	 also	 more	 easily
scalable.
Particle	 Swarm	 Optimization	 (PSO):	 a	 fundamental	 optimization
algorithm,	 with	 a	 number	 of	 variants.	 Some	 claim	 that	 all	 swarm
intelligence	 optimizers	 are	 based	 on	 PSO,	 since	 it	 is	 the	 simplest
optimization	algorithm	of	this	category.	PSO	is	geared	towards	continuous
variables,	 though	 there	 is	 a	 variant	 of	 it	 for	 discrete	 ones.	 PSO	 has	 a
variety	of	applications	 in	all	sorts	of	problems,	 involving	a	 large	number
of	variables	(very	large	search	space).
Perceptron:	a	rudimentary	AI	model	and	a	fundamental	component	of	an
artificial	 neural	 network.	 When	 it	 comes	 to	 classification,	 a	 single
perceptron	can	only	handle	very	simple	problems	as	 it	fails	 to	generalize
non-linear	class	boundaries.
Personally	Identifiable	Information	(PII):	information	that	can	be	used
to	pinpoint	a	particular	individual,	thereby	violating	his/her	privacy.	PII	is
an	 important	 ethical	 concern	 in	 data	 science	 and	may	 not	 be	 so	 easy	 to
tackle,	since	it	often	relies	on	combinations	of	variables.
Pipeline:	also	known	as	workflow,	 it	 is	a	conceptual	process	 involving	a
variety	 of	 steps,	 each	 one	 of	 which	 can	 comprise	 of	 several	 other
processes.	 A	 pipeline	 is	 essential	 for	 organizing	 the	 tasks	 needed	 to
perform	any	complex	procedure	(often	non-linear)	and	is	very	applicable
in	data	science	(this	application	is	known	as	the	data	science	pipeline).
Population:	 the	 totality	 of	 the	 elements	 involved	 in	 an	 optimization
system,	 involving	a	number	of	 solutions	used	at	 the	 same	 time.	 In	 some



systems	it	is	referred	to	as	a	swarm.	Alternatively,	the	totality	of	the	data
describing	 a	 given	 phenomenon.	 Since	 this	 is	 often	 not	 available	 to	 the
data	scientist,	samples	of	it	are	used	instead.
Possibilistic	modeling:	a	particular	modelling	paradigm	sometimes	used
in	 artificial	 intelligence	 systems,	 making	 use	 of	 membership	 functions
instead	of	probabilities,	in	order	to	model	uncertainty	in	Fuzzy	Logic.
Predictive	analytics:	a	set	of	methodologies	of	data	science,	related	to	the
prediction	of	certain	variables.	It	includes	a	variety	of	techniques	such	as
classification,	 regression,	 time-series	 analysis,	 and	 more.	 Predictive
analytics	are	a	key	part	of	data	science.
Pruning:	the	process	of	cleaning	up	code	so	that	unwanted	solutions	can
be	 eliminated.	However,	with	 this	 process,	 the	 number	 of	 decisions	 that
can	be	made	by	machines	is	restricted.
Python:	 a	widely	 used	 object-oriented	 programming	 language,	 typically
used	for	data	science,	as	well	as	artificial	intelligence	applications	geared
towards	data	analytics.

Q
Quantum	 computing:	 a	 new	 computing	 paradigm	 which	 leverages
quantum	 effects	 and	 the	 use	 of	qubits,	 for	 carrying	 out	 computing	 tasks
potentially	faster.	Not	all	problems	can	be	solved	efficiently	with	quantum
computing,	but	it	is	believed	that	artificial	intelligence	has	a	lot	to	benefit
from	it.
Qubits:	 short	 for	 quantum	 bits,	 a	 new	 kind	 of	 information	 unit,	 in	 the
quantum	 computing	 paradigm.	 Unlike	 conventional	 bits,	 which	 can	 be
either	 0	 or	 1	 only,	 qubits	 can	 take	 0,	 1,	 and	 both	 at	 the	 same	 time
(leveraging	the	superposition	concept	from	Quantum	Physics).

R
Recurrent	 neural	 network	 (RNN):	 a	 deep	 learning	 network	 which



employs	 a	 non-sequential	 flow	 in	 the	 data	 they	 process,	 resulting	 in	 an
improved	 analysis	 of	 complex	 datasets,	 through	 the	 modeling	 of	 the
temporal	aspect	of	the	data	at	hand.	RNNs	are	ideal	for	natural	language
processing	applications,	as	well	as	speech	analysis	projects.
Regression:	 a	 very	 popular	 data	 science	 methodology,	 under	 the
predictive	analytics	umbrella.	Classification	aims	to	solve	the	problem	of
predicting	 the	 values	 of	 a	 continuous	 variable	 corresponding	 to	 a	 set	 of
inputs,	 based	on	pre-existing	knowledge	of	 similar	 data,	 available	 in	 the
training	set.
Regressor:	 a	 predictive	 analytics	 system	 geared	 towards	 regression
problems.
Reinforcement	learning:	a	type	of	machine	learning	 in	which	machines
are	 “taught”	 to	 achieve	 their	 target	 function	 through	 a	 process	 of
experimentation	and	reward.	The	machine	receives	positive	reinforcement
when	its	processes	produce	the	desired	result	and	negative	reinforcement
when	they	do	not.
ReLU	function:	a	minimalistic	transfer	function	used	in	deep	learning.	It
is	 defined	 as	 f(x)	 =	 max(w*x+b,	 0)	 and	 takes	 values	 between	 0	 and
infinity.	 Being	 computationally	 cheaper	 and	 sparser	 than	 other	 transfer
functions,	 it	 is	 sometimes	 preferred	 when	 creating	 a	 deep	 learning
network.
Resilient	Distributed	Dataset	(RDD):	the	data	representation	of	Apache
Spark	that	supports	distributed	computing.
Restricted	 Bolzmann	 Machine	 (RBM):	 a	 type	 of	 artificial	 neural
network,	geared	 towards	 learning	 the	probability	distributions	of	a	 set	of
features,	 in	order	 to	 reconstruct	 them	using	 a	 small	 set	 of	meta-features.
RBMs	are	similar	to	autoencoders	in	the	sense	that	they	too	are	often	used
for	 dimensionality	 reduction,	 though	 RBMs	 are	 used	 in	 other	 contexts,
such	as	predictive	analytics.

S
Sample:	 a	 limited	 portion	 of	 the	 data	 available,	 useful	 for	 building	 a
model,	and	(ideally)	representative	of	the	population	it	belongs	to.



Sampling:	 the	 process	 of	 acquiring	 a	 sample	 of	 a	 population	 using	 a
specialized	technique.	Sampling	is	very	important	to	be	done	properly,	to
ensure	that	the	resulting	sample	is	representative	of	the	population	studied.
Sampling	needs	to	be	random	and	unbiased.
Scala:	 a	 functional	 programming	 language,	 very	 similar	 to	 Java,	 that	 is
used	in	data	science.	The	big	data	framework	Spark	is	based	on	Scala.
Selection:	a	process	of	figuring	out	which	chromosomes	get	to	cross	over,
in	 the	Genetic	 Algorithms	 framework.	 Selection	 is	 a	 stochastic	 process
related	to	the	fitness	of	the	chromosomes	involved.
Self-organizing	 Maps	 (SOMs):	 a	 special	 kind	 of	 artificial	 neural
network,	 able	 to	 represent	 a	 feature	 space	 on	 a	 2-dimensional	 plane,
without	the	need	of	a	target	variable.	In	data	science,	SOMs	are	useful	for
data	visualization	and	data	exploration.
Sentiment	analysis:	a	natural	language	processing	method	involving	the
classification	of	a	text	into	a	predefined	sentiment,	or	the	figuring	out	of	a
numeric	value	that	represents	the	sentiment	polarity	(how	positive	or	how
negative	the	overall	sentiment	is).
Sigmoid	 function:	 a	mathematical	 function	 of	 the	 form	 f(x)	 =	 1	 /	 (1	 +
exp(-(w*x	+	b))).	Sigmoids	are	used	in	various	artificial	neural	networks,
such	 as	 Deep	 Learning	 networks,	 as	 transfer	 functions.	 Sigmoid	 takes
values	between	0	and	1,	not	inclusive.	This	is	sometimes	referred	to	as	the
logistic	function	as	it	features	in	logistic	regression.
Simulated	Annealing	(SA):	an	optimization	method	in	the	nature	inspired
family	 of	 algorithms,	 based	 on	 the	 annealing	 process	 of	 liquids.	 SA	 is
ideal	for	complex	search	spaces	and	it	is	very	robust	against	local	optima.
A	classical	application	of	SA	is	the	Traveling	Salesman	Problem.
Softmax	function:	a	transfer	function	sometimes	used	in	a	deep	learning
network.	 It	 is	 a	 simpler	 version	 of	 the	 sigmoid	 function,	 where	 the	 bias
parameter	(b)	is	missing	from	the	equation.	Softmax	takes	values	between
0	and	1,	not	inclusive.
Spark:	see	Apache	Spark.
Stochastic:	 something	 that	 is	 probabilistic	 in	 nature.	 That	 is,	 not
deterministic.	 Stochastic	 processes	 are	 common	 in	 most	 artificial
intelligence	systems	and	other	advanced	machine	learning	systems.
Strong	AI:	an	area	of	AI	development	that	is	working	toward	the	goal	of



making	AI	systems	that	are	as	useful	and	skilled	as	the	human	mind.	It	is
often	referred	to	as	Artificial	General	Intelligence	(AGI).
Supervised	learning:	a	set	of	data	science	methodologies	where	there	is	a
target	 variable	 that	 needs	 to	 be	 predicted.	The	main	 parts	 of	 supervised
learning	are	classification,	regression,	and	reinforcement	learning.
Swarm:	 a	 set	 of	 potential	 solutions,	 evolving	 through	 a	 swarm
intelligence	 framework.	 In	 the	 general	 case	 of	 different	 optimization
systems,	a	swarm	is	referred	to	as	population.
Swarm	 intelligence:	 a	 concept	 based	 on	 the	 idea	 that	 when	 individual
agents	come	together,	the	interactions	between	them	lead	to	the	emergence
of	 a	 more	 ‘intelligent’	 collective	 behavior	 –	 such	 as	 a	 swarm	 of	 bees.
Swarm	 intelligence	 is	 an	 essential	 part	 of	modern	optimization	methods,
such	as	particle	swarm	optimization	and	it	is	stochastic	by	nature.

T
Tanh	function:	 the	hyperbolic	 tangent	 function.	 It	 is	of	 the	same	family
as	 the	 sigmoid	 and	 it	 is	 sometimes	 used	 as	 a	 transfer	 function	 for	deep
learning	networks.	 It	 is	 defined	 as	 f(x)	 =	 (exp(x)	 -	 exp(-x))	 /	 (exp(x)	 +
exp(-x))	and	takes	values	between	-1	and	1,	not	inclusive.
Target	variable:	the	variable	of	a	dataset	that	is	the	target	of	a	predictive
analytics	system,	such	as	a	classification	or	a	regression	system.
Tensor	Processing	Unit	 (TPU):	 a	 special	 type	 of	 proprietary	 processor
designed	 by	 Google	 in	 2016	 to	 accelerate	 the	 training	 of	 the	 neural
network	models	implemented	in	the	TensorFlow	framework.
TensorFlow:	 a	 deep	 learning	 and	 high	 performance	 numerical
computation	 library.	 Initiated	 by	 Google	 and	 improved	 by	 a	 very	 large
open	 source	 community,	 TensorFlow	 is	 by	 far	 the	 most	 popular	 deep
learning	framework	today.
Testing	 set:	 the	 part	 of	 the	 dataset	 that	 is	 used	 for	 testing	 a	 predictive
analytics	model	 after	 it	 has	 been	 trained	 and	 before	 it	 is	 deployed.	 The
testing	set	usually	corresponds	to	a	small	portion	of	the	original	dataset.
Training	 algorithm:	 the	 algorithm	 used	 for	 training	 a	 deep	 learning



system	(or	a	predictive	analytics	model	in	general).	It	entails	figuring	out
which	 nodes	 to	 keep	 and	what	weights	 their	 connections	 have,	 so	 as	 to
obtain	a	good	generalization	for	the	problem	at	hand.	Backpropagation	is
an	 established	 training	 algorithm,	 suitable	 for	 various	 kinds	 of	 artificial
neural	networks,	including	deep	learning	systems.
Training	set:	the	part	of	the	dataset	that	is	used	for	training	a	predictive
analytics	model	before	 it	 is	 tested	and	deployed.	The	training	set	usually
corresponds	to	the	largest	portion	of	the	original	dataset.
Trait:	a	characteristic	of	a	problem,	expressed	as	a	gene,	 in	 the	Genetic
Algorithms	framework.
Transfer	 function:	 a	 component	 of	 an	 artificial	 neural	 network,
corresponding	to	the	function	applied	on	the	output	of	a	neuron	before	it	is
transmitted	 to	 the	next	 layer.	A	 typical	 example	 is	 the	 sigmoid	 function,
though	 ReLU	 is	 often	 used	 in	 practice	 too.	 Transfer	 functions	 are
sometimes	referred	to	as	activation	functions.
Transfer	 learning:	 a	 machine	 learning	 methodology	 where	 a	 model
trained	for	a	task	is	reused	in	a	second	task	without	retraining.	Taking	the
outputs	 of	 the	 pre-trained	 model	 as	 input	 to	 another	 model,	 this
methodology	tries	to	increase	the	performance	of	the	second	model	as	well
as	to	reduce	the	training	time.
Traveling	 Salesman	 Problem	 (TSP):	 a	 classical	 problem	 in	 graph
analytics,	whereby	we	opt	to	find	the	quickest	path.	That	is,	the	one	with
the	smallest	overall	cost	in	terms	of	time	or	distance,	from	one	node	of	the
graph	to	itself,	after	passing	through	all	the	other	nodes	once.	TSP	is	one
of	 the	 core	 problems	 in	 logistics	 and	 one	 of	 the	 most	 challenging
optimization	problems	out	there.

U
Unfolding	 /	 unrolling:	 in	 recurrent	 neural	 networks,	 the	 process	 of
depicting	the	network’s	architecture	 in	such	a	way	that	all	 the	 time	steps
are	 visible,	 enabling	 betting	 understanding	 of	 its	 functionality.	 This	 is
done	by	expanding	the	folded	connections	 in	the	hidden	layer	part	of	the
network,	giving	it	a	linear	form.



Unsupervised	learning:	a	set	of	data	science	methodologies	where	there
is	no	target	variable	that	needs	to	be	predicted.

V
Variable:	a	column	in	a	dataset,	be	it	in	a	matrix	or	a	dataframe.	Variables
are	usually	turned	into	features,	after	some	data	engineering	is	performed
on	them.
Virtual	Machine	(VM):	a	collection	of	computing,	storage	resources,	and
software,	taking	the	form	of	a	computer,	accessible	via	the	Internet.	VMs
usually	live	in	the	cloud	though	there	is	software	enabling	you	to	create	a
VM	 on	 your	 own	 computer	 or	 computer	 cluster.	 Cloud-based	 VMs	 are
very	useful	for	AI	applications.

W
Weak	 AI:	 also	 known	 as	 narrow	 AI,	 weak	 AI	 refers	 to	 a	 non-sentient
computer	system	that	operates	within	a	predetermined	range	of	skills	and
usually	focuses	on	a	singular	task	or	small	set	of	tasks.	All	AI	in	use	today
is	weak	AI.
Workflow:	see	pipeline.



APPENDIX	A

Transfer	Learning
It	is	not	unusual	for	a	complex	deep	learning	model	to	train	days	or	weeks
even	 on	 today’s	most	 performant	 hardwares.	 Hence	 it	 is	 unpractical	 for
many	of	the	practitioners	to	re-train	those	useful	models	in	order	to	make
use	 of	 their	 outputs	 in	 other	 related	 tasks.	 Instead,	 using	 the	 outputs	 or
knowledge	of	pre-trained	models	without	re-training	them	would	be	more
practical	approach.
Transfer	 learning	 is	a	machine	 learning	method	 that	addresses	 this	 issue.
More	formally,	transfer	learning	is:

the	improvement	of	learning	in	a	new	task	through	the	transfer	of
knowledge	from	a	related	task	that	has	already	been	learned.37

In	 simpler	 terms,	 using	 the	 outputs	 of	 a	 pre-trained	 model	 as	 inputs	 to
another	model	 to	solve	a	different	but	somehow	related	task	is	known	as
transfer	learning.	Although,	it	is	not	specific	to	deep	learning	models,	the
long	 training	 times	 of	 these	 models	 make	 transfer	 learning	 a	 beneficial
method	for	certain	tasks.

When	is	transfer	learning	useful?
In	 order	 to	 get	 most	 benefit	 out	 of	 a	 transfer	 learning	 application,	 the
features	learned	from	the	first	task	should	be	general	enough	so	that	they
are	suitable	for	the	second	task	and	not	specific	to	the	first	task.

When	to	use	transfer	learning
Using	 transfer	 learning	 should	 yield	 some	 measurable	 benefits	 for	 the
second	 task.	 In	 general	 terms,	 the	main	 objective	 of	 applying	 a	 transfer
learning	 method	 is	 to	 decrease	 the	 training	 time	 of	 the	 second	 model



and/or	 to	 increase	 the	 performance	 of	 it.	 In	 Figure	 28,	 Lisa	 Torrey	 and
Jude	 Shavlik	 explain	 the	 three	 potential	 benefits	 to	 search	 for	 after
applying	a	transfer	learning	method.38

Higher	start:	The	initial	skill	(before	refining	the	model)	on	the
source	model	is	higher	than	it	otherwise	would	be.
Higher	slope:	The	rate	of	improvement	of	skill	during	training	of
the	source	model	is	steeper	than	it	otherwise	would	be.
Higher	asymptote:	The	converged	skill	of	the	trained	model	is
better	than	it	otherwise	would	be.

That	 being	 said,	 applicability	 of	 transfer	 learning	 is	 usually	 a	 trial	 and
error	process	as	it	might	be	hard	to	guess	whether	the	approach	will	yield
any	benefits	or	not.	However,	any	domain	knowledge	and	expertise	on	the
original	task	would	be	useful	guides	on	when	to	use	transfer	learning.

How	to	apply	transfer	learning
We	can	classify	the	way	transfer	learning	methods	are	applied	into	two.	In



the	 first	one,	 the	 first	model	 should	be	 implemented	and	 trained	prior	 to
the	second	one.	This	approach	 is	known	as	“Develop	Model	Approach”.
In	the	second	one,	a	pre-trained	model	is	used	without	any	training	and	its
outputs	 are	 fed	 into	 the	 second	model.	This	 approach	 is	 known	as	 “Pre-
trained	Model	Approach”.

Develop	model	approach

1.	 Select	a	Source	Task:	You	first	need	to	select	a	problem	with	an
abundance	of	data.	The	relevance	of	features	learned	from	this
data	is	key	to	the	success	of	the	second	model.

2.	 Develop	Your	Own	Source	Model:	Next,	you	must	develop
your	own	model	for	this	first	task.	The	model	should	learn	some
useful	features	from	the	data.	In	this	respect,	the	model	selection
is	quite	important	and	requires	some	research	or	prior
experience.

3.	 Reuse	the	Source	Model:	The	model	fit	on	the	source	task	will
be	used	as	a	starting	point	for	the	second	model	to	address	the
second	task.	Using	this	trained	model	should	improve	the
performance	of	the	second	model.	Depending	on	the	nature	of
the	problems	at	hand,	one	may	directly	use	the	output	of	the	first
model	or	output	of	one	of	its	hidden	layers	as	input	to	the	second
model.

4.	 Tune	Model:	The	model	may	be	tuned	for	better	performance	if
needed.

Pre-trained	model	approach

1.	 Select	a	Source	Model:	Select	a	pre-trained	model.	Although
there	are	many	available	pre-trained	models	trained	on	useful
datasets,	the	features	learned	by	this	model	should	be	relevant	for
the	second	task.



2.	 Use	a	Pre-trained	Model:	The	pre-trained	model	will	be	used	as
a	starting	point	for	the	second	model	to	address	the	second	task.
This	pre-trained	model	should	improve	the	performance	of	the
second	model.	Depending	on	the	nature	of	the	problems	at	hand,
one	may	directly	use	the	output	of	the	pre-trained	model	or
output	of	one	of	its	hidden	layers	as	input	to	the	second	model.

3.	 Tune	Model:	The	model	may	be	tuned	for	better	performance	if
needed.

Applications	of	transfer	learning
Transfer	 learning	 has	 many	 application	 areas	 in	 both	 general	 machine
learning	and	deep	 learning.	We	 touch	here	 just	 two	common	application
areas	of	it	in	computer	vision	and	natural	language	processing.
In	image	recognition	tasks,	many	research	institutions	develop	performant
models	 and	 make	 them	 public	 for	 reuse.	 Training	 these	 models	 usually
takes	 days	 or	 even	weeks.	Hence,	many	 people	 prefer	 to	 use	 these	 pre-
trained	models	instead	and	apply	a	pre-trained	model	approach	to	transfer
learning	as	explained	earlier.	Some	examples	of	these	models	include:

Oxford	VGG	Model
Google	Inception	Model
Microsoft	ResNet	Model

In	natural	language	processing,	it	is	very	common	to	use	word	embeddings
as	 input	 to	 the	 models.	Word	 embeddings	 are	 vector	 representations	 of
words	that	are	trained	on	very	large	corpus	data	(you	can	think	of	them	as
meta-features	similar	to	those	resulting	from	PCA,	but	which	are	all	useful
for	capturing	the	importance	of	various	terms	such	as	words	or	phrases,	in
various	 texts,	 for	 various	 NLP-related	 models).	 The	 words	 that	 have
similar	meanings	are	represented	as	vectors	 that	are	closer	 to	each	other.
Two	very	common	word	embeddings	are:



Google’s	word2vec
Stanford’s	GloVe

Many	 deep	 learning	 frameworks	 are	 already	 bundled	 with	 some	 of	 the
state-of-the-art	models	so	that	you	can	use	these	pre-trained	models	as	part
of	your	transfer	learning	method.	Keras	also	has	a	large	set	of	pre-trained
models	 integrated	 in	 it.	 You	 can	 use	 these	 pre-trained	 models	 by	 just
importing	 Keras’	 applications	module.	 You	 can	 read	 the	 documentation
here39	to	learn	more	about	Keras’	applications	module.
Chapter	11,	Transfer	Learning:	https://amzn.to/2LlIxyB.
See	the	reference	in	the	footnote	1.
https://keras.io/applications/.



APPENDIX	B

Reinforcement	Learning
We	briefly	cover	Reinforcement	Learning40	(RL),	which	has	applicability
in	 a	wide	 range	 of	 areas	 like	 game	playing	 and	 finance.	Resting	 upon	 a
basic	observation	on	how	humans	learn	from	their	experiences,	RL	is	one
of	the	most	important	learning	paradigms	in	machine	learning	and	to	some
extent,	to	AI	too.
Let’s	first	look	at	how	a	baby	learns	whether	fire	is	a	good	thing	or	a	bad
thing.	 Since	 fire	 illuminates	 the	 environment,	 baby	 learns	 that	 fire	 is
something	 that	 is	 shining	 and	 colorful.	When	 she	gets	 closer	 to	 the	 fire,
she	gets	warm	and	 in	 cold	nights	 that	 is	 also	 something	very	beneficial.
Eventually,	 when	 she	 tries	 to	 touch	 the	 fire,	 she	 realizes	 that	 fire	 burns
which	is	a	very	bad	thing	for	a	baby.	Hence,	from	these	experiments	 the
baby	learns	that	sometimes	fire	is	good	and	sometimes	it	is	bad.	As	long
as	she	keeps	the	distance	at	some	level,	she	can	enjoy	the	fire.
Similar	to	the	way	of	learning	in	our	example,	RL	is	a	learning	paradigm
in	 machine	 learning	 where	 learning	 from	 experiments	 is	 the	 key	 tenet.
More	formally,	RL	is	a	type	of	machine	learning	where	agents	learn	how
to	behave	in	environments	by	observing	the	outcomes	of	their	actions.	In	a
sense,	RL	can	be	 thought	of	a	special	 form	of	 trial	and	error	 in	machine
learning.
Applications	 of	 RL	 are	 especially	 popular	 in	 game	 playing.	 Also,
understanding	 the	 terminology	 of	 RL	 in	 a	 game	 context	 is	 quite	 easy.
Because	of	this,	in	the	following	discussion	we’ll	give	our	examples	from
an	old	but	still	popular	game:	Super	Mario!

Key	terms
In	 order	 to	 speak	 about	 RL,	 the	 following	 four	 key	 terms	 should	 be
understood:



Agent:	It	is	something	that	takes	actions	in	an	environment	and
gets	the	rewards.	You	can	think	of	an	agent	as	Super	Mario	himself
in	the	game.	RL	aims	at	making	agents	learn	from	their
environments	and	achieve	good	performances	on	the	tasks	they	are
given.
Environment:	It	is	the	set	of	states	that	the	agent	operates	in.	You
can	think	of	it	as	the	levels	and	all	the	objects	inside	that	level	in
the	Super	Mario	game.	Environment	is	the	data	that	the	agents
learn	from.
Action:	It	is	an	operation	of	an	agent	given	a	state	of	the
environment.	The	results	of	actions	yield	rewards.	An	example	is
jumping	in	the	Super	Mario	game.	After	each	action,	agents
increase	or	decrease	their	total	rewards.	By	considering	the	result
of	an	action,	agents	learn	whether	an	action	should	be	taken	or	not,
given	the	state.
Reward:	It	is	the	benefit	or	punishment	that	the	agent	gets	upon
taking	an	action.	You	can	think	of	it	as	the	number	of	gold	coins
that	are	collected	in	a	level	or	the	successful	finishing	of	a	level	in
Super	Mario.	The	objective	of	a	RL	model	is	to	maximize	the	total
rewards	by	discovering	the	best	actions	depending	on	the	state	of
the	environment.

Let’s	 summarize	 what	 we’ve	 learned	 from	 the	 definitions	 of	 these	 four
terms.	In	RL,	our	 task	is	 to	make	our	agents	 learn	the	best	set	of	actions
from	the	environments	they	are	given	by	experimenting.	The	term	“best”
means	that	the	agent	should	maximize	its	total	rewards	and	hence	the	best
set	of	actions	should	result	in	the	maximum	possible	total	rewards.	More
formally,	 the	 goal	 of	 the	 agent	 is	 to	 maximize	 its	 expected	 cumulative
rewards.

Reward	hypothesis
The	central	optimization	idea	in	RL	rests	upon	the	“Reward	Hypothesis”.
According	to	this	idea,	tasks	can	be	represented	as	the	maximum	expected
cumulative	 rewards	 so	 that	 the	 analytical	 RL	 methods	 can	 be	 applied.



Even	if	not	all	tasks	fall	into	this	category,	there	are	many	important	tasks
that	 fall	 within.	 If	 we	 can	 represent	 a	 problem	 along	 the	 lines	 of	 this
reward	hypothesis,	then	RL	techniques	can	be	applied	to	it.
Mathematically,	the	cumulative	reward	function	is	the	sum	of	the	rewards
that	agent	gets	after	each	action:
G(t)	=	R(t+1)	+	R(t+2)	+	…	+	R(t+n)

In	some	cases	however,	near	future	should	be	given	more	weight	than	the
distant	 future.	 To	 be	 able	 to	 do	 that,	 the	 rewards	 are	 multiplied	 by	 a
preference	parameter	or	a	discount	factor	which	lies	between	0	and	1.	By
doing	 this,	we	make	our	agents	care	more	about	 the	near	 future	 than	 the
distant	future.41

Types	of	tasks
A	 task	 is	 an	 instance	of	 a	RL	problem.	The	 formula	 above	 includes	 “n”
rewards.	However,	 some	 tasks	continue	forever.	 In	 that	 respect,	we	have
two	types	of	tasks:

1.	 Episodic	Tasks:	These	tasks	have	some	ending	point.	So,	these
are	tasks	that	are	limited	in	terms	of	the	number	of	actions	and
the	states	of	the	environment.	In	the	Super	Mario	game,	a	level
corresponds	to	an	episode.

2.	 Continuous	Tasks:	These	are	the	tasks	that	have	no	ending
points.	Hence,	these	tasks	continue	forever.	For	this	kind	of	task,
the	reward	formula	we	gave	above	should	be	adjusted	such	that
the	number	of	reward	terms	in	the	summation	goes	to	infinity.	A
good	example	of	these	tasks	is	stock	trading	in	finance.

RL	 includes	 many	 mathematical,	 statistical	 and	 algorithmic	 techniques
which	are	beyond	the	scope	of	 this	book.	Here	we	just	highlighted	some
basic	concepts	of	RL	and	its	central	tenets.	If	you	are	interested	in	RL,	we
encourage	you	to	read	more	about	 it.	There	are	many	books,	papers,	and
blog	posts	about	RL	as	well	as	an	interesting	YouTube	channel.	The	latter
is	 called	“Code	Bullet”	 and	 it	 features	 several	popular	games	 (and	 some



not-so-popular	 ones	 too),	with	AIs	 playing	 them,	 after	 being	 exposed	 to
them	 through	 a	RL	 process.	 Before	 closing	 this	 appendix,	 let’s	mention
briefly	some	useful	RL	frameworks.

Reinforcement	learning	frameworks
There	are	some	useful	frameworks	that	you	can	use	if	you	want	to	dig	into
the	RL	applications.	Here,	we	just	name	two	of	them:

1.	 OpenAI	Gym:	Gym	is	a	project	of	OpenAI	(a	project	created	by
Elon	Musk	to	foster	AI	research	in	a	democratic	manner).	It	is	a
toolkit	for	developing	and	comparing	RL	algorithms.	You	can
find	many	environments	for	many	kind	of	games.	Examples
include	cart-pole,	mountain-car,	Atari	games,	Doom,	etc.	You
can	also	compare	your	performances	against	benchmarks.	As	of
this	writing	Gym	only	supports	Python.

2.	 RL-Glue:	It	is	a	project	that	is	initiated	by	Professor	Sutton’s
team	in	UoFA	and	extended	by	a	large	community.	It	supports
languages	Java,	C/C++,	Python,	MATLAB,	and	Lisp.	As	of	this
writing	there	are	more	than	ten	tasks	included	in	RL-Glue.

You	may	also	have	heard	of	“Deep	Reinforcement	Learning”.	It	is	a	special	kind	of	Reinforcement
Learning	where	the	deep	neural	networks	are	used	in	the	modeling.	In	this	appendix,	we	just	use
Reinforcement	Learning	to	emphasize	its	general	applicability	to	many	kinds	of	machine	learning
methods.

You	 can	 also	 find	 similar	 functions	 in	 economics.	 The	 consumption	 behavior	 of	 households	 is
usually	modeled	in	a	similar	fashion	in	economic	models.



APPENDIX	C

Autoencoder	Systems
Autoencoder	 systems	 are	 a	 special	 kind	 of	 Deep	 Learning	 network	 that
opts	 to	 perform	 a	 summarization	 of	 the	 original	 data,	 into	 a	 lower-
dimensionality	 feature	 space.	 In	 essence,	 they	 are	 like	 PCA,	 ICA,	 and
other	statistical	processes	for	creating	a	more	compact	feature	set,	but	with
one	 key	 difference:	 autoencoders	 provide	 a	mapping	 that	 is	 highly	 non-
linear	and	therefore	able	to	capture	all	those	non-linear	aspects	of	the	data.
This	 results	 in	 a	better	 and	more	 robust	 representation	 (aka	 embedding),
something	particularly	useful	when	it	comes	to	highly	complex	datasets	-
all	that	while	keeping	the	resource	requirements	to	a	manageable	level.

Components
The	 architecture	 of	 an	 autoencoder	 is	 very	 similar	 to	 that	 of	 other	 DL
systems,	comprising	a	series	of	layers	of	neurons.	However,	autoencoders
have	the	same	number	of	neurons	in	the	output	layer,	which	corresponds
to	 the	 features	of	 the	data,	 just	 like	 the	 input	 layer.	The	 innermost	 layer
(one	of	the	hidden	layers	of	the	network)	contains	the	optimal	embedding
of	these	features	and	it	always	has	fewer	neurons	than	the	input	layer.	You
can	view	a	minimalistic	autoencoder	system	in	Figure	29.



Data	flow	and	functionality
The	 data	 in	 an	 autoencoder	 initially	 flows	 from	 the	 input	 to	 the	 output,
through	 all	 the	hidden	 layers	 in-between.	Once	 it	 reaches	 the	 end	of	 the
network,	 the	 outputs	 are	 compared	 to	 the	 original	 feature	 values	 as	 the
latter	take	the	role	of	the	targets.	The	inevitable	differences	(errors)	travel
backwards	and	are	used	to	modify	the	weights	of	the	connections	among
the	neurons	and	the	whole	process	is	repeated	until	the	errors	are	below	a
predefined	limit.
Moreover,	 the	process	of	 turning	 the	 input	data	 into	embedding	 is	called
encoding	(or	convolution),	while	the	reverse	process,	whereby	the	data	in
the	 embedding	 process	 is	 turned	 into	 an	 approximation	 of	 the	 original
features,	in	the	output	layer,	is	called	decoding	(or	deconvolution).	Finally,
the	data	corresponding	to	 the	hidden	layer	 is	usually	referred	 to	as	 latent
variables.

Error	function



The	error	function	of	an	autoencoder	is	usually	the	squared	error	between
the	inputs	and	the	outputs,	though	depending	on	the	problem	at	hand	it	can
involve	 different	 kinds	 of	 norms	 of	 the	 aforementioned	 differences.	 Just
like	multi-level	perceptrons,	once	computed,	the	error	is	propagated	to	the
different	parts	of	the	network.

Extensions	of	conventional	autoencoder
models

Denoising	autoencoder
This	is	a	special	kind	of	autoencoder,	first	explored	in	2008	by	Vincent	et
al.	 It	 basically	 works	 with	 corrupt	 data	 as	 its	 inputs	 and	 attempts	 to
reconstruct	the	noisy	signal.	It	manages	that	by	abstracting	what	is	called
the	manifold	of	the	data,	which	is	the	shape	we	wish	to	capture	when	the
dimensionality	 of	 the	 data	 is	 reduced.	 Once	 a	 form	 of	 the	 manifold	 is
abstracted	based	on	the	input	data,	the	autoencoder	rebuilds	that	signal	and
outputs	 what	 it	 believes	 to	 be	 a	 more	 accurate	 representation	 of	 the
original	inputs.
Note	 that	 the	 manifold	 approach	 is	 common	 among	 conventional
autoencoders	 too,	 since	 without	 an	 abstraction	 of	 the	 signal	 at	 hand,	 it
would	not	be	possible	to	express	it	in	a	different	form,	particularly	a	more
information-rich	one.
Just	like	in	regression	systems,	a	regularization	parameter	is	introduced	to
ensure	a	simple	and	therefore	more	robust	model.	This	is	accomplished	by
introducing	a	parameter	β	corresponding	to	the	how	much	weight	we	put
on	a	sparser	(simpler)	coding:	ES	=	E	+	β·Penalty.
Such	a	system	would	be	also	somewhat	easier	to	interpret,	while	also	more
resistant	 to	 instability.	Also,	 despite	 the	 seemingly	 convoluted	 processes
related	 to	 sparsity	and	how	 it	 applies	 to	a	more	 robust	 representation,	 in
practice	it	is	quite	straightforward,	as	it	is	quite	easy	to	implement	through
the	various	DL	frameworks.

Variational	autoencoder



Variational	AutoEncoders	(or	VAE	for	short)	are	specialized	autoencoder
systems	 that	 are	 designed	 for	 calculating	 the	 parameters	 of	 a	 statistical
model	 that	 describes	 the	 distribution	 of	 the	 input	 data.	 VAEs	 are	 like
conventional	 autoencoders	 but	 with	 a	 twist	 in	 the	 latent	 variables	 they
generate.	 The	 idea	 is	 to	 create	 such	 latent	 variables	 that	 approximately
follow	a	unit	Gaussian	distribution,	instead	of	being	arbitrary.	After	this	is
done,	it’s	just	a	matter	of	generating	new	points	following	that	distribution
and	passing	them	as	inputs	to	the	decoding	part	of	the	VAE	network.	For
better	 performance,	 we	 can	 apply	 a	 trick	 of	 sorts,	 involving	 a	 process
called	KL	divergence,	which	needs	to	be	optimized.
VAEs	 not	 only	 produce	 new	 data	 that	 closely	 resembles	 the	 original
dataset,	but	they	also	create	data	that	is	free	of	noise	and	also	looks	more
realistic.	This	is	the	main	reason	why	they	are	better	at	this	task	compared
to	Generative	Adversarial	Networks	(GANs).

Use	cases	and	applications
Autoencoders	have	a	variety	of	use	cases	where	they	can	add	value.	The
main	ones	are	the	following:

Dimensionality	reduction:	although	PCA	and	t-SNE	are	great	at
this,	autoencoders	are	a	more	robust	and	more	versatile	alternative
that	can	scale	up	really	well.	T-SNE,	for	example	cannot	handle	a
very	large	number	of	features,	while	PCA	requires	a	great	deal	of
resources	to	accomplish	that.	Autoencoders,	on	the	other	hand,	can
provide	a	reduced	feature	set	without	any	such	limitations.
Data	denoising:	various	datasets,	such	as	those	comprising	of
multi-media	data,	have	a	lot	to	benefit	from	a	denoising
autoencoder.
Data	generation:	using	the	specialized	kind	of	autoencoder
(VAE),	we	can	create	new	data	in	cases	where	additional	data	is
required	(e.g.	for	training	other	AI	models).



APPENDIX	D

Generative	Adversarial	Networks
Generative	Adversarial	Networks
(GANs)	are	a	special	kind	of	deep

learning	system	that	deserves	closer
attention.	The	main	idea	of	a	GAN	is
to	have	two	competing	DL	networks,
one	specialized	in	learning	(aka	the

discriminative	model)	and	one
specialized	in	generating	cases	that
cannot	be	identified	correctly	by	the
learner	(aka	the	generative	model).
The	input	for	these	new	cases	is

plain	noise.	This	way,	with	minimal
data	resources,	it	is	possible	to

obtain	a	trained	DL	system	that	has	a
good	enough	generalization,	even	if
you	don’t	have	a	lot	of	data	for	its

training.



Components
The	architecture	of	a	GAN	is	fairly	straightforward,	once	you	understand
its	general	premise.	A	comprehensive	view	of	it	can	be	found	in	Figure	30.
Note	that	the	discriminator	network	D(x)	can	be	any	kind	of	DL	network
that	can	be	employed	in	prediction	analytics.

Data	flow	and	functionality
The	data	in	a	GAN	flows	towards	the	discriminator	network,	which	is	then
asked	to	decide	whether	it	is	of	a	particular	class	(usually	0	and	1).	If	the
data	is	coming	from	the	real	dataset,	the	chances	of	it	passing	is	log(D(x)),
which	corresponds	to	an	entropy	E1[log(D(x)].	Naturally,	 this	DL	system



tries	to	maximize	this	quantity	by	making	it	as	close	to	1	as	possible.	On
the	other	hand,	there	is	a	chance	that	the	data	is	coming	from	the	artificial
dataset	 that	 the	 generative	 network	 is	 putting	 together.	 In	 this	 case	 the
chance	of	it	passing	is	1	-	D(G(z)),	with	the	corresponding	entropy	being
E2[log(1	 -	 D(G(z)))].	 Naturally,	 the	 discriminator	 network	 tries	 to
minimize	 that	 by	 making	 it	 close	 to	 0.	 So,	 overall,	 the	 objective	 it	 is
pursuing	(through	its	training)	is	to	maximize	the	quantity	V(D,	G)	=	E1	+
E2.
On	the	other	hand,	the	generative	network	is	trying	to	minimize	the	same
quantity	 V(D,	 G),	 since	 this	 is	 how	 it	 can	 make	 its	 counterpart	 more
accurate	 in	 its	predictions.	This	whole	process	can	be	summarized	 in	 the
following	 expression:	

Training	process	When	training	a	GAN,	for
a	problem	you	have	defined	and	collected
data	for,	you	need	to	apply	the	following

process:

1.	 Define	the	GANs	architecture.	This	involves	the	type	of	DL
network	that	you	are	going	to	use	for	your	generator	and
discriminator	systems.	Naturally,	this	will	be	a	function	of	the
data	at	hand.

2.	 Train	the	discriminator	system	on	real	data	for	a	while.	The
precise	number	of	epochs	you	train	it	for	is	up	to	you,	but	you
definitely	don’t	want	to	over-train	it,	since	this	would	result	in
overfitting.

3.	 Create	a	number	of	fake	data	points	for	the	generative
system	to	use.	Now	it’s	the	other	GAN	component’s	turn	to	get
some	data.	Naturally,	the	outputs	it	yields	based	on	that	data	is
not	very	useful	at	first,	but	it	needs	to	start	somewhere.



4.	 Train	discriminator	on	the	fake	data	resulting	from	the
previous	step.	Once	the	fake	data	is	ready,	feed	it	to	the
discriminator	network	and	observe	how	it	distinguishes	it	from
the	real	data.

5.	 Train	generator	network	with	the	output	of	the	previous
step.	Now	you	do	the	same	but	for	the	generator	system,	so	that
it	refines	the	fake	data	it	produces,	to	make	it	more	challenging
for	its	counterpart	to	spot.

6.	 Repeat	steps	2	to	5	for	a	number	of	epochs.
7.	 Check	fake	data	yourself	to	see	if	it	appears	similar	enough

to	the	real	data.	If	it	does,	you	can	stop	the	training,	otherwise,
you	can	repeat	steps	2	to	5	for	a	while	longer.

8.	 Evaluate	the	performance	of	the	discriminator	system.

Pain	points	of	a	GAN	model	The	main	pain
points	of	a	GAN	model	revolve	around	the
fact	that	more	often	than	not,	they	are	used
with	images.	Like	every	other	DL	system,
GAN	models	view	these	images	as	a	set	of
numbers,	making	it	impossible	for	them	to
truly	have	any	real	context	related	to	the
subjects	of	these	images	or	what	they	are

expected	to	be	like.

Issues	related	to	counting
Counting	 issues	 relate	 to	 this	as	 the	GANs	often	 fail	 to	comprehend	 that
certain	aspects	of	a	subject	correspond	to	how	many	of	that	subject	exist	in
an	 image.	 This	 results	 in	 fake	 data	 often	 looking	 like	 some	 genetic
experiment	gone	wrong,	with	images	of	creatures	having	multiple	sets	of
eyes	or	heads.



Perspective	issues
Since	 perspective	 is	 something	 that	 only	 relatively	 recently	 has	 been
understood	by	our	species	when	it	comes	 to	visual	representations	of	 the
world	(one	of	the	innovations	of	Leonardo	Da	Vinci),	it	is	no	surprise	that
GANs	often	fail	to	deliver	images	that	exhibit	this	characteristic.	After	all,
GANs	tend	to	view	an	image	as	a	flat	surface	having	various	colors	on	it,
much	like	an	ancient	painting.

Issues	with	global	structures
The	structures	corresponding	to	various	subjects	are	something	we	take	for
granted	since	we	are	used	to	seeing	them	a	certain	way.	These	structures
have	to	do	with	how	a	subject	is	positioned	and	in	the	case	of	an	animal,
with	its	anatomy.	However,	GANs	lack	this	understanding	of	the	subjects
they	encounter	 in	 the	images,	so	they	come	up	with	fake	images	that	are
very	much	like	an	amateur	photo	gag.

Use	cases	and	applications
Generative	Adversarial	Networks	have	a	variety	of	use	cases,	where	they
can	add	value.	The	main	ones	are	the	following:

Text	to	Image	Generation:	This	is	particularly	useful	when	you
want	to	obtain	copyright-free	images	using	a	database	or	a	web
archive	as	a	source.	The	GAN	translates	the	text	into	specific
characteristics	for	the	image	to	have,	identifies	images	having	these
characteristics,	and	generates	new	images	resembling	the	latter.
Image	Caption	Generation:	This	involves	finding	particular
characteristics	of	a	given	image,	figuring	out	what	words
correspond	to	them	(using	some	caption	database),	and	creating
new	text	that	resembles	the	latter.	Naturally,	the	descriptions	of	the
images	in	the	database	need	to	be	quite	accurate.
Increasing	Resolution	of	an	image:	Just	like	denoising
autoencoders,	GANs	can	be	used	for	cleaning	up	an	image,	though
their	approach	is	different.	What	they	do	is	create	new	images	that



resemble	the	original	one	as	much	as	possible,	but	with	fewer
similarities	among	neighboring	pixels.
Predicting	the	next	frame	in	a	video:	Useful	for	spotting
anomalies	in	the	frames	of	a	video,	this	application	involves
finding	the	next	frame	based	on	the	image	of	the	last	frame	in	a
video	clip.	This	is	done	by	creating	new	frames	that	closely
resemble	the	previous	ones,	in	a	time-series	fashion.
Interactive	Image	Generation:	This	entails	creating	images	that
have	certain	characteristics,	depicted	graphically	by	the	user	in	the
form	of	rudimentary	images.	The	GAN	involved	creates	images
using	these	characteristics,	that	are	also	similar	to	the	ones	it	has
been	trained	on.
Image	to	Image	Translation:	This	is	the	previous	application
taken	to	the	next	level.	It	involves	using	an	image	as	input	data	for
the	generative	network	and	allowing	the	GAN	to	learn	based	off
that,	generating	similar	images	in	the	process	that	are	also	more
realistic.



APPENDIX	E

The	Business	Aspect	of	AI	in	Data
Science	Projects

Since	data	science	has	a	strong	business	component	to	it,	it	is	essential	to
examine	this	aspect	of	the	craft	and	how	AI	fits	into	all	this.	After	all,	AI
is	still	a	fairly	expensive	technology	if	it	is	implemented	properly,	so	it	is
far	from	being	a	panacea,	when	it	comes	to	data	science	projects.
Factors	like	the	relevant	technologies	that	make	AI	feasible	and	practical,
as	well	as	the	computing	and	data	resources	required,	need	to	be	taken	into
account	 when	 deciding	 whether	 to	 invest	 in	 an	 AI	 system	 for	 a	 data
science	 project	 or	 not.	Also,	 not	 all	 industries	 benefit	 from	AI	 the	 same
way,	so	this	is	an	important	consideration	to	have.	Finally,	the	education	a
data	scientist	needs	in	order	to	handle	AI-related	projects	is	another	factor
that	needs	to	be	examined,	if	AI	is	to	be	a	fruitful	part	of	an	organization’s
data	science	endeavors.

Description	of	relevant	technologies
As	 mentioned	 briefly	 in	 the	 main	 text	 of	 this	 book,	 there	 are	 several
technologies	 that	 go	 hand-in-hand	 with	 AI.	 A	 business	 person	 needs	 to
have	them	in	mind	as	how	they	evolve	is	bound	to	affect	significantly	the
whole	AI	field.	Also,	investing	in	these	technologies,	particularly	in	terms
of	 infrastructure,	 would	 be	 a	 sound	 strategic	 decision,	 if	 you	 plan	 to
embrace	AI	in	your	organization.
The	 key	 technology	 in	 AI	 at	 the	 moment	 is	 GPUs.	 Although	 these	 are
fairly	 commonplace,	 not	 many	 computers	 have	 enough	 GPU	 power	 to
render	 a	 high-level	 DL	 system	 a	 viable	 option.	 Oftentimes	 specialized
computers	 need	 to	 be	 built,	 having	 several	GPUs	 accessible	 to	 them,	 in
order	 to	 scale	 up	 their	 computational	 power	 so	 that	 they	 can	 implement



large	DL	 networks.	 The	 key	 advantage	 of	 this	 option	 is	 that	 the	 cost	 is
fixed	and	once	you	create	such	a	system,	the	only	running	cost	for	it	is	the
electricity	 it	 consumes,	 which	 is	 negligible	 compared	 to	 the	 potential
benefit	 it	 can	 offer	 (assuming	 you	 have	 the	 data	 to	 feed	 such	 an	 AI
system).
An	 alternative	 technology	 to	 GPUs	 that	 is	 also	 very	 popular,	 is	 cloud
computing.	 This	 involves	 leasing	 computing	 power,	 RAM,	 and	 storage
space	 in	 a	 remote	 data	 center.	 The	 latter	 is	 a	 collection	 of	 specialized
servers	 for	 this	 sort	 of	 task,	 usually	 owned	 and	managed	 by	 a	 big	 tech
company,	 such	 as	 Amazon	 or	 Microsoft.	 The	 cloud	 computing	 option
enables	 you	 to	 build	 a	 virtual	 machine	 (VM)	 that	 has	 resources	 from
various	 powerful	 computers,	 bringing	 about	 the	 equivalent	 of	 a
supercomputer,	 accessible	 through	 the	 internet.	 Such	 a	 computer	 can
handle	all	kinds	of	AI	systems	and	is	easy	to	scale.	The	key	advantage	of
this	 is	 that	 you	 can	 always	 change	 its	 specs	 and	 customize	 the
corresponding	cost	to	fit	your	budget,	at	any	given	time	period.
Another	somewhat	relevant	technology,	which	is	a	bit	experimental	at	this
point,	is	quantum	computing.	Although	the	current	AI	systems	don’t	need
a	quantum	computer,	it	is	quite	likely	that	a	machine	like	that	can	greatly
speed	up	an	AI	system,	as	it	would	enable	it	 to	scale	up	to	unimaginable
levels,	 while	 also	 keeping	 the	 running	 cost	 low.	 Naturally,	 quantum
computers	 are	 fairly	 scarce,	 however	 it	 is	 not	 unfathomable	 having	 the
option	 of	 a	 shared	 quantum	 computer	 in	 the	 near	 future	 (much	 like	 a
shared	 data	 center	 via	 a	 cloud).	 Such	 a	 technology	 is	 bound	 to	 be
expensive	 but	 it	 might	 have	 advantages	 to	 compensate	 for	 its	 cost.
However,	everything	 related	 to	 this	 technology	 is	 still	highly	speculative
and	therefore	risky,	from	an	investment	standpoint.	Still,	the	economics	of
this	tech	may	change	as	more	players	get	into	this	industry,	driving	down
the	production	cost	of	a	quantum	computer.

AI	resources
Resources	are	important	in	every	project.	When	it	comes	to	AI-based	data
science,	the	ones	that	are	most	relevant	are	computing	and	data	resources,
though	there	is	also	the	expertise	in	the	specialized	professionals	handling
these	systems.	The	latter	are	covered	in	the	final	section	of	this	appendix.



Computing	resources
The	computing	 resources	of	an	AI-based	project	depend	on	 the	project’s
scale.	They	involve	a	lot	of	memory	though	the	main	bottleneck	is	usually
the	computing	power,	which	is	generally	covered	through	a	lot	of	GPUs.
When	 scaling	 up	 a	 system,	 it’s	 best	 to	 do	 that	 gradually	 though,	 since
sometimes	 the	 trade-off	 between	 computing	 resources	 and	 time	 required
by	an	AI	system	(mainly	for	 its	 training,	when	it	comes	to	deep	learning
systems)	 is	 manageable.	 Cloud	 computing	 systems	 are	 a	 great	 way	 to
experiment	 with	 this	 trade-off,	 though	 for	 more	 long-term	 projects,	 it
makes	more	sense	to	have	your	own	computing	infrastructure,	in	the	form
of	a	private	cloud,	aka	a	computer	cluster.

Data	resources
Data	resources	are	something	oftentimes	ignored	since	many	people	have
a	warped	perception	about	AI’s	relationship	to	data.	Although	there	are	AI
systems	that	can	generate	data	similar	 to	what	 they	have	been	trained	on
such	as	VAEs	and	GANs,	in	order	for	them	to	provide	good	quality	data
they	need	 to	have	 a	good	generalization	of	 the	dataset	 they	are	going	 to
expand.	For	this	to	happen	though,	sufficient	data	is	required,	just	like	any
other	AI	project.
Data	 science	 systems	 (particularly	machine	 learning	 ones)	 have	 evolved
over	 the	 years	 and	 can	 handle	 all	 sorts	 of	 datasets.	 However,	 for	 AI
systems	to	truly	offer	an	edge	over	these	systems,	there	needs	to	be	a	lot	of
data	 available.	 So,	 getting	 a	 number	 of	 data	 streams	 in	 a	 data	 science
pipeline	and	having	processes	 in	place	 for	maintaining	 them	 (so	 that	 the
data	doesn’t	become	stale)	 is	paramount	 for	making	an	AI-based	 system
bring	 about	 sufficient	 value	 to	 justify	 its	 existence	 and	 the	 potential
training	of	the	people	who	use	it	regularly.

Industries	and	applications	benefiting	the
most	from	AI

Naturally,	industries	where	a	lot	of	data	is	involved	are	more	suitable	for
adopting	AI	 in	 their	data	 science	pipelines.	That’s	why	 the	 financial	and



telecommunications	 sectors	 were	 the	 first	 ones	 to	 adopt	 data	 science	 in
general.	Also,	industries	like	retail	can	benefit	a	lot	from	AI,	as	they	have
dynamic	data	that	is	suitable	for	an	RNN	system,	for	example.
What’s	more,	if	you	are	considering	an	application	involving	lots	of	text,
sound	or	image	data,	such	as	through	the	ingestion	of	social	media	feeds,
you	can	get	a	lot	out	of	an	AI	system,	particularly	if	you	have	a	lot	of	data
like	 that.	 If	 all	 your	data	 is	binary	and	continuous	variables	 though,	you
may	get	by	with	a	conventional	data	 science	system	 too.	Make	sure	you
consult	a	data	scientist	with	AI	know-how	when	making	this	decision.

Data	science	education	for	AI-related
projects

The	use	of	AI	in	data	science	brings	about	to	the	forefront	the	data-driven
paradigm.	Before	that,	data	was	tackled	primarily	using	statistical	models
which	carried	with	them	a	set	of	assumptions	that	were	not	always	valid.
The	data-driven	 approach	doesn’t	 have	 any	 such	 assumptions,	making	 it
more	 accurate	 and	 generally	 more	 effective,	 particularly	 when	 dealing
with	complex	datasets,	not	following	any	particular	distribution.
This	 approach	 to	data,	 powered	by	machine	 learning	 and	AI	know-how,
creates	 a	 new	 kind	 of	 role	 in	 data	 analytics,	 one	 that	 is	 geared	 more
towards	state-of-the-art	systems.	Statistics	is	still	a	useful	skill	to	have,	but
it’s	not	as	important	since	it	is	useful	mainly	for	the	data	exploration	stage.
All	 the	 heavy	 work	 in	 the	 data-driven	 paradigm	 is	 undertaken	 by
specialized	 data	models	 (usually	AI	 ones)	 that	 require	 a	 different	 set	 of
skills.	However,	this	is	not	too	different	to	the	standard	skill-set	of	a	data
scientist,	so	an	AI	specialist	is	not	always	the	best	option.	Sometimes	it	is
better	to	train	existing	employees	on	these	new	systems.
All	this	renders	continuous	education	a	necessity,	so	training	courses	and
conferences	ought	to	be	included	in	the	data	science	budget.	Besides,	most
of	the	AI	frameworks	out	there	are	free,	so	training	someone	to	use	them
is	usually	a	worthwhile	investment.



APPENDIX	F

Using	Docker	Image	of	the	Book’s
Code	and	Data

Docker	is	a	system	that	enables	the	reliable	transference	of	programming
systems	to	other	computers.	It	basically	ports	the	whole	environment	of	a
project,	along	with	any	packages	that	need	to	be	installed,	so	that	the	code
of	the	project	can	run	smoothly.	Data	files	can	be	included	too,	making	the
running	 of	 a	 project	 possible	 in	 completely	 different	 machines	 than	 the
one(s)	 it	was	 developed	 on.	 This	way,	 the	 risk	 of	 running	 into	 errors	 is
minimal.
A	Docker	 image	 is	not	 the	 same	as	 a	virtual	machine,	 since	 the	 latter	 is
more	of	a	portable	computer	with	its	own	operating	system,	resources,	and
storage	 space.	 Docker	 images	 are	 fairly	 lightweight	 and	 more	 flexible
overall.

Downloading	the	Docker	software
Before	 making	 use	 of	 the	 Docker	 image,	 you’ll	 need	 to	 download	 and
install	 the	 Docker	 software	 to	 your	 computer.	 Docker	 supports	 all	 the
major	operating	systems	like	Windows,	Mac	or	Linux.	Depending	on	the
operating	system	you	are	using,	you	can	find	the	corresponding	files	here:
https://dockr.ly/2NjJI1Q.
Note	 that	 there	 is	also	 the	“Docker-compose”	program,	which	 if	you	are
using	Linux	you’ll	need	to	install	separately.	These	are	all	the	things	you
need	to	download	and	install	to	your	computer.

Using	Docker	with	an	image	file
First,	 you’ll	 need	 to	 download	 the	 image	 file,	which	 is	 going	 to	 be	 in	 a



password-protected	 archive.	 The	 password	 for	 it	 is	 AI4datascience2018
and	you’ll	need	to	type	it	in	when	extracting	it.	Afterwards,	you’ll	need	to
type	the	following	command	in	order	to	run	the	Docker	image:
Docker	run	--name	debjulia	-d	-p	8888:8888	-t
AI4datascience2018/debjulia

That’s	all.	You	can	access	 the	files	 inside	 the	Docker	 image	by	going	 to
0.0.0.0:8888/	 on	 your	 browser	where	 a	 Jupiter	 notebook	will	 be	 already
run	for	you.

Docker	tips
Generally,	 you	 don’t	 need	 an	 internet	 connection	 when	 running	 the
Docker	 image,	 but	 for	 the	 updating	 stage	 (which	 you	 only	 need	 to	 run
once),	you’ll	 need	 to	be	 connected	 to	 the	 internet.	Also,	when	accessing
the	 Jupyter	 application,	 you’ll	 need	 to	 provide	 the	 aforementioned
password	again.	Although	the	port	8888	is	not	used	by	a	popular	program,
you	 need	 to	 make	 sure	 that	 no	 other	 program	 runs	 at	 port	 8888	 before
running	 the	 Docker	 image.	 Finally,	 make	 sure	 that	 you	 run	 the	 Docker
image	on	a	computer	with	at	least	4	GB	of	RAM.
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